
HAL Id: hal-04465413
https://hal.science/hal-04465413v1

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faithful Simulation of Randomized BFT Protocols on
Block DAGs

Hagit Attiya, Constantin Enea, Shafik Nassar

To cite this version:
Hagit Attiya, Constantin Enea, Shafik Nassar. Faithful Simulation of Randomized BFT Protocols
on Block DAGs. 34th International Conference on Concurrency Theory, CONCUR 2023„ Sep 2023,
Antwerp, Belgium. �10.4230/LIPIcs.CONCUR.2023.27�. �hal-04465413�

https://hal.science/hal-04465413v1
https://hal.archives-ouvertes.fr

Faithful Simulation of Randomized BFT Protocols1

on Block DAGs2

Hagit Attiya !3

Technion, Israel4

Constantin Enea !5

LIX, Ecole Polytechnique, CNRS and Institut Polytechnique de Paris, France6

Shafik Nassar !7

Technion, Israel8

Abstract9

Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are10

attractive due to their many advantages in asynchronous blockchain systems. These DAG-based11

protocols can be viewed as a simulation of some BFT protocol on a DAG. Many DAG-based BFT12

protocols rely on randomization, since they are used for agreement and ordering of transactions,13

which cannot be achieved deterministically in asynchronous systems. Randomization is achieved14

either through local sources of randomness, or by employing shared objects that provide a common15

source of randomness, e.g., common coins.16

A DAG simulation of a randomized protocol should be faithful, in the sense that it precisely17

preserves the properties of the original BFT protocol, and in particular, their probability distributions.18

We argue that faithfulness is ensured by a forward simulation. We show how to faithfully simulate19

any BFT protocol that uses public coins and shared objects, like common coins.20

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of21

computation → Distributed computing models; Computing methodologies → Distributed algorithms;22

General and reference → Verification23

Keywords and phrases Distributed Algorithms, Byzantine failures, Hyperproperties, Forward Simu-24

lation25

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.2726

Related Version https://eprint.iacr.org/2023/19227

Funding Hagit Attiya: partially supported by the Israel Science Foundation (grants 380/18 and28

22/1425).29

Constantin Enea: partially supported by the project AdeCoDS of the French ANR Agency.30

Shafik Nassar : partially funded by the European Union (ERC, FASTPROOF, 101041208). Views31

and opinions expressed are however those of the author(s) only and do not necessarily reflect those32

of the European Union or the European Research Council. Neither the European Union nor the33

granting authority can be held responsible for them.34

1 Introduction35

Asynchronous distributed computation is naturally captured by a directed acyclic graph36

(DAG), whose nodes describe local computation and edges correspond to causal dependency37

between computation at different processes. Lamport’s happens-before relation [14] is an38

example of such DAG, where each node is a single local computation event, and each edge is39

a single message delivery event. Block DAGs [21] go one step further and incorporate more40

than one local computation step in each block (node); these steps may even belong to several41

independent protocols.42

© Hagit Attiya, Constantin Enea and Shafik Nassar;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:cenea@lix.polytechnique.fr
https://orcid.org/0000-0003-2727-8865
mailto:shafiknassar@cs.technion.ac.il
https://orcid.org/0000-0002-7388-3858
https://doi.org/10.4230/LIPIcs.CONCUR.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Faithful Simulation of Randomized BFT Protocols on Block DAGs

By exchanging blocks in a manner that preserves their dependencies, a distributed43

protocol can now be abstracted as a joint computation of a block DAG. In particular, a44

general Byzantine fault-tolerant (BFT) DAG-based algorithm combines two components:45

one component builds the DAG using a communication protocol that tolerates malicious46

failures, and the other component performs the local computation embodied in each node of47

the DAG. The first component can be used to separate the task of injecting user input to48

the system, such as transactions, from the task of processing these inputs and producing an49

output, e.g., an ordering of those transactions.50

This generality makes block DAGs an attractive approach for designing coordination51

protocols for, e.g., Byzantine Atomic Broadcast [10,13,20], consensus [4, 16] and cryptocur-52

rencies [6]. (For a survey of the techniques used in block DAG approaches, see [21].) A block53

DAG can be seen as a strict extension of a blockchain, which is a DAG where all blocks54

are totally ordered, i.e., a directed path. The DAG approach was shown to achieve high55

throughput [19] due to the flexibility it provides over the standard blockchain approach.56

Schett and Danezis [17] show that any deterministic BFT protocol can be simulated as a57

block DAG. They provide generic mechanisms for processes to maintain a consistent view of58

the block DAG, and to individually interpret the DAG as an execution of some protocol.59

The restriction to deterministic protocols, however, handicaps the applicability of this60

result, since many algorithms in the asynchronous domain are necessarily non-deterministic,61

due to the FLP impossibility result [9]. For example, DAG-based agreement protocols with62

provable security, like Aleph [10] or DAG-Rider [13], are either randomized or assume the63

existence of a shared source of randomness. This calls for a framework that can handle64

randomized BFT protocols; those that either utilize local randomness or even a shared object.65

The problem of using or defining block DAG simulations in the context of randomized66

protocols has two aspects: (1) using a block DAG simulation of a deterministic protocol67

as a building block of a randomized protocol, and (2) defining block DAG simulations of68

randomized protocols.69

Concerning the first aspect above, we aim to enable modular reasoning when using such70

simulations instead of the original protocols (Section 2 describes a concrete example). Schett71

and Danezis [17] establish that the traces of the block DAG simulation are included in72

the set of traces of the original protocol (for some notion of trace which is not important73

for this discussion). However, as shown in other contexts, e.g., concurrent objects [2, 11],74

such a notion of refinement is not sufficient to conclude that relevant specifications of a75

randomized protocol that builds on some other deterministic protocol are preserved when76

the latter is replaced by the block DAG simulation. Indeed, the specifications of randomized77

protocols characterize sets (probabilistic distributions) of executions and are instances of78

hyper-properties which are not preserved by standard trace inclusion [2].79

Therefore, we establish a stronger notion of refinement between a block DAG simulation80

and the original protocol, namely, that there exists a forward simulation between the two.81

(A forward simulation maps every step of one protocol to a sequence of steps of the other82

protocol, starting from the initial state of the first and advancing in a forward manner; a83

backward simulation is similar, but it goes in the reverse direction, from end states back to84

initial states.). Based on the results in [2], this implies that any finite-trace specification of85

a randomized protocol against an adaptive adversary is preserved when a sub-protocol is86

replaced by its block DAG simulation. We recall that an adaptive adversary is a scheduler87

that resolves all the non-determinism introduced by the interleaving semantics and which88

can observe everything about the local state of a process or the messages in transit.89

Armed with this understanding of the precise nature of block DAG simulation, we present90

H. Attiya, C. Enea and S. Nassar 27:3

Algorithm 1 Binary consensus using a common coin

Input: x
1: r := 0; est := x;
2: while true do
3: r++;
4: val := r.BCA(est);
5: c := r.Toss();
6: if val 6= ⊥ and c = val then
7: output val;
8: est := val;
9: else if val 6= ⊥ then
10: est := val;
11: else
12: est := c;

call r.BCA(0)

ret

ret cr

call r.BCA(1)

ret 1-cr
call r.Toss()
ret cr

est = cr est = 1-cr

call r.Toss()

Figure 1 A randomized consensus algorithm on the left, and an execution template (c0 ∈ {0, 1})
on the right, which represents the executions of an adaptive adversary which disallows termination.

an extension of the construction of Schett and Danezis [17], which applies also to protocols91

using randomization and shared objects. Specifically, we consider randomized protocols in92

which the local coin flips of each process may be public, we call those protocols public-coin93

protocols. We prove that any public-coin protocol that uses shared objects, e.g., common94

coins, can be simulated on a block DAG, preserving its usage of shared objects.95

A relationship based on a forward simulation allows to conclude that probabilistic96

specifications of a randomized protocol, e.g., termination time, are preserved by its block97

DAG simulation. Such a simulation precisely preserves the finite trace distribution and the98

probabilistic relationship between inputs and outputs. This means that whatever “adverse”99

effects can occur in the simulation, can already be demonstrated in the original protocol.100

Organization. Section 2 presents an example that demonstrates why simulations should101

preserve hyperproperties. Sections 3–5 describe the model and introduces important defini-102

tions and notations. Section 6 formally defines block DAGs. Our results are presented and103

proved in Section 7. The relation of our simulation to [17], and some applications appear104

in Section 8. We summarize with future work, in Section 9.105

2 Motivating Example106

We describe a class of protocols solving Binary Crusader Agreement, and a hyperproperty107

about them, called binding [1], which is assumed when such protocols are used to solve108

randomized consensus. This motivates the need for establishing a notion of refinement109

for block DAG simulations that is stronger than trace inclusion and which enables the110

preservation of such hyperproperties.111

2.1 Randomized consensus based on Binary Crusader Agreement112

Let us consider the consensus protocol listed in Algorithm 1 (from [1]). This is a randomized113

protocol based on two sub-protocols, Binary Crusader Agreement, invoked as BCA, and a114

CONCUR 2023

27:4 Faithful Simulation of Randomized BFT Protocols on Block DAGs

common coin, invoked via Toss. Every process participating in this consensus protocol goes115

through a sequence of asynchronous rounds (the current round is stored in the variable r),116

and each round consists of one instance of BCA followed by one instance of Toss. We prefix117

invocations with the value of r in order to emphasize that these instances are different from118

one round to another.119

Binary Crusader Agreement [7] is a weak form of consensus, where processes start with a120

value in {0, 1} and can return a value in {0, 1,⊥} (note the special value ⊥). The requirements121

are: (1) validity: if all non-faulty processes start with the same input, then this is the only122

output, (2) agreement: no two non-faulty processes output two distinct non-⊥ values, and123

(3) termination: every non-faulty process eventually outputs a value. It is weaker than124

consensus because a process can output the “don’t know” value ⊥ instead of one of the inputs.125

The common coin protocol allows to implement a shared source of uniform randomness, it126

guarantees that all processes receive the same output in {0, 1} (drawn with equal probability)127

and that this output is unpredictable to an outsider (adversary).128

Each round of the consensus protocol starts with a round of BCA where each process129

inputs the current estimation of the agreement value est (initially, this is the input x),130

followed by a round of the common coin. If BCA returns a non-⊥ value then this will be131

the value of est in the next round. Otherwise, the value of est is the value returned by the132

coin protocol. Furthermore, if the values returned by BCA and Toss are the same, then the133

process outputs the decision value. A process continues running the protocol after outputting134

the decision in order to “help” other processes reach a decision (e.g., so that future instances135

of BCA and the common coin satisfy honest super majority assumptions).136

2.2 Termination under binding137

We say that the protocol terminates when all non-faulty processes output a decision. It has138

been shown [1] that the protocol of Figure 1 terminates against an adaptive adversary with139

probability 1, provided that BCA satisfies a property called binding. The binding property140

states that for every execution prefix of BCA that ends with a process returning ⊥, there is141

a single non-⊥ value that can be returned by a process in any future extension of this prefix.142

It is important to note that this is an instance of a hyperproperty because it characterizes143

sets of executions, i.e., all possible extensions of a prefix, instead of individual executions as144

in standard safety or liveness properties.145

To explain the usefulness of binding, we use the execution template on the right of146

Figure 1. This defines non-terminating executions of the consensus protocol against a specific147

adaptive adversary assuming a “worst-case” BCA protocol, which satisfies the specification148

described in Section 2.1 but does not satisfy binding. Therefore, assuming two processes149

with different inputs, for every round r, the adversary schedules BCA so that a first process150

returns ⊥ and the second process’s return value is not yet fixed. Then, it schedules the first151

process to get a value cr ∈ {0, 1} from the common coin and after observing this value, it152

resumes BCA so that the second process gets the value 1− cr (this is admitted by the BCA153

specification). The conditional at lines 6–12 implies that the first process will enter the next154

round with est being the outcome of the coin toss, and the second process with est being the155

value returned by BCA. Therefore, they enter the next round with different estimations of156

the agreement value, and the same can be repeated infinitely often. Since this repeats for all157

possible outcomes of the coin tosses, non-termination happens with probability 1.158

Note that this would not be possible for both outcomes cr ∈ {0, 1} of the coin toss if159

BCA satisfies binding. Indeed, after the first process gets ⊥ from BCA (and before the coin160

toss), the value returned by BCA to the second process is fixed in any possible extension, i.e.,161

H. Attiya, C. Enea and S. Nassar 27:5

it is the same no matter the outcome of the coin toss. Therefore, for one of the two possible162

outcomes of the coin toss, this return value equals that outcome, and the two processes will163

enter with equal values of est in the next round.164

When binding holds, an adaptive adversary can not impose the schedule described above165

and the protocol terminates with probability 1. In every round, if the BCA value is not ⊥,166

then it equals the outcome of the coin toss with probability 1/2, which leads to outputting a167

decision. If all processes get ⊥ from BCA, then the common coin leads directly to agreement.168

Therefore, the protocol terminates within a constant expected number of rounds.169

2.3 Preserving binding170

In the context of this consensus protocol, we discuss the possibility of replacing a given BCA171

protocol with a block DAG simulation as defined by Schett and Danezis [17]. The results172

in [17] are not sufficient to deduce that the block DAG simulation satisfies binding if the173

original protocol did, because, as mentioned above, binding is an instance of a hyper-property174

and hyper-properties are not preserved by standard trace inclusion [2]. Therefore, based on175

the results in [17], the proof of termination that assumed binding is not applicable to the176

block DAG simulation.177

In this work, we present a block DAG simulation that handles protocols that use public-178

coins and shared objects (including a common coin like Toss). We establish that it is a179

forward simulation, which by previous work [2], implies that the set of traces defined by an180

adaptive adversary of the consensus protocol with the original BCA protocol is the same181

when the latter is replaced with the block DAG simulation (the results in [2] were applied in182

the context of concurrent objects and programs using such objects, but they are stated in183

terms of LTSs models of such programs and apply more generally to distributed protocols184

as well). Therefore, if one satisfies binding, then the other one satisfies it as well. This is185

enough to conclude that the termination argument used for the original protocol holds for186

the block DAG simulation as well.187

3 Preliminaries188

For any n ∈ N, we denote [n] = {1, . . . , n}. For any two strings s1 and s2, we denote by189

s1 ◦ s2 the concatenation of the two strings.190

We consider an asynchronous network with n processes p1, . . . , pn. Each process pi has191

a local process state PSi, and buffers Inj→i and Outi→j , for each j ∈ [n], that serve for192

communicating with pj , as well as a buffer Rqstsi that contains incoming user requests. A193

schedule consists of two types of events:194

A compute(i) event lets process pi receive all the messages in the buffers Inj→i, as well as195

the requests in Rqstsi, and update the local state PSi. The local computation performed196

to update PSi may result in new messages being deposited in the outgoing buffers Outi→j197

and indications being sent to the user.198

A deliver(i, j) event moves the oldest message in Outi→j to Inj→i.199

We assume a computationally bounded adversary that may adaptively corrupt up to f200

processes, and also controls the scheduling of the system. Initially, all n processes are correct201

and honestly follow the protocol. Once a process is corrupted, it may behave arbitrarily.202

The adversary can also read all messages in the system, even those sent by correct processes.203

Although the scheduling of message delivery is adversarial, we assume eventual delivery, i.e.,204

every message sent is eventually delivered.205

CONCUR 2023

27:6 Faithful Simulation of Randomized BFT Protocols on Block DAGs

In a randomized protocol, the local computation of a process can depend on the result of206

local coin flips. To model this, we assume each process pi has access to a random tape, from207

which it can draw a random string at each compute(i) event. Our simulation can be applied208

to public-coin protocols, which are randomized protocols that do no require processes to keep209

secrets, i.e., they can broadcast the random string they draw as soon as they use it. This210

definition captures protocols in the full-information model such as [12].211

To allow for easy composition, we define shared objects. A shared object is an implemen-212

tation of an interface that is accessible by all processes. For example, in the context of the213

randomized consensus protocol in Fig. 1 we used a shared object called common coin with214

a method Toss. For any shared object o, each process pi can invoke o as it performs any215

local computation. Invocations are non-blocking, and o may at any point return a value in a216

designated buffer o.buff i. Whenever a compute(i) event is scheduled, the contents of o.buff i217

are dequeued and may affect the local computation.218

4 Modeling protocols with Labeled Transition Systems219

Wemodel a protocol as a Labeled Transition System (LTS), which is a tuple L = (Q,Σ, qstart, δ)220

where:221

1. Q is a (possibly infinite) set of states.222

2. Σ is a set of (transition) labels.223

3. qstart is the starting state.224

4. δ ⊆ Q × Σ × Q is a (possibly infinite) set of transitions, written as q1
l−→ q2 for any225

(q1, l, q2) ∈ Q× Σ×Q.226

An execution of L is an alternating sequence of states and transition labels α = q0, l0, q1, l1, . . .227

s.t. qi
li−→ qi+1 for any i ≥ 0. If there exists any partial execution qi, li, . . . , lj−1, qj then228

we write qi
li,...,lj−1−−−−−−→ qj . We define a subset of labels ΣE ⊆ Σ as the external actions,229

and define a trace of L to be the projection of an execution over ΣE . Typically, external230

actions correspond to requests and indications in the interface of a protocol, and define the231

“observable” behavior of a protocol. For instance, the external actions of a consensus protocol232

are about setting the input of each process and outputting their decisions.233

LTSs as defined above can be used to model deterministic protocols in a straightforward234

manner. Essentially, LTS states correspond to tuples of states of participating processes and235

communication channels, and each transition corresponds to a step of some process (more236

details are given below).237

Randomized protocols can be modeled using an extension of LTSs called (simple) proba-238

bilistic automata [18] where a transition from a state q leads to a probability distribution over239

states instead of a single state. The semantics of a probabilistic automaton is formalized in240

terms of probabilistic executions, which are probability distributions over executions defined by241

a deterministic scheduler that resolves the non-determinism. Probabilistic traces are defined242

as projections of probabilistic executions to external actions (similarly to the non-probabilistic243

case). The deterministic scheduler corresponds to the notion of adaptive adversary described244

above which controls message delivery and process scheduling. To simplify the formalization,245

we model randomized protocols using LTSs instead of probabilistic automata by including246

results of random choices in the transition labels. The transition labels corresponding to247

random choices are defined as external actions. The relevance of this modeling choice will be248

detailed later when discussing forward simulations.249

Let P be a public-coin protocol and O be a set of shared objects used by P . We define the250

LTS of P as follows L = (Q,Σ, qstart, δ). A state q ∈ Q consists of the local state PSi, the251

H. Attiya, C. Enea and S. Nassar 27:7

incoming messages (Inj→i)j∈[n], the outgoing messages (Outi→j)j∈[n] and the incoming object252

return values (o.buff i)o∈O of each process pi. For convenience, we assume that incoming user253

requests are stored in Ini→i and outgoing user indications are stored in Outi→i. Overall,254

q =
(
PSi, (Inj→i)j∈[n], (Outi→j)j∈[n], (o.buff i)o∈O

)
i∈[n]. We use register notation to refer to255

the components of each state, e.g., q.Inj→i refers to the incoming messages buffer from j to256

i in the state q. In the initial state qstart, all of the processes have the initial local state and257

all of the message buffers are empty. For the consensus protocol in Fig. 1, local states are258

valuations of r, val, c, and est, and the buffer for incoming object return values will contain259

values returned by Toss. User indications are decision values outputted at line 7.260

The transition labels Σ correspond to the different types of steps in a protocol execution,261

namely, local computation, message delivery, return values from objects in O, or user requests262

and indications. Observe that we do not need to label sending requests to o ∈ O as this is263

done in an ordinary local computation event. In addition, the local computation label would264

include the randomness (if any) that is used by the process in the said computation event.265

Formally, the labels in Σ are as follows:266

1. compute(i, ρ) denotes a transition where process pi performs a local computation with ρ267

as its randomness. For the consensus protocol in Fig. 1, a local computation step would268

consist in assigning a value to est depending on the conditions starting with line 6.269

2. deliver(i→ j) denotes a transition where all messages in Outi→j are moved to Ini→j .270

3. o.indicate(i, w) denotes a transition where the value w has been added to o.buff i. In271

Fig. 1, this would correspond to the common coin object returning a value for Toss.272

4. request(i, x) denotes a transition where process pi receives x as input. In Fig. 1, this273

models a process receiving an input value to use in the consensus protocol.274

5. indicate(i, y) denotes a transition where process pi returns y as output. In Fig. 1, this275

corresponds to the output at line 7.276

The external actions in ΣE ⊆ Σ are user requests (request(i, x)) and indications (indicate(i, y)),277

and local computation events (compute(i, ρ)). The latter are included in ΣE in order to278

be able to relate probability distributions in different protocols, as discussed hereafter. A279

transition (q1, l, q2) ∈ Q× Σ×Q is in δ if and only if the protocol can get from state q1 to280

state q2 by executing the step denoted by the label l.281

5 Forward simulations282

Showing that a block DAG protocol is a “correct” simulation of some other protocol relies on283

the notion of forward simulation between the LTSs modeling the two protocols, respectively.284

I Definition 1 (forward simulation). Let L = (Q,Σ, qstart, δ) and L′ = (Q′,Σ′, q′start, δ′) be285

two LTSs with the same set of external actions ΣE. A relation R ⊆ Q × Q′ is a forward286

simulation from L to L′ if both of the following hold:287

(qstart, q′start) ∈ R288

For any (q1, l, q2) ∈ δ and any q′1 such that (q1, q
′
1) ∈ R, there exists q′2 ∈ Q′ such that:289

(q2, q
′
2) ∈ R,290

q′1
σ−→ q′2 is a partial execution of L′ (σ is a sequence of labels in Σ′), and291

if l ∈ ΣE, then the projection of the label sequence σ over ΣE is exactly l.292

When L is an LTS modeling a block DAG simulation of a deterministic protocol P that293

is modeled as an LTS L′, the existence of a forward simulation R from L to L′ implies294

that the set of traces of L is included in the set of traces of L′ [15]. It also implies the295

preservation of (hyper-)properties of finite probabilistic traces of randomized protocols when296

CONCUR 2023

27:8 Faithful Simulation of Randomized BFT Protocols on Block DAGs

some sub-protocol P is replaced by a block DAG simulation of it [2] (a concrete example297

was given in Section 2). If the forward simulation is weak progressive [8], i.e., there exists a298

well-founded order such that if σ = ε in Definition 1 then either q2 is smaller than q1 in this299

order or there exists an infinite execution from q′2 with empty trace, then (hyper-)properties300

of infinite probabilistic traces are also preserved.301

These results extend to randomized protocols as well. Assuming that the random choices302

follow the uniform distribution, a forward simulation would imply that any random choice in303

L is mimicked in precisely the same manner by L′. This is because the label of every step304

that includes a random choice is an external action and the result of that random choice is305

included in the label itself. This holds even for non-uniform random sampling as long as306

probabilities are recorded in transition labels. More formally, it will imply the existence of a307

weak probabilistic simulation which is known to imply that the probability distributions over308

traces of L defined by a deterministic scheduler are included in the probability distributions309

over traces of L′ defined by a deterministic scheduler [18]. Moreover, it will also imply310

the preservation of probability distributions over executions of programs that use the block311

DAG simulation instead of the original protocol (this is a consequence of weak probabilistic312

simulations being sound for the trace distribution precongruence [18]).313

Therefore any standard specification of a protocol, e.g., safety or (almost-sure) termination314

against an adaptive adversary, is preserved by a block DAG simulation provided the existence315

of a forward simulation. Moreover, typical specifications of programs using the DAG316

simulation instead of the original protocol will also be preserved.317

6 Block DAGs318

A block is the main type of message that is exchanged in DAG-based protocols and our block319

DAG simulations. A block issued by some process pi allows pi to: (1) inject data into the320

system, e.g., user inputs or shared object outputs, and (2) establish a dependency between321

events of different processes. To that end, the main fields of a block B are the identity of the322

issuing process B.p, injected data B.d, and references to other blocks B.preds (on which B323

directly depends). The reference of B is denoted by ref(B).324

We require that each reference must uniquely identify a specific block. One way to achieve325

this is using cryptographic collision resistant hash functions: the reference ref(B) consists of326

a hash of the block B. By the collision resistance of the hash function, it is infeasible for a327

computationally bounded adversary (or correct processes) to issue two distinct blocks that328

hash to the same value and this ensures that the reference identifies a unique block.329

Since blocks are supposed to represent local computation, and local computation steps of330

any one process are always totally ordered, then each block B must include one reference to331

a parent block which we denote by B.parent, except for one genesis block for each process332

which does not have a parent. In addition, all of the blocks issued by one honest process333

should form a chain, i.e., a directed path that starts with the genesis block.334

We define the ancestors of a block B to be all of the predecessors of B, and their335

predecessors and so on; this set is denoted ancestors(B).336

A block B is authentic if it was issued by the process B.p. It is crucial to ensure the337

authenticity of each block before allowing it into the system. Otherwise, faulty processes can338

impersonate honest processes and sabotage safety properties. We can ensure authenticity by339

using a cryptographic digital signature scheme. That is each process must sign each block it340

issues, and other processes validate the block by checking the signature attached to it.341

Ensuring that each individual block is authentic is not enough to ensure that only342

H. Attiya, C. Enea and S. Nassar 27:9

authentic blocks enter the system. We should also require that a block depends only on343

authentic blocks, that is ancestors(B) must all be authentic in order for B to enter. We say344

that a block is valid if it is authentic and all of B.preds are valid. Note that this recursive345

definition is equivalent to requiring ancestors(B) all be authentic. Following this discussion,346

to ensure safety, only valid blocks would be considered by correct processes. When a process347

pi validates a block B, we write valid(pi, B).348

Each process pi maintains a local DAG Gi consisting of the valid blocks that pi receives349

as nodes and includes a directed edge B′ → B if and only if B′ ∈ B.preds. Note that we350

need a mechanism for pi to ensure that Gi is a DAG. A simple mechanism would be for pi to351

validate B only after it has validated B.preds and not validate multiple blocks “atomically”.352

This alongside the fact that each reference identifies a unique block, would ensure that no353

block in a directed cycle would ever be considered valid. Formally, a Block DAG of a correct354

process pi is a graph G = (VG , EG) such that355

VG ⊆ {B : valid(pi, B)}.356

If B ∈ VG then for all B′ ∈ B.preds it holds that B′ ∈ VG .357

EG = {(B′, B) ∈ VG × VG : B′ ∈ B.preds}.358

G is acyclic.359

Observe that by the definition of G, for every B ∈ VG it holds that ancestors(B) ⊆ VG . When360

B′ ∈ ancestors(B), we write path(B′, B).361

7 Simulating Public-Coin Protocols That Use Shared Objects362

Simulating a protocol on a block DAG consists of two components: first, a mechanism363

that allows processes to build and maintain a joint block DAG and second, an algorithm to364

interpret this joint block DAG as an execution of the original protocol. Given those two365

ingredients, we can execute an instance of the protocol without sending any actual messages366

that are specific to the protocol itself. Of course, maintaining the joint block DAG would367

require exchanging one type of message (block), but those messages are agnostic to the368

protocol being simulated. This means that we can use the same joint block DAG to interpret369

multiple instances of the same protocol or even instances of different protocols.370

Figure 2 describes how to simulate a public-coin protocol P using the components371

mentioned above. We refer to this protocol as the block DAG simulation of P and denote it372

by BD(P). We allow BD(P) to access the same shared objects as P.373

Simulation of Public-Coin Protocols on Block DAGs
From the perspective of process pi, user requests go directly to Rqstsi.
Initialize Gi = (Vi, Ei) with Vi = {Bj}j∈[n] where Bj is a dummy genesis block for the
process pj . On every compute(i) event:
1. Run genBlock(Gi, blks).
2. If new blocks were added to Gi, then run interpret(Gi,P).
3. Run exchangeBlocks(Gi, blks).

Figure 2 The simulation algorithm for public-coin protocols

Interpreting the block DAG as an execution of P is done using the interpret algorithm,374

described in Section 7.1. This algorithm runs locally and involves no communication, yet375

CONCUR 2023

27:10 Faithful Simulation of Randomized BFT Protocols on Block DAGs

guarantees that if two correct processes are interpreting the same (partial) block DAG, then376

their interpretations would be identical.377

Maintaining the joint block DAG is done using the genBlock and exchangeBlocks al-378

gorithms (discussed in Section 7.2): genBlock is responsible for creating new blocks and379

exchangeBlocks is responsible for passing those blocks around to ensure that all correct380

processes receive the same blocks even if the process that issued the block is corrupted.381

The aforementioned components, together, ensure that correct processes have consistent382

views of the execution of P at all times. However, this does not guarantee that the execution383

is useful, e.g., it might give the adversary more power or it might be a “liveless” execution384

where the correct processes are not making any progress. For that reason, we prove in385

Section 7.3 that the execution (defined by the views) is faithful in the sense that there exists386

a forward simulation towards the original protocol. This guarantees that the simulation of P387

on the block DAG preserves P’s original specification.388

7.1 Common Interpretation389

Given a block DAG G = (V,E), we want to interpret it as an execution of the protocol. We390

call this execution the simulated execution. Furthermore, we need the interpretation to be391

consistent among all correct processes doing it.392

The idea is to view G as a causality graph, where a block in G issued by some process pi393

corresponds to a node that belongs to pi in the causality graph, and the node corresponds to394

a compute(i) in the simulated execution. In order to interpret G, we interpret each block395

separately, where the interpretation of the block consists of the local process state and its396

outgoing messages after the corresponding compute(i) event. For convenience, we also treat397

the incoming messages (right before the event) as part of the interpretation. Formally:398

I Definition 2 (Block Interpretation). The interpretation of a block B has the following fields:399

1. A local process state B.PS.400

2. A list of incoming messages B.Min.401

3. A list of outgoing messages B.Mout. For convenience, we denote by Mout [j] the outgoing402

messages in Mout that are designated to pj.403

Note that the interpretation of a block is not sent over the network. This is crucial404

because we do not want the size of the block sent over the network to increase with the405

number of protocol instances being interpreted, and instead we only want the block to406

include information that processes cannot locally compute unambiguously. As such, it is the407

responsibility of each process to interpret each block it has locally.408

In a regular execution of a deterministic protocol, whenever a compute(i) event is409

scheduled, the process pi performs the following: it passes all of the message in Inj→i to410

the local state of its protocol instance PSi and performs a local computation. This updates411

the local state PSi, produces new outgoing messages that are deposited into Outi→j and412

may return user indications. Our interpretation protocol tries to mimic the execution by413

assigning to B.PS the local state of the process after the corresponding event, B.Mout [j] the414

messages that would be deposited in Outi→j , and B.Min the messages that would have been415

in Inj→i before the event. In addition, if the block B was issued by the process doing the416

interpretation and B.PS produces a user indication, then the process must actually return417

the indication to the user. The way to compute B.PS is as follows: B.PS is initially copied418

from the parent block (or initialized as an initial state for genesis blocks), and then we feed419

it all of the relevant outgoing messages from the interpretation of the predecessor blocks,420

that is all messages in B′.Mout [i] for all B′ ∈ B.preds, where B.p = pi.421

H. Attiya, C. Enea and S. Nassar 27:11

Algorithm 2 interpret(Gi, P) for process pi

Gi = (Vi, Ei) is a block DAG and P is a public-coin protocol.
Gi is process-local variable that maintains its value across different invocations
1: while ∃B ∈ Gi s.t. B is not interpreted s.t. ∀B′ ∈ B.preds : B′ is interpreted do
2: if B.k = 0 then
3: Initialize B.PS as a new state according to the protocol P and process B.p
4: else
5: B.PS := B.parent.PS
6: for all B′ ∈ B.preds do
7: Copy messages from B′.Mout [B.p] to B.Min

8: Pass the user requests B.rqsts, messages B.Min , random tape B.rand and the object
indications B.buff to the state B.PS

9: Overwrite the new state in B.PS
10: Store the outgoing messages in B.Mout
11: if B.p = i then
12: Return user indications produced by B.PS to the user
13: Perform object invocations as dictated by B.PS

When extending this approach to randomized protocols, we need to account for the local422

randomness. In this case, the process state expects to additionally receive a random tape. It423

is the responsibility of the issuing process to include the tape in the block B and attach it as424

a part of the block in a data field B.rand. The interpretation is thus similar to that of a425

deterministic protocol, but B.rand is now also passed to the process state as randomness.426

When further extending this to protocols with shared objects, we need to handle object427

invocations and object indications. In a regular execution of a protocol with a shared objects428

o, a process pi might invoke o following a compute(i) event. Similarly, when interpreting a429

block, B.PS might dictate that B.p should invoke o. In this case, the interpreting process430

pi actually performs the invocation only if it is the issuing process of the block pi = B.p.431

The process states in the original protocol expect to receive indications from o, so these432

indications should be passed to B.PS when interpreting B. When o returns an indication433

to pi, it is the responsibility of pi to attach the indications to the block in a special buffer434

B.buff [o]. The contents of B.buff [o] are passed to B.PS when interpreting B. This concludes435

the high level description of block interpretation. In order to interpret an entire block DAG,436

we interpret blocks in a topological order since the interpretation of each block B depends437

on the interpretation of its predecessors. Since the graph is a DAG, such an order exists and438

every block can be interpreted. The full algorithm interpret(G,P) is presented in Algorithm 2.439

The main guarantee of interpret(G,P) is the fact that the interpretation of B is independent440

of G. This is formalized in the following lemma (proved in the full version [3]):441

I Lemma 3. For any two block DAGs G1 and G2, if B ∈ G1 and B ∈ G2 then the442

interpretation of B in both interpret(G1,P) and interpret(G2,P) is identical.443

7.2 Joint Block DAG444

In this section, we demonstrate how processes build and maintain the block DAGs that they445

interpret in Section 7.1. Algorithm 3 presents the genBlock(Gi) algorithm, which allows a446

process to generate blocks and inject data into the system.447

CONCUR 2023

27:12 Faithful Simulation of Randomized BFT Protocols on Block DAGs

Algorithm 3 genBlock(Gi) for process pi

Gi = (Vi, Ei) is a block DAG.
1: Initialize a new block B as follows B.p := pi, B.preds := ∅, B.rqsts := ∅
2: Assign to B.parent the reference of the most recent block in Gi issued by pi.
3: B.k := B.parent.k + 1
4: for all B′ ∈ Vi s.t. ¬path(B′, B.parent) do
5: B.preds := B.preds ∪ {ref(B′)}
6: Fill the external data fillData(B).
7: return B

The algorithm gets a block DAG Gi which is assumed to be a valid block DAG of pi.448

It then generates a new block B and assigns it a parent from Gi, then adds to B.preds all449

references to blocks in Gi that do not have a path to B.parent. Note that since B.preds ⊆ Vi,450

then B.pred only includes blocks B′ s.t. valid(pi, B′). This guarantees that B is a valid451

block. Next the external data is filled into the block: this includes moving the user requests452

from Rqstsi to B.rqsts, moving the object indications from o.buff i to B.buff [o] for each453

relevant o ∈ O and finally assigning a random string ρ to B.rand. Note that we do not know454

exactly how long ρ needs to be until B is actually interpreted. Since all B′ ∈ B.preds are455

already in Gi, process pi can already interpret B and generate ρ while generating B.456

Next, we describe the communication component that is responsible for exchanging blocks457

and growing the DAGs. We have shown that processes that interpret the same blocks reach458

the same conclusion. But for this to be useful, the communication component must ensure459

correct processes eventually interpret the same blocks. That is, if a correct process pi adds460

some B to Gi, then every correct process pj eventually adds B to Gj . This can be viewed as461

a consistency property between two processes.462

Note that a naive approach of having each process simply send its blocks to everyone463

does not guarantee consistency, since an honest process pi may add a block B∗ by some464

corrupted process B∗ as a predecessor for its own block B. pi naturally considers B valid465

and adds it to its block DAG, but for any other honest process pj , B will never be considered466

valid until it receives B∗ from p∗.467

Consistency can be achieved using a simple echoing mechanism that we describe now. For468

each block B that pi issues using genBlock, pi generates a signature for B which we denote469

by B.σ, and sends (B,B.σ) to everyone. When pi receives a block B by some other process,470

it first ensures B is authentic (by verifying the signature). After collecting all authentic471

blocks, pi tries to validate as many of them as possible. The validation may only fail if some472

B′ ∈ B.preds of B is missing, so pi requests B′ from the process B.p that issued B, using473

a forward request message which we denote by FWD(ref(B′)). The idea is that if B.p is474

correct then it must have those blocks, so it will eventually send them to pi, allowing pi475

to validate the block B.p. Finally, pi of course has to respond to the forward requests it476

has received. This concludes the informal description of exchangeBlocks. The consistency477

guarantee is formalized in the following lemma:478

I Lemma 4. For any two correct processes pi and pj executing the protocol of Figure 2, if479

pi adds a block to its block DAG Gi, then pj eventually inserts B into Gj.480

We note that Lemma 4 really refer to any protocol in which Algorithms 3 and 4 are481

continuously run, and are not specific to Figure 2. The proof is deferred to the full version [3].482

H. Attiya, C. Enea and S. Nassar 27:13

Algorithm 4 exchangeBlocks(Gi) for process pi

Gi = (Vi, Ei) is a block DAG
toValidate and isSent are process-local variables that maintain their values across different
invocations
Initialize toV alidate := ∅ and isSent := ∅
1:
2: for all B ∈ Gi s.t. B.p = pi and B /∈ isSent do
3: Sign B and denote the signature by B.σ
4: Send (B,B.σ) to everyone
5: Move all authentic blocks from all Inj→i to a set auth
6: toV alidate := toV alidate ∪ auth . Throw inauthentic blocks
7: while ∃B ∈ toV alidate s.t. valid(pi, B) do
8: Gi.insert(B)
9: toV alidate := toV alidate \ {B}

10: auth := auth \ {B}
11: for all B ∈ auth do . Try to validate all authentic blocks
12: for all B′ ∈ B.preds s.t. B′ /∈ Gi do
13: Send FWD(ref(B′)) to B.p . Request missing blocks from B.p

14: for all FWD(ref(B′)) in some Inj→i do . Respond to forward requests
15: If B′ ∈ Gi, send (B′, B′.σ) to pj
16: Empty all Inj→i.

7.3 Correctness Proof483

Combining Lemma 4 with Lemma 3 and assuming eventual delivery of blocks, we get eventual484

delivery of simulated messages. In other words, if a correct process pi wants to send a message485

m to some correct process pj , then this is expressed in the block DAG framework as a block486

B issued by pi, such that B.Mout[j] contains the message m. Delivering the message m487

to pj is expressed by pj creating a block B′ such that m ∈ B′.Min. Note that referring to488

unambiguous interpretations of B and B′ is only possible through Lemma 3. By Lemma 4,489

we know that if pi issues the block B then pj eventually receives B and considers it valid. By490

the algorithm in Algorithm 3, eventually pj creates a new block B′ such that B ∈ B′.preds491

and by Algorithm 2, m will be added to B.Min. This discussion demonstrates that the block492

DAG framework guarantees eventual delivery of simulated messages, if we assume eventual493

delivery of blocks. This guarantees the liveness of the block DAG simulation.494

We show that the block DAG simulation of a protocol P is faithful in the sense that495

there exists a forward simulation from the block DAG simulation denoted as BD(P) to P496

(modeled as LTSs). As mentioned in Section 5, this implies that the block DAG simulation497

inherits finite-trace probability distributions of P and that typical specifications of programs498

using the DAG simulation instead of P are preserved.499

Section 3 describes the modeling of P using LTSs. We describe below a modeling of BD(P)500

using an LTS L′ = (Q′,Σ′, q′start , δ
′) which simplifies the forward simulation proof. A state501

q′ ∈ Q′ contains the block DAG Gi of each process pi and (InBj→i)j∈[n] and (OutBi→j)j∈[n]502

for each process pi, where InBj→i is the incoming buffer of process i with blocks sent by503

process j and OutBi→j is the outgoing buffer with blocks sent by i to j. As before, we assume504

that incoming user requests are stored in InBi→i and outgoing user indications are stored in505

OutBi→i. The shared object indications are stored in separate buffers (o.buff i)o∈O as before.506

CONCUR 2023

27:14 Faithful Simulation of Randomized BFT Protocols on Block DAGs

Overall, q′ =
(
Gi, (InBj→i)j∈[n], (OutBi→j)j∈[n](o.buff i)o∈O

)
i∈[n]. In the initial state q′start , all507

of the block DAGs and the buffers are empty. The transition labels correspond to computing508

and validating blocks, exchanging blocks, and user requests or indications. In comparison to509

the “standard” model described in Section 3 we decompose a compute step of a process as510

defined in Figure 2 into a sequence of steps. This simplifies the forward simulation proof.511

As before, we include the randomness (that is attached to the newly created block) in the512

computation label. Formally, the transition labels are as follows:513

1. validateBlock(i→ j) denotes a transition where pj validates a block issued by pi (inside514

the genBlock algorithm).515

2. compute(i, ρ) denotes a transition where process pi produces and disseminates a new516

block (inside the genBlock algorithm) with ρ as its randomness, and then runs interpret517

to interpret the new block (and other previously uninterpreted blocks).518

3. sendFWD(i→ j) denotes a transition where pi sends a FWD request to pj .519

4. replyFWD(i→ j) denotes a transition where pi sends a reply to a FWD sent by pj .520

5. deliverBlocks(i→ j) is a transition where all the blocks in OutBi→j are moved to InBi→j .521

6. o.indicate(i, w) denotes a transition where the value w has been added to o.buff i.522

7. labels for user requests (request(i, x)) or indications (indicate(i, y)) are used as in Section 3.523

524 The external actions ΣE are defined exactly as for the LTS L modeling P, presented525

in Section 3 (ΣE includes request(i, x), indicate(i, y), and compute(i, ρ)). A transition526

(q′1, e, q′2) ∈ Q′ × Σ′ × Q′ (denoted q′1
e−→ q′2) is in δ′ if and only if the protocol BD(P)527

can get from state q′1 to state q′2 by executing the step denoted by the label e. Theorem 5 is528

proved in the full version [3].529

I Theorem 5. There exists a forward simulation from the LTS L′ modeling BD(P) to the530

LTS L modeling P.531

8 Relation to Prior Work532

Comparison with the deterministic simulation. We can now discuss how our simulation533

and proof are related to the work of Schett and Danezis [17]. They show how block DAGs534

can be used to simulate deterministic protocols, which are a special case of the protocols535

that we handle here. Readers that are familiar with their work will notice that we were able536

to achieve a simulation that is a natural extension of theirs. We emphasize, however, that537

our techniques for proving the faithfulness of our simulation are novel and different from538

theirs. This is necessary because their techniques do not capture the probabilistic guarantees539

of randomized protocols.540

Our network component which consists of genBlock and exchangeBlocks algorithms is a541

natural extension of the gossip algorithm of [17]. Indeed, the code responsible for generating542

new blocks and echoing them is almost identical to that of gossip. The difference is that543

because we want to exchange only blocks, they should carry enough information to resolve544

the randomized decisions that can come from local randomness or shared objects. In our545

protocol, each process is responsible to pass along its local randomness or the indications it546

got from the shared object in the blocks that it creates. Lemma 4 is proved in a manner547

similar to [17, Lemma 3.7].548

Our interpretation algorithm is the natural extension of interpret algorithm of [17] for our549

context. That is, when interpreting a deterministic protocol, the computation of each process550

is only determined by the incoming messages and its state prior to processing those messages.551

When interpreting a randomized protocol with shared objects, the local computation may552

depend on local randomness and object indications. Our interpretation algorithm used those553

H. Attiya, C. Enea and S. Nassar 27:15

fields that were already attached to each block by our genBlock. Lemma 3 that states the554

common interpretation of block DAGs, is analogous to [17, Lemma 4.2]. However, the proof555

of the latter had a minor mistake and our proof is slightly different.556

Finally, the guarantees of randomized protocols, unlike those of deterministic protocols,557

cannot always be expressed as trace properties. Particularly, for our simulation to be faithful558

to the original protocol, we need a more careful and precise statement and proof. Therefore,559

the modeling in Sections 3 and 7.3 as well as the proof of Theorem 5 are totally different560

from what appears in [17].561

Analyzing existing protocols. Several recent works rely on the block DAG approach, e.g.,562

Aleph [10], DAG-Rider [13] and Bullshark [20]. All of these protocols are randomized. While563

each of these works presents a new protocol, we provide a formal and systematic framework564

for analyzing DAG-based protocols, especially randomized block DAG protocols.565

Here we discuss how our simulation applies to existing protocols, concentrating on566

Aleph [10] and DAG-Rider [13]. These protocols aim to order the blocks of the DAG, so567

as to implement Byzantine Atomic Broadcast (BAB). A BAB protocol allows all processes568

to receive the same messages in the same order. One natural way of implementing a BAB569

protocol using a block DAG is by having each process attach the messages it wants to570

broadcast to a block and then broadcast the block to everyone. The processes then just need571

to agree on an order of the blocks, which would induce an order of the messages.572

Analogous to our simulation, both Aleph and DAG-Rider have a communication compo-573

nent that is responsible for building and maintaining the common DAG. In both protocols,574

each block in the DAG belongs to a specific round, and each correct process has a single575

block in each round.576

Aleph orders the blocks in the DAG by electing a leader block in each round, and then577

having that leader block (deterministically) dictate the order of its ancestor blocks that have578

not been ordered yet.579

DAG-Rider divides the DAG into waves. Each wave consists of four consecutive rounds,580

and a leader block is elected for each wave. The block leader election is done by interpreting581

the (same) block DAG as a consensus protocol and utilizing a shared object for generating582

randomness, namely, a common coin. It is critical to note that our simulation preserves the583

properties of the shared object, for example the unpredictability of the common coin. This is584

because our forward simulation preserves the compute events, in which the object invocations585

happen. This means that the object cannot distinguish if it is being used in the context of586

the original protocol or in the context of the block DAG simulation of the protocol. This587

means that its properties are preserved.588

Aleph and DAG-Rider can be analyzed using our framework. The consensus protocol589

used can be analyzed independently of Aleph or DAG-Rider, while assuming it has access590

to a common coin. By Theorem 5, the simulation of the consensus protocol on the block591

DAG is faithful to the original consensus protocol. This not only simplifies reasoning about592

safety and liveness of Aleph and DAG-Rider, but also supports modularity: the simulated593

consensus protocol in Aleph or DAG-Rider can be seamlessly replaced using Theorem 5.594

9 Discussion595

We have presented a faithful simulation of DAG-based BFT protocols, which use public coins596

and shared objects, including protocols that utilize a common source of randomness, e.g., a597

common coin. Being faithful, the simulation precisely preserves properties of the original598

CONCUR 2023

27:16 Faithful Simulation of Randomized BFT Protocols on Block DAGs

BFT protocol, and in particular, their probability distributions.599

One of the appealing properties of our block DAG framework is that it allows to minimize600

the communication when running multiple instances of potentially different protocols. This601

can be done by using the same joint block DAG to interpret multiple protocol instances.602

The logic of the communication layer does not change, other than the need to specify the603

associated instance for each user request and object indication that is attached to the blocks.604

Each process would then run multiple interpretation instances, one for each protocol instance.605

We note that a process does not necessarily need to attach a separate randomness tape606

for each instance, and can instead attach a small random seed. Processes can then use a607

pseudorandom generator to expand the seed to a large enough pseudorandom string that608

can be used for all of the instances. This ensures that block size does not grow beyond the609

size of the user requests and the object indications.610

Our simulation relies on the fact that it is safe to reveal the randomness to the adversary611

as soon as it is used. We can similarly define private-coin protocols, whose security relies612

on processes ability to keep secrets from the adversary. A classical example would be any613

Asynchronous Verifiable Secret Sharing scheme (e.g. [5]). From a theoretical point of view, it614

would be interesting to demonstrate how we can simulate such algorithms on block DAGs.615

However, we note that some protocols are entirely public-coin other than a dedicated private-616

coin sub-protocol, such as Aleph-Beacon in Aleph [10] (which is used to implement a common617

coin). In this case, the dedicated sub-protocol can be encapsulated as a shared object, thus618

factoring out the use of private-coin simulations.619

References620

1 Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure621

asynchronous binary agreement via binding crusader agreement. In Alessia Milani and Philipp622

Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,623

Italy, July 25 - 29, 2022, pages 381–391. ACM, 2022. doi:10.1145/3519270.3538426.624

2 Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserving625

hyperproperties in programsthat use concurrent objects. In Jukka Suomela, editor, 33rd626

International Symposium on Distributed Computing, DISC 2019, October 14-18, 2019, Bu-627

dapest, Hungary, volume 146 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum628

für Informatik, 2019. doi:10.4230/LIPIcs.DISC.2019.2.629

3 Hagit Attiya, Constantin Enea, and Shafik Nassar. Faithful simulation of randomized bft630

protocols on block dags. Cryptology ePrint Archive, Paper 2023/192, 2023. https://eprint.631

iacr.org/2023/192. URL: https://eprint.iacr.org/2023/192.632

4 Leemon Baird. The Swirlds Hashgraph consensus algorithm: Fair,633

fast, Byzantine fault tolerance. https://www.researchhub.com/paper/337/634

the-swirlds-hashgraph-consensus-algorithm-fair-fast-byzantine-fault-tolerance,635

2016.636

5 Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with optimal resilience.637

In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-638

Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,639

USA, pages 42–51. ACM, 1993. doi:10.1145/167088.167105.640

6 Anton Churyumov. Byteball: A decentralized system for storage and transfer of value.641

https://byteball.org/Byteball.pdf, 2016.642

7 Danny Dolev. The Byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982. doi:643

10.1016/0196-6774(82)90004-9.644

8 Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. Weak progressive forward simulation645

is necessary and sufficient for strong observational refinement. In Bartek Klin, Slawomir Lasota,646

and Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR647

https://doi.org/10.1145/3519270.3538426
https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://eprint.iacr.org/2023/192
https://eprint.iacr.org/2023/192
https://eprint.iacr.org/2023/192
https://eprint.iacr.org/2023/192
https://www.researchhub.com/paper/337/the-swirlds-hashgraph-consensus-algorithm-fair-fast-byzantine-fault-tolerance
https://www.researchhub.com/paper/337/the-swirlds-hashgraph-consensus-algorithm-fair-fast-byzantine-fault-tolerance
https://www.researchhub.com/paper/337/the-swirlds-hashgraph-consensus-algorithm-fair-fast-byzantine-fault-tolerance
https://doi.org/10.1145/167088.167105
https://byteball.org/Byteball.pdf
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9

H. Attiya, C. Enea and S. Nassar 27:17

2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 31:1–31:23. Schloss648

Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.31.649

9 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus650

with one faulty process. In Ronald Fagin and Philip A. Bernstein, editors, Proceedings of651

the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March652

21-23, 1983, Colony Square Hotel, Atlanta, Georgia, USA, pages 1–7. ACM, 1983. doi:653

10.1145/588058.588060.654

10 Adam Gagol, Damian Lesniak, Damian Straszak, and Michal Swietek. Aleph: Efficient atomic655

broadcast in asynchronous networks with Byzantine nodes. In Proceedings of the 1st ACM656

Conference on Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October657

21-23, 2019, pages 214–228. ACM, 2019. doi:10.1145/3318041.3355467.658

11 Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not659

suffice for randomized distributed computation. In Lance Fortnow and Salil P. Vadhan, editors,660

Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,661

CA, USA, 6-8 June 2011, pages 373–382. ACM, 2011. doi:10.1145/1993636.1993687.662

12 Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement in polynomial time with663

near-optimal resilience. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th664

Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,665

pages 502–514. ACM, 2022. doi:10.1145/3519935.3520015.666

13 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need667

is DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:668

ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,669

2021, pages 165–175. ACM, 2021. doi:10.1145/3465084.3467905.670

14 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.671

ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.672

15 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. untimed673

systems. Inf. Comput., 121(2):214–233, 1995. doi:10.1006/inco.1995.1134.674

16 Sean Rowan and Naïri Usher. The Flare consensus protocol: Fair, fast federated Byzantine675

agreement consensus. https://flareportal.com/wp-content/uploads/simple-file-list/676

FCP.pdf, 2019.677

17 Maria Anna Schett and George Danezis. Embedding a deterministic BFT protocol in a block678

DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:679

ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,680

2021, pages 177–186. ACM, 2021. doi:10.1145/3465084.3467930.681

18 Roberto Segala. A compositional trace-based semantics for probabilistic automata. In Insup682

Lee and Scott A. Smolka, editors, CONCUR ’95: Concurrency Theory, 6th International683

Conference, Philadelphia, PA, USA, August 21-24, 1995, Proceedings, volume 962 of Lecture684

Notes in Computer Science, pages 234–248. Springer, 1995. doi:10.1007/3-540-60218-6_17.685

19 Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOM GHOSTDAG: a scalable686

generalization of nakamoto consensus: September 2, 2021. In Foteini Baldimtsi and Tim687

Roughgarden, editors, AFT ’21: 3rd ACM Conference on Advances in Financial Technologies,688

Arlington, Virginia, USA, September 26 - 28, 2021, pages 57–70. ACM, 2021. doi:10.1145/689

3479722.3480990.690

20 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-691

shark: DAG BFT protocols made practical. In Heng Yin, Angelos Stavrou, Cas Cremers,692

and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and693

Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages694

2705–2718. ACM, 2022. doi:10.1145/3548606.3559361.695

21 Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. SoK: Diving into DAG-based696

blockchain systems. CoRR, abs/2012.06128, 2020. URL: https://arxiv.org/abs/2012.06128,697

arXiv:2012.06128.698

CONCUR 2023

https://doi.org/10.4230/LIPIcs.CONCUR.2022.31
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/3519935.3520015
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/359545.359563
https://doi.org/10.1006/inco.1995.1134
https://flareportal.com/wp-content/uploads/simple-file-list/FCP.pdf
https://flareportal.com/wp-content/uploads/simple-file-list/FCP.pdf
https://flareportal.com/wp-content/uploads/simple-file-list/FCP.pdf
https://doi.org/10.1145/3465084.3467930
https://doi.org/10.1007/3-540-60218-6_17
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1145/3548606.3559361
https://arxiv.org/abs/2012.06128
http://arxiv.org/abs/2012.06128

	1 Introduction
	2 Motivating Example
	2.1 Randomized consensus based on Binary Crusader Agreement
	2.2 Termination under binding
	2.3 Preserving binding

	3 Preliminaries
	4 Modeling protocols with Labeled Transition Systems
	5 Forward simulations
	6 Block DAGs
	7 Simulating Public-Coin Protocols That Use Shared Objects
	7.1 Common Interpretation
	7.2 Joint Block DAG
	7.3 Correctness Proof

	8 Relation to Prior Work
	9 Discussion

