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Abstract

This paper addresses fault pattern diagnosis of discrete event systems, involving fault pat-
tern detection and diagnosability. A fault pattern is modelled as a finite automaton whose
accepted language is the objective to be diagnosed, representing the occurrence of com-
plex or composite faults. A verifier for fault pattern detection based on the synchronous
product of a system and a fault pattern is proposed. By removing all silent events, a silent
closure is calculated based on the synchronous product, which offers computational advan-
tages for systems that have a large number of silent events. An NSC/FSC pair verifier is
then computed by taking the product of a normal silent closure and an accepted silent
closure. By studying indeterminate cycles of the NSC/FSC pair verifier, necessary and suf-
ficient verification conditions are established, asserting that a system is diagnosable with
respect to a fault pattern if and only if there is no indeterminate cycle in the NSC/FSC pair
verifier. It is shown that the proposed method requires polynomial time at most. Finally, a
case study to illustrate the results is provided.

1 | INTRODUCTION

Fault diagnosis in a discrete event system (DES) is a cru-
cial and challenging task to ensure its reliability and safety [1],
which generally involves two objectives: fault detection and fault
diagnosability. The former aims at detecting faults from given
observations and the latter focuses on deciding whether faults
can be distinguished within a finite delay after their occurrences
[2]. Experience with monitoring of dynamic systems shows that
there is a large spectrum of faulty situations in practical systems
[3], such as multiple faults, intermittent faults [4], and tempo-
rary faults [5] that are not consistent with a single event fault.
A broader approach is required for such cases and fault pat-
tern diagnosis, introduced in [6], provides a general framework
to solve the diagnosis problems by capturing the occurrences
of particular strings in a system. The problem of fault pattern
diagnosis has received extensive attention [6—15].

In [14, 106], the authors provide methods based on normal
behaviours that can also be used for the diagnosability verifica-
tion of fault patterns. This idea allows the calculation of faulty
behaviours obtained by subtracting the normal language from
the whole language, or by defining the faulty language as the
union of all the behaviours that do not belong to the normal lan-

guage. In addition, the results in [14] and [16] can also be used
to compute the detection delay. The method in [15] proposes a
method that involves modelling normal behaviour and calculat-
ing faulty behaviours by the subtraction operation. The works
in [17-22] work on the problem of diagnosis in continuous
time systems.

Another class of methods is based on a systemic construc-
tion, namely a diagnoser [2], that is suitable to detect faults
on-line and to verify off-line the necessary and sufficient con-
ditions for diagnosability. Basically, such a diagnoser results
from the determinisation, i.e. the observer, of a verification
structure obtained from the system and pattern. In [23], the
authors distinguish two types of pattern diagnosability, S-type
and T-type, based on the diagnoser properties. Compared with
[23], this work focuses on S-type patterns (but T-type pat-
terns can be viewed as a particular subclass of S-type patterns),
and the main difference is that the proposed method in this
work has polynomial complexity, which is a significant improve-
ment compared with the diagnoser structure with potentially
exponential complexity presented in [23]. In [24], the authors
address the problem of fault diagnosis in decentralized DESs
by extending the diagnoser into local diagnosers with a coordi-
nator. However, the state space of the corresponding diagnosers
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are all in the worst case exponential with respect to the size of
the system.

To overcome the potential state explosion problem, a pair
verifier technique [25, 20] is introduced to offer a worst case
polynomial test with respect to the number of system states
for diagnosability. Several extensions have been developed [13,
27-30]. The pair verifier structures are mainly obtained from the
self composition of the verifiers. In particular, an algorithm with
linear complexity proposed in [31] converts the fault detection
problem into state isolation to determine whether the obser-
vations allow us to isolate the states to be within a particular
set of states that indicates the occurrence of failures. Espe-
cially, the authors in [32] propose two types of pair verifiers in
a decentralized diagnosis framework with respect to different
local decisions, and the authors in [33] address the modular diag-
nosability problem by computing a pair verifier. The authors in
[34] construct a pait verifier to perform codiagnosability anal-
ysis. With structures that result from the composition of faulty
and normal verifiers [37], additional gains in space complexity
can be obtained.

Finally, model checking based approaches are also used
for diagnosis purpose. The study in [9] touches upon the
diagnosability analysis of DESs transforming the problem of
pattern diagnosis into a model checking problem. In [7, 8], the
authors introduce the methods of constructing local pattern
diagnosers by using subsystems, which extends the pattern
diagnosis problem from a monolithic model to a distributed
framework. In [13], the authors review the main definitions of
diagnosability with regard to intermittent faults, and discuss
appropriate verification techniques. In [10], linear-time tempo-
ral logic formulas are used to specify failures in a system such
that the problem of testing diagnosability is reduced to that of
model checking;

This paper also focuses on fault pattern diagnosis of DESs,
fault pattern detection, and diagnosability verification. Labelled
finite automata are used as models of the system and pattern to
be diagnosed. Improving the numerical complexity of the diag-
nosis approach is the main challenge of this contribution. In the
perspective of the aforementioned contributions, we aim to pro-
pose verifiers of reduced size, in particular for systems including
numerous silent events. Based on the synchronous product of a
system and a fault pattern, we propose a silent closure by remov-
ing all silent events. Then, an NSC/FSC pair verifier NSC/FSC
PV) is constructed by taking the product of a normal silent clo-
sure and fault silent closure, both of which are obtained from
the silent closure with respect to normal and faulty behaviors,
respectively. The successive steps of our analysis are visualized
in Figure 1.

The rest of the paper is organized as follows. Section 2
reviews finite state automata. Section 3 begins with the notions
of fault patterns and then touches upon fault pattern diagno-
sis in DESs, including fault pattern detection and diagnosability.
Sections 4. A and B provide the structures for fault pattern
diagnosability based on a standard PV and an NSC/FSC PV
respectively. Section 4.3 compates the space complexity of dif-
ferent approaches. Section 5 provides a case study to illustrate
the results. Section 6 concludes this research.
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FIGURE 1 Schematic of the methodology.

2 | PRELIMINARIES

We use N and Ny to denote the sets of strictly positive integers
and non-negative integers, respectively. Write N, = {1, 2, ..., £}.

Definition 1. A deterministic finite automaton (DFA) is a fout-
tuple Gy = (L, 2%, 8, /), whete L is the set of states, X is the set
of events, 4 is the initial state, and § : L X X — L is the partial
transition function: /' = §(/, o) means that there is a transition
labelled with event o € X from the state / to state /’. Let £* be
the set of all finite strings defined over Z, including the empty
string 4. Transition function § can be extended to L X Z* — L
in an usual way: given / € L, w € ¥, and 0 € Z, §(/,A) =/
and 8(/, wo) = §((6(/, w)),0).

The set Z can be partitioned into two disjoint subsets X =
2,UZ,, where X, and Z
and unobservable events, respectively. The concatenation of
two strings w’, w'" € T* is the string w = w'w/’ € T*. To
be more general, we introduce the notion of output labels. Let
E, = E U{e} be the set of output labels, where E is the set
of observable labels and € is the empty label. A labelled finite
automaton (LFA) can be defined as follows.

1« tepresent the sets of observable

Definition 2. An LFA is a three-tuple G = (Gy, £, Lab),
whete Gy = (1., %, 8, /y) is a DFA, E is the set of output labels,
and Lab : T — E is the labelling function, where Lab(c) € E
ifoe€ X, and Lab(o) =cifc €2,

In an LFA, there exist transitions modelling the occurrences
of silent events (i.e. e-transitions), which cannot be observed.
Morteover, two or mote transitions outgoing from a given state
could possibly produce the same label. In this case, one detects
that an event has occurred but cannot determine exactly which
transition has fired. The labelling function, or mask function,
defines the observation generated by the occurrence of each
event [14].

Given a state / € L in an LFA, the set of active events at /
is defined as A(/) ={oc € Z|3/ €L : /' =6(,0)} Given a
string w € ¥, its length is defined as the number of events
in w, denoted by |w/|. A string w’ € T* is said to be a prefix
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FIGURE 2
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(a) Labelled finite automaton (LFA) G} and (b) fault pattern

of w € T* if there exists w' € T* such that w'w' = w,
denoted by w’ < w. The language generated by the LFA G is
defined as L(G) = {s € Z*|5(§, 5)!}, where 8 ({, 5)! means that
“8(f, 5) is defined”. Given string w € L(G), L(G)/w denotes
the post-language of L(G) after w : L(G)/w = {w' € T* |
ww' € L(G)}. A run that begins with the initial state 4, has the
form p: ly— hy — )y~ 1, where L, sy € 1,0, € %,
and /1 = 6(/,0;) fori € {0, 1, ...
the run p is associated with the string w = 0 ...0, € Z*, and
use w+(0) to denote the string associated to 0. In a similar way,

, n}. In this case, we say that

given a string w, we use p(w) to denote the run generated by
w from the initial state 4). A run is said to be a cycle if /,,1 = 4.

Given an LFA G, a projection function P : X* — E* is
defined as follows. For w € Z* and 0 € 2,

» Pw)e ifLab(o)=¢€ E
o) =
(wa) Pw) if Lab(o) =,

and for the empty string 4, P(1) = 4.

We use L;(G) to denote the observed language of
G, defined by L5 (G) = {P(w) € E*|w € L(G)}. Given an
observation w,, the inverse projection P~ 1 E* — Z* is
defined by P~ l(w,) = {w € L(G)|P(w) = w,}. Given an
LFA G, we use R, (w,) to denote the set of states resulting
from the execution of an event sequence w € P~ (w,) from
state / € L, defined by Ro(w,) ={/ € L|F3w € P~ (w,) :
/= &k, w)}

Example 1. Consider an LFA G shown in Figure 2(a),
where 1. =1{0,1,2,3,4,5,6}, with 0 being the initial state,
2={ab i, p}, Z,=1{a 8}, Z,,={A, o}, and E = {¢}. The
labelling function Lab is defined as Lab(a) = Lab(b) = e, and
Lab(fy) = Lab(f;) = €. A possible run generated by system G}

S a b
from the initial state is p: 0 S1525 0, where the associ-
ated string of p is w+ = fjab. The projection of w with respect
to the set of observable labels is P (w) = ee.

3 | FAULT PATTERN DIAGNOSIS OF
AUTOMATA

A fault pattern, simply called a pattern in this research, is defined
as a finite state automaton whose accepted language is the
objective to be diagnosed, which represents the occurrence of
complex or composite faults.

Definition 3. A (fault) pattern of an LFA G = (Gy, E;, Lab)
with Gy = (1, 2,8, /) isa DFA Q = (§,Z, 8q, 5, 5q), where .S
is the set of states, X is the set of events, 5y € S is the initial
state, 5o € § is the single final, i.e. accepted state, and 8 & § X
2 — S is the transition function. The fault pattern € satisfies
a complete condition, i.e. for all s € 5, A(s) = Z and the final
state s is stable, i.e. forall 0 € £, 8 (sq,0) = sq-

The language of fault pattern €, denoted by L£(£2), satisfies
L(Q) = X" due to its complete condition. We use L 4(Q) to
denote the accepted language of Q, defined as £ 4 (Q) = {w €
L(Q)|8q (59, W) = sq}, and define the target language of LFA
Gas L4 (G)=L(G)N L 4(Q).

Example 2. Consider an example of a fault pattern £, shown
in Figure 2(b), where the set of states is § = {IV, F}, the set of
the events is Z, the final state is /7, and the initial state is V. The
fault pattern defines the occurrence of f; or f; its accepted
language is £ 4 (Qq) = Z* AZ* UZ* HE*.

The definition of the detection function is given as follows.

Definition 4. A detection function Detectqy © L (G) — {Yes,
No, Ambignous} is defined, for any w, € L (G), as

o Deteddqy(w,) = Yes it P71 w,) C L4 (G),
o Detedtqy(w,) = Noif P~ (w,) N L 4(G) = @,
* Detectqy(w,) = Ambignons, otherwise.

Given an observed sequence w,, the output of the detection
function in Definition 4 is Yesif all the strings generating w, are
contained in £ 4 (G), i.e. the fault pattern has certainly occurred.
The output is Vo if no string w+ whose projection is w, is in
L 4(G), indicating that the fault pattern has not occurred. Oth-
erwise, the output is Ambiguous, i.e. it is uncertain whether the
fault pattern has occurred or not.

Definition 5. Given an LFA G and a pattern Q, G is
diagnosable with respect to pattern € if

Ak eN) VYw € LA(G)(Vw' € LIG)/w) (lw'| 2k =
[P~ (Pww’) € LAG)].

Note that in Definition 5, we are interested in the first occut-
rence of the pattern and diagnosability analysis captures only
the strings accepted by the pattern. To verify fault pattern
diagnosability, we make the following assumption:

(H) Given an LFA G, its observed language L (G) is live,
i.e. for all observations w, € L;(G), there always exists a label
¢ € E such that w,e € L (G).

3.1 | Fault pattern detection based on
synchronous product

Inspired by the notion of synchronous product of two
automata, this section introduces a synchronous product ver-
ifier. Note that a state isolation based verifier can also be
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obtained for fault pattern detection [31, 38], whose structute
is similar to the synchronous product verifier. For the sake of
simplicity, the details are not pursued here.

Definition 6. Given an LFA G = (Gy, E, Lab) with Gy =
(L,%,8, ), and a pattern Q = (5, Z, 8q, 5, 5q), 2 synchronous
product verifier G of G with respect to Q is an LFA Gg =
G & .
(LGQ, Z, 5609/0 Q,LFQ,EE,Ldb), Wh?re LGQ Q L X S 1S the
set of states, 2 is the set of events, /OGﬂ = (ly, 5) 1s the initial

state, L;;Q = . X {sq} is the set of final states, and 56‘9 (L X
)X Z — (LX) is the transition function defined for o € Z,
ss €8, 1,1" €L, by 8¢, ((,5),0)=(',7), if 8(/,0) =1
and 8 (s,0) = 4.

Since Q satisfies the complete condition, £ 4 (Gq) = L 4(G)
holds thanks to the definition of accepted language L 4(Ggq)
of Gg. Let L(Gg) be the generated language of Gq. Given a
state /;,, and an observed sequence w,, we define R, (w,) =
{loy € Loy 13w € P\ (w,) © lg, = 8¢, (17, w)}, where the
transition function &, is extended from Z to Z* in the usual

way.

Proposition 1. Given an LLEA G, a pattern Q, the synchronous prod-
uct verifier Ggy, and an observation w, € L g (G), the detection function
Detectqy satisfies

(a) Detectgy(w,) = Yes ifand only if ez, (w,) C 1,
(b) Detectqy(w,) = No #f and only if Re,, (w,) N L](;'Q =,
(¢) Detectqy(w-,) = Ambiguous, otherwise.

Progf. Given an observed sequence w, € L (G) and an event
sequence w = 0y ... 0, € P~1(w,), the runs in Q and G that

begin respectively from the initial states s, and /()GQ, associated
with w, are pg: 5(0) SN s(1) 2 s(n) 2z, s(n+1)and pg:
Iy (0) = I (1) = leg () - leg(n+1).

To prove (only if) of case (a), assume that Desect (ur,) = Yes.
Then we have w € L 4(G) and g (s(0), w) = sq. By con-
sidering the run pgq, there exists one or more indices 7,
wey g, such that s(0) = -+ = s(m) = 5, s(m +1)= --- =
s(pe1)s h € Ne_y, and s(mp + 1) = -+ = s(n+ 1) = 5. Con-
sidering now the run P, and according to Definition 0,
we have /e, (0), v iy (11)s by (1 + 1) oees disy (p41) € Ly \
LY h € Ny, and Iy (1 + 1), e oy (1 + 1) € L5 Tn par-
ticular, the last state of the run o, belongs to L;Q. Thus
Rey(w,) € L0

To prove (if) of case (a), assume that Rq, (w,) C Lfﬂ
For any w such that P(w) =w, there exist one or
more indices 7y,...,7, and &—1 states s(n,41) €S, hE
N, sucb that /e, (0), ..., g, (1) Iy (1 + 1), s (n/m)ﬂe
Leg \ Ly, h € Ny, and I, (g + 1), ey by (n + 1) € L7,
By Definition 6, s(0)=---=s(n) =1y, s(ny+1)=--=
s(mpe1) with hE N, and s(n, +1) = =s(n+1) = sq.
Hence, the run pg ends in sg and w = 0y0; ...0, € L 4(G).

FIGURE 3  Synchronous product verifier Giq, .

By Definition 4, we have Defectqy(wr,) =Yes. The proofs of cases
(b) and (c) are similar to (a). O

Example 3. Consider the fault pattern Qq in Figure 2(b) and
an LFA Gj in Figure 2(a). The synchronous product verifier
Giq, of Gy and Q; is shown in Figure 3. Given, for example,
an observation e, by Proposition 1, the detection is Ambigu-

ous, since RGml (ee) = {6N,0F,2F}, where OF ,2F € Lgn and
6N & 1.7°.

3.2 | Fault pattern diagnosability based on
diagnoser

In this section, we provide a method for fault pattern diagnos-
ability based on a diagnoser structure [2]. We define R¢, (/g
w,) ={ € Lcy|3w €T /[ =06c, (g, w),P(w) =
w.,}.

Definition 7. Given the synchronous product Go = (L¢,, Z,

559, /069, L]?Q,ES,Lab) of system G and pattern £, the diag-
noser of G with respect to Q is defined as d(Q) = (L, &,
[4, E, Lab), where L;C2"0 is the set of states, /! = R () is
the initial state, and 8, : 1; X E — L, is the transition func-
tion satisfying /{; = 0,(/y, ¢) if there exist /;, /{; €/l.,,¢ € E such
that |J Re,Ueyr0) =1

/GQ (S

Definition 7 shows that the diagnoser is obtained by
the determinisation of the synchronous product verifier with
respect to the set of observable labels Z. Diagnosers can be
used to check diagnosability by introducing the notions of
indeterminate states and cycles.

Definition 8. Given a system G, a pattern £, and its diag-
noser d¢;(Q), a state /; € L is said to be indeterminate if /; N
L;'Q #@and ;N (¢, \L;Q) # . A cyclic run, for short a

cycle, formed by states Vs . /,fi € L, is said to be an

1> 72>
indeterminate cycle if

1) forall/ € N, the state /l.d is indeterminate,

2) forallieN,,

with [ = (4,5), [ = .5), b, T €L, 5= sq, and
5; € 5\ {sa} such that there exist at least two cycles in Gg

G & Gy Gy .
composed of the states /, 2, ..., ., and 272, ..., 1,"? with the
p 1 > st 1 LR R/

. G G
there exist at least two states /, e A 2 e /l.’{
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FIGURE 4  Diagnoser dg, ().

. Ga (€) Ga — .
ff(zfmsofp(;Q ,\/} —>—>~/£ = >/, and e
Gy G G
/19—> --—>/l.Q—>~~-—>/”Q,Wherewandw’ are two

strings associated with the cycles o, and ﬁ},; , respectively,
with P(w) = P(w).

A cycle in the diagnoser is an indeterminate cycle if it is com-
posed of indeterminate states only, which corresponds to two
cycles in the synchronous product verifier: one composed of
non-final states only and the other composed of final states only,
where both cycles have the same observation. Given an LFA G
that satisfies Assumption H, G is diagnosable with respect to
Q iff there is no indeterminate cycle in the diagnoser dg; (Q).
The proof of this result is similar to [2] and is not presented for
economy of space.

Example 4. Consider an LFA G; in Figure 2(a), the fault
pattern Q; in Figure2(b). The resulting diagnoser 4 (€4) is
computed in Figure 4. The system G is not diagnosable with
respect to pattern 0 since there exists an indeterminate cycle

LIE00 in de ().

4 | VERIFICATION OF FAULT PATTERN
DIAGNOSABILITY

This section sums up the principle of a standard PV and
provides an NSC/FSC PV structure to check fault pattern
diagnosability. In particular, the NSC/FSC PV structure is
constructed by removing all silent events of the system, taking
advantage of systems with numerous silent events.

4.1 | Fault pattern diagnosability with
standard PV

This section introduces a standard PV that can be used for fault
pattern diagnosability, which is obtained by the self-product of
Gq [26].

Definition 9. Given the synchronous product verifier Gg of
G and Q, a standard PV £ (Q) is defined as a nondeterministic
automaton I (Q) = (Lp, 6p, /(P, Eg, Lab), whete Lp C L, X
L, is the set of states, ZOP = (ZOCQ, /0Qz
8p is the transition relation defined as follows. Let /p = (/, 10,

) is the initial state, and

FIGURE 5

(a) LFA G, and (b) synchronous product verifier Gyq, -

’
/éﬂ) S L[), and 0'1, 0'2 S Z such that /}’Q = 56@(/119’01) and

!
Zég = 56‘9 (/Z,Q, 0,). We have:

1. If Lab(c)) = Lab(0,) = e, ¢ € E, then ((/g,,g,/gg), ¢

12
(/ 'Q’/GQ» € 5P>
2. If Lab(c,) = Lab(0,) = ¢, then

1 52 1 2
((/GQ,/GQ),E, </GQ,/GQ>) € dp

1 52 1 g2
((/GQ,/GQ) , €, </GQ,/GQ)) € dp

1 2 1 2!
((/GQ,/GQ) » & </GQ,/GQ)) € &p.

By construction, the transition relation §p tracks two strings
in £(Gg) which generate the same output from an observa-
tional point of view, while updating the failure information as
the two strings evolve. The standard PV can be used to check
diagnosability by considering indeterminate states and cycles of
this structure.

Definition 10. Given the synchronous product verifier G of
a system G and a pattern €, and the standard PV P (Q), a state
Ip = (lg,,»¢,) € Lp is said to be indeterminate if (/g ,/7 ) =
(1, sH, (12,52, 1P el, st €S\ {qa}, & =sq, or vice
verse. A cycle in P (Q) is said to be zndeterminate if all states of
the cycle are indeterminate.

Given an LFA G that satisfies Assumption H, G’ is diagnos-
able with respect to pattern Q iff there is no indeterminate cycle
in P (Q). The proof of this result is similar to [26] and is not
presented for economy of space.

Example 5. Consider an LFA G, in Figure 5(2) with Z,, ={ /},
2, ={a,b,c}, and E = {e, ¢}, where Lab(a) = Lab(b) = ¢, and
Lab(c) = ¢, and the fault pattern Q; in Figure 2(b). The syn-
chronous product Goq, and the standard PV 7 Q1) are shown
in Figures 5(b) and 0, respectively. The system G, is diagnosable
with tespect to £ since there do not exist indeterminate cycles
in F;, (€1) (see Definition 10).

On the contrary, consider the LFA G in Figure 2(a) and the
pattern € in Figure 2(b) previously discussed. The standard PV
I, (€) can be obtained in a similar way. Since there exists at
least one indeterminate cycle in /%, (€4), Gj is not diagnosable
with tespect to the pattern €. For the sake of simplicity, the
details are not pursued here.
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FIGURE 6 Standard PV 2, (Q)).
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FIGURE 7  Silent closure Gy, .

4.2 | Fault pattern diagnosability with
NSC/FSC PV

In contrast to the standard PV introduced above, the NSC/FSC
PV is built on the basis of normal and fault silent closures, which
are coaccessible parts of a silent closure respectively, especially
offering an advantage for the systems with numerous silent
events.

Definition 11. Given the synchronous product verifier Gg
= (Lo B 8o I, 1Y%, Ey, Lab), the silent closure of Gg
is a four-tuple Gy = (LS,E,55,/05), where £ is the set of
observable labels, /¢ is the set of states, defined as ¢ = {/éQ €
Y Go .
Lo\ Fley € L0 €, 0 1L =86, (e, 0 Iy =4, s
the initial state, and 8 C Ly X £ X Lg is the transition rela-
tion, defined as (/s, ¢, /S,) € Jy if and only if there exists a run
a1 1 gy
lf— /GQ . /gﬂ

fori=1,2,..,n, /é,g

ag
- /é, n2>0, l, /(’ € L, in Gg such that
€ L¢,, Lab(o;) = €,and Lab(0) = e.

The transition relation 8¢ can be extended from £ to £™ in
the usual way.

Example 6. Consider an LFA G, in Figure 5(a), the pattern 4
in Figure 2(b), and their synchronous product verifier Gyq, in
Figure 5(b). By Definition 11, the silent closure Gy, of Gyq, is
obtained in Figure 7.

Definition 12. Given a silent closure Gy, the normal silent clo-
sure (NSC) of G is a four-tuple Gy = (L, E, O s /6\ ), where

Ly is the set of the states defined as I, = {/; € L¢|/ & L]CT'Q }
E is the set of observable labels, 85y C Ly X E X Ly is the
transition relation, defined by (Zy;, ¢, /{) € O for Iy, /{ € Ly,
if there exists ¢ € £ such that (/, ¢, /{) € dy, and /6V = /05 is
the initial state.

From Definition 12, one can conclude that for any state /; €
Ly, itholds /n, & LC,Q, i.e. the NSC G is the coaccessible part
of G with respect to L, \ L;Q.

‘YN
—>{ oV v [ o]

(a)
e
ON |2 2F ¥ IF
(®)
FIGURE 8  (a) Normalsilent closure Gy, and (b) fault silent closure
Gory -

Definition 13. Given a silent closute G, the fault silent closure
(FSC) of Gy is a fout-tuple G- = (L, E, O, /(f), where L is
the set of the states defined as ;. = {/; € Lg]| EI/Y' € Ly, dw, €
E* (Zg,we,/;) € &y, /Jf € L?Q}, E is the set of observable
labels, 8 C L X E X L is the transition relation, defined by
(Urs e /]'_) € 6y for Iy, /]'T € Lp, if there exists ¢ € £ such that
(ps e, /]'T) € &5, and /(f (= /65‘ is the initial state.

From Definition 13, the construction of the fault silent clo-
sure G- is essentially the coaccessible part of G with respect to

the states /¢ € Lg which satisfy also /; € L](;Q.

Example 7. Consider the silent closure Gy of Gog, in
Figure 7. By Definitions 12 and 13, the NSC G,p; and FSC
Gy, are obtained in Figures 8(a) and 8(Db), respectively.

The NSC/FSC PV is formally introduced as follows.

Definition 14. Given an NSC G and an FSC G, an
NSC/FSC PV of G and Q is a four-tuple NFP;(Q) =
(Lgps Es Snpps 1)), whete Lyyp € Ly X Ly is the set of
states, £ is the set of observable labels, Snyp C Lapp X E X
Lyyp is the transition relation, defined by (/np 6, /AY‘P) €
Snirp for Inp = (Uns Ip), Bypp = (s 1)) € Ly, if there exist
Inys % € Ly, Ir, //: € L, ¢ € E such that (/y, ¢, //V) € 6, and
(r, e 1) € 8F,and /0\77) =V, /0]:) is the initial state.

By construction, the transition relation dpyp tracks two
strings of the NSC G); and the FSC GJ, respectively, which
generate the same output from an observational point of view,
while updating the pattern information as the two strings evolve.

It follows from Definitions 12 and 13 that in Gjy, all states
In satisfy Iy € L, \L[C;Q, and in Gy, some states /5 satisfy
Ir € Lg, \Lf0 but others satisfy /- € Lfn. In other words,
all the states in Gy contain only the non-faulty information,
and in Gy, some states encode the non-faulty information,
while others encode the faulty information. Since an NSC/FSC
PV NFP;(Q) is essentially the strict composition of an NSC
Gy and an FSC Gy, picking any state /nyp = (v, /p) in
NFF;(Q), its component /5, contains only non-faulty informa-
tion, while the component /- contains faulty and non-faulty
information. Then, picking any cycle pnzp - (/&,, /]}_) - ..
s 17) = (lllv, /;) of the NFP;(Q), it is obvious that there exist
only two forms of the cycle: one satisfies /j, /[{. € Lg, \LISQ
for 7 =1,...,n, and the other satisfies /< € L, \L]C:’Q, /} €
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L?Q for 7 = 1, ..., n. NFP; (Q)-indeterminate state and NFP; (£2)-
indeterminate cycle of the NI (Q) are introduced that will be
used later.

Definition 15. Given an NSC/FSC PV NI, (Q), a state
(InsIr) € Lyp is said to be an NI, (Q)-indeterminate state

if ) € Ly®

Note that for an NI, (Q), there exist only two types of
cycles: (i) cycles composed by the states that are all N/ P (Q)-
indeterminate; and (i) those composed by the states that are all
not NIP;(Q)-indeterminate. Given a cycle in NP, (Q), if all
states of the cycle are NFF; (Q)-indeterminate, there necessar-
ily exist two cycles in Gy and G, respectively, one including
only the states /y satisfying /nr € L, \LC.Q, and the other

including only the states /- satisfying /- € L?Q

Definition 16. A cycle of NFP; (Q) is NFPg; (Q)-indeterminate if
all the states of the cycle are NI'F; (Q)-indeterminate.

Proposition 2. Let G be an LEA that satisfies Assumption
H. It is diagnosable with respect fo pattern Q iff there is no
NP (Q)-indeterminate cycle in NFP,; (Q).

Proof. (only if) Assume that there exists an indeterminate cycle

dgp 2 BT = I VT PN i the NP (Q), for i =
mym+ 1,00, myn €N, 4\17) € Lnpp. Let pyrp /(;\TP -

TP a2 .
NP NEE VI e g run in NEPL(Q) and w g =

w(ENFP)-
From Definition 14, there necessarily exist two runs

. \ N N N
PN - /,,,r /ﬂ/ - /,,// ’

. g F F F
Pr - [0 =l [1// /”//’

with wy = w(oy) and wp = w (o) in Gy and G respec-
tively, such that w nyp, W and w - have the same observation.
Observer that these two runs contain two cycles ¢/ :
R I T B A /f,, such that /" €
LCQ\L ' and/{jEL /! —m”,...,n.

Then, there exist two preﬁxes wﬁ\, w? e " of wy and wp

JN
1\, )65\721’1d(0,wF, //)65F
such that (/\ /F,,) = /,,,\FP, and the two sequences w<,
w? F " have the same observation, where 8, (resp. 85) can be

i =

respectively, with (7Y, w

extended from £ to E* in the usual way. Also, there exist
two strings wf{, = w(c/y) and w[/ = w(dp) in Gy and Gp
respectively, such that wx = wpvw and wp = wf_ w?f
Repeating the cycle f/\H; with any £ times, £ € N, there
exist two sequences w (w )/6 and w (w )/< in Gy and G
having the same observatlon By Deﬁmtlons 12 and 13 there
necessatﬂy exist two runs in G corresponding to u}V (wy, )/e

and w’, r (w )k respectively, having the same observation. By
Definition 11, there exist two strings in Gg having the same
observation: one accepted by € while another is not. Thus,
there exist two strings in G having the same observation:

—>{ONON =P 3N2F|—»[4N1F|

FIGURE 9 NSC/FSC PV NI, (Q).

one accepted by Q while another is not, which completes
the necessity.

(if) Suppose that G is not diagnosable with respect to €,
i.e. there exists W/ € L 4(G), w € L 4(G)/w?, and w' &
L 4(G) such that P(w” w) = P(w'), i.e. they have the same
observation. By Definitions 6 and 11, there necessarily exist two
runs in Gy corresponding to w/ w and w', respectively, one
reaching the final state and the other not. By Definitions 12 and
13, there exist two runs pn = p(wy) and pr = p(wr) with
the forms of

LN N
o Y =5,

or - [[“ []_
such that wp; and wr have the same observation with w”"w
N G F G
andw’, /N € Le, \ L,;?,and / EL].TQ “
Moteover, there exist two runs ,o{' = p(wp\') and p]/f =
p(w’’) in Gy and Gy with the forms of

w])r

ol — 1,
/7r

p‘;r : /OF SEIN []7’; ,

such that w\Y and w " have the same observation, /) € LGQ \

> “pr
LF , and /Pf € L , where wV is the prefix of w p;, and wF
is the prefix of wp. Then, according to Definition 14, there is

a run in NFP(Q) of the form pryp @ L7 — /i\'”’ such that
L= 0, N = N 1), and 1)1 € Lo
By considering string w/"w of increasing symbol, the length
of w and w also increases. Then, there eventually exist two
states //.MLP, /j‘fVH), m <7< j < nsuch that /Z."\H) = //‘.'\H), and the
set of states {/;VH), r=i,i+1,.., } forms an indeterminate
cycle. This ends the proof. |

Example 8. Consider an LFA G, in Figure 5(a) and the pat-
tern Qg in Figure 2(b). By Definition 14, the NSC/FSC PV
HP;, (1) is obtained in Figure 9. Based on Proposition 2,
G, is diagnosable with respect to £ since there do not exist
indeterminate cycles NFTY;, (1) (see Definition 106).

In addition, consider also the LFA G] in Figure 2(a) and the
pattern Qq in Figure 2(b). By Definition 14, the NSC/FSC PV
NFF, (€21) can be obtained in a similar way. Since there exists at
least one indeterminate cycle in NFF;, (€4), by Proposition 2,
Gy is not diagnosable with respect to the pattern €. For the
sake of simplicity, the details ate not pursued here.

4.3 |

Discussion and comparison

It is worth noting that the methods in [14] and [16] can be used
not only for single event fault scenarios but also for complex
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TABLE 1 Literature review for the diagnosability and detection delay
problems.

Delay counting

Objective Event Observable event
Detection delay evolution [14, 16, 39-42] [43, 44]
K-diagnosability [16, 40, 42, 45-47] [6, 43]

TABLE 2 Space complexity comparison.

Structure Complexity Process
Synchronous product Gg O(n X m) G = Gg
Diagnoser dg; () o™y G = Gg = d;(Q)
Standard PV 2 (Q) O ) G = Go = P(Q)
FSC/NSC PV NI (Q) Oty G = Gg— Gy =

G Gy = NIP(Q)

fault patterns diagnosability verification. Moreover, the pro-
posed structures in [14] and [16] can be used for computing
the detection delay. This notion has been adopted for DES by
counting the number of events (Table 1). In our case, the detec-
tion delay can be counted in terms of the number of observable
events based on the proposed NSC/FSC PV structure.

We compare the space complexity of the methods based on
state isolation with its diagnoser, synchronous product with its
diagnoser, and the standard PV, as shown in Table 2. Given an
LFA G and a pattern Q, let || = » and || = . Let us also
introduce 7, as the number of system states that are reachable
by at least one non silent event.

The number of reachable states of synchronous product veri-
fier Gg of G and Q is # X 7 at most. Consequently, the number
of reachable states of diagnoser d(Q) is 2" at most (see
Section 3.2) and the number of reachable states of standard
PV P (Q) is (# X m)? at most (see Section 4.1). From the per-
spective of complexity, the advantage of considering verification
structures based on the silent closure of the synchronous prod-
uct G is to remove all states that cannot be reached by an
observable event. Consequently, depending on the number and
location of the silent events in the system, the size of the final
NSC/FSC PV can be highly reduced. According to Section 4.2,
the number of states of silent closutre Gg is (7o + 1) X 77 at most
and the numbers of reachable states of NSC Gj; and FSC G
are (1o + 1) X (m — 1) and (np + 1) X m at most, respectively.
So, finally, the number of states of NSC/FSC PV NI, () is
(no + 1)> X m X (m — 1) at most. The space complexity of all
structures can be found in Table 2.

5 | ILLUSTRATIVE EXAMPLE
5.1 | Manufacturing cell model

This section presents an example of a flexible manufacturing
system, which is a work cell composed of a robot that loads and

(a) (b)

FIGURE 10 (a) Robot wotk cell G and (b) fault pattern Q.

TABLE 3  Meaning of the states in Figure 10(a).

State Meaning of the state

7 Robot stays in input buffer /
M Robot stays in machine 1 M,
M, Robot stays in machine 2 M,

O Robot stays in output buffer O
TR, Robot stays in safety buffer 7R,
1Ry Robot stays in safety buffer 7,
1R, Robot stays in safety buffer 7R,
TR Robot stays in safety buffer 7R,

unloads workpieces between input buffer /, output buffer O,
and two machines M and M, shown in Figure 10(a). 7R;, 1R,
TR, and TR, represent different areas in the work cell, related
to 1, O, My, and M,, where the robot can move.

The robot work cell is modelled as an LFA G, as
shown in Figure 10(a), where the set of the states is L =
{, 0, My, My, TR;, TR, TRy, TR,}, the set of the events is £ =
{a1, an, a3, ay, as, ag, a, ag, ag, ayg, 411, @12, @13, @14} Specifically,
Tables 3 and 4 describe the meanings of the states and the events
in the work cell, respectively. Table 4 (Scenario 1) also outlines
the labels that correspond to the events, defined as Lab(ag) =
myy Lab(ayg) = my, Lab(ayy) = i, and Lab(ay;) = 0. It is worth
noting that this work cell focuses on the behaviours of the
robot. Therefore, each state and event described in Tables 3 and
4 characterizes the specific details of the robot.

5.2 | Fault pattern and diagnosability analysis
In the configuration of this work cell, it is not allowed for the
robot to execute behaviours that move from areas 7R, to 7R, in
the counter-clockwise direction, i.e. the fault pattern of interest
is the occurrence of the event 4, followed by the occurrence of
the event @y, and then by a3, as shown in Figure 10(b).

In the following, we analyze the diagnosability of the work
cell with respect to the fault pattern €, according to the
NSC/FSC PV approach proposed in Section 4.2. For this pur-
pose, we compute first the silent closure G, then the faulty
silent closure G (Figure 11), and the normal silent closure
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TABLE 4  Meaning of the events in Figure 10(a) and the output labels.
Labels in Labels in
Events  Meaning of the events Scenario 1 Scenario 2
a Robot left 7R; and arrived at € €
TRy
a Robot left 7R; and arrived at € €
TRo.
a3 Robot left O and arrived at 7R, € €
FIGURE 12 N I silent cl Gy
@ Robot left 7R, and arrived at / € ¢ ormat stent closure G
as Robot left 7R and arrived at / € €
ag Robot left 7R; and arrived at € ¢ LN, m;
—p
1R, ; LN,
- . l .
a7 Rol;;t left 7R, and arrived at € e " v . m; ¢ l fl {\mz
% M.N TR, N, ™2 y|M,,N, 5
ag Robot left O and arrived at 7R, € e M M,N, — TRy N, < i Mo,N; < n,
A i ATA
ag Robot artived at M ”m ” 1 , m;
0
. o o
ayp Robot artived at A1, V2 V2 A l m || o 0 PN - ¢ v
aq Robot left 7 and arrived at 7R, i i O,N; o ON €| ; ON,;[So O,N;
bot left 7R d arrived at O ON, > O,N, < ON, |« 0 ON,
aip Robot left 7R; and arrived at 0 0 T Ak T” 0 A
a3 Robot left M and arrived at 7R, € € mz
0 0
aiy Robot left M, and arrived at 7R, € € " ¢
1
m
f\l|0 vyvywWi o ”vv
M, N1 1TR,N)[¢ 21 ON; o
M, F PR TR, F [ L' OF
K VI
o| i i m, OT
o vy | A 4
mi O,N; m; JMoONI S
2 » OF |« | M F [ 2
0
m; T
FIGURE 13 NSC/FSC PV of Scenario 1.
o
, LN, mz( M>,N,
LN, M>N; \ "
. i1 m e;
; o N Y .
TR, N||m; | M, N, |«——|TR,N/|—_%|TR,,N,| €7 |TRo,N/l«—{ O,N,
TR, N M,N [ TR NS TR N, “|TRo N[5> ON;
AKX \u L3 i
o o
0
» O,N,
s O,N, es
FIGURE 11  Faulty silent closure Gf.
FIGURE 14 NSC/FSC PV of Scenatio 2.

Gy (Figure 12). Finally, the NSC/FSC PV is constructed
(Figure 13). It is obvious that there exists at least one indeter-

minate cycle (My, Ny), My, F) —> (M, Ny), (My, F). Conse-
quently, by Proposition 2, we can conclude that the robot work
cell G is not diagnosable with respect to the fault pattern €.

Observe that by adding three more observable labels:
Lab(ag) = ¢5, Lab(a7) =e;, Lab(ag) =e¢, Lab(ay) = s,
Lab(a,0) = m, Lab(ay1) = 7, and Lab(ay,) = 0 (Scenatio 2 in
Table 4), the conclusion about diagnosability improves. The
NSC/FSC PV of Scenario 2 is detailed in Figure 14: there is no
indeterminate cycle and the robot work cell G is diagnosable
with respect to the fault pattern Q.

In order to discuss the complexity aspects, let us first mention
that for both scenatios we have » = || = 8 and » = |§| = 3.
Then for the first scenario, 7p = 4 whereas for the second
scenatio 7#p = 7. Then, Table 5 details the number of states
and transitions of the main structures used for fault pattern
diagnosability verification with the proposed approach and for
the two scenarios of this case study. Let us first notice that the
exact sizes of the resulting NSC/FSC PVs (resp. 13 for scenario
1 and 9 for scenario 2) are much lower than the worst case
sizes (resp. 144 for scenario 1 and 441 for scenario 2) provided
by the complexity analysis. These worst case complexities also
improve the worst case complexity of the pair verifier (576
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TABLE 5  Space complexity analysis (number of states X number of

transitions).

Structure Scenario 1 Scenario 2
Synchronous product G 18 x 31 18 x 31
Silent closure G (€2) 10 x 37 16 X 47
Normal silent closure Gy (S2) 6X20 9x23
Faulty silent closure G (€2) 10 x 37 16 X 47
NSC/FSC PV NFP (2) 13 X 57 9x23

for both scenarios). Then, in Table 5, we observe also that the
normal and fault silent closures for Scenario 2 are larger than
those for Scenario 1. However, the size of the final NSC/FSC
PV structure for Scenatio 2 is smaller than that of Scenario 1.
This indicates that even if 7, provides a first indication of the
gain in complexity, it is not enough to evaluate the advantage of
the proposed approach for a particular system and scenario.

6 | CONCLUSION

This paper deals with the fault pattern diagnosis of discrete
event systems, which includes fault pattern detection and diag-
nosability checking, The contribution has focused at first on
the space complexity issues related to the construction of the
related verification structures. For that purpose, we propose
a synchronous product verifier, suitable to manipulate com-
plex patterns in a systematic way. In order to verify the fault
pattern diagnosability, an NSC/FSC PV is constructed based
on the silent closure of the synchronous product verifier. The
proposed method requires polynomial time at most, offering
computational advantages for systems with numerous silent
events. A case study of a flexible manufacturing system illus-
trates our approach and shows that it is suitable for real systems
and practical situations.

However, we should mention some limitations that also
open future studies. The main question is how to define exactly
the class of the systems that will benefit at first from the
proposed approach. The number but also the location of the
silent events in the model play important roles. Providing
some guidelines for practitioners belongs to our further works.
Another limitation of our perspective is that it is based on
an explicit model of the faulty behaviours. Such behaviours
are often more difficult to characterize and one should dis-
cuss how faulty model based approaches can be combined
with healthy model based approaches to improve efficiency.
Our future work will also consider diagnosis issues of timed
patterns characterized by a sequence of events, occurring
in a given order at specific values of time or within specific
time intervals.
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