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Abstract

This paper addresses fault pattern diagnosis of discrete event systems, involving fault pat-
tern detection and diagnosability. A fault pattern is modelled as a finite automaton whose
accepted language is the objective to be diagnosed, representing the occurrence of com-
plex or composite faults. A verifier for fault pattern detection based on the synchronous
product of a system and a fault pattern is proposed. By removing all silent events, a silent
closure is calculated based on the synchronous product, which offers computational advan-
tages for systems that have a large number of silent events. An NSC/FSC pair verifier is
then computed by taking the product of a normal silent closure and an accepted silent
closure. By studying indeterminate cycles of the NSC/FSC pair verifier, necessary and suf-
ficient verification conditions are established, asserting that a system is diagnosable with
respect to a fault pattern if and only if there is no indeterminate cycle in the NSC/FSC pair
verifier. It is shown that the proposed method requires polynomial time at most. Finally, a
case study to illustrate the results is provided.

1 INTRODUCTION

Fault diagnosis in a discrete event system (DES) is a cru-
cial and challenging task to ensure its reliability and safety [1],
which generally involves two objectives: fault detection and fault
diagnosability. The former aims at detecting faults from given
observations and the latter focuses on deciding whether faults
can be distinguished within a finite delay after their occurrences
[2]. Experience with monitoring of dynamic systems shows that
there is a large spectrum of faulty situations in practical systems
[3], such as multiple faults, intermittent faults [4], and tempo-
rary faults [5] that are not consistent with a single event fault.
A broader approach is required for such cases and fault pat-
tern diagnosis, introduced in [6], provides a general framework
to solve the diagnosis problems by capturing the occurrences
of particular strings in a system. The problem of fault pattern
diagnosis has received extensive attention [6–15].

In [14, 16], the authors provide methods based on normal
behaviours that can also be used for the diagnosability verifica-
tion of fault patterns. This idea allows the calculation of faulty
behaviours obtained by subtracting the normal language from
the whole language, or by defining the faulty language as the
union of all the behaviours that do not belong to the normal lan-
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guage. In addition, the results in [14] and [16] can also be used
to compute the detection delay. The method in [15] proposes a
method that involves modelling normal behaviour and calculat-
ing faulty behaviours by the subtraction operation. The works
in [17–22] work on the problem of diagnosis in continuous
time systems.

Another class of methods is based on a systemic construc-
tion, namely a diagnoser [2], that is suitable to detect faults
on-line and to verify off-line the necessary and sufficient con-
ditions for diagnosability. Basically, such a diagnoser results
from the determinisation, i.e. the observer, of a verification
structure obtained from the system and pattern. In [23], the
authors distinguish two types of pattern diagnosability, S-type
and T-type, based on the diagnoser properties. Compared with
[23], this work focuses on S-type patterns (but T-type pat-
terns can be viewed as a particular subclass of S-type patterns),
and the main difference is that the proposed method in this
work has polynomial complexity, which is a significant improve-
ment compared with the diagnoser structure with potentially
exponential complexity presented in [23]. In [24], the authors
address the problem of fault diagnosis in decentralized DESs
by extending the diagnoser into local diagnosers with a coordi-
nator. However, the state space of the corresponding diagnosers
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2 LIANG ET AL.

are all in the worst case exponential with respect to the size of
the system.

To overcome the potential state explosion problem, a pair
verifier technique [25, 26] is introduced to offer a worst case
polynomial test with respect to the number of system states
for diagnosability. Several extensions have been developed [13,
27–36]. The pair verifier structures are mainly obtained from the
self composition of the verifiers. In particular, an algorithm with
linear complexity proposed in [31] converts the fault detection
problem into state isolation to determine whether the obser-
vations allow us to isolate the states to be within a particular
set of states that indicates the occurrence of failures. Espe-
cially, the authors in [32] propose two types of pair verifiers in
a decentralized diagnosis framework with respect to different
local decisions, and the authors in [33] address the modular diag-
nosability problem by computing a pair verifier. The authors in
[34] construct a pair verifier to perform codiagnosability anal-
ysis. With structures that result from the composition of faulty
and normal verifiers [37], additional gains in space complexity
can be obtained.

Finally, model checking based approaches are also used
for diagnosis purpose. The study in [9] touches upon the
diagnosability analysis of DESs transforming the problem of
pattern diagnosis into a model checking problem. In [7, 8], the
authors introduce the methods of constructing local pattern
diagnosers by using subsystems, which extends the pattern
diagnosis problem from a monolithic model to a distributed
framework. In [13], the authors review the main definitions of
diagnosability with regard to intermittent faults, and discuss
appropriate verification techniques. In [10], linear-time tempo-
ral logic formulas are used to specify failures in a system such
that the problem of testing diagnosability is reduced to that of
model checking.

This paper also focuses on fault pattern diagnosis of DESs,
fault pattern detection, and diagnosability verification. Labelled
finite automata are used as models of the system and pattern to
be diagnosed. Improving the numerical complexity of the diag-
nosis approach is the main challenge of this contribution. In the
perspective of the aforementioned contributions, we aim to pro-
pose verifiers of reduced size, in particular for systems including
numerous silent events. Based on the synchronous product of a
system and a fault pattern, we propose a silent closure by remov-
ing all silent events. Then, an NSC/FSC pair verifier (NSC/FSC
PV) is constructed by taking the product of a normal silent clo-
sure and fault silent closure, both of which are obtained from
the silent closure with respect to normal and faulty behaviors,
respectively. The successive steps of our analysis are visualized
in Figure 1.

The rest of the paper is organized as follows. Section 2
reviews finite state automata. Section 3 begins with the notions
of fault patterns and then touches upon fault pattern diagno-
sis in DESs, including fault pattern detection and diagnosability.
Sections 4. A and B provide the structures for fault pattern
diagnosability based on a standard PV and an NSC/FSC PV
respectively. Section 4.3 compares the space complexity of dif-
ferent approaches. Section 5 provides a case study to illustrate
the results. Section 6 concludes this research.

FIGURE 1 Schematic of the methodology.

2 PRELIMINARIES

We use ℕ and ℕ0 to denote the sets of strictly positive integers
and non-negative integers, respectively. Write ℕk = {1, 2, … , k}.

Definition 1. A deterministic finite automaton (DFA) is a four-
tuple G0 = (L, Σ, 𝛿, l0), where L is the set of states, Σ is the set
of events, l0 is the initial state, and 𝛿 ∶ L × Σ → L is the partial
transition function: l ′ = 𝛿(l , 𝜎) means that there is a transition
labelled with event 𝜎 ∈ Σ from the state l to state l ′. Let Σ∗ be
the set of all finite strings defined over Σ, including the empty
string 𝜆. Transition function 𝛿 can be extended to L × Σ∗ → L

in an usual way: given l ∈ L, 𝓌 ∈ Σ∗, and 𝜎 ∈ Σ, 𝛿(l , 𝜆) = l

and 𝛿(l ,𝓌𝜎) = 𝛿((𝛿(l ,𝓌)), 𝜎).

The set Σ can be partitioned into two disjoint subsets Σ =
Σo ∪ Σuo, where Σo and Σuo represent the sets of observable
and unobservable events, respectively. The concatenation of
two strings 𝓌′,𝓌′′ ∈ Σ∗ is the string 𝓌 = 𝓌′𝓌′′ ∈ Σ∗. To
be more general, we introduce the notion of output labels. Let
E𝜀 = E ∪ {𝜀} be the set of output labels, where E is the set
of observable labels and 𝜀 is the empty label. A labelled finite
automaton (LFA) can be defined as follows.

Definition 2. An LFA is a three-tuple G = (G0,E𝜀,Lab),
where G0 = (L, Σ, 𝛿, l0) is a DFA, E𝜀 is the set of output labels,
and Lab ∶ Σ → E𝜀 is the labelling function, where Lab(𝜎) ∈ E

if 𝜎 ∈ Σo, and Lab(𝜎) = 𝜀 if 𝜎 ∈ Σuo.

In an LFA, there exist transitions modelling the occurrences
of silent events (i.e. 𝜀-transitions), which cannot be observed.
Moreover, two or more transitions outgoing from a given state
could possibly produce the same label. In this case, one detects
that an event has occurred but cannot determine exactly which
transition has fired. The labelling function, or mask function,
defines the observation generated by the occurrence of each
event [14].

Given a state l ∈ L in an LFA, the set of active events at l

is defined as Λ(l ) = {𝜎 ∈ Σ|∃l ′ ∈ L ∶ l ′ = 𝛿(l , 𝜎)}. Given a
string 𝓌 ∈ Σ∗, its length is defined as the number of events
in 𝓌, denoted by |𝓌|. A string 𝓌′ ∈ Σ∗ is said to be a prefix
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LIANG ET AL. 3

FIGURE 2 (a) Labelled finite automaton (LFA) G1 and (b) fault pattern
Ω1.

of 𝓌 ∈ Σ∗ if there exists 𝓌′′ ∈ Σ∗ such that 𝓌′𝓌′′ = 𝓌,
denoted by 𝓌′ ≤ 𝓌. The language generated by the LFA G is
defined as (G ) = {s ∈ Σ∗|𝛿(l0, s)!}, where 𝛿(l0, s)! means that
“𝛿(l0, s) is defined”. Given string𝓌 ∈ (G ), (G )∕𝓌 denotes
the post-language of (G ) after 𝓌 : (G )∕𝓌 = {𝓌′ ∈ Σ∗ ∣
𝓌𝓌′ ∈ (G )}. A run that begins with the initial state l0 has the

form 𝜌: l0
𝜎0
��→ l1

𝜎1
��→ … ln

𝜎n
��→ ln+1, where li , li+1 ∈ L, 𝜎i ∈ Σ,

and li+1 = 𝛿(li , 𝜎i ) for i ∈ {0, 1, … , n}. In this case, we say that
the run 𝜌 is associated with the string 𝓌 = 𝜎0…𝜎n ∈ Σ

∗, and
use 𝓌(𝜌) to denote the string associated to 𝜌. In a similar way,
given a string 𝓌, we use 𝜌(𝓌) to denote the run generated by
𝓌 from the initial state l0. A run is said to be a cycle if ln+1 = l0.

Given an LFA G , a projection function  ∶ Σ∗ → E∗ is
defined as follows. For 𝓌 ∈ Σ∗ and 𝜎 ∈ Σ,

 (𝓌𝜎) =

{
 (𝓌)e if Lab(𝜎) = e ∈ E

 (𝓌) if Lab(𝜎) = 𝜀,

and for the empty string 𝜆,  (𝜆) = 𝜆.
We use E (G ) to denote the observed language of

G , defined by E (G ) = { (𝓌) ∈ E∗|𝓌 ∈ (G )}. Given an
observation 𝓌e , the inverse projection −1 ∶ E∗ → Σ∗ is
defined by −1(𝓌e ) = {𝓌 ∈ (G )| (𝓌) = 𝓌e}. Given an
LFA G , we use RG (𝓌e ) to denote the set of states resulting
from the execution of an event sequence 𝓌 ∈ −1(𝓌e ) from
state l ∈ L, defined by RG (𝓌e ) = {l ∈ L|∃𝓌 ∈ P−1(𝓌e ) ∶
l = 𝛿(l0,𝓌)}.

Example 1. Consider an LFA G1 shown in Figure 2(a),
where L = {0, 1, 2, 3, 4, 5, 6}, with 0 being the initial state,
Σ = {a, b, f1, f2}, Σo = {a, b}, Σuo = { f1, f2}, and E = {e}. The
labelling function Lab is defined as Lab(a) = Lab(b) = e, and
Lab( f1) = Lab( f2) = 𝜀. A possible run generated by system G1

from the initial state is 𝜌: 0
f1
��→ 1

a
�→ 2

b
�→ 0, where the associ-

ated string of 𝜌 is 𝓌 = f1ab. The projection of 𝓌 with respect
to the set of observable labels is  (𝓌) = ee.

3 FAULT PATTERN DIAGNOSIS OF
AUTOMATA

A fault pattern, simply called a pattern in this research, is defined
as a finite state automaton whose accepted language is the
objective to be diagnosed, which represents the occurrence of
complex or composite faults.

Definition 3. A (fault) pattern of an LFA G = (G0,E𝜀,Lab)
with G0 = (L, Σ, 𝛿, l0) is a DFA Ω = (S , Σ, 𝛿Ω, s0, sΩ), where S

is the set of states, Σ is the set of events, s0 ∈ S is the initial
state, sΩ ∈ S is the single final, i.e. accepted state, and 𝛿Ω ∶ S ×
Σ → S is the transition function. The fault pattern Ω satisfies
a complete condition, i.e. for all s ∈ S , Λ(s) = Σ and the final
state sΩ is stable, i.e. for all 𝜎 ∈ Σ, 𝛿Ω(sΩ, 𝜎) = sΩ.

The language of fault pattern Ω, denoted by (Ω), satisfies
(Ω) = Σ∗ due to its complete condition. We use (Ω) to
denote the accepted language of Ω, defined as (Ω) = {𝓌 ∈
(Ω)|𝛿Ω(s0,𝓌) = sΩ}, and define the target language of LFA
G as (G ) = (G ) ∩ (Ω).

Example 2. Consider an example of a fault patternΩ1, shown
in Figure 2(b), where the set of states is S = {N ,F }, the set of
the events is Σ, the final state is F , and the initial state is N . The
fault pattern defines the occurrence of f1 or f2; its accepted
language is (Ω1) = Σ∗ f1Σ

∗ ∪ Σ∗ f2Σ
∗.

The definition of the detection function is given as follows.

Definition 4. A detection function DetectΩ ∶ E (G ) → {Yes,

No, Ambiguous} is defined, for any 𝓌e ∈ E (G ), as

∙ DetectΩ(𝓌e ) = Yes if −1(𝓌e ) ⊆ (G ),
∙ DetectΩ(𝓌e ) = No if −1(𝓌e ) ∩ (G ) = ∅,
∙ DetectΩ(𝓌e ) = Ambiguous, otherwise.

Given an observed sequence 𝓌e , the output of the detection
function in Definition 4 is Yes if all the strings generating𝓌e are
contained in (G ), i.e. the fault pattern has certainly occurred.
The output is No if no string 𝓌 whose projection is 𝓌e is in
(G ), indicating that the fault pattern has not occurred. Oth-
erwise, the output is Ambiguous, i.e. it is uncertain whether the
fault pattern has occurred or not.

Definition 5. Given an LFA G and a pattern Ω, G is
diagnosable with respect to pattern Ω if

(∃k ∈ ℕ) (∀𝓌 ∈ (G ))(∀𝓌′ ∈ (G )∕𝓌) (|𝓌′| ≥ k) ⇒
[−1( (𝓌𝓌′ )) ⊆ (G )].

Note that in Definition 5, we are interested in the first occur-
rence of the pattern and diagnosability analysis captures only
the strings accepted by the pattern. To verify fault pattern
diagnosability, we make the following assumption:

(H) Given an LFA G , its observed language E (G ) is live,
i.e. for all observations𝓌e ∈ E (G ), there always exists a label
e ∈ E such that 𝓌ee ∈ E (G ).

3.1 Fault pattern detection based on
synchronous product

Inspired by the notion of synchronous product of two
automata, this section introduces a synchronous product ver-
ifier. Note that a state isolation based verifier can also be
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4 LIANG ET AL.

obtained for fault pattern detection [31, 38], whose structure
is similar to the synchronous product verifier. For the sake of
simplicity, the details are not pursued here.

Definition 6. Given an LFA G = (G0,E𝜀,Lab) with G0 =
(L, Σ, 𝛿, l0), and a patternΩ = (S , Σ, 𝛿Ω, s0, sΩ), a synchronous
product verifier GΩ of G with respect to Ω is an LFA GΩ =

(LGΩ
, Σ, 𝛿GΩ

, l
GΩ
0 ,L

GΩ
F
,E𝜀,Lab), where LGΩ

⊆ L × S is the

set of states, Σ is the set of events, l
GΩ
0 = (l0, s0) is the initial

state, L
GΩ
F
= L × {sΩ} is the set of final states, and 𝛿GΩ

∶ (L ×
S ) × Σ → (L × S ) is the transition function defined for 𝜎 ∈ Σ,
s, s′ ∈ S , l , l ′ ∈ L, by 𝛿GΩ

((l , s), 𝜎) = (l ′, s′ ), if 𝛿(l , 𝜎) = l ′

and 𝛿Ω(s, 𝜎) = s′.

Since Ω satisfies the complete condition, (GΩ) = (G )
holds thanks to the definition of accepted language (GΩ)
of GΩ. Let (GΩ) be the generated language of GΩ. Given a
state lGΩ and an observed sequence 𝓌e , we define RGΩ

(𝓌e ) =

{lGΩ ∈ LGΩ
|∃𝓌 ∈ P−1(𝓌e ) ∶ lGΩ = 𝛿GΩ

(l GΩ
0 ,𝓌)}, where the

transition function 𝛿GΩ
is extended from Σ to Σ∗ in the usual

way.

Proposition 1. Given an LFA G, a patternΩ, the synchronous prod-

uct verifier GΩ, and an observation 𝓌e ∈ E (G ), the detection function

DetectΩ satisfies

(a) DetectΩ(𝓌e ) = Yes if and only if RGΩ
(𝓌e ) ⊆ L

GΩ
F

,

(b) DetectΩ(𝓌e ) = No if and only if RGΩ
(𝓌e ) ∩ L

GΩ
F
= ∅,

(c) DetectΩ(𝓌e ) = Ambiguous, otherwise.

Proof. Given an observed sequence 𝓌e ∈ E (G ) and an event
sequence𝓌 = 𝜎0 … 𝜎n ∈ −1(𝓌e ), the runs inΩ and GΩ that
begin respectively from the initial states s0 and l

GΩ
0 , associated

with 𝓌, are 𝜌Ω: s(0)
𝜎0
��→ s(1)

𝜎1
��→ ⋯ s(n)

𝜎n
��→ s(n + 1) and 𝜌GΩ

:

lGΩ (0)
𝜎0
��→ lGΩ (1)

𝜎1
��→ ⋯ lGΩ (n)

𝜎n
��→ lGΩ (n + 1).

To prove (only if) of case (a), assume that DetectΩ(𝓌e ) =Yes.
Then we have 𝓌 ∈ (G ) and 𝛿Ω(s(0),𝓌) = sΩ. By con-
sidering the run 𝜌Ω, there exists one or more indices n1,
…, nk, such that s(0) = ⋯ = s(n1) = s0, s(nh + 1) = ⋯ =
s(nh+1), h ∈ ℕk−1, and s(nk + 1) = ⋯ = s(n + 1) = sΩ. Con-
sidering now the run 𝜌GΩ

and according to Definition 6,
we have lGΩ (0), … , lGΩ (n1), lGΩ (nh + 1), … , lGΩ (nh+1) ∈ LGΩ

⧵

L
GΩ
F

, h ∈ ℕk−1, and lGΩ (nk + 1), … , lGΩ (n + 1) ∈ L
GΩ
F

. In par-

ticular, the last state of the run 𝜌GΩ
belongs to L

GΩ
F

. Thus

RGΩ
(𝓌e ) ⊆ L

GΩ
F

.

To prove (if) of case (a), assume that RGΩ
(𝓌e ) ⊆ L

GΩ
F

.
For any 𝓌 such that  (𝓌) = 𝓌e there exist one or
more indices n1, … , nk and k − 1 states s(nh+1) ∈ S , h ∈
ℕk−1, such that lGΩ (0), … , lGΩ (n1), lGΩ (nh + 1), … , lGΩ (nh+1) ∈

LGΩ
⧵ L

GΩ
F

, h ∈ ℕk−1, and lGΩ (nk + 1), … , lGΩ (n + 1) ∈ L
GΩ
F

.
By Definition 6, s(0) = ⋯ = s(n1) = s0, s(nh + 1) = ⋯ =
s(nh+1) with h ∈ ℕk−1 and s(nk + 1) = ⋯ = s(n + 1) = sΩ.
Hence, the run 𝜌Ω ends in sΩ and 𝓌 = 𝜎0𝜎1 …𝜎n ∈ (G ).

FIGURE 3 Synchronous product verifier G1Ω1
.

By Definition 4, we have DetectΩ(𝓌e ) =Yes. The proofs of cases
(b) and (c) are similar to (a). □

Example 3. Consider the fault pattern Ω1 in Figure 2(b) and
an LFA G1 in Figure 2(a). The synchronous product verifier
G1Ω1

of G1 and Ω1 is shown in Figure 3. Given, for example,
an observation ee, by Proposition 1, the detection is Ambigu-

ous, since RG1Ω1
(ee) = {6N , 0F , 2F }, where 0F , 2F ∈ L

GΩ
F

and

6N ∉ L
GΩ
F

.

3.2 Fault pattern diagnosability based on
diagnoser

In this section, we provide a method for fault pattern diagnos-
ability based on a diagnoser structure [2]. We define RGΩ

(lGΩ ,
𝓌e ) = {l

′
GΩ
∈ LGΩ

|∃𝓌 ∈ Σ∗ ∶ l ′
GΩ
= 𝛿GΩ

(lGΩ , 𝓌), (𝓌) =
𝓌e}.

Definition 7. Given the synchronous product GΩ = (LGΩ
, Σ,

𝛿GΩ
, l

GΩ
0 , L

GΩ
F
,E𝜀,Lab) of system G and pattern Ω, the diag-

noser of G with respect to Ω is defined as dG (Ω) = (Ld , 𝛿d ,
l d
0 , E , Lab), where Ld⊆2LGΩ is the set of states, l d

0 = RGΩ
(𝜆) is

the initial state, and 𝛿d ∶ Ld × E → Ld is the transition func-
tion satisfying l ′

d
= 𝛿d (ld , e) if there exist ld , l ′

d
∈ Ld , e ∈ E such

that
⋃

lGΩ
∈ld

RGΩ
(lGΩ , e) = l ′

d
.

Definition 7 shows that the diagnoser is obtained by
the determinisation of the synchronous product verifier with
respect to the set of observable labels E . Diagnosers can be
used to check diagnosability by introducing the notions of
indeterminate states and cycles.

Definition 8. Given a system G , a pattern Ω, and its diag-
noser dG (Ω), a state ld ∈ Ld is said to be indeterminate if ld ∩

L
GΩ
F

≠ ∅ and ld ∩ (LGΩ
⧵ L

GΩ
F

) ≠ ∅. A cyclic run, for short a
cycle, formed by states l d

1 , l d
2 , …, l d

n ∈ Ld , is said to be an
indeterminate cycle if

1) for all i ∈ ℕn, the state l d
i is indeterminate,

2) for all i ∈ ℕn, there exist at least two states l
GΩ
i , ˜l GΩ

i ∈ l d
i

with l
GΩ
i = (li , si ),

˜
l

GΩ
i = (l̃i , s̃i ), li , l̃i ∈ L, si = sΩ, and

s̃i ∈ S ⧵ {sΩ} such that there exist at least two cycles in GΩ

composed of the states l
GΩ
1 ,…, l

GΩ
n , and ˜l GΩ

1 ,…, ˜l GΩ
n with the
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LIANG ET AL. 5

FIGURE 4 Diagnoser dG1
(Ω1 ).

forms of 𝜌GΩ
∶ l

GΩ
1 →⋯→ l

GΩ
i →⋯→ l

GΩ
n , and 𝜌GΩ

∶
˜
l

GΩ
1 →⋯→

˜
l

GΩ
i →⋯→

˜
l

GΩ
n , where 𝓌 and 𝓌′ are two

strings associated with the cycles 𝜌GΩ
and 𝜌GΩ

, respectively,
with  (𝓌) =  (𝓌′ ).

A cycle in the diagnoser is an indeterminate cycle if it is com-
posed of indeterminate states only, which corresponds to two
cycles in the synchronous product verifier: one composed of
non-final states only and the other composed of final states only,
where both cycles have the same observation. Given an LFA G

that satisfies Assumption H, G is diagnosable with respect to
Ω iff there is no indeterminate cycle in the diagnoser dG (Ω).
The proof of this result is similar to [2] and is not presented for
economy of space.

Example 4. Consider an LFA G1 in Figure 2(a), the fault
pattern Ω1 in Figure2(b). The resulting diagnoser dG1

(Ω1) is
computed in Figure 4. The system G1 is not diagnosable with
respect to pattern Ω1 since there exists an indeterminate cycle
l d
4 l d

5 l d
6 in dG1

(Ω1).

4 VERIFICATION OF FAULT PATTERN
DIAGNOSABILITY

This section sums up the principle of a standard PV and
provides an NSC/FSC PV structure to check fault pattern
diagnosability. In particular, the NSC/FSC PV structure is
constructed by removing all silent events of the system, taking
advantage of systems with numerous silent events.

4.1 Fault pattern diagnosability with
standard PV

This section introduces a standard PV that can be used for fault
pattern diagnosability, which is obtained by the self-product of
GΩ [26].

Definition 9. Given the synchronous product verifier GΩ of
G andΩ, a standard PV PG (Ω) is defined as a nondeterministic
automaton PG (Ω) = (LP , 𝛿P , l P

0 , E𝜀 , Lab), where LP ⊆ LGΩ
×

LGΩ
is the set of states, l P

0 = (l GΩ
0 , l

GΩ
0 ) is the initial state, and

𝛿P is the transition relation defined as follows. Let lP = (l 1
GΩ

,

FIGURE 5 (a) LFA G2 and (b) synchronous product verifier G2Ω1
.

l 2
GΩ

) ∈ LP , and 𝜎1, 𝜎2 ∈ Σ such that l 1′
GΩ
= 𝛿GΩ

(l 1
GΩ
, 𝜎1) and

l 2′
GΩ
= 𝛿GΩ

(l 2
GΩ
, 𝜎2). We have:

1. If Lab(𝜎1) = Lab(𝜎2) = e, e ∈ E , then ((l 1
GΩ
, l 2

GΩ
), e,

(l 1′
GΩ
, l 2′

GΩ
)) ∈ 𝛿P ,

2. If Lab(𝜎1) = Lab(𝜎2) = 𝜀, then

⎧⎪⎪⎨⎪⎪⎩

((
l 1
GΩ
, l 2

GΩ

)
, 𝜀,

(
l 1′
GΩ
, l 2

GΩ

))
∈ 𝛿P((

l 1
GΩ
, l 2

GΩ

)
, 𝜀,

(
l 1
GΩ
, l 2′

GΩ

))
∈ 𝛿P((

l 1
GΩ
, l 2

GΩ

)
, 𝜀,

(
l 1′
GΩ
, l 2′

GΩ

))
∈ 𝛿P .

By construction, the transition relation 𝛿P tracks two strings
in (GΩ) which generate the same output from an observa-
tional point of view, while updating the failure information as
the two strings evolve. The standard PV can be used to check
diagnosability by considering indeterminate states and cycles of
this structure.

Definition 10. Given the synchronous product verifier GΩ of
a system G and a patternΩ, and the standard PV PG (Ω), a state
lP = (l 1

GΩ
, l 2

GΩ
) ∈ LP is said to be indeterminate if (l 1

GΩ
, l 2

GΩ
) =

((l 1, s1), (l 2, s2)), l 1, l 2 ∈ L, s1 ∈ S ⧵ {sΩ}, s2 = sΩ, or vice
verse. A cycle in PG (Ω) is said to be indeterminate if all states of
the cycle are indeterminate.

Given an LFA G that satisfies Assumption H, G is diagnos-
able with respect to patternΩ iff there is no indeterminate cycle
in PG (Ω). The proof of this result is similar to [26] and is not
presented for economy of space.

Example 5. Consider an LFA G2 in Figure 5(a) with Σuo= { f1},
Σo = {a, b, c}, and E = {e, e′}, where Lab(a) = Lab(b) = e, and
Lab(c ) = e′, and the fault pattern Ω1 in Figure 2(b). The syn-
chronous product G2Ω1

and the standard PV PG2
(Ω1) are shown

in Figures 5(b) and 6, respectively. The system G2 is diagnosable
with respect to Ω1 since there do not exist indeterminate cycles
in PG2

(Ω1) (see Definition 10).
On the contrary, consider the LFA G1 in Figure 2(a) and the

patternΩ1 in Figure 2(b) previously discussed. The standard PV
PG1

(Ω1) can be obtained in a similar way. Since there exists at
least one indeterminate cycle in PG1

(Ω1), G1 is not diagnosable
with respect to the pattern Ω1. For the sake of simplicity, the
details are not pursued here.
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6 LIANG ET AL.

FIGURE 6 Standard PV PG2
(Ω1 ).

FIGURE 7 Silent closure G2S1
.

4.2 Fault pattern diagnosability with
NSC/FSC PV

In contrast to the standard PV introduced above, the NSC/FSC
PV is built on the basis of normal and fault silent closures, which
are coaccessible parts of a silent closure respectively, especially
offering an advantage for the systems with numerous silent
events.

Definition 11. Given the synchronous product verifier GΩ

= (LGΩ
, Σ, 𝛿GΩ

, l
GΩ
0 , L

GΩ
F
,E𝜀,Lab), the silent closure of GΩ

is a four-tuple GS = (LS ,E , 𝛿S , l
S
0 ), where E is the set of

observable labels, LS is the set of states, defined as LS = {l
′
GΩ
∈

LGΩ
|∃lGΩ ∈ LGΩ

, 𝜎 ∈ Σo ∶ l ′
GΩ
= 𝛿GΩ

(lGΩ, 𝜎)}, l S
0 = l

GΩ
0 is

the initial state, and 𝛿S ⊆ LS × E × LS is the transition rela-
tion, defined as (lS , e, l

′
S

) ∈ 𝛿S if and only if there exists a run

lS
𝜎1
��→ l 1

GΩ
…

𝜎n
��→ l n

GΩ

𝜎
�→ l ′

S
, n ≥ 0, lS , l

′
S
∈ LS , in GΩ such that

for i = 1, 2, … , n, l i
GΩ
∈ LGΩ

, Lab(𝜎i ) = 𝜀, and Lab(𝜎) = e.

The transition relation 𝛿S can be extended from E to E∗ in
the usual way.

Example 6. Consider an LFA G2 in Figure 5(a), the patternΩ1
in Figure 2(b), and their synchronous product verifier G2Ω1

in
Figure 5(b). By Definition 11, the silent closure G2S1

of G2Ω1
is

obtained in Figure 7.

Definition 12. Given a silent closure GS , the normal silent clo-
sure (NSC) of GS is a four-tuple GN = (LN ,E , 𝛿N , l

N
0 ), where

LN is the set of the states defined as LN = {lS ∈ LS |lS ∉ L
GΩ
F
},

E is the set of observable labels, 𝛿N ⊆ LN × E × LN is the
transition relation, defined by (lN , e, l

′
N

) ∈ 𝛿N for lN , l
′
N
∈ LN ,

if there exists e ∈ E such that (lN , e, l
′
N

) ∈ 𝛿S , and l N
0 = l S

0 is
the initial state.

From Definition 12, one can conclude that for any state lN ∈

LN , it holds lN ∉ L
GΩ
F

, i.e. the NSC GN is the coaccessible part

of GS with respect to LGΩ
⧵ L

GΩ
F

.

FIGURE 8 (a) Normal silent closure G2N1
and (b) fault silent closure

G2F1
.

Definition 13. Given a silent closure GS , the fault silent closure
(FSC) of GS is a four-tuple GF = (LF ,E , 𝛿F , l

F
0 ), where LF is

the set of the states defined as LF = {lS ∈ LS |∃l ′
S
∈ LS , ∃𝓌e ∈

E∗ ∶ (lS ,𝓌e, l
′
S

) ∈ 𝛿S , l ′
S
∈ L

GΩ
F

}, E is the set of observable
labels, 𝛿F ⊆ LF × E × LF is the transition relation, defined by
(lF , e, l

′
F

) ∈ 𝛿F for lF , l
′
F
∈ LF , if there exists e ∈ E such that

(lF , e, l
′
F

) ∈ 𝛿S , and l F
0 = l S

0 is the initial state.

From Definition 13, the construction of the fault silent clo-
sure GF is essentially the coaccessible part of GS with respect to
the states lS ∈ LS which satisfy also lS ∈ L

GΩ
F

.

Example 7. Consider the silent closure G2S1
of G2Ω1

in
Figure 7. By Definitions 12 and 13, the NSC G2N1

and FSC
G2F1

are obtained in Figures 8(a) and 8(b), respectively.

The NSC/FSC PV is formally introduced as follows.

Definition 14. Given an NSC GN and an FSC GF , an
NSC/FSC PV of G and Ω is a four-tuple NFPG (Ω) =
(LNFP ,E , 𝛿NFP , l

NFP
0 ), where LNFP ⊆ LN × LF is the set of

states, E is the set of observable labels, 𝛿NFP ⊆ LNFP × E ×
LNFP is the transition relation, defined by (lNFP e, l ′

NFP
) ∈

𝛿NFP for lNFP = (lN , lF ), l ′
NFP

= (l ′
N
, l ′

F
) ∈ LNFP , if there exist

lN , l
′
N
∈ LN , lF , l

′
F
∈ LF , e ∈ E such that (lN , e, l ′

N
)∈ 𝛿N and

(lF , e, l ′
F

) ∈ 𝛿F , and l NFP
0 = (l N

0 , l F
0 ) is the initial state.

By construction, the transition relation 𝛿NFP tracks two
strings of the NSC GN and the FSC GF , respectively, which
generate the same output from an observational point of view,
while updating the pattern information as the two strings evolve.

It follows from Definitions 12 and 13 that in GN , all states
lN satisfy lN ∈ LGΩ

⧵ L
GΩ
F

, and in GF , some states lF satisfy

lF ∈ LGΩ
⧵ L

GΩ
F

but others satisfy lF ∈ L
GΩ
F

. In other words,
all the states in GN contain only the non-faulty information,
and in GF , some states encode the non-faulty information,
while others encode the faulty information. Since an NSC/FSC
PV NFPG (Ω) is essentially the strict composition of an NSC
GN and an FSC GF , picking any state lNFP = (lN , lF ) in
NFPG (Ω), its component lN contains only non-faulty informa-
tion, while the component lF contains faulty and non-faulty
information. Then, picking any cycle 𝜌NFP ∶ (l 1

N
, l 1

F
) → … →

(l n
N
, l n

F
) → (l 1

N
, l 1

F
) of the NFPG (Ω), it is obvious that there exist

only two forms of the cycle: one satisfies l i
N

, l i
F
∈ LGΩ

⧵ L
GΩ
F

for i = 1, … , n, and the other satisfies l i
N
∈ LGΩ

⧵ L
GΩ
F

, l i
F
∈
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LIANG ET AL. 7

L
GΩ
F

for i = 1, … , n. NFPG (Ω)-indeterminate state and NFPG (Ω)-
indeterminate cycle of the NFPG (Ω) are introduced that will be
used later.

Definition 15. Given an NSC/FSC PV NFPG (Ω), a state
(lN , lF ) ∈ LNFP is said to be an NFPG (Ω)-indeterminate state
if lF ∈ L

GΩ
F

.

Note that for an NFPG (Ω), there exist only two types of
cycles: (i) cycles composed by the states that are all NFPG (Ω)-
indeterminate; and (ii) those composed by the states that are all
not NFPG (Ω)-indeterminate. Given a cycle in NFPG (Ω), if all
states of the cycle are NFPG (Ω)-indeterminate, there necessar-
ily exist two cycles in GN and GF , respectively, one including
only the states lN satisfying lN ∈ LGΩ

⧵ L
GΩ
F

, and the other

including only the states lF satisfying lF ∈ L
GΩ
F

.

Definition 16. A cycle of NFPG (Ω) is NFPG (Ω)-indeterminate if
all the states of the cycle are NFPG (Ω)-indeterminate.

Proposition 2. Let G be an LFA that satisfies Assumption

H. It is diagnosable with respect to pattern Ω iff there is no

NFPG (Ω)-indeterminate cycle in NFPG (Ω).

Proof. (only if) Assume that there exists an indeterminate cycle
clNFP ∶ l NFP

m → l NFP
m+1 ⋯ l NFP

n → l NFP
m in the NFPG (Ω), for i =

m,m + 1, … , n, m, n ∈ ℕ, l NFP
i ∈ LNFP . Let 𝜌NFP ∶ l NFP

0 →

⋯ l NFP
m ⋯ l NFP

n → l NFP
m be a run in NFPG (Ω) and 𝓌NFP =

𝓌(𝜌NFP ).
From Definition 14, there necessarily exist two runs

𝜌N ∶ l N
0 →⋯ l N

m′
⋯ l N

n′
→ l N

m′
,

𝜌F ∶ l F
0 →⋯ l F

m′′
⋯ l F

n′′
→ l F

m′′
,

with 𝓌N = 𝓌(𝜌N ) and 𝓌F = 𝓌(𝜌F ) in GN and GF respec-
tively, such that𝓌NFP ,𝓌N and𝓌F have the same observation.
Observer that these two runs contain two cycles clN ∶
l N
m′
⋯ l N

n′
→ l N

m′
and clF ∶ l F

m′′
⋯ l F

n′′
→ l F

m′′
such that l N

i′
∈

LGΩ
⧵ L

GΩ
F

, i′ = m′, … , n′, and l F
i′′
∈ L

GΩ
F

, i′′ = m′′, … , n′′.

Then, there exist two prefixes 𝓌
pr

N
, 𝓌

pr

F
of 𝓌N and 𝓌F

respectively, with (l N
0 ,𝓌

pr

N
, l N

m′
) ∈ 𝛿N and (l F

0 ,𝓌
pr

F
, l F

m′′
) ∈ 𝛿F

such that (l N
m′
, l F

m′′
) = l NFP

m , and the two sequences 𝓌
pr

N
,

𝓌
pr

F
have the same observation, where 𝛿N (resp. 𝛿F ) can be

extended from E to E∗ in the usual way. Also, there exist
two strings 𝓌cl

N
= 𝓌(clN ) and 𝓌cl

F
= 𝓌(clF ) in GN and GF

respectively, such that 𝓌N = 𝓌
pr

N
𝓌cl

N
and 𝓌F = 𝓌

pr

F
𝓌cl

F
.

Repeating the cycle clNFP with any k times, k ∈ ℕ, there
exist two sequences 𝓌

pr

N
(𝓌cl

N
)k and 𝓌

pr

F
(𝓌cl

F
)k in GN and GF

having the same observation. By Definitions 12 and 13, there
necessarily exist two runs in GS corresponding to 𝓌

pr

N
(𝓌cl

N
)k

and 𝓌
pr

F
(𝓌cl

F
)k, respectively, having the same observation. By

Definition 11, there exist two strings in GΩ having the same
observation: one accepted by Ω while another is not. Thus,
there exist two strings in G having the same observation:

FIGURE 9 NSC/FSC PV NFPG2
(Ω1 ).

one accepted by Ω while another is not, which completes
the necessity.

(if) Suppose that G is not diagnosable with respect to Ω,
i.e. there exists 𝓌pr ∈ (G ), 𝓌 ∈ (G )∕𝓌pr , and 𝓌′ ∉
(G ) such that  (𝓌pr𝓌) =  (𝓌′ ), i.e. they have the same
observation. By Definitions 6 and 11, there necessarily exist two
runs in GS corresponding to 𝓌pr𝓌 and 𝓌′, respectively, one
reaching the final state and the other not. By Definitions 12 and
13, there exist two runs 𝜌N = 𝜌(𝓌N ) and 𝜌F = 𝜌(𝓌F ) with
the forms of

𝜌N ∶ l N
0

𝓌N
���→ l N ,

𝜌F ∶ l F
0

𝓌F
���→ l F ,

such that 𝓌N and 𝓌F have the same observation with 𝓌pr𝓌

and 𝓌′, l N ∈ LGΩ
⧵ L

GΩ
F

, and l F ∈ L
GΩ
F

.

Moreover, there exist two runs 𝜌
pr

N
= 𝜌(𝓌

pr

N
) and 𝜌

pr

F
=

𝜌(𝓌
pr

F
) in GN and GF with the forms of

𝜌
pr

N
∶ l N

0

𝓌
pr

N
���→ l N

pr ,

𝜌
pr

F
∶ l F

0

𝓌
pr

F
���→ l F

pr ,

such that𝓌
pr

N
and𝓌

pr

F
have the same observation, l N

pr ∈ LGΩ
⧵

L
GΩ
F

, and l F
pr ∈ L

GΩ
F

, where 𝓌
pr

N
is the prefix of 𝓌N , and 𝓌

pr

F
is the prefix of 𝓌F . Then, according to Definition 14, there is
a run in NFPG (Ω) of the form 𝜌NFP ∶ l NFP

m → l NFP
n such that

l NFP
m = (l N

pr , l
F
pr ), l NFP

n = (l N , l F ), and l F
pr , l

F ∈ L
GΩ
F

.
By considering string𝓌pr𝓌 of increasing symbol, the length

of 𝓌N and 𝓌F also increases. Then, there eventually exist two
states l NFP

i , l NFP
j , m ≤ i ≤ j ≤ n such that l NFP

i = l NFP
j , and the

set of states {l NFP
r , r = i, i + 1, … , j } forms an indeterminate

cycle. This ends the proof. □

Example 8. Consider an LFA G2 in Figure 5(a) and the pat-
tern Ω1 in Figure 2(b). By Definition 14, the NSC/FSC PV
NFPG2

(Ω1) is obtained in Figure 9. Based on Proposition 2,
G2 is diagnosable with respect to Ω1 since there do not exist
indeterminate cycles NFPG2

(Ω1) (see Definition 16).
In addition, consider also the LFA G1 in Figure 2(a) and the

pattern Ω1 in Figure 2(b). By Definition 14, the NSC/FSC PV
NFPG1

(Ω1) can be obtained in a similar way. Since there exists at
least one indeterminate cycle in NFPG1

(Ω1), by Proposition 2,
G1 is not diagnosable with respect to the pattern Ω1. For the
sake of simplicity, the details are not pursued here.

4.3 Discussion and comparison

It is worth noting that the methods in [14] and [16] can be used
not only for single event fault scenarios but also for complex
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8 LIANG ET AL.

TABLE 1 Literature review for the diagnosability and detection delay
problems.

Delay counting
������Objective Event Observable event

Detection delay evolution [14, 16, 39–42] [43, 44]

K -diagnosability [16, 40, 42, 45–47] [6, 43]

TABLE 2 Space complexity comparison.

Structure Complexity Process

Synchronous product GΩ O(n × m) G → GΩ

Diagnoser dG (Ω) O(2n×m ) G → GΩ → dG (Ω)

Standard PV PG (Ω) O(n2m2 ) G → GΩ → PG (Ω)

FSC/NSC PV NFPG (Ω) O(n2
O

m2 ) G → GΩ → GS →

GN ,GF → NFPG (Ω)

fault patterns diagnosability verification. Moreover, the pro-
posed structures in [14] and [16] can be used for computing
the detection delay. This notion has been adopted for DES by
counting the number of events (Table 1). In our case, the detec-
tion delay can be counted in terms of the number of observable
events based on the proposed NSC/FSC PV structure.

We compare the space complexity of the methods based on
state isolation with its diagnoser, synchronous product with its
diagnoser, and the standard PV, as shown in Table 2. Given an
LFA G and a pattern Ω, let |L| = n and |S | = m. Let us also
introduce nO as the number of system states that are reachable
by at least one non silent event.

The number of reachable states of synchronous product veri-
fier GΩ of G andΩ is n × m at most. Consequently, the number
of reachable states of diagnoser dG (Ω) is 2n×m at most (see
Section 3.2) and the number of reachable states of standard
PV PG (Ω) is (n × m)2 at most (see Section 4.1). From the per-
spective of complexity, the advantage of considering verification
structures based on the silent closure of the synchronous prod-
uct GΩ is to remove all states that cannot be reached by an
observable event. Consequently, depending on the number and
location of the silent events in the system, the size of the final
NSC/FSC PV can be highly reduced. According to Section 4.2,
the number of states of silent closure GS is (nO + 1) × m at most
and the numbers of reachable states of NSC GN and FSC GF
are (nO + 1) × (m − 1) and (nO + 1) × m at most, respectively.
So, finally, the number of states of NSC/FSC PV NFPG (Ω) is
(nO + 1)2 × m × (m − 1) at most. The space complexity of all
structures can be found in Table 2.

5 ILLUSTRATIVE EXAMPLE

5.1 Manufacturing cell model

This section presents an example of a flexible manufacturing
system, which is a work cell composed of a robot that loads and

FIGURE 10 (a) Robot work cell G and (b) fault patternΩ.

TABLE 3 Meaning of the states in Figure 10(a).

State Meaning of the state

I Robot stays in input buffer I

M1 Robot stays in machine 1 M1

M2 Robot stays in machine 2 M2

O Robot stays in output buffer O

TRI Robot stays in safety buffer TRI

TR1 Robot stays in safety buffer TR1

TR2 Robot stays in safety buffer TR2

TRO Robot stays in safety buffer TRO

unloads workpieces between input buffer I , output buffer O,
and two machines M1 and M2 shown in Figure 10(a). TRI , TRO ,
TR1, and TR2 represent different areas in the work cell, related
to I , O, M1, and M2, where the robot can move.

The robot work cell is modelled as an LFA G , as
shown in Figure 10(a), where the set of the states is L =
{I ,O,M1,M2, TRI , TRO, TR1, TR2}, the set of the events is Σ =
{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14}. Specifically,
Tables 3 and 4 describe the meanings of the states and the events
in the work cell, respectively. Table 4 (Scenario 1) also outlines
the labels that correspond to the events, defined as Lab(a9) =
m1, Lab(a10) = m2, Lab(a11) = i, and Lab(a12) = o . It is worth
noting that this work cell focuses on the behaviours of the
robot. Therefore, each state and event described in Tables 3 and
4 characterizes the specific details of the robot.

5.2 Fault pattern and diagnosability analysis

In the configuration of this work cell, it is not allowed for the
robot to execute behaviours that move from areas TR1 to TR2 in
the counter-clockwise direction, i.e. the fault pattern of interest
is the occurrence of the event a2 followed by the occurrence of
the event a12 and then by a3, as shown in Figure 10(b).

In the following, we analyze the diagnosability of the work
cell with respect to the fault pattern Ω, according to the
NSC/FSC PV approach proposed in Section 4.2. For this pur-
pose, we compute first the silent closure GS , then the faulty
silent closure GF (Figure 11), and the normal silent closure
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LIANG ET AL. 9

TABLE 4 Meaning of the events in Figure 10(a) and the output labels.

Events Meaning of the events

Labels in

Scenario 1

Labels in

Scenario 2

a1 Robot left TRI and arrived at
TR1

𝜀 𝜀

a2 Robot left TR1 and arrived at
TRO .

𝜀 𝜀

a3 Robot left O and arrived at TR2 𝜀 𝜀

a4 Robot left TR2 and arrived at I 𝜀 𝜀

a5 Robot left TR1 and arrived at I 𝜀 𝜀

a6 Robot left TRI and arrived at
TR2

𝜀 e6

a7 Robot left TR2 and arrived at
TRO

𝜀 e7

a8 Robot left O and arrived at TR1 𝜀 e8

a9 Robot arrived at M1 m1 m1

a10 Robot arrived at M2 m2 m2

a11 Robot left I and arrived at TRI i i

a12 Robot left TRI and arrived at O o o

a13 Robot left M1 and arrived at TR1 𝜀 𝜀

a14 Robot left M2 and arrived at TR2 𝜀 𝜀

FIGURE 11 Faulty silent closure GF .

GN (Figure 12). Finally, the NSC/FSC PV is constructed
(Figure 13). It is obvious that there exists at least one indeter-

minate cycle (M2,N1), (M2,F )
m2
��→ (M2,N1), (M2,F ). Conse-

quently, by Proposition 2, we can conclude that the robot work
cell G is not diagnosable with respect to the fault pattern Ω.

Observe that by adding three more observable labels:
Lab(a6) = e6, Lab(a7) = e7, Lab(a8) = e8, Lab(a9) = m1,
Lab(a10) = m2, Lab(a11) = i, and Lab(a12) = o (Scenario 2 in
Table 4), the conclusion about diagnosability improves. The
NSC/FSC PV of Scenario 2 is detailed in Figure 14: there is no
indeterminate cycle and the robot work cell G is diagnosable
with respect to the fault pattern Ω.

FIGURE 12 Normal silent closure GN .

FIGURE 13 NSC/FSC PV of Scenario 1.

FIGURE 14 NSC/FSC PV of Scenario 2.

In order to discuss the complexity aspects, let us first mention
that for both scenarios we have n = |L| = 8 and m = |S | = 3.
Then for the first scenario, nO = 4 whereas for the second
scenario nO = 7. Then, Table 5 details the number of states
and transitions of the main structures used for fault pattern
diagnosability verification with the proposed approach and for
the two scenarios of this case study. Let us first notice that the
exact sizes of the resulting NSC/FSC PVs (resp. 13 for scenario
1 and 9 for scenario 2) are much lower than the worst case
sizes (resp. 144 for scenario 1 and 441 for scenario 2) provided
by the complexity analysis. These worst case complexities also
improve the worst case complexity of the pair verifier (576
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10 LIANG ET AL.

TABLE 5 Space complexity analysis (number of states × number of
transitions).

Structure Scenario 1 Scenario 2

Synchronous product GΩ 18 × 31 18 × 31

Silent closure GS (�) 10 × 37 16 × 47

Normal silent closure GN (�) 6 × 20 9 × 23

Faulty silent closure GF (�) 10 × 37 16 × 47

NSC/FSC PV NFPG (�) 13 × 57 9 × 23

for both scenarios). Then, in Table 5, we observe also that the
normal and fault silent closures for Scenario 2 are larger than
those for Scenario 1. However, the size of the final NSC/FSC
PV structure for Scenario 2 is smaller than that of Scenario 1.
This indicates that even if nO provides a first indication of the
gain in complexity, it is not enough to evaluate the advantage of
the proposed approach for a particular system and scenario.

6 CONCLUSION

This paper deals with the fault pattern diagnosis of discrete
event systems, which includes fault pattern detection and diag-
nosability checking. The contribution has focused at first on
the space complexity issues related to the construction of the
related verification structures. For that purpose, we propose
a synchronous product verifier, suitable to manipulate com-
plex patterns in a systematic way. In order to verify the fault
pattern diagnosability, an NSC/FSC PV is constructed based
on the silent closure of the synchronous product verifier. The
proposed method requires polynomial time at most, offering
computational advantages for systems with numerous silent
events. A case study of a flexible manufacturing system illus-
trates our approach and shows that it is suitable for real systems
and practical situations.

However, we should mention some limitations that also
open future studies. The main question is how to define exactly
the class of the systems that will benefit at first from the
proposed approach. The number but also the location of the
silent events in the model play important roles. Providing
some guidelines for practitioners belongs to our further works.
Another limitation of our perspective is that it is based on
an explicit model of the faulty behaviours. Such behaviours
are often more difficult to characterize and one should dis-
cuss how faulty model based approaches can be combined
with healthy model based approaches to improve efficiency.
Our future work will also consider diagnosis issues of timed
patterns characterized by a sequence of events, occurring
in a given order at specific values of time or within specific
time intervals.
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