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Introduction 

With the data deluge and rapid development of new IT systems to apply machine learning 
algorithms, science seems to be pushing the limits of risk assessment, and promises a 
heightened capacity to predict perturbations and hazardous patterns in complex systems. This 
short paper aims to gather lessons from the study of the development of computational tools 
for chemical risk assessment, to understand how computing innovations unfold, and which 
technological promises are actually fulfilled in matters of prediction. This is done in the spirit 
of addressing the questions laid out in the workshop invitation, notably “what, of all this, is 
realistic and unrealistic?” 
The paper engages with such questions as: How far can we regulate sociotechnical systems 
thanks to continually produced and modelled data, as claimed by specialists of computational 
or data sciences? How do we get to realize what is even possible and credible in new 
predictive practices? How and to what extent does this realization alter the development of 
databases, algorithms and other modeling tools applying in risk management systems? 
I will discuss the development and use of computational tools for the safety of chemicals from 
the perspective of the sociology of science and technology and regulation research. Overall, 
the perspective here is that of data and algorithms as knowledge systems that inform 
regulatory action in the area of risk and safety. 
In the remainder of the paper, I first outline what risk assessment is. I then touch on the 
digitalization of risk assessment: the rise of new computational tools and practices in this area 
of hybrid practice spanning predictive science and risk management. The third part is more 
empirical: it outlines the history of the development of tools for predicting chemical safety. 
The concluding part discusses the empirics and puts forward points for collective discussion, 
that broadly concern the path of development of digital knowledge systems and expectations 
that can be formulated as concern artificial-intelligence, ‘big data’-based predictions. 

Risk assessment and risk regulation 

A number of technologies are regulated because of the possible hazards that they represent for 
their users and for the public. From aircrafts to chemicals plants, through food ingredients and 
chemicals, most of the technologies that are recognized as potentially hazardous are submitted 
to some form of risk assessment. Over time, risk assessment has indeed become a normal 
regulatory instrument. Risk assessment is an element of risk regulation regimes, namely its 
“informational” part (Hood et al. 2001). It is comprised of dedicated techniques and routine 
processes, through which the conditions of appearance of hazards may be determined (their 
frequency, most likely localization…), and corresponding regulatory controls legitimately 
decided. 
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Risk assessment means anticipating or predicting hazardous outcomes, without having 
necessarily experienced or observed those. It is the product of extrapolations. These 
extrapolations require making multiple assumptions, to fill in data gaps. These assumptions 
may differ from one risk assessor to another. Risk assessment may be performed in a close 
environment, within the bounds of a community of people who think alike and share 
assumptions. But, as a matter of regulatory action and public concern, risk assessment is 
seldom performed in such a context. And it may give rise to public controversies or disputes. 
It is almost always necessarily political: we’re in the area of trans-, post-normal or regulatory 
science. These terms, in various ways, characterize the tensions that are inherent in these 
scientific exercises that take uncertainties as their object. It is a process marked by 
interpretative work and flexibility, and by frequent controversy among the people involved. 
Risk assessment may be more or less “reductive”: it may focus on what is known, in risk 
research or risk sciences, as the “agent”. In this case, risk assessment consists in testing this 
agent in experimental environments, to determine generic properties and effects. In this case, 
risk assessment follows from the consensual identification of what Hilgartner has called a 
“risk object” (Hilgartner 1992): a technological element to which a number of potential 
hazardous effects are consensually attributed. Risk assessment, however, may be more 
systemic, in this that it rests on the assumption that risks are diffuse consequences of the 
functioning of more complex systems involving various agents and effects, with no possibility 
to isolate one, supposedly more meaningful or concerning linear agent-and-effect relationship. 
This tension underpinning risk assessment may be illustrated by the debates pitting chemists 
and toxicologists on the one hand (who see the chemical substance as the cause of the risk, 
and develop apparatuses to know the properties of this substance) and ecologists and 
ecotoxicologists on the other hand – who think in terms of systems, in which substances 
circulate and produce multiple intertwined effects, that may not easily be disentangled. 
There are other key dimensions to risk assessment. This risk assessment takes several forms. 
It can be ex-ante: it applies to the development of the technology in question, and informs the 
decisions to put it on the market or in use more generally. It may take place alongside the use 
of the technology in question. It is then called monitoring, surveillance or vigilance. Risk 
assessment may be performed directly by regulatory authorities, but is as often delegated to 
the organization that is being regulated, or done collaboratively by the former and the latter. 
In this case, risk assessment needs standards, templates, certified tools, the use of which may 
be required from the regulated organization, to make sure risks are properly controlled, or that 
the risk information produced is reliable. Regulatory bodies in turn may check the information 
that is delivered by the regulated organization, and control risk at a distance (informational 
regulation). We’re talking about a process that, even though it is a part of a regulatory regime, 
is a joint process involving industrial actors and knowledge as much as the actors of 
administrations, and of the scientists that are coopted in it (and as such are quasi-public 
actors; they have some of their responsibilities and must heed the expectations towards 
governmental bodies, such as transparency and neutrality). Because risk assessment is a joint 
effort involving the sharing of knowledge and information, the various actors and interests 
involved need to agree on a definition of what is at risk, that will be the target of the 
knowledge effort – a particular object or agent, or a more open and diffuse system. 

Computing risks 

Risk assessment is a process that has always made massive use of science, and particularly of 
modeling. Modelling is a process that consists in formulating series of equations to capture 
the functioning of a system, and informing the parameters of the equations with various 
measurements and data, in such a way that various states of the system may be simulated. 
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Modelling allows extrapolating from the data points available (of which there may be a 
relative paucity), to other situations, scales and time-periods. 
As concern chemicals, modeling has always been necessary. Chemicals cannot or must not be 
tested directly in the human body, in the environment or in the industrial conditions in which 
they will be used, but are on the contrary tested in experimental, simplified conditions. The 
toxicity of the chemical is tested on animals (and toxicologists and chemists speak, tellingly, 
of the various “animal models” (i.e. species) that can be used to perform these experiments) 
or in vitro. In this sense, risk assessment is a model-based science, if we understand models as 
a simplified, scale-reduced analog, or representation, of a system. 
When one talks about the digitalization of risk assessment, one essentially refers to the rise of 
what has come to be known as computational sciences in this area (as concern chemicals: 
“computational chemistry” or “computational toxicology”). With computational sciences, 
what is appearing is not modeling or the ambition to predict: these are the very epistemic 
foundations of risk research. The computational turn rather marks the rise of: 

o first, the ambition to work with mathematical or statistical models, more so 
than physical or biological analogs. Computation refers to, essentially, 
calculation, hence to the notion that systems can be captured through sets of 
equations, constituting a mathematical model that are representative enough to 
be used to predict with some accuracy. When it comes to chemical risks, this is 
best articulated by Melvin Andersen, who emerged as one of the leaders of the 
field of computational chemistry and toxicology over the past decades 
(Andersen 2016): rather than manipulating substances and animals, he enjoys 
working with equations and numbers: “I enjoyed this process of modeling, of 
being able... Modeling things. Writing equations for them and see whether 
what I was seeing in my head is right. That is the process.” To be sure, 
statistical modeling has always been necessary in risk assessment, even when 
physical experiments or tests were at its heart (i.e., analysis of the data points 
generated by the experiment). But the difference here is that computational 
scientists decouple statistical analysis from the conduct of experiments. At 
heart, they believe that more reliable predictions may be made from the set 
same of existing data, than would be the case without application of these 
mathematical models. 

o second, the material capacity to produce more data, and more varied data 
thanks to the diffusion of sensors and other data-generating devices across the 
environment. There is a material, infrastructural aspect to computational 
sciences, which is the fact that more aspects of sociotechnical systems get 
digitized in this sense. When it comes to chemicals, this means that not only 
are there databases about the properties of a substance (its stability, 
flammability, solubility, and so on: what chemists call “phys-chem” 
properties), but also its effects in animals, at various levels and time-scales, 
and perhaps various effects in broader, human populations too. One of the 
major developments concerning computational sciences when it comes to 
chemicals, is the production of so-called “biomonitoring data”, concerning 
various biological and pathological trends in human populations. These data 
derive from efforts in epidemiology and so-called exposure science. They 
allow capturing potential effects at a broader scale, in systems that are not 
amenable to physical testing. Another major development consists in the 
multiplication of detectors in various environments, allowing to capture the 
presence and quantities of chemicals in various environments. 
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o third, the automation of such data generation systems, and their continuous 
analysis by supercomputers or what one may call “predictive machines” 
(Benbouzid and Cardon 2018). Systems oriented towards big data and machine 
learning, specifically, are underpinned by an imaginary of continuous, non-
human-mediated production of data that can directly feed stable, previously-
trained algorithms (e.g. neural networks), that will then turn out predictions as 
data come in.  

o fourth, a concomitant expansion of a system-based perspective in a number of 
disciplines: the theoretical understanding that most phenomena in life can be 
explained as effects that are emergent from complex systems. The 
computational turn is intimately related to the redefinition and revamping of 
many disciplines (geography, sociology, biology…) as complex system 
sciences, emulating physical sciences (Li Vigni 2020). This is not entirely new 
of course: the systems perspective was integral to the rise of cybernetics, for 
instance1. But as the perspective is wedded to more intensive, more 
voluminous, rapid data-production systems, prediction becomes both much 
more complex, and still appealing. Liu, one of the scholars that worked to 
define systems biology, writes that “there is a common understanding that this 
discipline seeks to explain biologic phenomenon, not on a gene-by-gene basis, 
but through the net interactions of all cellular and biochemical components 
within a cell or organism. Operationally, systems biology requires the ability to 
digitalize biological output so that it can be computed, the computational 
power to analyze comprehensive and massive datasets, and the capacity to 
integrate heterogeneous data into a usable knowledge format. Thus, systems 
biology can be described as “integrative biology” with the ultimate goal of 
being able to predict de novo biological outcomes given the list of the 
components involved.” (Liu 2005). The sort of prediction that systems-
oriented, data sciences are interested in, are predictions that derive from the 
full comprehension of the functioning of a system, yet can be focused on the 
evolution of elements of the system. 

o fifth, digitalization refers, as concern risk assessment and risk regulation, to the 
use of digital twins, or what one may call integrated simulations of complex 
systems. Aviation regulators on either side of the Atlantic base their decisions 
to approve the design of an aircraft, on digital simulations more than on 
experimental flights (even though statistics computed out of hours of flight 
experience count a great deal in achieving reliability)(Downer 2017). 
Technologies allowing to create highly representative ‘digital twins’ have 
massively advanced. These twins are considerable credible enough for 
regulators to trust them. Pharmaceutical companies nowadays adopt 
comparable technologies of simulation than airline companies have used for 
decades. Simulation software companies such as Dassault System have 
massively invested in the area of life-sciences, defending the view that 
simulation technologies can be equally useful for simulating and predicting 
biological systems. The Biovia software series allow 3D modeling of 
chemicals and assemblage of data from heterogeneous knowledge systems 
around the model of the chemical. Currently, the trust that DS places in the 

                                                
1 One of the leaders of the field of systems biology, Hiroaki Kitano, opened one of his paradigmatic paper 
published in Science, by a reference to Weiner (“Since the days of Norbert Weiner, system-level understanding 
has been a recurrent theme in biological science”)(Kitano ). 
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representativeness of their simulations is high, leading them to engage in 
efforts to persuade regulators to accept simulations as evidence of regulatory 
conformity. Likewise, the pre-marketing examination of pharmaceutical 
products involve at greater doses, the consideration of simulations, notably as 
concern the extent and effect of impurities. It has become mandatory to 
provide elements drawn from models, about these impurities. 

Taken together, the computational turn in risk assessment (here, of chemicals) can be broadly 
characterized as the move towards the continuous modelling of large sets of data documenting 
processes at various scales of a system, to simulate and regulate the latter. The following 
image captures this epistemic aim as concern biological sciences. It gives a good sense of 
what is the truly novel aspect of computational sciences and techniques of the past decade or 
so: a sort of integrated form of simulation, where one aims to describe and predict a greater 
number of aspects of a system, at a fine-grained level (Ruphy 2014). 

 
Figure 1. Representation the environment/biology nexus as a complex system to be analyzed at multiple 

scales 

Computing chemical risks: the historical development of tools and practices 

It is important to note that this is an area that is full of “technological promises” and epistemic 
ambitions, that may not all be fulfilled, or not in this form. A certain version of these practices 
and tools of prediction are likely to become reality, not necessarily the ones that are put 
forward by roadmap champions and other disciplinary visionaries. Looking back at what has 
been developed in the field help appreciate the path of technological development and 
epistemic change through which current applications have taken shape. When it comes to 
chemicals and their risk assessment, three predictive techniques have been developed since 
the 1970s. 
Historically, the first predictive, computational tool that was developed was one that aimed to 
characterize the properties of molecules through systematic analysis of the relationships 
between their structure, and their biological effects – the so-called structure-activity 
relationships (SARs)(Boullier et al. 2019). A quantitative SAR is a statistical analysis (by 
regression or classification or else) of the biological activity of a group of two or more 
chemicals that have some structural similarity, as captured through a chosen descriptor of the 
chemical. The modelling of causal relations between chemical properties and biological 
impacts is rooted in fundamental chemistry. The quantitative approach towards these 
correlations was pioneered by a Professor of Chemistry at Pomona College in California, 
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Corwin Hansch, now known as “father” of computer-assisted molecule design. It rests on the 
conduct of multiple strictly standardized experiments on molecules with the same kind of 
structure (co-generic molecules). Once a sufficiently powerful set of data has been produced, 
a statistical analysis can be run, to try and capture the correlations between structural 
properties and the biological effects. The resulting correlations can then be used to formulate 
a mathematical equation – a model – that may be used to predict the effects of a molecules 
without physically testing these. The challenges that QSAR research is facing typically 
concern the generation of sufficiently large sets of comparable data across a whole class of 
chemicals (a highly intensive endeavor), and the availability of both training sets and 
alternative data sets to validate the models once formulated. Without such data, modellers end 
up producing an over-fitted or under-fitted model, that decision-makers will hesitate resorting 
to (Thoreau and Laurent 2019). Connecting model development to larger sets of data made 
available by pharmaceutical companies is one of the key hopes here for the future 
development of the field. 
Another technique has been developed in the space of chemicals risk assessment, aimed at 
modeling so-called dose-response relationships in biological organisms, better than an animal 
test can achieve. The technique is known as PBPK, for physiologically-based 
pharmacokinetics. PBPK modeling consists in simplified descriptions of the physiological 
system exposed to a chemical substance. By modeling the organism and the biological 
mechanisms involved in the metabolism of the substance, one can compute the dose at which 
the substance will produce hazardous effects in the organism. Models represent relevant 
organs or tissues as compartments, linked by various flows (notably blood flows) in 
mathematical terms. The parameters are calibrated with data emerging from animal 
experiments or clinical observations. PBPK modeling really started in the 1970s, once 
sufficient data and computer tools became available to establish the doses at which anti-
cancer medicines could be delivered to various organs. The application of PBPK to industrial 
chemicals started at the beginning of the 1980s, to define so-called reference doses for 
chemicals: the levels of concentration at which they can safely be considered to not cause 
harm. This could be done because of the accumulation of data about volatile chemicals (then 
under threat of regulatory restrictions): data about how much people inhaled chemicals, data 
about biological metabolization of these chemicals, and data about how much chemicals were 
eliminated by the human body and exhaled. These data originated, notably, from the use of 
costly inhalation chambers. Once databases were elaborated, models started to be elaborated 
and calibrated in more reliable ways, for more chemicals, allowing to envisage the possibility 
to model together the chemical and the human body. In this field, the main challenge has 
always been the capacity to calibrate the model with realistic and varied biological data, to 
counterbalance the drive to make predictions based on more quickly-produced, but less 
representative and relevant, average values (Demortain 2021). 
A third technique consists in developing what is called biologically-based mechanistic 
models, to analyze the functioning of the human body and biological pathways inside those, 
as well as their interactions with substances. The resulting “biologically-based dose response” 
(BBDR) models pursue the same kind of aim as PBPK – doing better than animal tests in 
terms of prediction of risk thresholds. Indeed, some of its champions are the same than for 
PBPK (Andersen et al. 1992), and BBDR was also developed to counter or moderate 
regulatory drives on critical chemicals such as dioxin (Demortain 2020). Instead of capturing 
biology through equations, as PBPK does, it banks on rapidly evolving knowledge of the 
cellular pathways through which chemical substances trigger potential toxicological issues. 
These theoretical models of biological organisms are supposed to guide the interpretation of 
empirical toxicological data. Much like PBPK, the reliability of this sort of modelling is 
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limited by the data that are being modelled, and their capacity to represent “inter- and 
intraindividual heterogeneity” (Crump et al. 2010). 
All of the above techniques, as briefly mentioned, have been limited by the slow and costly 
generation of data through in vivo or in vitro tests, as well as by the quality of the hypotheses 
that guide their interpretation. While modellers often resort to short-cutting claims such as the 
one that they can predict risks thanks to better maths and bioinformatics, the truth is that 
models do not exist without experiments — or more generally from an infrastructure for 
generating standard, curated data — and from human interpretative work, and the necessary 
biological knowledge to perform it. Often times, in practice, modelling is a tool that mixes 
with experiment and biological theory, but can not hope to replace them. 
In terms of toxicity data, the game-changer has come from the genomics (and the 
corresponding toxicogenomics) revolution, namely from tools allowing to generate massive 
sets of data points about genetic events out of one single experiment, and at high speed. 
“Omic” techniques, such as micro-arrays, allow to represent all of the events in a biological 
system associated with the presence of a chemical substance. Robots allow running multiple 
assays on dozens or hundreds of substances day after day, generating massive sets of data, to 
be modelled by biologists. This toxicogenomic effort emerged a little after 2000s, after the 
three others introduced in this paper. 
Under the impetus of the chief of the US National Toxicology Program, Chris Portier (a 
biostatistician who had, among other things, worked in the area of PBPK and BBDR), a draft 
of strategy was elaborated around 2003 « to move toxicology to a predominantly predictive 
science focused upon a broad inclusion of target-specific, mechanism-based, biological 
observations ». The Environmental Protection Agency embarked on a similar effort a few 
years later. Teaming up, these institutions soon developed a vast, multi-institutional multi-
annual effort known as Tox21, to conduct hundreds of assays on thousands of substances, 
thanks to high-throughput technologies. The central character in this program, which took off 
in 2008, is a robot from the swiss company Stäubli, of the sort that one generally encounters 
in industrial plants. The robot is programmed to be able to manipulate plates containing 
dozens of mini-petri-dishes, in which different dosages of multiple chemicals are injected, day 
after day, and multiple assays conducted.  

Figure 2. Source : NTP, 2017, Tox21: Chemical testing in the 21st century. 
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The result is an immense set of data, in which toxic patterns of biological systems can be 
detected. This is done, notably, through open data challenges: the Tox21 institutions have 
called for teams of computational biologists around the world to search through their data to 
generate such models. This is where machine learning, and “new” IA methods — renovated 
IA methods rather, since the algorithms used were known — come in2: models are being 
constructed from the ground up, through supervised exploration of the mass of data to identify 
(or learn) patterns. 

- At about the same time as the Tox21 effort took off, a panel of top toxicologists and 
specialists of the field of toxicity testing, led by Melvin Andersen, had rationalized 
these multiple developments. The addition of high-throughput toxicogenomic to 
previous developments allowed to envision a future in which data would be available 
for many possibly toxicity pathways concerning multiple substances, to radically 
change how the toxicity of chemical substances would be tested: not as an isolated 
object with defined properties (such as a toxicity threshold), but as elements of a 
biological system acting at low doses, through multiple pathways. In other words, a 
knowledge system that would be representative of the reality of how biological 
systems function in the current chemicalized environment.  

- The resulting “vision” was published by a branch of the US National Academies (the 
National Research Council), and heralded as the right guiding vision. Interestingly, the 
vision seems to cap all previous efforts in the area of model-based, predictive 
toxicology: afforts in QSAR (to characterize properties of a substance), PBPK and 
BBDR (to formulate mathematical/biological models of the organism) and in high-
throughput in vitro testing, were now the building blocks of a knowledge system 
allowing to “evaluate relevant perturbations in key toxicity pathways” (NRC 2007, 
p.7), as opposed to simply measure the levels at which an object, taken in isolation, 
may prove harmful. 

 
Figure 3. Adapted from NRC 2007 

                                                
2 “The Tox21 Data Challenge provides the unique opportunity to compare the predictive abilities of different 
computational methods for biological activity, specifically, those related to toxicity. The Challenge participants 
employed a wide range of chemical descriptors and/or fingerprints for small molecule representation, and machine 
learning algorithms for modeling. Models employing the deep learning algorithm showed the best predictive 
performance. (…) Other articles described models that employed classic machine learning algorithms, such as 
Random Forest, Support Vector Machine (SVM), k Nearest Neighbor (kNN), and Naïve Bayes (Drwal et al.), with 
different combinations of molecular descriptors, each with their own spin on the specific implementation of these 
methods for model construction.” (Huang and Xia 2017). 
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Conclusion 

This concluding section puts forward a few points for discussion, revolving around the issue 
of the evolution of data sciences and systems to tackle risks. The following remarks are made 
in the hope of being able to compare across areas of safety management, beyond chemical 
risk assessment.  
A first observation concerns the intertwinement of modeling and simulation with generation 
of data through experiments and field observations. This is something that the sociology and 
history of science have long emphasized (e.g. Morgan 1999). However, the current 
development of IA rests on a discourse about the all-powerful machine learning methods, and 
their unabridged capacity to learn from data, thanks to powerful computers. However, as can 
be gathered from the brief descriptions above, the various families of modelling techniques 
have been restricted by the same problem: the availability and the diversity (or 
representativeness) of the data that are being modelled. A simple conclusion to draw from this 
is that artificial intelligence will represent an innovation and a new leap in modelling 
capacities, in so far as it is matched by the parallel deployment of larger infrastructures of 
data. 
A second observation derives from the allusion above to the development of digital 
knowledge systems through cross-area diffusion of tools. Some historians of science and 
technology have noted that numerical modeling and simulation is a lingua franca in sciences; 
a form of generic technology that is produces comparable epistemic effects across disciplines 
(Lenhard et al. 2007). Artificial intelligence and big data are no exception, judging by the 
existence of families of algorithms, for instance those that are now placed in the category of 
deep learning, that are put to use in various areas. In the present case, one sees the application 
of deep learning late in the process, in the context of the Tox21 program. One also sees the 
importation of a robotic technology from industrial fields. But all other knowledge systems 
are concerned by this cross-area development of simulation techniques. To give one further 
example: PBPK modeling has developed and gained credibility thanks to the use of generic 
programming languages (e.g. Fortran), allowing more people to engage in this area, generate 
more models, creating an emulation/comparison of models, resulting in the improvement of 
the technique altogether. One key question derives from the transversal nature of innovation 
in digital knowledge systems: the borrowing of tools and techniques from other areas quite 
clearly participate in the drive towards more simulation in areas that were hitherto less 
concerned by it, and that will conflict with the area-specific possibility to develop credible 
models which is, as noted above, dependent on the existence of large and varied sets of data 
about the particular thing that is being modelled in this area. Accessibility and 
representativeness of data may not be equal to what it is in other areas. And so the promise of 
prediction that comes on the back of imported tools and techniques, may be conflicting with 
local conditions of realization of that promise. 
A third observation concerns what I have called above “risk objects”, or what STS also calls 
“epistemic objects” (Knorr-Cetina 1999). As can be gathered from the brief description 
above, various risk/epistemic objects are construed by the various predictive, data systems 
that have been put in place over time. QSAR looks at the properties of molecules, and models 
classes of chemicals. PBPK looks at the dose of chemicals in the human body, and models 
physiological systems. In the HTP toxicity testing system of Tox21, it is the biological 
pathway that is the object of the system. All of these objects are worthy of data production 
and modelling, and are seen as proxies of broader systems. But they are heterogeneous 
objects, and the systems that are in place to know these objects are distinct, and not 
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necessarily compatible. They may be, quite simply, the incarnation of different ways of 
modeling or predicting (Aykut, Demortain and Benbouzid 2019). In the case of Tox21, even 
though a holistic vision has emerged, eventually, there is no assurance that these knowledge 
systems can be further integrated, or that the current development of artificial intelligence will 
bring coherence to past developments. It is so because there is “ontological politics” involved: 
a search, that may be contentious, for a realistic definition of what the problem is. A risk can 
be defined reductive ways, assigned to an object that is deemed easier to regulate and control 
(i.e. the molecule). Or a risk can be defined in a more diffused, systemic manner, and lead to 
the exploration of chains of causation between objects forming a complex system. 
Third, the more one evolves towards knowledge-systems-for-systems as it were (in other 
words, the more knowledge systems are developed to model complex systems, as new data 
are made available and learning algorithms are re-developed), the more complex it becomes 
to intervene in and regulate these systems, since modeling will reveal complex chains of 
causation and an intertwinement of causes. In the present historical case, this is illustrated by 
the fact that, as knowledge systems accumulate and evolve towards greater complexity, the 
ontology of the “dose”, “threshold” and of the risky object – the chemical substance to which 
a risk can be attributed – loses ground. This raises the issue of how decision criteria are forged 
in the space of knowledge systems that are designed to turn out complex correlations, rather 
than to isolate linear causation chains between an agent and an effect. This implies that big 
data systems may be of greater value for actors that are in active, operational positions, 
serving as a form of monitoring device, rather than as a one-off advisory mechanism 
controlled by scientists that would be external to management. In short, a digitalized risk 
assessment will affect the normal relationship, and expected separation of, risk assessment 
and risk management. 
Algorithms are not by nature un-transparent. But there may well be a gap between their mode 
of development, and the level of trust and credibility that is demanded in certain areas of use 
of algorithms. That gap is more or less wide, depending on the ways in which trust can be 
generated alongside the development of these tools; that is, depending on how far they are 
validated and audited. And so, one of the critical issues as concern digitalization of risk 
assessment is the ways, speed and modes in which algorithmic methods can be audited while 
being developed. While the demands of representativeness and trust will be higher, the mode 
of development of data instruments make them potentially less trustable than others. They 
remain under test for long periods of time, and are incrementally developed. They are 
developed by private, commercial firms. The question is how and to what extent these 
developers are embedded in a set of relationships with potentially critical specialists of these 
knowledge systems, who care to check their validity, reliability and transparency for public 
purposes and try to weigh on the choice of developers. 
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