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Abstract. This paper compares two tokenization strategies for model-
ing chord progressions using the encoder transformer architecture trained
with a large dataset of chord progressions in a variety of styles. The
first strategy includes a tokenization method treating all different chords
as unique elements, which results in a vocabulary of 5202 independent
tokens. The second strategy expresses the chords as a dynamic tuple
describing root, nature (e.g., major, minor, diminished, etc.), and ex-
tensions (e.g., additions or alterations), producing a specific vocabulary
of 59 tokens related to chords and 75 tokens for style, bars, form, and
format. In the second approach, MIDI embeddings are added into the
positional embedding layer of the transformer architecture, with an ar-
ray of eight values related to the notes forming the chords. We propose
a trigram analysis addition to the dataset to compare the generated
chord progressions with the training dataset, which reveals common pro-
gressions and the extent to which a sequence is duplicated. We analyze
progressions generated by the models comparing HITS@Qk metrics and
human evaluation of 10 participants, rating the plausibility of the pro-
gressions as potential music compositions from a musical perspective.
The second model reported lower validation loss, better metrics, and
more musical consistency in the suggested progressions.

Keywords: Chord progressions - Transformer Neural Networks - Music
Generation.

1 Introduction

The domain of music computing has seen a variety of applications of state-of-
the-art Natural Language Processing (NLP) models or neural networks, such as
music generated from symbolic music notation [8, 3], sound synthesis [12,4], or

* This paper is an outcome of: MUSAIC, a project that has received funding from the
Furopean Research Council under the European Union’s Horizon 2020 research and
innovation program (Grant agreement No. 864189); and a Margarita Salas Grant,
UPF, Barcelona, Spain
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text-to-sound models such as MusicLM [1]. Nevertheless, compared to melodic
sequences, the modeling of harmonic progressions has seen comparatively little
research. Hence, we are interested in modeling chords from symbolic music nota-
tion by presenting an approach to encode chord progressions (CP). We designed
a system to suggest a possible next chord after a CP, a complete CP for a spe-
cific bar length, or a parallel plausible CP, where the human user is the leading
composer.

When encoding harmony information and chord vocabulary, there is no uni-
fied method in the literature. In Western modern popular music, the basic cell
of the chord is the triad as a stack of thirds, containing the scale’s 1st, 3rd, and
5th notes. The triad has four possible natures: major, minor, augmented, or di-
minished. A chord can also be expressed in tetrads, adding the 7th scale degree
(e.g., Cmaj7: C, E, G, B), having a richer range of possible natures (e.g., ma-
jor 7th, minor 7th, half-diminished, diminished, dominant, minor-major, among
others). Non-triad-based chords are also in the vocabulary, for instance, a stack
of fourths or fifths or suspended chords where the 3rd is substituted by the 2nd or
4th. Chords can also be extended further by stacking even more thirds, adding
scale degrees 9th, 11th, or 13th (e.g. Dmaj7g11: D, Ff, A, Ct, G). Moreover,
chords can have alterations that modify one or several notes and subtractions
that eliminate one or several notes. If we consider chord inversions, the range
of vocabulary is considerably extended. Hence, modeling symbolic music nota-
tion by implementing current NLP architectures to encode form, structure, and
harmonic information without losing vocabulary richness is one of the current
challenges in the field.

The following three points give the contribution of the proposed system:

- A dataset with 70,812 CP from several popular music styles.

- A tokenization method to encode chord symbols without reducing its vocab-
ulary.

- A positional encoding strategy with domain-specific embeddings of the trans-
former network to better suit spatial music information.

The following section reviews work applying machine learning to modeling
and generating chord progressions. Section 3 presents our application of the
transformer architecture to this problem. Section 4 presents the results of our
models and analyzes them from a few different perspectives. We conclude with a
look at the future development of our system and its integration into a pipeline
for music creation. The supplementary material and related code to the publi-
cation can be found on GitHub.

2 Literature Review

The year 2016 is perhaps the starting point of neural network approaches to
model music information, in particular, chord progressions using symbolic music

! https://github.com/Dazzid /theChordinator
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notation. ChordRipple [7] presented a Chord2Vec encoder by adapting Word2Vec
using datasets derived from the Bach chorales and The Rolling Stone Top 200
songs corpus. The chord vocabulary includes triads, tetrads, and inversions. The
authors evaluated the application with music students in a creative exercise and
found benefits, but more precise stylistic development was still needed.

A text-based machine-learning model for chord progressions is proposed by
Choi et al. [6]. The authors train two Long Short-Term Memory (LSTM) net-
works using textual representations of chord progression, e.g., “C:7 E:min”. One
LSTM has a vocabulary of 39 symbols corresponding to the characters which
combined create chords, e.g., “E:min” consists of five characters in this vocab-
ulary. The other LSTM has a vocabulary of 1,259 chord symbols. In this case,
“E:min” is one vocabulary element. The authors train both systems by using
2,486 scores from The Realbooks and The Fakebooks. They find both models
generate progressions that are plausible within jazz styles.

Transformers [13] have shown an improvement over the previous neural net-
works, enhancing the long-term dependencies by implementing the attentional
mechanism as a parallelizable architecture. Most research in the context is fo-
cused on adapting or expanding it to specific tasks.

In 2020, Wu and Yang [14] introduced Jazz Transformer, a generative compo-
sition system including chords, melodies, and form. The model is trained using
the Weimar Jazz Database [11], which contains 456 jazz standards, including
styles such as Swing, Bebop, Cool, Hard Bob, and Fusion. The data format
is MIDI. The authors suggested a set of objective measurements included in
the MusDr? framework that reveals the deficiencies of machine-generated mu-
sic, such as unpredictable pitch class usage, inconsistent grooving patterns, and
chord progressions, or the lack of recurring structures. These metrics demon-
strate the limitations of the transformer architecture as a music generator and
provide practical quantitative standards for evaluating the efficacy of future au-
tomated music composition efforts. Currently, model assessment largely depends
on human assessment, thus concluding that besides the training loss and evalu-
ation rating numbers, the music generated still needs to be revised by experts.

The transformer, by default, is not fully suitable as a neural network to
encode chord progressions by only providing symbolic music notation as it misses
the configuration of voicings and chord construction; thus, in 2021, different
publications suggest updating the positional embedding layer of the transformer
architecture in order to provide the network with more precise information.
Chen et al. [5] propose an encoder-based transformer model to classify chords
and provide information on harmonic progressions in the classical music domain.
The dataset used is the BPS-FH dataset and the Bach Preludes. They improve
the capacity of transformers to encode harmonic features by providing extra
information by adding a relative positional encoding, adding a layer of contextual
information with the relative function of the chord in the chord sequence.

MusicBERT, by Zeng et al. [15] is a symbolic music understanding model
based on the BERT: Pre-training of Deep Bidirectional Transformers for Lan-

% https://github.com/slSean WU /MusDr
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guage Understanding architecture, to provide melody completion, accompani-
ment suggestion, and style classification and recall. They use the Million MIDI
Dataset (MMD), which contains 436.631 samples®, from different styles such as
Rock, Rap, Latin, Classic, or Jazz. The data format as a symbolic music notation
is shaped as bar-level masking using MIDI. The authors propose adding musical
note embeddings to the positional embeddings, including time signature, tempo,
bar, position, instrument, pitch, duration, and velocity.

MrBert, by Li and Sung [9] is an automatic music generator that creates
melodies and rhythm and then creates chord progressions based on the melody.
The masked language model is trained with the OpenEWLD dataset (Mu-
sicXML), which is translated to music events using the Python library music21.
The system is based on parallel transformer encoders: one encoding melodies,
and the other its rhythmic pattern. Authors argue that chords are generated
after the melodies, using a Seq2Seq generation that changes chords when a new
symbol outside the chord pattern appears. HITS@k metrics are used to evaluate
the compositions. The chord vocabulary is restricted to triads.

Li and Sung [10] propose an encoder-decoder (Seq2Seq) architecture to gen-
erate chord progressions given a melody. The data format is music XML. The
authors compare three architectures: a) the bidirectional long short-term mem-
ory (BLSTM), b) the bidirectional encoder representation from transformers
(BERT), and c) the generative pre-trained transformer (GPT2). They evaluated
the models using HITS@k [2]. The proposed methodology uses a pre-trained
encoder that takes song melodies and couples their relations with the chord pro-
gression. The decoder receives the same melodic material and produces suggested
chord matchings. The authors argue that the model does not need music theory
inference as it relies on the patterns reflected in the symbolic music notation;
however, it is not proven the model learns harmonic principles. The transformer
is trained using the OpenEWLD dataset and Enhanced Wikifonia Leadsheet
Dataset (EWLD), which contain 502 samples in musicXML format, including
melodies and chords. 382 chord types were extracted as a vocabulary. Examples
of generated music or chord progressions are not available.

3 The Chordinator

We compare two strategies to model chord progressions, maintaining the full
range of vocabulary available in the music corpus. All approaches are based on
the transformer encoder, changing the token strategy. We also propose comple-
mentary embeddings to the transformer to encode chord information by adding a
new level of relative embeddings using an array of defined MIDI values added to
the positional and tokens embeddings layer. In the second tokenization strategy,
we include a style token reference, providing the transformer with contextual
information about the style and form.

3 https://github.com/jeffreyjohnens/MetaMIDIDataset
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3.1 Database

The database was formed by exporting 4,300 CP included in the iReal Pro appli-
cation (as songs). The data provides metadata (composer, song name, key, etc.)
and information regarding the form, tempo, and chords. The database includes
styles such as Jazz, Samba, Ballad, etc. (see the full list in Figure 1). We filter
the CP, keeping only those in 4/4 time signature (around 90% of the dataset),
to keep the sequences consistent. We apply data augmentation by transposing
all CP into the 18 enharmonic keys, creating 70,812 in total. Furthermore, we
prepare the data stream to train a GPT-2* transformer architecture with a
fixed-length sequence of 512-time steps in the first model and 1024 in the second
model. The < pad > token is used to fulfill the defined length.
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w

N

Ioglo quantity

’l« S &R R K -0°°’ \>\k°‘b+?’*(,° 7
’b \ ‘9 (8) Q' Q.
\ Q)’b\ oQ} \> Q)\o (\ S (o%o v‘\ < O\G)&’b Q) Q,Q o o}\
AQ’ <& \Q} ((\ QD
< Q>°®&°\°
N

Fig. 1. List of musical styles in the iReal Pro dataset. Values are presented in the log10
ratio.

3.2 Model Strategies

Our proposal is based on two main strategies to train a GPT-2-based transformer
encoder architecture with chord progressions.

- Model 1: It has the entire token vocabulary. All chords are unique elements,
producing a vocabulary of size 5,202 unique chords/tokens. The chords are
quantized in time, creating a chord per quarter note. When the suggestions
are generated, four consecutive chords are equivalent to an entire 4/4 bar.

- Model 2: We split the chord units into subsections, simplifying the tok-
enization range without reducing the vocabulary in the corpus. Starting the
chord element with an identifier token ‘.’ (dot), followed by the root, na-
ture, and extensions as shown in Table 1. For instance, ‘Dm7 add 9’,

* https://github.com/karpathy /minGPT
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is split into ¢.’, ‘D’, ‘m7’, ‘add 9’. This creates a 1D array of dynamic
lengths depending on how much information the chord has. Slash chords are
also split, following the same structure. For example, ’‘Cmaj7 / Bb’ results
in a sequence ¢.’, ‘C?, ‘maj7’, ¢/’, ‘Bb’. The second root in slash chords
becomes the actual root reference. This strategy reduces the vocabulary to a
more specific format with 59 Tokens: Song formatting (jstart;, jandy, jpady,
%), roots (‘A’ *Af ‘Ab’ ‘B’ ‘Bb’ ‘C’ ‘Cf’ ‘Cb’ ‘D’ ‘Df’ ‘Db’ ‘E” ‘Eb’ ‘F’ ‘Ff’
‘G’ ‘G’ ‘Gb’), natures (‘dim’, ‘m’, ‘m6’, ‘maj7’, ‘o7’, ‘sus’, ‘power’), exten-
sions (additions, subtractions, and alterations), and sharp (‘/’). In the cases
where the chord is notated with only one note, that chord is considered a
major triad.

- Extended Model 2: We extend Model 2 in two ways. First, we add a

context token at the beginning of the samples with a style specification,
meaning we start with a token (jstyle;) followed by the actual style (such
as jazz, pop, blues, samba, etc.). Second, we update the transformer model,
adding a MIDI Embedding relative position array into the positional embed-
ding layer. Based on the second strategy, when we have chords divided into
root, nature, and extension, the MIDI array is composed of an array of eight
numbers where the first is the MIDI root reference, the next three values are
used to describe the nature, and extensions could use the next value. The
longest sequence of the MIDI array for a chord is seven MIDI values; hence,
the eighth MIDI value in the array is an identifier (number 127) to express
that there is a slash token.

Table 1. Chord Tokens Format

Chord Start Root Nature Ext. Slash Root_2
C . C

Dm7 add 9 . D m7 add 9

Bbmaj7 411 . Bb maj7 g11

Cto7 . Ct o7

Ebmaj7/D . Eb maj7 / D

3.3 MIDI Embeddings

MIDI Embeddings (ME) are extracted from the symbolic chord representation
using the Python libraries music21 (symbol to notes translation) and librosa
(notes to MIDI translation). We decided to maintain the chord pitches in only
a two-octave range. During training and generation, ME is paired with token
inputs, providing only information about the current time-step in the sequence;
therefore, when only one note is presented in a specific chord, by default, the
ME reads it as a Major chord (triad). When a second token appears next to the
original note, the first token is read as a root note (only one MIDI note is then
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placed), and the nature is updated, adding its related notes to the MIDI array.
The same logic is applied to extension and sharp chord, where each step in the
sequence updates the ME information, having the complete chord MIDI array
only in the last time step of the chord tuple, as shown in Figure 2. We avoid
information leaking following this format.

The formula to update the ME into the positional embedding in the trans-
former network is defined as follows:

midi_emb = Linear (Emb(midi_vocab, dm)(m).view(m.size(0), m.size(1), —1), nempa)

Positional embeddings are added to the input embeddings before the trans-
former encoder is fed. The positional embedding layer enables the model to dis-
tribute information spatially in order to learn specific patterns. The ME takes
information from MIDI and adjusts it into an embedding tensor to align with the
required architecture format. This, then, is summed with the standard positional
encoding layer. It is composed as follows:

1. Embedding MIDI Values:

- ‘Emb(midi_vocab, dm)(m)’: This defines an embedding layer where
‘midi_vocab’ is the total number of unique MIDI events and ‘dm’ is the
dimension of the embeddings. ‘(m)’ is the time-step in the chord tuple se-
quence.

- ‘view(m.size(0), m.size(1), -1)’: The tensor matrix is reshaped to ad-
just its format to the standard positional embedding. Here, ‘m.size(0)’ rep-
resents the batch size, while ‘m.size(1)’ represents the sequence length. ‘-1¢
means that the size in the last dimension is computed so that the total size
remains constant.

2. Linear Transformation: The reshaped data is passed through a Linear
layer. The size of the output data is adapted to match a tensor of shape
(batch_size, sequence_length, Nempa). It is then summed with the positional
encoding layer.

3.4 Training The Models

The models are trained on 4 GPUS NVIDIA GeForce RTX 3090 (24576MiB).
While we tested many configurations, this manuscript only reports the best
versions of both strategies, defined as Model 1 and Model 2.

Model 1 is trained with 120 Epochs, 6 attention heads, 6 layers, 192 embed-
dings sizes, 64 batch sizes, 192 embeddings, number of workers 6, and a learning
rate of 3e-5. Model 1 is prone to overfit after 120 epochs; hence, these config-
urations are chosen to maintain a small network that adapts to the size of the
vocabulary and dataset. Extra attention heads tend to increase the overfitting
tendency and do not necessarily lead to better performance.

Model 2 is trained with 250 epochs without showing overfiting tendencies
(it could be trained with more epochs). Thus, it has an increment in 8 attention



8 Dalmazzo et al.

Bb 7 add #11

e p Add & Norm

Feed Forward

b Add & Norm

N-Layer Encoder I

Multi-head Attention

MIDI —{ 4= «— ~ - Positional Encoding

f

Input . D m7 add 9

MidiArray ©0000000 620000000 626569720000 6265697276000

Midi Emb. M. Mp Mmz Maddo
Pos. Emb. P. Po Pm7 Paddo
Token Emb. W. Wp W7 Waddo

Fig. 2. MIDI Embeddings: Formatted as an array of eight values for each time-step of
the chord tuple. In Model 2, the chord information is split into tuples, and the input
layer processes it as a dynamic sequence. The input sequence is translated into tokens
embeddings, positional embeddings, and midi embeddings; all those layers share the
same tensor matrix shape, and they are summed inside the positional encoding layer,
which is passed to the multi-head attention.

heads and 8 layers. The other features are maintained as they are: 192 embed-
dings sizes, 64 batch sizes, 192 embeddings, number of workers 8, a learning
rate of 3e-5, and a MIDI vocabulary size of 128, which refers to the size of the
possible MIDI values. (see table 2).

3.5 Metrics

HITS@k (k =1, 3, and 5) [15] is used to evaluate the predictions in both models.
HITS@k calculates the proportion of the correct answer given by the candidates,
denoted by the letter k. It was calculated as follows:
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Table 2. Transformer Format
Configuration M1: Full Tokens M2: MIDI Emb
Epochs 120 250
Heads 6 8
Layers 6 8
Embedding 192 192
Batch size 64 64
Learning rate 3e-5 3e-5
Workers 8 8
MIDI_vocab - 128
1 n
HITSOk = — > I(rank; < k) (1)
=1
where,

- HITSQk: This represents the HITS at k metric.

- n: Total number of instances or items being evaluated.

- Y% |: This denotes the sum over all instances.

- I(rank; < k): An indicator function that evaluates to 1 if the rank of instance
i is less than or equal to k, and 0 otherwise.

Table 3 compares the metrics of Model 1 and 2.

Table 3. Metrics

Train Loss Val. Loss HITS@1 HITS@3 HITS@5
Model 1 0.3699 0.4108 0.7383 0.8294 0.8556
Model 2 0.04982 0.03645 0.9138 0.9707 0.984
4 Results

4.1 Generated Chord Progressions

We generated 20 CP per model in one unique iteration loop where no selection
of the CP was performed, and they were shown to the evaluators as they were;
no voicing, arrangement, or editing was performed. All CP were constrained
with a length of 8 to 24 chords, producing a collection of 40 randomized CP.
The Model behind the generated CPs are not identifiable by the evaluators. Ten
participants, with an average age of 36 (s.d. +/- 8), reported using a 1 to 10
scale the plausibility of the chord progressions as a starting point of a conceivable
music piece: 1 implies no plausibility as a sequence, and 10 is very plausible to
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start a potential composition. The overall median score received was Model 1:
5.7; Model 2: 6.7, as shown in Figure 3. All suggestions begin with a root token,
which can be any scale note; nevertheless, Model 2 includes a random number
defining the style from the first six most common styles in the dataset (Jazz,
Samba, Ballad, Pop, Bossa, Rock). To generate a sound sample, we implemented
the Python library librosa and music21 to generate the chords in MIDI format
using a standard Piano. Figure 4 shows examples of generated CP with form
tokens in Model 2.

10
9
8
\ 1
7
c
S 6
®
=
: s ?
w
4
3
2
1
Model 1 Model 2

Fig. 3. Boxplot of human evaluation of Model 1 (orange) and Model 2 (blue).

Tokens Array

['<start>' ‘'<style>' 'Pop' '|' 'Form_A' ['<start>' ‘'<style>' 'Soul' '|' 'Form_A' '.'
o7t )t .Y Db 'maj7t t|t t.' ¢t 'm7 CComt 'Lt o'Ct 'm' ‘add #7' ' 'Lt oCt 'm7
[* *.' D' 'sus' '.' 'D' '|' '.' 'D' 'sus’ St 'me' '|Y .t ' 'm' .t 'F' 'm' 'add
LoDttt et et 'tm7t ) .t ‘Dbt 'maj7! #7' | . 'FY 'm7t 'Lt 'E' 'm7' 'alter b5
Crorotoc m7ot[t .t DY tsus' 't DYt CUOTAT 7Y |t .t DY '7sus' 'Lt oD 70t
S Y[t o.toDb' maj7' t.t Dbt '7r | oL g 17 I o ' 'm' 'add
Crotm7t ) CF#' 'maj7' '#11' ']t .t 'F #70 c' tm7' .t oC' 'me' | E
‘m7' '] 'm' '.tO'EY 'm7 alter b5' AT |
AP R AR L A AR c' 'm7']
Sample 1 Sample_2
(Pop Rock) (Soul)

I P € PwD | HC CofCy CofF- Fosffsfins M
D.D I Dh & | [PuD |G |C CwlCoy Dy |
D.D DDy [ FhlF | & lCv |

Fig. 4. Two samples from Model 2 using Pop and Soul context token. The tokens array
provides information about chords and form, using the token ‘|’ as a bar identification.
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4.2 Trigrams

A supplementary dataset comprises three chord cells, including information on
the song and composer. Those cells are called trigrams, which provide informa-
tion on the suggested progressions to check for original versions and sources.

Trigrams are formed by creating groups of subsequent three chords, moving
the windowed observation one time step forward. A sequence with Em7, A7,
Dmaj7, Ab7 add §11, Gm7, are then packed as (Em7, A7, Dmaj7), (A7, Dmaj7,
Ab7 add £11) and (Dmaj7, Ab7 add #11, Gm7). That means four chords are
equal if two consecutive trigrams from a suggested progression are found in a
particular song. Hence, we can define a threshold of matching trigrams to deter-
mine duplication. The trigram analysis can be executed with a list of suggested
CP or immediately after a generation. In this case, analyzing 40 CP, the report
is too extensive to include in the manuscript. A list of the most 20 trigrams cells
found is shown in Figure 8. The report includes a tag for Sequence, which is
the CP analyzed; Location, which reports the chord position in the sequence;
Trigram, which is the progressions cell; and a list of Composer and Song
where it was found.

500

400

w
o

Frequency

N
o

Fig. 5. Most used trigrams found in the dataset. Most progressions are sequences of
II-V-I in major and minor functional formation.

Both Models show similar trigram repetitions found in the dataset. However,
it does not mean the whole progression is copied; it only provides information
about the original trigram cell location. However, it is possible to determine if
a whole progression is, in fact, replicated from the training data. No generated
CP reported more than two trigram cells from the same song. In Figure 7, some
of the most common trigrams found are shown, and Model 1 is more prone to
duplicate cells.
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Fig. 6. Most common harmonic functions found in the dataset.
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Fig. 7. Model 1 (orange) and Model 2 (blue) report trigrams cells also found in the
dataset. However, Model 1 is more prone to replicate common trigram cells found in
the dataset

Based on trigrams analysis, we observed that sequences based on ii-V-I pro-
gressions and their different versions in major and minor are prominent in the
dataset (see Figure 5). However, the ii-V-I is not the most used progression,
as shown in Figure 6. The most used progressions are combinations of IV-V-I
motions and some permutations, commonly audible in the Blues, Rock, Pop, or
Cinematic Music.

5 Discussion and Conclusion

We have presented two tokenization strategies with an extension of the posi-
tional embeddings (MIDI Embeddings) for Model 2. We treat the chord vocab-
ulary with a specific methodology differentiating the root, nature, and exten-
sions, thereby reducing tokens without diminishing the chord vocabulary and
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Seq:29, Loc:13, Trigram: E7, E7, A I ——
Seq:29, Loc:0, Trigram:A, A, A | —
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Seq:11, Loc:18, Trigram: G#7, B-, B-
Seq:4, Loc:1, Trigram: G7, Cm7, F7 -
Seq:25, Loc:16, Trigram: A-7, D#m7, E-7 -
Seq:30, Loc:12, Trigram: A7, Dm7, G7 I
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Fig. 8. Trigram analysis provides information about trigram cells found in the dataset.
It contains the sequence number; we have 40 CP suggested in this case. The Sequence
tab will point to that suggested CP origin. The Location tab provides information on
the chord position within the progression; the Trigram tag is the chord cell, and the
Count tag expresses how many times it was found in the dataset. The Figure contains
20 of the most trigram cells found

its richness. We trained each model on a large database of chord progressions
and used it to generate new suggested progressions or chord completion. Our
database of 70,812 songs has diverse music styles in popular music. Our evalua-
tion of sequences generated by these models shows that reducing the vocabulary
and adding contextual information improves the encoding process of the chord
vocabulary. Thus, adding MIDI notes for chord constructions to the Positional
Embeddings layer has helped the transformer network stabilize the learning pro-
cess, allowing more training epochs without overfitting; it also helped to report
better HITSQK and validation metrics (see Figure 3.

Our system contributes to a growing literature on modeling harmonic pro-
gressions as a system that can be used as a composer assistant. Future work will
explore the usefulness of this system with users performing musical tasks to ad-
dress further development and usability. We will also explore ways of generating
melodies from chord progressions and vice versa. This will be implemented as
an accessible web application for others to study.

As expressed in [14], and also based on the outputs generated by Model 1,
the vanilla encoder transformer architecture (GPT-2) is not an ideal network for
encoding music information from only providing symbolic music notation. Even
though it can generate plausible textual tokens, the musicality is still unclear.
From the perspective that chord construction and voicing formats are hidden
from symbolic music notation and that decision is the responsibility of the mu-
sician’s knowledge, it is still necessary to propose new versions of related neural
networks and test architectural modifications to find better strategies to encodes
all musical information related to chord progressions. Therefore, our next model
is based on multi-hot encoders (2 octaves) exemplifying the notes in the piano
from an expert performer playing chord progressions and an encoder-decoder
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architecture to suggest, on the one hand, the symbolic music notation but, on
the other, the voicings for more musical outputs.

The human evaluation reported a median score of 5.7 for Model 1 and 6.7 for
Model 2. Even though there is a difference in appreciation of Model 2 quality, the
low score could be directly affected by the test format shown to the participants.
Raw MIDI piano sounds were chosen to evaluate the chord progressions, and no
voicing was added to avoid human completion from expert performers. The CP
were played at 120BPM; in that term, the suggested CPs are expressed in a raw
MIDI version that can be highly improved by musicians’ knowledge in terms
of performance and interpretation and also in sound quality. However, HITQK
metrics reported a difference where Model 2 is much more accurate, particularly
in the validation loss. The interpretation of its musicality based on NLP metrics
is still open for discussion.

As a further development, to enhance Model 2, when translating symbolic
music notation into MIDI chords, we will add an array of plausible voicings
repertoire per chord and a distance calculation of note proximities to suggest
more natural voicing. By default, the Python library music21 is unsuitable for
this purpose as it reported errors, particularly with slash chord formatting and
notes related to suspended chords.

Model 2 reported a tendency over Model 1 to generate more consistent pro-
gression in musical terms. The explanation is given by the modeling of the con-
textual token, which provides a general view of the music style; therefore, Model
1 mixes styles and formats, while Model 2 is more prone to maintain some de-
gree of consistency. For instance, when Blues is given, the form and chords are
common to the style. Also, Model 1 chooses chord tonalities wrongly formatted
in terms of notation; in other words, it mixes enharmonic, e.g., when Ebmaj7
makes sense in the context, it suggests Dfmaj7. Further work is also needed to
adjust this duality in names as it is relevant to be fixed in a musical context.

Model 2 also suggests form and structures; further development will incor-
porate that suggestion into the web application.

For future work, we will add a melody generator that is conditioned on a
CP and vice versa, where a melody conditions the generation of a CP. A web
application as an interface to play with the model and generate suggestions is
under development; it will open its usability to a broader audience. We will
perform further human evaluations by expert musicians to test the impact and
usability of the system.
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