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mporal dimension of video content brings both new features and redundancies.

content involve finding the right trade-off between quality and inference time.

ade-off is multi-scale: from the network architecture down to the basic units.

improvements are orthogonal and can therefore be used simultaneously.

ly labeled datasets are rare. Thus, the training strategy plays a critical role.
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CT

segmentation aims at classifying image pixels according to given categories. Deep learning
s have proven to be very effective for this task. However, extensions to video content are

llenging, typically requiring more complex architectures, given the temporal constraints and
onal data that video introduces. At the same time, video application tend to necessitate

or at least interactive performances: self-driving cars, industrial applications, or live
ing to name a few, imposing even stronger constraints to video methods. In recent years,
ble efforts have been made in addressing these somewhat opposing challenges. In this survey,
e the solutions proposed to improve the quality and accuracy of video segmentation, as well
erent techniques that can be employed to improve the efficiency of such approaches, in
in terms of inference time. Finally, we briefly describe the datasets related to the semantic

mentation task and the challenges involved.

ion

ion in general terms is the process of separating
o several sets of pixels that have common image
as color, texture, location, or semantic meaning.
is a cornerstone of image processing since it

implified version of the image content that can
further processing (Subramaniam et al., 2022).
rs, significant improvements have been made in

nks to new deep learning techniques (Hao et al.,
ever, compared to single image segmentation,
applied to video is still very challenging due to

dimension and the constraints it introduces.
challenge brought by video content is that of

sistency. The human visual system is particularly
temporal changes (Borghuis et al., 2019). As
result of the segmentation serves for processing
isually observed, inconsistencies over time in the
process must be avoided. To that end, objects

curately tracked over time, handling their motion,
even objects potentially leaving the frame. Aside

g accuracy challenges, video contents also tend
lot of motion blur which complicates accurate
as object boundaries become harder to delineate.
ences contain significantly more data than a single

image. The consequences are twofold. First, wh
segmentation often relies on complex neural architec
many parameters to achieve high quality results
these architectures to video content directly wo
lead to networks that would be too large to
too time-consuming to use in practical inference
(Mahadevan et al., 2020). Further, in many applicatio
not only contain more data than images but are also c
using lossy compression methods that can introdu
variety of artifacts (Unterweger, 2012; Lin et al., 20
need to be taken into account.

The above reasons show that video segmenta
complex task, but many applications related to video
and segmentation in particular require real time perf
without loss of quality: live TV, security ap
self-driving cars to name a few. Considering
of challenges, in this survey, we mainly focu
different aspects of video segmentation techniques: q
efficiency.

The quality criterion can be understood as the
a given method to accurately segment videos rel
ground truth, and can be evaluated subjectively or o
Intersection-over-Union is the most commonly used
the context of semantic video segmentation, but dep
the goal, other metrics can also be used, namely
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poral consistency (Varghese et al., 2020; Zhang

per, the efficiency criterion refers to how fast a
is able to produce segmentation maps. It can be
easuring the FLOPS (number of basic operations)

egment a frame, but this metric is not considered
a et al., 2018). Therefore, the speed of a model

easured by the number of frames the model can
ne second (FPS) on a reference platform.

a basis for the discussion of video segmentation
ion 3 presents key methods in the context of

segmentation. Then, state-of-the-art methods
o the two main challenges in semantic video
are presented, as can be seen in Figure 1. More
approaches focusing on quality are discussed
, while methods and techniques for improving

presented in Section 5. Section 6 describes the
can be used for semantic video segmentation, as

hallenges raised by such data. Finally, the various
llenges, and solutions mentioned throughout the
mmarized and compared in Section 6.1.1.
e noted that the goal of this survey is not to provide
e list of all video segmentation approaches, nor
nchmark of the state-of-the-art methods (such as
2023)), but rather to explore concepts and ideas
entific literature (related to video segmentation,

other domains) that can or could be used to
performance of semantic segmentation methods,
s of the quality of their results or the speed of

Since, most real-world applications would need
th of these goals, the approaches described here

ith useful hints and a basis on which we can build
equent work towards practical video segmentation

nd

tion, we first formalize the problem and state its
ative fields. Then we briefly describe its historical

Taxonomy
segmentation task applied to images consists of
ction that ideally maps any input image to a map
eight and width, containing pixel-wise simplified

about the input content. The dense segmentation
ideos follows the same principle in the sense
each frame of each input video must be mapped
identical height and width which that contains

mplified information about the input content. The
information highlighted in the outputs creates

ories of segmentation:

Semantic Segmentation refers to the task of
g each pixel to a semantic label from a list of
mined classes. The output of such methods
a class label for every pixel of the input video.

Fig. 1. Diagram showing the two main sections of this paper
covered in the subsections are sometimes related to both m
some extent, so in this case they are attached to the main par
most.

Such methods tend to learn visual representati
classes they encounter.

• Video Object Segmentation or Video
Segmentation refers to methods whose g
detect, segment, separate and track objects tha
from the background. Such methods do not fo
semantic meaning of the objects depicted in
videos but instead focus on their interactions to
separate the objects that stand out from the ba
To be clear, when multiple objects of same
present in the foreground of a scene, VOS met
assign a unique label to each of these objects.
that, instead of separating the prominent objec
assign a binary label indicating whether e
belongs to the foreground or the background,
Video Background/Foreground Segmentati
also interesting to note that ”Object Segmentat
images domain often refers to tasks that are ve
to ”Panoptic Segmentation” and can therefore
confused.

• Video Panoptic Segmentation is the comb
”Video Semantic Segmentation” and ”Vide
Segmentation” in the sense that the goal is to
each pixel with a semantic label as we
instance/object index.

• Matting differs from classical segmentation ta
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a single class but rather to a mixture of classes.
e output map contains alpha values that determine
ortions of the classes for each pixel of the input.

ntation methods can be further categorized based
t of human interaction used during the inference:

tive Video Segmentation methods are guided
human hints on how to perform the current

tation and how to refine it.

teractive Video Segmentation or
tomatic Video Segmentation methods only

human input at the beginning of a video to process
re sequence. The initial cues can be of several
They can be a textual description of the objects
gmented, or they can indicate the initial object
s using bounding boxes, a segmentation map, or a
f the first frame.

tic Video Segmentation methods do not require
an interaction to perform the video segmentation

er deep learning problems, video segmentation
have differences in learning strategy and, more

in the amount of supervision needed to train the

ised training requires dense ground truth
ons, but makes training easier for most video
tation methods.

supervised training also requires ground truth
ons. However, the annotations are sparser and
ch easier to obtain (typically bounding boxes or
vel labels of the objects present in the frame), but
ke the training more challenging and thus only
for some methods that are carefully designed for

rvised training is dedicated only to methods
mostly self-supervised, i.e. they generate

labels based on prior knowledge about the
es of the objects to be distinguished. Thus, there is
to label any data for these methods.

just described, there is a wide variety of video
methods. Some categories of methods do not

e goal (e.g., object versus semantic segmentation)
ave access to the same input information (e.g.,
ersus automatic segmentation). The work of
(2023) provides a complete comparison of the
rt methods for each category. Our work focuses on
ct of this diversity: despite important differences,
eloped for distinct segmentation purposes can also
rities and compatibilities. Thus, a mechanism
r a specific purpose can sometimes be applied
mentation applications and help improve the
of that other domain. In this work we therefore

and discuss how they can or could be used
progress in the specific context of Automatic Video
Segmentation.

2.2. History

Semantic segmentation has been a subject of rese
the 1970s. The first works on the subject used ba
operations (Csurka et al., 2023) and focused main
priors: pixels belonging to the same class tend to
while pixels belonging to different classes tend to be
Thresholding methods (Otsu, 1979; Nock and Niel
Dhanachandra et al., 2015) and edge-based method
1986; Kass et al., 1988) highlight the early use of
priors which were also combined in other methods us
(Boykov et al., 2001; Hochbaum, 2001; Plath et
These principles have also been applied to video co
and Corso, 2012; Chang et al., 2013).

The application of segmentation to video also ope
possibility of using motion as a prior, based on th
different objects in the scene may not move in the
(occlusions, parallax due to camera motion, intrinsi
creating temporal edges, and that some motion is
certain classes of objects (Brox and Malik, 2010; F
et al., 2012; Ochs et al., 2014). However, these
worked for semantic segmentation tasks dealing w
classes with very distinctive colors or motions, lim
applications.

To extend semantic segmentation to more comp
some methods started to use shape and texture pri
to image descriptors (Lowe, 2004; Schroff et al., 200
et al., 2006), statistical algorithms, and early machin
methods (Lowe, 2004; Schroff et al., 2008; Yu et
These techniques were also applicable to video
segmentation methods (Jain et al., 2013; Liu and H
which were computationally intensive, and required
the right features depending on the classes at hand t
effectiveness.

More recently, the field of semantic segmen
evolved tremendously with the advent of deep learni
(Long et al., 2015) that replace hand-crafted fea
automatic ones. The following work will pres
of the developments that have occurred since then
can be exploited to create better methods for video
segmentation.

2.3. Related Research Areas

Video semantic segmentation can be used as a c
for many image and video processing techniques suc
estimation (Wang and Piao, 2023), super-resolution (
et al., 2022), and colorization (Xu and Ding, 202
also have more direct applications such as automated
in the medical field (Krithika alias AnbuDevi and
2022), precise analysis of satellite data (Neupane et
or industrial applications such as autonomous driv
et al., 2018) or waste sorting (Wang et al., 2020).
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g the performance achievements of recent image
methods (Tao et al., 2020; Wang et al., 2022b,a),

aively consider applying these same techniques
processing each frame independently. However,
lume and type of data encountered in video
ect application of image-based approaches not
rd. Yet, a subset of these techniques focuses on
ference time to make them real-time and therefore

pipelines like self-driving cars. At the time
is survey, one of the ways to achieve a good
een quality and inference time is to use parallel

ong et al., 2021), where one branch focuses on
ning a global and meaningful context while the
gathers low-level details.

tive approach can be used by respectively linking
mantics and fine details of those architectures to
nal (P) and integral (I) parts of controllers used
ustrial control systems (Xu et al., 2022). The

that dual networks face a similar issue as PI
alled “overshoot”, which in this context consists

ed branch being overwhelmed by the overspread
text. Therefore, they propose to add a third
g a derivative role to mimic the behavior of a PID

d tackle the “overshoot” issue.

ethods (Gao, 2021; Peng et al., 2022) also gather
atures by using parallel branches with various
ilation coefficients and fuse them using pyramid
ules (Zhao et al., 2017). Reusing early features to
sampling of deep semantic features is frequently
ce the introduction of U-net (Ronneberger et al.,
n be enhanced by attention modules (Peng et al.,
al., 2022). To achieve the same quality of results
dels, but with a more compact architecture, some

on pruning (Chen et al., 2022) (see Section 5.6.2)
distillation (Liu et al., 2019; He et al., 2019) (see

recent 2D semantic segmentation techniques
t results, both in terms of quality and inference

they are not suitable for many video-related
ause of their lack of temporal consistency. This is
roblematic when a visual output is produced and

(e.g. movie colorization, SDR to HDR conversion,
) or in robotics when sudden and large changes can
irable actions.

re, as highlighted in Figure 2, restricting the
the spatial domain while dealing with highly
atiotemporal data is not necessarily the most

egy. Aside for guaranteeing temporal consistency,
s between frames can be used in two ways. Either
r context to improve quality, or to get rid of the
dundant part of the spatial analysis to accelerate
.

Fig. 2. The spatial neighborhood of a single natural image con
information and redundancy as depicted by the red arrows. T
bias is what motivates the design of convolutional neura
In natural video sequences, the same can be said about t
dimension. However, this information and redundancy cann
into account by frame-wise methods, which is suboptimal both
quality and inference time.

4. Improving Segmentation Quality

State-of-the-art image segmentation methods
impressive results for many cases. However, the
room for improvement when the scenes to be segm
more challenging, or when considering temporal co
Indeed, frame-wise methods have no awareness of th
context of the surrounding frames, so they cannot kn
current result is consistent with the surrounding on
such cannot retrieve contextual information from ot
to guide the segmentation result. In the following s
will focus on methods that take advantage of the vid
and in particular the temporal dimension available, t
segmentation quality.

4.1. 3D Convolutions

To address the temporal inconsistencies of 2D
segmentation techniques when applied to vide
approaches treated the temporal dimension in the sam
as the two spatial dimensions (Mahadevan et al.,
medical imaging, data covering the three spatial d
is common and is processed using 3D convolut
pioneering works on semantic video segmentation
classic 2D convolutions from existing architecture
convolutions to process the temporal dimension alo
spatial ones (Ji et al., 2010; Karpathy et al., 2014; T
2015; Varol et al., 2018).

Although the increase of the number of paramet
the transition from 2D to 3D was manageable for the
small networks from that time, the consequences i
computational cost and training difficulty are more
when the same transition is applied to more m
more complex architectures. Even if the amoun
segmentation data is now higher and attenuates th
difficulty problem (Hara et al., 2018), the computa
remains an issue.

Features extracted from deep layers are of m
resolution than those of shallow layers, yet contain
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p a reasonable computational cost, some works
eep 2D convolutions in all layers except the ones
output, therefore only considering the temporal
one part of the network (Xie et al., 2018; Athar
rammatikopoulou et al., 2023).

mputational and mathematical “tricks”, described
, have made it possible to employ 3D convolutions
he complete network. In Hou et al. (2019a)
ge of that possibility and design a fully 3D
l network made of an encoder deeply connected
by parallel convolutions of different strides, and

onal connections between early layers from the
ep layers from the decoder.
ss, considering the temporal dimension simply as
o spatial information comes with certain caveats.

no distinction between the computation of the
mporal dimensions is not necessarily a good idea
ture is very different. Secondly, while dense (i.e.:
) convolutions are required to detect spatial details
mporal movements and deformations, they also
lot of redundancy in the computation since the
ws overlap a lot. As a network’s spatial receptive

ed by its depth and the size/stride/dilation of its
kernels, the network’s temporal memory is also
hose factors (Long et al., 2022).
ution of valuable information along the temporal

f a video can vary greatly depending on criteria
mera movement, scene complexity, and the
f individual objects within the scene. In the
tion, we will focus on methods that can adapt to

.

nt Architectures

o incorporate temporal consistency into a network
ficantly modifying its architecture is to connect the
network to a module that can handle sequential

ep learning, Recurrent Neural Networks (RNN)
to handle such data (Sherstinsky, 2020). Each
kes a vector as input and outputs a nonlinear
n of its current hidden state. The current hidden
ell results from the nonlinear combination of the
den state and the current input. As each output
he previous one, this mechanism creates a sort of

ory that can process temporal information.
apturing long-term dependencies with RNN is not

ause of the vanishing gradient problem (Bengio
. For example, when a recurrent unit reaches
e for several iterations, the previous state that
le for this situation has faded away. Gated
were therefore introduced to better control which
should be kept or forgotten at each time step.
ally popular architecture is the Long Short Term
TM) unit (Vennerød et al., 2021) that uses tree
spectively control for each step what should be
at should be memorized from the current input,
roportion the current hidden state and the current

shows that it is possible to achieve similar resul
regulating the output with a gate (Chung et al., 201
Recurrent Units (GRU) (Cho et al., 2014) hence us
architecture that is less computationally expensive an
a lower memory footprint. Gating units can be u
output of a 2D CNN backbone to create spatiotempor
that are then further processed by a CNN and up-s
match the input’s dimensions (Fayyaz et al., 2017; S
2017). The work from Song et al. (2018) goes a step
using a multiscale approach (see Section 5.1) in both
CNN and the temporal unit, and by refining the res
conditional random field (see section 4.5). Adding
unit at the end of deep Fully Convolutional Netwo
has, among others, the advantage of optimizing com
load by using spatially reduced features. Despite th
GRU and LSTM units that work with vectors passin
gates made of fully connected layers of neurons, a
suited to the spatial dimensions inherent to videos (S
2017).

To better represent the inductive bias of loc
connectivity of natural images and to avoid the
waste induced by fully connected layers dealing with
convLSTMs and convGRUs (Figure 3), were introdu
consist of replacing each fully connected layer from
gates by convolutional layers (Shi et al., 2015; Ba
2016). These convolutional gates can be used fo
segmentation (Siam et al., 2017; Song et al., 2018).
the advantage of not necessarily requiring fine-tuning
backbone to produce temporally coherent results. O
hand, producing temporal features only at a highly
level do not fully account for the richness of tem
provided by video content.

The aforementioned issue is taken into account b
architecture using a parallel 3D fully convolutional ne
considers a few frames at a time to generate spat
features with short-term dependencies (Qiu et al., 2
features generated in this way are then fused with the
features given by the convLSTM that follows the 2D
However, this method introduces a lot of redunda
computation by processing each frame several times
strategy consists of providing not only the 2D segm
the current frame to the recurrent unit but also th
one warped to the current geometry thanks to op
estimation (Nilsson and Sminchisescu, 2018). T
optical flow help to provide more precise temporal clu
no influence on the creation of the semantics in this m

To account for temporal cues at both low and h
(Tokmakov et al., 2017) suggest creating an a
consisting of a classical CNN connected to stacked
units, so that each convGRU takes as input the fe
produced by the same level CNN layer as well as
of the shallower convGRU unit. In this way, e
produces spatiotemporal features at its scale. Ho
the best of our knowledge, this idea has not yet be
to semantic video segmentation. The reason for
be that, since each convGRU has a significant com
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am representing the convolutional GRU architecture. In
he unit decides which information from the past (stored in
state, namely ht−1) should be discarded to produce the new
ndidate by being concatenated with the input value xt . The
n produces the new output (ht) by pondering between the
n from the candidate and the historical information from

dden state.

lity gain of spatiotemporal features provided by
n each layer may be a poor trade-off. Another
gating mechanisms and RNNs is that they process
ally and therefore cannot be parallelized. Finally,
g mechanisms can retain information better than
s, the problem of long-range information loss is
equential processing, especially if the processed
a lot over time. This last drawback can be

using multiple units working on the same sequence
der, but as noted above, this comes at the cost
computation time without addressing the core
ng-range information decay.

Flow Based Methods

w is the result of estimating the apparent motion
cribing a scene over time (Zhai et al., 2021). The
tion is relative to the scene and to the observer

This feature can be used in several ways to
quality of semantic video segmentation models.
can be computed using rule-based methods, but
t their method can be fine-tuned in an end-to-end
y methods use deep learning based optical flow
itecture (Dosovitskiy et al., 2015; Nilsson and
, 2018; Liu et al., 2017; Ilg et al., 2017; Gadde
u et al., 2018; Li et al., 2018a; Ding et al., 2020).

l Flow for Warped Features Aggregation
ay that optical flow can be used to improve quality
ating the spatial context of multiple frames. The
the content of the frames changes over time, so
t whose color or texture is difficult to distinguish

conditions or appear against a more contrasting b
at another time. By using optical flow estimatio
features from different times into a common refere
one can group together those complementary feature
previously scattered across time. This idea is illustra
4a.

There is a 2D CNN architecture in which mult
receive warped features from the same layers at th
time step (Gadde et al., 2017). The warping is obtain
a unique optical flow estimation between the current
the previous frame. However, most of the time, c
frames are very similar and contain variations that are
to provide different contexts. Frames that are fur
from the current one may have changed more and th
more interesting to gather various contexts. On the o
optical flow is likely to be more accurate betwee
frames, and thus more similar frames, than betwe
spaced further apart in time. To pick the best o
(Gadde et al., 2017) first compute a rough segment
for the current frame, then estimate the optical flow
the current frame and both the previous frame an
earlier frame. In this way, the current segmentatio
benefit from a precise but not very distinctive seg
map from the previous frame and an imprecise but
segmentation map from the much earlier frame. T
flow results are also used to compute “confidence sc
which can then weight the contribution of the corr
distorted segmentation maps to the current one.

The combination of different frames is further ex
Li et al. (2018a), which combines optical flow-base
with LSTM cell processing, as described in Se
Nilsson and Sminchisescu (2018) use a similar proc
previous segmentation maps first pass through a
before being warped to the current frame space thank
flow estimation on the corresponding frames. Th
segmentation frames are then further processed b
through a second GRU to obtain the final result.

The fact that optical flow can be computed
from the segmentation architectures allows to us
post-processing step for classical 2D architectures
emphasized by a method that can make any 2D seg
model temporally consistent as long as the model p
class probability distribution as output (Miksik et
To do this, they first use optical flow to associate
of the previous frame with the pixels of the curr
Then, for each pixel of the current frame, they
weighted average between itself and the neighborin
its match from the previous frame. The weight coeffi
determined by a learned similarity metric that takes
features such as RGB data, gradients, and Local Bina
(LPB) as input.

In all of these methods, optical flow is used as
align spatial contexts from different times but it is n
as a feature itself. Motion, however, can be very
in distinguishing objects. When the viewer move
of different depths move differently on the scre
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ake their own movements and thus provide clues
ture. It is thus clear that the methods described so
ploit the full potential of optical flow. In the next
ill explore the approaches that use optical flow as

l Flow as a Feature
w used as a feature (figure 4b) is mostly used

liency segmentation methods. This is because
ds have fewer available assumptions about the
objects they are segmenting and therefore require
es to infer object boundaries, and also because

tion is often correlated with saliency. Many
pute spatial features and optical flow separately,

e them to create superpixels or saliency maps in
edges (in the spatial or temporal domain) often

ject boundaries (Fang et al., 2013; Wang et al.,
et al., 2016; Koh and Kim, 2017). Temporal

further exploited by adding temporal consistency
o the energy functions that are minimized to
mentation outputs. Most of them do not rely
onal neural networks to work. However, Jain
) compute optical flow and spatial features of
rame in separate CNN paths to produce saliency
aps, which are then multiplied element-wise to
ird prediction map that takes into account both
nal output for each pixel is the maximum of the
on maps.

ceding paragraph, we have seen that optical flow
in object segmentation to compute temporal

y enhancing the model’s ability to create precise
f objects whose implicit shape is unknown to the
ave also seen that strong or atypical object motion
sed to detect saliency locations, again for object
. Based on this knowledge, one can understand
pical movements can also be used in the context
segmentation as a cue to improve semantic

g as well as the precision of object boundaries
motion edges (Saleh et al., 2017). The way to

ndaries thanks to motion edges starts by using
2D CNN classifier to localize the approximate

objects. While the classifiers are not trained to
cts in a scene, the output of the convolutional
fore the densely connected layers) contains highly
tures that are roughly localized thanks to the
cture of CNNs. By designing a deep temporal
kes multiple optical flow frames as input, one can

ore precise boundary information lacked with the
put. Both rough semantics and precise boundary
are then mixed in a sub-convolutional network to

antic segmentation map.
optical flow estimation is not a trivial task. There
ethods that try to solve this problem (Tu et al.,

e are based on deep learning (Dosovitskiy et al.,
al., 2017) and some are not (Memin and Perez,
and Malik, 2011), some are fast (Kong et al.,
et al., 2020) and some focus more on the quality

Fig. 4. Optical flow can be used to warp features from diff
into a common space to aggregate different contextual inform
(a). But it can also be used directly as a feature, as in (b)
motion information is semantically rich and its temporal e
complementary to the spatial ones.

of the estimations (Huang et al., 2022b; Jiang et
Although precise estimations are not necessarily cru
optical flow is used to improve semantic feature
already coarse, using the estimation to extract precis
edges imposes stronger constraints. As such, it is im
choose wisely how to balance the trade-off between
and complexity depending on the task for which o
is used. In addition, even using complex estimatio
is not always enough to obtain very sharp result
conditions. In fact, aside from the need for te
the methods to work, such approaches are also
when the scene undergoes large movements, occlu
disocclusions (Hu et al., 2020). Finally, one
understand that most of the movements of objects
to their nature. Thus, regular optical flow estimatio
are hampered by their inability to understand scene
In the next section, we will describe methods that ove
problem.

4.3.3. Joint Computation of Spatiotemporal Feature
The methods described thus far either use optic

warp features or as a feature itself, and compute it
from spatial features. The previous section highl
fact that optical flow can benefit semantic segmentat
high and low levels, showing that the two different t
some ways linked. Nevertheless, obtaining an accur
flow estimate without significant computational o
challenging. Those two facts raise the question w
optical flow estimation could benefit from the sem
given by the segmentation results.

Following this idea, Sevilla-Lara et al. (2016) p
initial 2D segmentation whose result is then furthe
to three classes of different motion properties: o
can move independently, objects that are mostly stil
planar, and in the background, and lastly, objects t
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ues generated in this way can then be used to guide
ion of an accurate optical flow estimation. Finally,
optical flow provides the ability to correct errors

cies in the initial 2D segmentation to produce
.

Roth (2016) define each scene as a
ional space in which there is a set of plans subject
onstraint (principle according to which each line
e 3D point of an object and its corresponding point
tion screen must converge to the focal point of the
ditioned by semantics, occlusions, and temporal
At each time step, the current segmentation and

e computed jointly based on the current frame, the
e, and the previous refined segmentation map.

ection prevents occluded regions from influencing
. The semantics themselves are used to weight the
traint to make it more stringent for still objects.
ay to ensure that the segmentation and optical flow
sks benefit from each other is to create feature
at different levels of both models (Ding et al.,
s work, an encoder takes two consecutive frames
roduce common features, which are then further
a first decoder branch that estimates the optical
lusion maps, and a second decoder branch that
mentation maps. The two branches interact at
es through two kinds of modules that take features

e depth layers of both branches as input (i.e.,
, occlusion, and optical flow candidates). The first
le is one that computes temporal consistency and
tput to the segmentation branch, while the goal of
ind of module is to help the optical flow branch
sions.
een that two different tasks can benefit from each
nately refining one task with the result of the other,
g features during the one-pass inference of both

ith improvements, the usefulness of optical flow
r video segmentation remains limited to modeling
ium-term dependencies, but is not well suited for
g-term dependencies (Yang et al., 2019). The
t optical flow estimation boils down to finding
between frames. however, finding associations
ant frames is difficult because much may have
hat time, and propagating the estimated motion

frames over a long period of time accumulates
and increases the risk of error.

c Methods

l semantic segmentation techniques rely heavily on
l layers. Each convolution kernel is able to detect
ch region of the input matches a particular simple
adding more kernels to a layer, it enables it to
erent patterns. Thus, by stacking one convolution
of another, the deeper layer can learn to detect

he combined results of the previous layer. The
of the two can itself be seen as a pattern detector
cale and higher level of abstraction, and so on

each kernel is just a small regular lattice in whic
can be learned. Therefore, convolutional neural ne
quite easy to train. Nevertheless, they are not wit
drawbacks.

The patterns in each convolutional kernel are
inference time, which means that to be robust
deformations, rotations, or changes in perspective
kernels from the same layer must encode slightly
versions of the same pattern. Using many kernels
model heavy and difficult to train. Some robustne
introduced against small transformations by using h
modules such as pooling layers between convoluti
However, this comes at the cost of reduced res
the produced features. Further, the abstraction i
stacking layers. However, due to the regular struct
convolution kernels, the field of view of a model gro
with increasing depth. To capture larger and mor
object representations, the model must be very de
makes it slow and heavy. This problem can be mi
using strides or dilation rates, but just like poolin
those techniques reduces resolution and can cause
important details. Finally, each convolution kernel mu
the entire input, even if at the given depth it is not n
useful to apply the kernel to some parts of the input
conclusion, to handle various situations, regular con
neural networks must have many parameters, wh
them heavy and slow, and they must sacrifice som
resolution while processing data.

To make 2D CNNs more robust to transformations
et al. (2015) suggest adding a dynamic warpin
between convolution layers. This module takes
as input and processes it with convolutions follo
dense layer to produce transformation parameters
choose whether non-linear transformations are allow
The given feature is then warped according to the
parameters before being passed to the next convolu
One of the techniques used by Li et al. (2020) f
same principle, but is mainly applied to the decod
the architecture. Given two features of different r
an optical flow field is dynamically computed to
low-resolution feature into an upsampled and mor
version at the same resolution as the other feature.

Another way to address the challenges mentioned b
use deformable convolutions (Dai et al., 2017). A d
convolution layer consists of two regular convolut
The first one contains twice more kernels than
weights in a kernel from the second layer. This
it is used to generate 2D offsets for the entire c
window at each pixel location of the input. Th
processing the convolutions in the second layer,
value is replaced by the value of the pixel at the corr
offset with respect to the current location. In this
receptive field can be quickly expanded as needed, an
spatial transformations can be represented. The p
further improved in methods which adds dynamic
coefficients based on the same principle (Wang et a



Journal Pre-proof
9

While some methods focus on 2D data, they also note that they
can be easily
et al., 2015; S

These con
et al., 2022)
convolutions
that regular
dynamic offs
rates for the t
also use dyna
dynamically

In Li et a
semantic vid
compute dyn
compute who
pixel of a giv
that location.

This conce
use of convo
high-perform
To achieve t
and a decode
features F.
initialized an
predictions fo

From ther
thus the pre
First, the ca
in order to g
the former k
into fully co
to create new
passing thro
feed-forward
to model the
then be obta
kernels as in
by a convolu
connected lay

This refin
with each it
Furthermore,
segmentation
embedding c
loss (see Sec
makes conne
previous tim
from previou

4.4.1. Attent
Both regu

used for sema
an alternativ
some of the
refers to a se
attention me
working inde

Attention-based architectures first gained popularity in
that work,
sm, which
hin a text,
ossible by
tor which

or and the
osition in
rmed into
uery”, the
ear layers.
computed,
alized and
-weighted

ion head”.
context to
n heads in
e decoder
ides what
attention
produced

deal with
t the same

ge patches
d in some
hich claim
(Tao et al.,
e propose
ntroduce a
f adjacent
mentation
an then be
odule of a
jacent but
on. Since

n methods

Tao et al.,
to feature
attention

features of
To do this,

by global
takes the

same size
ted feature

semantic
al. (2020)
propagate
coder and
The main
ot applied
ures, thus

ed in the
Jo
ur

na
l P

re
-p

ro
of

applied to 3D segmentation, i.e. videos (Jaderberg
u et al., 2023).

cepts are applied to object segmentation (Schmidt
. However, the authors claim that deformable
, as previously presented, lack the inductive bias
convolutions have. Thus, instead of computing
ets for each pixel location, they compute dilation
hree axes (two spatial and one temporal), and they
mic weights, as in (Wang et al., 2022b), to further
adapt the convolutions to the content.
l. (2018b) a dynamic method is employed for
eo segmentation. The principle is not just to
amic weighting or deformation parameters, but to
le kernel coefficients. This means that for each
en feature, a kernel is created and applied only at

pt can be pushed even further thanks to the joint
lution and attention (see Section 4.4.1), leading to
ance panoptic segmentation Zhang et al. (2021).
his, frames are first passed through a backbone
r to produce high resolution and highly abstract
Then, N convolutional kernels are randomly

d applied to the features F to produce mask
r both semantic classes and instances.

e, an iterative process refines the kernels and
dictions. The refinement process is as follows:
ndidate masks are multiplied by the features F
enerate instance/class-dependent features. Then,
ernels as well as the modified features are fed
nnected layers, followed by batch normalization

kernels. The kernels are further modified by
ugh a multi-head attention head followed by a
layer, that allows the kernels to interact in order
image context. The updated class prediction can
ined through a fully connected layer taking the
put. Meanwhile, the updated masks are obtained
tion with the kernels first passing through a fully
er.

ement process can be repeated several times,
eration yielding better kernels and predictions.

the method can be adapted to video panoptic
(Li et al., 2022a). The idea is to introduce an

onstraint on the kernels thanks to a contrastive
tion 4.8), a query system (see Section 4.4.1) that
ctions between current kernels and those from
esteps, and a fusion system that adapts kernels
s timesteps and fits them to the current frame.

ion Mechanisms
lar and modified convolutions have been widely
ntic video segmentation tasks. Recently, however,

e called “attention” has replaced convolutions in
state-of-the-art segmentation methods. Attention
t of techniques that attempt to mimic the human
chanism by adapting to the content rather than
pendently of the context.

speech processing tasks (Vaswani et al., 2017). In
the encoder part relies on the self-attention mechani
tries to guess the strength of word dependencies wit
as a human would do while reading. This is p
first converting each word from the text into a vec
is the sum of the word’s semantic embedding vect
word’s positional embedding vector describing its p
the sentence. The obtained vectors are then transfo
three different vector representations, namely the “q
“key” and the “value” vectors, thanks to three lin
Then, the dot product of the queries by the keys is
producing a self-attention matrix, which is then norm
multiplied by the value vectors to produce attention
outputs. This type of module is called an “attent
The three linear layers are learned to help select a
focus on, so it is possible to compute multiple attentio
parallel to capture attention in multiple contexts. Th
part is similar to the encoder part, except that it gu
the model should currently focus on by introducing
between the input embeddings and the currently
output embeddings.

While transformers were originally designed to
sequential data, Dosovitskiy et al. (2020) showed tha
principle could be applied to images by using ima
as input embeddings. This form of attention is use
works focusing on semantic image segmentation, w
that features from different scales are complementary
2020; Xie et al., 2021). Tao et al. (2020) therefor
to use CNNs to generate segmentation maps, then i
module that considers two segmentation candidates o
scales as input and use attention to produce a seg
candidate that takes the best of both. This system c
used in a hierarchical fashion, taking the result of a m
given scale and another segmentation candidate of ad
lower scale as inputs to another such module, and so
then, several attention-based semantic segmentatio
have been developed (Thisanke et al., 2023).

Attention for image processing can be spatial (
2020; Xie et al., 2021), but it can also be applied
channels. Hu et al. (2018) introduce channel-wise
where they consider the importance of the produced
a given layer given the current data-relative context.
a set of k features is transformed into a vector of size k
max pooling. Then, a small fully connected network
vector as input and produces another vector of the
in which each element is used to weight the associa
map to increase or decrease its importance.

Peng et al. (2022) introduce another 2D
segmentation method similar to the one of Tao et
in the sense that attention is used to decide what to
between the high-level but coarse features of the de
the low-level but detailed features of the encoder.
difference from this other paper is that attention is n
to segmentation maps, but directly to sets of feat
requiring both spatial and feature-wise attention.

Both channel-wise and spatial attention are us
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variant of channel-wise attention to select the
t features to describe the scene for the entire video.
a backbone computes features for each frame of
ich are then clustered into k groups. The k clusters
hted in a manner similar to channel-wise attention.
weighted features are computed, their currently
t pixels in each frame are selected by computing
tention between them and the frame features. For
both the current frame features and the selected
e k-features are then passed to a CNN to perform
entation.

mentioned methods model attention mostly in
main and do not consider temporal information.
se attention has several drawbacks that limit its
applications. Notably, it lacks inductive bias

large computational overhead as the amount of
s. To address these issues, other video object
methods (Duke et al., 2021; Yu et al., 2022)

se spatiotemporal attention, but with a limited
trast to global attention mechanisms. The work

t al. (2021) introduce “grid attention” and “strided
hich enable to jointly compute, with a CNN, the
the current frame and the features from previous

ted by the spatiotemporal attention process. Yu
do not use a fixed window to compute local

sidering both low-level features and optical flow
choose in which spatial patches spatiotemporal

uld be computed to collect features from previous

ttention is also used in some semantic video
methods (Hu et al., 2020; Wang et al., 2021a;

21; Subramaniam et al., 2022; Wu et al., 2022;
23; Su et al., 2023; Zhang et al., 2023; Athar
. In the work of Hu et al. (2020), frames are

by different shallow CNNs that alternate in a
ion. Thus, in a sequence of consecutive frames,
ifferent nature are produced. These features are
ted in a hierarchical way to the current space
ks to “attention propagation” modules that can
tures from one frame to the space of the next
his way, the segmentation output benefits from
rovided by previous contexts and from features of
s. In a different approach, attention is employed
ind of retrieval system (Wang et al., 2021a).
frame is preprocessed by a backbone and the
rocessed in parallel branches, each consisting of

tional layers. The first branch produces ‘query”
ding the semantics of the current frame, while
nch produces “current value” features with more
storing visual details. On the other hand, each
e in a fixed temporal window with respect to the

e has previously gone through a similar process,
ey” and “value” features, respectively, which are
mory. Thus, the matrix multiplication of the

e keys produces a matrix that indicates which
mation should be retrieved from the memory of

is then concatenated with the “value” features of t
frame, and given to a segmentation head. The seg
head thus benefits from both the details of the cur
and relevant long-term information. In the next sectio
focus on methods that use graph architectures to imp
quality.

4.4.2. Query-based Architectures
DETR (Carion et al., 2020) is an object detection m

relies on a novel ”query-based” approach. DETR us
backbone to produce features that are further proce
transformer encoder that takes positional encoding
input to induce the ability to make global links betwe
elements. The improved features coming out of the e
then fed to a transformer decoder along with learn
called “queries”. These “queries”, which are indep
the input, help the decoder interact with the encod
and manage potential object locations.

DETR has inspired methods beyond the field
detection, in particular, some have proposed to
concept to instance segmentation (Fang et al., 2021
2023), and others even aim to produce an archite
could be used for any kind of image segmentatio
et al., 2022). Instead of a transformer encoder, the la
includes a pixel decoder that creates a feature p
gradually upsampling the low-resolution features pr
the backbone CNN, thus preventing the model from
small objects. The transformer decoder also use
attention instead of cross attention, which restricts th
to the surroundings of the predicted mask for eac
query.

Query-based models can also be applied to Vide
Segmentation (Cheng et al., 2021; Huang et al., 2
also to Panoptic Video Segmentation (Wu et al., 2022
2023). The latter work notes that video segmentatio
produce either frame-wise or clip-wise results: th
following the first option (such as Wu et al. (202
et al. (2022a)) often lack of understanding of the tem
while methods following the second option (such
et al. (2021)) are unable to segment long videos co
To address this problem, this work splits videos into
that are first processed independently using the
and decoders of Cheng et al. (2021), and then the
consistency between adjacent clips is ensured by a
contrastive loss to the output of self-attention layer
the clip-wise decoder output embeddings as input.

The model of (Athar et al., 2023) can be applied
video segmentation tasks (including panoptic seg
simply by learning different queries. To do this,
frames are fed to a 2D backbone, then the resultin
are transformed into spatio-temporal features th
subnetwork made of alternating deformable attent
(Zhu et al., 2021), which are spatially global but
the current frame, and temporal attention layers,
spatially local but temporally global. The features
at multiple scales by the spatio-temporal module ar
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ueries through multiple layers of self and masked
n. Finally, the refined queries are multiplied with
lution output of the spatio-temporal module to
redictions.
based methods

s a powerful tool that can be used to model the
between data instances. Unlike many methods
ith temporal continuity only at a short range,

modeled through graphs can be long-range in
and temporal domains. Moreover, the graph

can take into account priors and constraints, which
to adapt to a given task. These features are

eful in object segmentation methods. Wang et al.
a graph to model the long-range relationships
rpixels (i.e., groups of pixels separated by strong

e spatial or temporal domain). The spatial
of the graph are weighted according to the color
the temporal connections are made only between

hat overlap, taking into account the displacement
and the camera motion.
l. (2019a) rely on graphs to aid the exchange

on among frames. To do this, each frame is
to an embedding by passing through an FCN.
beddings are used as nodes to construct a graph
rk. In this graph, each node is connected to itself

other node. Thus, the embedding nodes can
information in multiple iterations, during which
modified by the sum of its own attention and

ighbors. Once all the iterations are done, each
mented in a coherent way thanks to the shared

However, such a method is not suitable for
lications.

Random Fields (CRF)
type of graph called “Conditional Random Field”
used in many segmentation techniques. This
e model is a generalization of Markov Random
kes the form of a probabilistic graph. It models the

between nodes so that the state of a given node is
e state of its neighbors.
RFs are used in many segmentation methods
can moderate the independence of the pixel-wise
thus producing smoother and more consistent
ey can be used in video object segmentation
ong et al., 2018; Zhen et al., 2020) or in
eo segmentation networks (Tripathi et al., 2015;
l., 2016; Saleh et al., 2017; Chandra et al.,
metimes the CRF module can be used as a
cessing module that only spatially refines the
maps (Song et al., 2018), but 3D CRF can also be

to a network to improve both spatial smoothness
consistency in an end-to-end fashion (Zhen et al.,
hi et al., 2015; Kundu et al., 2016; Chandra

In contrast, in (Saleh et al., 2017), the CRF is
to the training pipeline so that the segmentation
to mimic its behavior and no longer needs it at

should be taken into account. In particular, due t
such as rotations that produce complex pixel disp
the resulting spatiotemporal space is non-Euclidean a
therefore be transformed into Euclidean space befo
through a spatiotemporal CRF (Kundu et al., 2
drawback of CRFs trained jointly with the netwo
the gradient can be hard to compute if their loss f
non-convex. Chandra et al. (2018) solve this problem
a special kind of CRF called “Gaussian Conditiona
Field”, which presents the peculiarity of having a c
function that is therefore easier to compute and optim

4.6. Long Term Memory Based Methods

Semantic segmentation and object segmentation
are two closely related but distinct areas of resear
object segmentation methods are often develop
semi-supervised setting, which consists of reliably p
an initial segmentation mask over time. For this
ability of a given network to rely on object appeara
is very limited. Thus, the network focuses on ad
segmentation mask to new frames. As described
4.3, some methods rely on short-term cues to pro
prediction. However, this type of strategy tends to a
errors over time and is generally unable to recover
changes such as temporary occlusions. In contr
suggest to focus only on long-term temporal dep
(Yang et al., 2019). In this sense, their method c
directly linking the original frame and its segment
to the current frame. To do this, first the embe
both frames are computed using a feature extract
the network is split into three branches. The first
a skip connection that feeds the current frame’s e
to the segmentation head. The second branch
the long-range spatial connections within the curr
embedding before feeding the result to the segmenta
The third branch computes a correspondence ma
the two frames using non-local operations that a
related to the attention mechanism, and then feeds
to the segmentation head as well. The segmenta
concatenates the features and performs a segmenta
current frame guided by a long-range dependency.

However, one could argue that both short and l
dependencies matter. While early frames provide mo
segmentation information, the current content is in
likely to be different from the original frame as the vi
increases, thus requiring knowledge from intermedi
to link the two contexts. It is therefore easy to unde
importance of memory in this domain. On the other
storage and complexity requirements increase the m
any memory mechanism employed considers. As su
the right trade-off is crucial.

Cheng and Schwing (2022) aim to achieve
information selection for arbitrarily long videos. T
the authors designed a memory network, which s
associated with keys that can be retrieved with specifi
In this work, three types of memory are implem
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or each frame, the network gathers relevant
from the three types of memory to produce the
g segmentation output using a decoder. Each
ory works differently and has a different purpose.
rm memory, which is simply a GRU, is used
e results at each frame. Retrieving information
orking memory and long-term memory works

encoder takes the current frame as input and
set of “Query” features. The query is then
the concatenation of “keys” features, which come
orking memory and long-term memory. The
duces an affinity matrix that aims to select the

riate “value” features from both memories. At
als, key and value features are generated from the
and segmentation map and stored in the working

e oldest features from the working memory are
arded, but to keep the most valuables ones longer,

se ponderated affinity scores cumulated over time
st are transferred to long-term memory. When the
mory is full, the less relevant key/value pairs are
ng the same selection process.

inty Estimation

lly, the segmentation task maps each input pixel to
label. However, when applied to real-world tasks,

be sufficient. For example, when the segmentation
ed to medical diagnostic applications, clinicians

the confidence of the class predictions for each
me is true for systems that make critical decisions,
nomous vehicles. Also, in reality, a given pixel

best described by a single label, but rather by a
bels, due to sampling quality, blur effect, or the
iness of some objects.
t for uncertainty, one approach is to apply a model
s for each frame with small variations such as

then average the results (Gal and Ghahramani,
ver, this type of strategy is slow because it requires
o be processed multiple times. To overcome this
ang et al. (2018b) propose to take advantage of the
video content. The idea is that in semantic video
, each frame must be processed anyway to produce
ion map. However, neighboring frames are often
except for some small displacements. These small
e enough to produce inconsistent results if the
ot confident in some of its estimations. By using
o model the small displacements, one can warp the
maps of neighboring frames to a common space,
the possibility to average the segmentation results
in an uncertainty estimation.
when a method aggregates estimations of the
with a network that has the same goal, it only
count the model uncertainty, but not the intrinsic
some input data. Considering this problem, Wang
) develop a pipeline that can produce accurate
s of intrinsically fuzzy images. To do this, the
continuous annotation is first used to generate

pseudo-masks are used to train a probabilistic U
et al., 2018), which is a combination of UNet and a c
variational autoencoder (CVAE) that can learn to
multiple segmentation hypotheses, each associate
position in a low-dimensional latent space. For a g
image, the probabilistic UNet thus produces several
masks corresponding to different confidence level
prediction masks are then converted into an uncert
using the entropy of the pixel-wise annotations. F
input image, the latent features from the probabili
and the uncertainty map are fed to a matting netwo
produces a smooth output based on the cues it has be

Finally, to perform video matting with high q
consistency while remaining fast, Wu et al. (2018
the temporal information inherent in the video form
to a recurrent architecture. This work demons
effectiveness of training such a network to perform
matting and segmentation tasks, especially when de
synthetic training data. It also uses a trainable gu
which can efficiently upsample a coarse segmentatio
match the details of high-resolution input frames.

4.8. Loss Functions

Most of the improvements described so far involv
to the model architecture. However, it is not the
that can be improved. The loss function describes
the model achieves its objective. However, definin
for a task as complex as semantic video segmenta
trivial. Thus, the way a given model will perform
heavily on its loss function. Jadon (2020) gives an
of loss functions for image semantic segmentation an
what is best to deal with unbalanced datasets, hard t
boundaries, focus on hard examples, or focus on s
structures.

Even if these loss functions are not directly de
video content, some of them can be easily adapted t
video segmentation because of their independence fr
architectures. For example, an “inverse tran
network” that learns to guess the homographic tran
between two edge maps can be used to train a
compensate for the limitations of pixel-wise loss
et al., 2021). To train a network using this m
student network produces high-level features that
a segmentation head, which produces a segmenta
This segmentation map is compared to the ground t
a pixel-wise cross-entropy loss. In parallel, the
features are also fed to a boundary detection he
outputs an edge map. The result is compared to th
the ground truth with a balanced cross-entropy loss t
edge detection head. Then, both edge maps are di
tiles whose size and number depend on the trade-o
the importance of local and global context. Finally, th
transformation network” is used to estimate de
parameters between corresponding tiles. This last s
to measure the total deformations between the seg
candidate boundaries and the ground truth boundari
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e cannot measure the spatial variations such as
tation, and scaling. Similarly, “contrastive losses”
22; Li et al., 2023) can be used to ensure temporal

between consecutive frames or sub-clips that are
dependently. It can also improve robustness to
uch as occlusion. The key idea is to put successive
a common embedding space and add a constraint
es vectors representing the same object or class
together while encouraging vectors representing
cts or classes to be further apart.
ep networks, it can be inefficient to apply a loss
to the final output layer. Therefore, one can add

mentation head in a shallower part of the network
loss function to it in order to guide the previous
n meaningful features in a less indirect way than
ropagation (Zhao et al., 2017). The additional

head and its associated loss function are only
the training phase and can be dropped afterward,
o impact on the inference time during testing.
unction can even help to adapt image semantic
methods to video content by using knowledge

see Section 5.5) and a temporal loss function
ame-by-frame student network to be temporally
iu et al., 2020).

ing the Inference

tent provides access to the temporal dimension.
n between frames can be analyzed and used to
-temporal features, aggregate different contexts,
semantic clues about object semantics through

ysis. All of these are useful for improving
quality. However, the architectural improvements

antage of the temporal dimension often come at a
crease in computational cost if nothing is done to
Moreover, such methods do not take into account
just as the spatial neighborhood of a pixel in a

e is often similar, it is also the same for images
in time. Therefore, in this section we will focus

hat accelerate the inference to compensate for the
of video content or to account for the redundancy

le Methods

of semantic segmentation is to assign a label to
the input. As a model trained for classification,

segmentation model must generate high-level
tures to distinguish the different classes. To do
lutional neural network stacks layers that produce
ncreasing complexity and receptive field. The
s that the more layers, the better the semantics.
p networks suffer from several drawbacks. While
duce meaningful features, these semantics are
alized, and thus are not suitable for precise

n of object shapes. Further, deep networks contain
s, but increasing the number of parameters makes

prone to overfitting.

The receptive field of a model can be increa
pooling, stride and dilation strategies, requiring fe
to produce meaningful semantics. However, whil
be effective for classifiers, it is not suitable for seg
task because all of these techniques affect the res
the features, making them unsuitable for precise pixe
To address this challenge, Szegedy et al. (2015)
“inception layers”, which is a module that break
of using convolutions in a sequential way by pro
use them in parallel. More specifically, the idea
a single-layer convolution kernel of several sizes i
and then concatenate their outputs, thus obtaining f
both large and small scale. Originally, one of thes
contained convolutions of size 1x1, 3x3, and 5x5, a
parallel pooling of size 3x3. Recently, the design has
even more temporally efficient by adding 1x1 convo
discussed in Section 5.4.2. Individually, an inceptio
more computationally intensive than a regular con
layer, but by increasing the richness of features pr
each layer, fewer layers are necessary to build mean
precise features, resulting in shallower and thus faster
Nevertheless, even if this approach offers an improv
semantic segmentation models, it may not be suffic
to be applied to video segmentation models because
5x5 convolution kernels that are slow to compute.

An alternative to inception layers is introduced
et al. (2017). The module, which is called “pyram
module”, relies on the use of pooling kernels of va
instead of convolution ones. Pooling is indeed faster t
than convolutions and makes it possible to gather in
from a much larger scale through global pooling fo
In such a module, each pooling operation is follo
1x1 convolution that reduces the number of channe
end of the pyramid pooling module, each output is
to match the spatial dimensions of the input feat
and then concatenated with them to form a tensor
information at multiple scales. The pyramid poolin
is used in semantic segmentation methods adapted
(Li et al., 2020; Xu et al., 2022; Peng et al., 2022) a
(Hou et al., 2019b; Zhao et al., 2021). Although th
pooling module allows the model to be shallower,
computationally intensive. Therefore, to further r
computations, the module is used in the bottleneck
network, at the interface between the encoder and dec
of the network, where the dimensions of the input fe
smaller and thus require fewer operations to be proce

Another way to quickly increase the receptive
multiscale layer without increasing the computation
use convolutions with multiple stride or dilation value
convolution kernels with different dilation rates
employed for semantic image segmentation (Gao,
video object segmentation (Song et al., 2018). Alt
different stride values can be used to obtain local a
features as well as more global but coarse features (
2019a).
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es without the need for deep networks. Such
efore reduce the number of parameters to learn

putations needed to perform inference. However,
architectures can paradoxically reduce the GPU’s
allelize operations in the model (Ma et al., 2018).
hat the multiscale strategies employed are not
ctive in terms of inference time, they must be
igned, for example by avoiding parallel paths with
eous complexity.

Early Layers Features

r convolutional network, early layers are able to
patterns that form detailed but simple feature maps,
convolutional layers learn more complex features.

definition, high-level features retain semantic
rather than visual details that can help create an

entation map. And since each convolutional layer
ected to adjacent layers, the only way to access
el features that could be helpful is to force their
in each layer. Because the number of generated
ach layer is limited, this phenomenon creates a
between the generation of new high-level features
rvation of low-level features, which is detrimental
rformance (Huang et al., 2017). This phenomenon
Figure 5a.
ned in the previous sections, another problem with
s is that they are difficult to train. The reason for
the “vanishing gradient problem” and is related

ack-propagation works (i.e., the mechanism that
error contribution of each neuron in the network

weight). In the last layer of a model, errors can
ssigned to the neurons that produced that output,
th of their responsibility is high and their weight
rongly. However, those neurons were themselves
the output of a larger number of neurons from the

r, so some of those previous neurons are indirectly
or the errors and are updated. But, because there
hem, their responsibility is diluted and the updates
hts will be weaker than those of the last layer. We
is reasoning for each previous layer in the trace
e reach the input layer. There, the responsibility
is so diluted that it will be hard for the neurons

thing useful, the gradient has “vanished”. This
sily illustrated by the fact that it is hard to teach a
twork to learn a simple function (i.e., the identity
et al., 2016).

f building slow and hard to train networks
features for each layer to regenerate the early
is possible to reuse already produced features
er processing them. Following this idea, He
introduce “skip connexions”, which allow early

e passed directly to the next layer, bypassing the
. Architectures using these skip connections are
ual networks” because, unlike regular networks
proximate a target function, each layer learns the
add to the input to produce the layer’s output.

Fig. 5. If a shallow feature is useful for deeper processing, a cl
like (a) has to propagate it with a filter through each convo
along the way. With residual networks like (b), the task is sim
the network only has to learn to create a zero residue at the r
for each convolution layer. However, with densely connected a
like (c), no filters are needed to propagate early features. H
number of input features increases with the depth of the layer

Because there are ways to skip each layer, the shallo
have connections that are relatively close to the outp
back-propagation more efficient and thus solving the
gradient problem. Returning to the example from th
paragraph of a network learning the identity functio
see that it would now be much simpler, since all the
to do is learn to pass the input through the skip conn
the way to the output, as illustrated Figure 5b.

In residual networks, the output of each skip con
added to the output of the skipped layer. Thus, d
still cannot access the unaltered early features (unless
produce a zero residue). To improve the ability o
access early features, Huang et al. (2017) sugges
connections so that each layer has access to eve
that precedes it. This type of network performs b
ResNets. However, as illustrated Figure 5c, the
features provided to the layers grows rapidly with de
such networks are limited in depth. To address this, t
improve these architectures in subsequent work by p
connections during training (Huang et al., 2018a). Th
start with all the connections and gradually remove
are associated with small weights compared to othe
In this way, only the most important features are t
through the network, which is more memory and tim

As shown by Huang et al. (2018a), not all features a
important at every step of the network. For exam
early features that contain details are not particularly
when creating high-level, coarse semantics. Al
networks like the ones discussed in the previous
are not compatible with the progressive reduction
sizes in deeper layers. In contrast, feature dow
helps to generalize, to gain robustness to small varia
also to improve inference time. Thus, dense ar
are not necessarily the best way to produce effi
fast networks. In fact, reusing early features to
segmentation quality remains a good idea, but ca
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et al., 2015). The encoder progressively reduces the
e features as it improves their semantics. Then, the decoder
psamples these semantics and reconstructs the details,
oncatenated high-resolution features from the encoder.

antic production part. Ronneberger et al. (2015)
model into two main components, namely the
the decoder, as illustrated Figure 6. The encoder
locks of two successive convolutions followed by
g layer. Each block produces features of reduced
mpared to its input. The output of the last block
er is then provided to the decoder, which is made

of two successive convolutions followed by an
on layer. The role of these blocks is opposite to
coder, since it is to increase the resolution of the
achieve this, the decoder blocks also receive the
the encoder whose resolutions match the target

o summarize, the semantics are built classically,
ssing any features other than those of the previous
n the semantics are upsampled with the guidance
res. This architecture is therefore much more time
le maintaining very high precision. In a similar
o et al. (2016) replace the simple link between

s and their corresponding refinement module with
n layer to adapt the features to the new context.
mentation techniques use this principle (Lin et al.,
me attention-based variants (Peng et al., 2022)
the Video domain (Su et al., 2023). The detail
entation methods can be greatly improved by

filters, which upsample a coarse output using the
on frame directly as a guide (Wu et al., 2018b).
concept of guided upsampling can be applied to
ntation by linking layers of different scales with
e convolutions (Hou et al., 2019a). In many
, the transition between encoder and decoder also
ale mechanism, as discussed in Section 5.1.
ce qualitative semantic segmentation results,
r-decoder networks must first produce high-level
th their encoder. Typically, the deeper the layer,
he level of semantics produced, and the lower
solution. In a sense, the bottom of the decoder
w-resolution proto-segmentation map. Thus, the
network output also depends on its ability to
upsample this proto-segmentation map with the

fusing the interpolated proto-segmentation m
higher-layer features that contain more spatial detail.
according to Elhassan et al. (2022), if the network i
at preserving the semantics from the initial proto-seg
map, the interactions with the feature maps from
layers have an increasing semantic gap, and thu
associations between the semantics and the spat
becomes more difficult, leading to a degraded r
address this issue, the this work proposes a netw
three parts: one is the backbone encoder, the secon
multi-scale feature fusion module, and the third is
upsampler module. In such an architecture, the m
feature fusion module can learn the association
features from multiple layers of the encoder withou
about the loss of high-level semantics. Meanw
semantic upsampler, guided by the multi-scale feat
module, can effectively upsample the proto-segmen
without suffering from semantic gaps with the featur
on.

Köpüklü et al. (2022) make the observation
convolutions are a powerful tool for video processin
such operators can process the temporal dimens
with the spatial dimensions. However, to pr
consecutive frames, such a network performs a lot of
computations in the temporal dimension, because b
share common previous frames. Inspired by
connections described in this section, the authors
create “temporal skip connections” that propagate a
tensor of a given layer at the previous timestamp to
layer at the current timestamp. More precisely, the
tensor that is propagated corresponds to the previo
that are not processed together with the current fra
given layer and therefore do not need to be recomp
principle, illustrated Figure 7, provides a good transi
next section, where we will describe methods to furt
temporal redundancy.

5.3. Temporal Redundancy Reduction

Natural video content has a lot of temporal re
meaning that successive frames often share mos
content. So far, the mechanisms we have des
not take this into account and thus perform some
computations. Hopefully, there are ways to ex
redundancy to reduce inference time.

5.3.1. Segmentation Propagation to Reduce Redund
The simplest way to exploit temporal redundancy

the segmentation map of the previous frame for t
one. To propagate a segmentation map between c
frames and account for changes between them, on
optical flow estimation. As explained in Section 4
flow estimation, which can be computed with neura
(Dosovitskiy et al., 2015; Ilg et al., 2017), allows, fo
to warp one frame to the next. Consequently, it i
to apply the same transformation to warp the corr
segmentation map to the next frame, thus correcting
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ciple of “temporal skip connections” (Köpüklü et al., 2022).
tion, the parts of the tensors that are not involved in a
rocess are not represented. New content is represented in
mporal skip connections are represented by black arrows
e bold framed features from the previous time step to the

ep at the position represented in transparent blue.

due to motion. However, optical flow estimation
t, and neither is the resulting warping. If the
ration is applied many times in a row, errors
ate and produce a poor quality result. Similarly,
e motion/distortion between two distant frames
poor results because the content between the two
different to accurately match the corresponding

s this, Jain et al. (2018) propose a compromise
entation map reusability and error accumulation
reference keyframes at regular intervals and

he segmentation for the other frames. Specifically,
re segmented by a deep convolutional network,
w but powerful. Then, until another keyframe
he generated segmentation map is warped to the
e thanks to optical flow estimation. In parallel,
llower network computes low-level features of
frame and concatenates them with the warped

map to guide a 1x1 convolutional layer that
final current segmentation. Because this model
o sequentially, it cannot use future keyframes to
imation of the current frame. Also, the fact that
s are determined by a regular time interval makes
ptable to sudden changes in the scene. To account
STM cell can be employed to select keyframes
t al., 2017), which are then segmented using a

mentation method. Finally, the segmentation of
g frames is done by interpolating the neighboring
ith a single 5x5 CNN layer.

g High Level Features
ion maps are the end product of segmentation
deally, the segmentation head that produces them
antics from high-level features and reframes them
ay using low-level details, discarding the general

d knowledge that high-level features typically

localized, so it does not lend itself well to further mo
or corrections. Thus, a middle ground is to propagate
features instead of just the final segmentation map. P
high-level features instead of segmentation maps al
advantage that such methods are easily adaptable to
than semantic video segmentation.

One such approach is proposed by Zhu et al. (201
keyframes are selected in a regular schedule and proc
deep CNN to obtain high-level features. Each non-k
fed together with the last associated keyframe into
network, which determines a deformation flow m
uncertainty field. The flow map is then used to
high-level features to the current frame. The warpe
are then multiplied term by term by the uncertain
account for potential warping errors due to phenom
as occlusion. Each high-level feature is then proces
same segmentation head, regardless of whether th
are directly generated or warped from a keyframe.
a lightweight detail enhancement network can be
each frame after feature propagation to account for i
distortions and occlusions (Li et al., 2019).

Li et al. (2018b) note that simply warping feature
each pixel contains cues about spatial neighborho
optimal. Also, as mentioned above, regularly spaced
do not account for significant scene changes. T
this, Li et al. (2018b) suggest that each frame pass
a low-level feature extractor. Then the result is
small network along with the low-level features fro
keyframe. The small network then decides whether
frame should become a keyframe or not. If so, the
features are fed into a deeper network that creates
features. If not, the low-level features of both the key
the current frame are fed into a convolution layer th
convolution kernels for each pixel. These convoluti
are used to perform a dynamic convolution (as ex
Section 4.4) on the high-level features from the last
warping them to the current frame space with mor
and reliability than optical flow-based methods. F
each frame, the high-level features are processed by
segmentation head, regardless of whether they ar
generated or not.

Some work claims that most methods that warp pa
do not take into account the intra-frame correlatio
pixels within the current frame, and thus reduce th
(An et al., 2023). To address this problem, a dual
global correlation network can be constructed. Fir
network has a heavy branch that is used to proces
frame as well as keyframes. The heavy branch sta
low-level feature encoder that takes any frame as i
it is followed by a heavy encoder that produces
features, and finally, the branch ends with a segmenta
Any frame that is not the first in the sequence pass
the low-level encoder. Then, corresponding relatio
low-level features of both the current frame and th
frame are processed thanks to a local attention m
Section 4.4.1.
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e, the inputs and outputs of the local attention
d into a decision network that is trained to predict

ween the results of the heavy and light branches
If the predicted error is a above a predefined

e frame becomes the keyframe, otherwise the
tation continues with the light branch. The next

ght branch is simply to multiply the output of the
n module by the high-level features from the last
that the derived high-level features are pondered
orrespondence between the two compared frames
tures. Meanwhile, the low-level features from
ame are further processed by three convolutional
e output is added to the propagated high-level

ribed above. The resulting tensor, which is subject
consistency constraint, is finally transformed into
n map by passing through the same segmentation
heavy branch.

Networks
vious sections, we saw that segmentation maps,
erally high-level features, change slowly (Wiskott
ki, 2002). More specifically, low-level signals

of a given video content change faster than
es. In a classical CNN, however, each level of
omputed at each temporal step. Methods that
ntation maps or high-level features for multiple
de an incomplete solution to this problem because
reduction is only considered at one scale. To
dundancy, a refresh rate adapted to the speed
anges can be applied at multiple scales within

This is the idea behind clock convnets where
atures are refreshed every time, while deeper
efreshed less frequently depending on their depth
t al., 2016). The work rely on networks that use
ions to form a residual network. Thus, changes
rs are propagated to the end of the network even
ts of some layers are frozen. In this method,
te can be triggered by scheduling, but also by
portant changes in the features of the previous
ilar concept is exploited by Carreira et al. (2018),
cus on improving the parallelization of each CNN
ethod also uses other tricks such as knowledge

ee Section 5.5) and feedback, which is the fact
entation result of the previous frame is given as

with the current frame. One of the drawbacks
hat use uneven layer activations over time is that
ational load is inconsistent over time and can be

frame-by-frame methods during computational
, while fast on average, these peak delays make
s incompatible with real-time applications.

g Unchanged Regions
dynamically adapting the computation of the

its depth, some semantic video segmentation
pose to spatially adapt the feature computation
n the amount of changes in that area (Xu et al.,
ncrete terms, there are no keyframes, but rather

several fixed regions. Then, for each region, the cu
and the last corresponding key region are fed into
flow network followed by a decision network that d
the amount of motion between the two. If the
small, the segmentation map from the key region
to the current space, thus avoiding the computat
current one. Otherwise, the warping would be imp
the segmentation map of the current region is compu
deep CNN and the result serves as the regional key f
frames.

Rhee et al. (2022) use a different approach where t
a network that can learn to compute only features
correct the segmentation evolution relative to the c
previous frames. To do this, the current frame first go
a low-level feature extractor. Then, both outputs of
and the previous frame are fed to a network that de
pruning mask for the blocks of a deeper ResNet. A
time, the low-level features of both frames are partit
patches, and the similarity between corresponding
estimated using the cosine similarity metric. As a
addition to the previously computed mask, we ob
mask that contains the similarity between adjacent
each patch. The current frame is then fed into a dee
network, some parts of which have been frozen b
mask. Since the high-level features from the previ
have already been computed, they can be mixed with
frame by using the 2D mask to weight the contribu
both sources. Finally, the blended features pass
segmentation head to create the current segmentatio
the next section, we will see that it is possible to go ev
in terms of feature calculation savings.

5.3.5. Removing High-Level Features
As we discussed earlier, high-level features ar

aggregating low-level ones. Computing and a
various low-level features is a slow process. Thus, if
features could be approximated by low-level feat
different time steps, it would be possible to distr
computation over time, thus reducing inference
achieve this, frames can be alternately processed b
shallow networks in a circular fashion (Hu et al., 20
shallow networks, trained with knowledge distillatio
complementary low-level features. Because they
different time steps, the features produced by a ful
not aligned with the current frame. Thus, instead
optical flow to align previous features to the current
authors propose to use a sequence of “attention p
modules” that dynamically select what to take from e
successive feature sources and propagate it to the late
the end of the chain, the output corresponds to the seg
of the current frame.

5.4. Modified Convolutions and Substitutes

Convolution is a computationally intensive operat
large kernels increase the receptive field, they req
computations than small kernels. A large number
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ous features. However, this is another factor of
l overhead. Finally, 3D convolutions, which are
the context of semantic video segmentation, are

of increased inference time. To compensate for
tional overhead, several modifications have been
nvolutions. We summarize the most common ones
ing.

and Dilation
most common ways to reduce computation time is
e stride hyper-parameter, as depicted in Figure 8a.
s the offset step between convolution operations,

ing successive operations from overlapping too
same pixels. Another effect is that the output
reduced compared to convolutions with smaller

reducing the number of operations on the next
ever, stride does not increase the effective size
lution kernel. Hence, the nature of the features
3x3 convolutions with or without a large stride

the ones with a large stride are just sparser, thus
intermediate features.

features of a larger scale without increasing the
arameters or without having inconsistent outputs,
dilation coefficients instead. The idea is to make
rger without changing the number of neurons by
between each of them. In this way, the features
resent a larger but less detailed portion of the
s, as shown in Figure 8b. Dilated convolutions
sed in a semantic video segmentation technique

convolutions (Qiu et al., 2018). Since 3D
are by nature very computationally expensive, the
n in this case helps to have large kernels without

omplexity.
both stride and dilation coefficients are associated

of some input detail. A high stride coefficient
e creation of highly detailed features that are
re sparsely in the input tensor, while a high

cient results in larger scale features produced
easing the kernel size (and thus the resolution).
ntage of the computational reduction offered by
tions without suffering from their shortcomings,
to combine a multiscale approach (see Section
use of dilated convolutions (Song et al., 2018;
In this way, paths using regular convolution

all size produce detailed local features without
tation, while parallel paths using convolutions with
cients of different scales can produce coarser but
features at about the same time.

, one can understand that it would be great
tion layer dealing with natural images could
adapt its behavior depending on the nature of the
y being computed. Some parts of a given input
contain important details, while other parts may
tural information on a larger scale. Schmidt et al.
se a strategy that makes this possible. This method
category of dynamic methods described in Section
ased on the frame-wise segmentation technique

Fig. 8. The behavior of two different convolution kernels (in o
input feature map (in blue): (a) A 3x3 convolution with same
a stride of 2. (b) A 3x3 convolution with same padding and a di
of 2.

of Dai et al. (2017). Specifically, they introduce
convolution modules”. Such a module first contain
3D convolution layer with small-scale kernels, who
to determine for each position whether it is more
extract details or larger-scale structural information.
this, the layer is trained to produce three dilation v
one emphasis value at each position. The three dilat
are then used by a second 3D convolution layer
module. For each location of the module’s input, t
layer takes the previously computed dilation values a
them to the three dimensions of its kernels before p
the convolutions. Each local result is then multipl
corresponding emphasis value to produce the modul
By using such modules, the model is able to dynamic
to its content while maintaining the inductive bias gi
grid of convolutional kernels. Furthermore, such
learns the trade-off between detail and structural in
while maintaining an identical computational time
case.

5.4.2. Kernel Factorization
A 2D convolution kernel has two spatial d

However, regular convolution kernels also hav
dimension whose size is equal to the number of c
the input tensor. This is because regular convolutio
compute the full depth of the input tensor for ea
location. A 2D convolution kernel is represented F
and a 2D convolution layer of three kernels is
Figure 9a. In most CNN-based models treating im
first input has three channels corresponding to the t
components. Then, each layer contains multiple c
kernels allowing the model to capture different fe
contexts. Thus, as we go deeper into a CNN, the s
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oference between regular convolutional layers and group

ayers. (a) A regular 2D convolutional layer of three 3x3
ith a depth of 6 channels, for a total of 162 neurons. (b)

t tensor is divided into 3 groups, so that each convolutional
s only two layers. This reduces the number of neurons to

features typically gets smaller, but the number of
reases. Since regular convolutions consider each
the previous tensor, most of the computation time
yers is due to the large number of channels.
this problem, Krizhevsky et al. (2012) propose

olutions”, illustrated Figure 9b. The idea is to
llel convolutions on subsets of the input channels
putation. Xie et al. (2017) show that this not only

ce inference time but also helps to produce better
ns, thus increasing quality. Sifre and Mallat (2014)
d introduce “depthwise convolutions”, which are
ase of group convolution where each channel is
an independent kernel. In both cases, the channel

are greatly reduced. Thus, to ensure that the
ins links between features without increasing the
time, one can use 1x1xd pointwise convolutions
the whole channel depth. Group convolutions and
parable convolutions can then be used to create
et well performing architectures (Ioannou et al.,
d et al., 2017).
cifically, group convolutions and depthwise
are used in various video-related applications

ification (Tran et al., 2019), object segmentation
et al., 2020), and semantic segmentation (Jin et al.,
ever, Ma et al. (2018) suggest that while using

lutions and 1x1 convolutions reduces the number
s, it also increases the storage cost, which can
eed of the network. Therefore, the number of such
t be chosen properly to avoid the opposite effect
ended.
f reducing the number of neurons of convolution
out changing their size can be pushed further
at just as the channel dimension can be used
regular convolutions, the same is true for the
nsions (Jaderberg et al., 2014). A regular 2D
kernel can be factorized in several ways other
depth-wise, and point-wise convolutions. Spatial
re first processed using a 1D convolution, and
her spatial dimension along with the channel
e processed using a 2D “flat” convolution. Another

Fig. 10. (a) Features maps being processed by a 3x3 2D conv
Features maps being processed by a separable 3x3 2D convolut
less neurons (represented in orange).

solution, which is suggested in the same work,
to depth-wise convolutions but go even further by
each 2D depth-wise kernel by two successive channe
convolutions. This is illustrated Figure 10b. Interes
larger the original kernel, the more the kernel fa
reduces the computational complexity.

Since 3D convolutions are even more comp
intensive than 2D ones, Tran et al. (2018) suggest th
of using regular 3D convolutions to process videos,
be approximated by a factorization of a regular 2D c
followed by a temporal 1D convolution. The
such a module offers less descriptive power than r
convolutions. However, due to the computational
of regular 3D convolutions, it is rarely possible
every 2D convolutional layer with its 3D alternative
processing methods have to choose which layers
2D convolutions in and which not to. Such a cho
trivial and often depends on the task at hand and th
architecture. Nevertheless, as factorized 3D convo
much lighter, they can be used in many layers o
network (Mahadevan et al., 2020), thus eliminating
to make a difficult choice.

Qu et al. (2020) propose to further reduce the com
overhead of 3D volume computation by factorizing
convolution kernel into three perpendicular 1D co
interleaved with dense connections. On the other ha
et al. (2018) offer a trade-off between factorized con
which are fast but approximate, and regular 3D con
which are more precise but slow. In this latter w
modules like those from Tran et al. (2018) are p
in such a way that the 2D convolutions of the t
are orthogonal to each other. In this way, ric
can be generated in each dimension, thus replaci
successive regular 3D convolutions. However, to t
our knowledge, these two methods have not yet bee
semantic video segmentation.

5.4.3. Modified Convolution Modules
The modified convolutions described so far ca

as building blocks to construct modules that m
architectures even more efficient. Sandler et al. (201
that the information contained in a regular set of fea
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gular residual block. The skip connection is made between
any layers, and the Relu activation is applied at each step,

rmation is in a compressed form. (b) An inverted residual
ses less computational resources and uses Relu activation
oes not cause information loss (Sandler et al., 2018).

ntly embedded in a lower-dimensional subspace.
hand, 1D convolutions can be used to change the

hannels of a given tensor, including compressing
information into a lower-dimensional subspace.
authors also tell us that compressed subspaces are

for transformations followed by ReLU activation
y either result in information loss or poorly
inear transformations. Therefore, the classical
itectures (illustrated in Figure 11a) that use skip
between uncompressed features and that use
nvolutions and destructive activation functions

intermediate compressed features are poorly
the contrary, this paper explains how to construct

sidual blocks” (illustrated in Figure 11b) that
aving skip connections between dimensionality
ors and using 1x1 convolutions to construct wide
tensors whose redundant information can then
y depthwise convolutions followed by ReLU6
e Section 5.8).
l. (2017) explain that in a model that uses group
followed by 1x1 convolutions, the pointwise

present most of the computational overhead. In
oup produces multiple channels as output, which
ed with all the other channels from the other
s to 1x1 convolutions that take the entire set of

input. The authors then state that while channel
etween different groups is essential to building
entations, the way it is done can be more efficient

of 1x1 convolutions that take all channels as input
they use 1x1 convolutions that take only one channel
group as input. Thus, several small 1x1 convolutio
used in parallel to create new groups based on mixe
from the previous groups. To ensure that all previou
are used to create the new groups, each 1x1 convolut
different channel from a given group. This preserves
interaction high with minimal computational overh
though it is not random at all, the authors call th
“channel shuffle”.

Moreover, a study by Ma et al. (2018) highligh
architecture-related practices that are counterprod
inference speed. First, it is not advisable to have c
layers with a large difference in the number of
output channels. Second, using many group co
creates too many channels, which has a negative
memory consumption and thus on inference speed.
the network into many parallel paths that are not ide
can also reduce the ability to parallelize. Finally, ele
operations such as “ReLU”, “AddTensor”, and
also affect memory consumption and thus inferen
Considering all these aspects, the authors design
of blocks that use both “channel shuffle” and anoth
operator called “channel split”. This new operator sim
the input channels into two separate paths. The ar
mentioned so far in this section can be modified to be
applied to video-related tasks (Kopuklu et al., 2019).

While many works propose to apply some mo
to spatial convolutions, Wu et al. (2018a) propose
approach by replacing spatial convolutions wit
operation called “shift”. The principle is that eac
of the input tensor is shifted in an independent an
spatial direction. Then, the shifted information is mi
channels by means of 1x1 convolutions. This alter
the advantage of mixing spatial information without
computation, as opposed to spatial convolutions,
orthogonal to most other model optimizations, so
used in many circumstances. Even though it does
to have been used for semantic video segmentation,
interesting to try it in this context.

Fast Transformers
We have already discussed the contrib

transformer-based architectures to improve mod
quality in Section 4.4.1. However, such arc
if designed efficiently, can also help improve q
frame-wise tasks (Li et al., 2022b). A recent wo
transformers for video segmentation presents an a
based on sparse spatiotemporal transformers for vi
segmentation, and claims that the method is also ap
other tasks such as semantic segmentation (Duke et
Just as convolutions can be made easier to compute u
or dilation, self-attention layers can also be modifi
way. To achieve good results and to be robust to
temporal changes while remaining fast, the propo
takes as input a fixed-size sequence consisting of t
frame and the previous frames as well as their
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mbeddings, which are optionally summed to a
bedding. The resulting tensor is then fed into

patiotemporal self-attention modules with sparse
These modules consist of multi-head attention

a feed-forward layer, the two being interleaved
nnections and normalization layers. The role
ules is twofold. First, the final output of the
modules gives features that incorporate temporal

Second, in each layer, the “object affinity”
uced by the multi-head attention component are

that the information about how to propagate
information across frames is passed directly to
art of the network, along with the final output of
of modules and the current frame. The decoder

etwork, which is also a CNN, then computes the
tation map for the current frame. The reason

ture is fast is that the self-attention components
ds are sparse. A given pixel does not have
to all other pixels, but only to a small fraction
y a spatiotemporal pattern. However, because
ention layers are stacked, a dense connectivity
pixels is built indirectly as depth increases,

ng-range dependencies in the spatiotemporal
computational cost.

ach of Li et al. (2021) also aims at reducing
time using transformers, but in the context of

mentation. This work uses a classical 2D CNN
as encoder and decoder, and the same kind of
modules as the approach of Duke et al. (2021).

tead of adding sparsity directly in the self-attention
in the previous paper, this time the sparsity
the point where the attention module is applied

he methods discussed in Section 5.3.4). The
in a typical scene, the segmentation difficulty is
nsistent: there are some large regions that contain

s, while other regions contain multiple objects of
re. Therefore, the time-consuming operation of
ontent from previous frames does not significantly
ove quality in simple regions, while it can be
tinguish object boundaries in complex regions.
the features from the current frame are used to
e complex regions. Then, each complex region
e current tensor is used as a query to find cues in
frames. Since each previous frame has produced

can be used as keys and values to perform the
chanism. However, to further avoid unnecessary
, the attention between a given query region and a
e is not performed globally, but in a local region

und the spatial position of the query and whose
ses as the frames are temporally distant relative
t time step. These mechanisms, once combined,
del to incorporate temporal information where it is
while remaining fast.

w in Section 5.4.3, 3D convolutions can be
to simpler units to reduce the computation. The
said for spatio-temporal transformers as seen in

is preprocessed independently by a CNN backbon
the extracted features of adjacent frames must com
to produce spatio-temporal features. However, c
attention matrix to link pixels from features com
multiple frames is very computationally intensive. T
this problem, “decoupled transformers” are introdu
idea is to first take features belonging to frames
time window and gradually downsize the spatial res
the oldest features. Then, multi-head self-attenti
performed independently on the modified features, t
being faster on the oldest and thus smallest featu
low-resolution results are then upsampled to match
frame results. To handle feature misalignments due
the past features are passed through deformable co
(see Section 4.4). Once the features from diffe
are aligned in a common space, a 1D temporal tr
can be applied at each pixel location, mixing in
across time. This process results in much less co
than directly applying attention to features from
frames. The method described above can be comb
another transformer branch whose goal is to aggreg
frame features from different backbone stages (co
with the result of the temporal branch correspond
current frame) and process them in a 1D fashion
channel dimension. An object detection method has
“deformable transformers” (Zhu et al., 2021), whic
similar to the way “deformable convolutions” work (s
5.4). Notably, this principle has been used in a vide
segmentation method (Athar et al., 2023).

5.5. Knowledge Distillation

It is generally accepted that the more paramete
learning model has, the more knowledge capacity it
insufficient training, large models tend to learn the
heart” and thus overfit. However, given a sufficient
quality data, a large model can learn more complex
than a small model. Even so, the complexity of the
that a model can learn with a regular training strate
limited to a fraction of its theoretical knowledge ca
and Caruana, 2014).

To overcome this challenge, the first step is to crea
that is large enough so that it can solve the task a
learning complex features despite the lack of induct
the training samples. The large capacity of this ini
improves its ability to learn complex features, but on
learned, such capacity is no longer needed to store
second step is therefore to create a smaller “student”
will receive the knowledge gathered by the larger mo
the “teacher” in this context. By setting the goal to
behavior of the teacher, the student learns the same
teacher, but the training has a much stronger inductiv
thus requires much less capacity to build up interestin
This process is called “knowledge distillation” and a
create compact networks that behave the same wa
better, if the downscaling has allowed some gene
as their large teacher model, while having consider
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agram illustrating the principle of feature-based and
knowledge distillation techniques.

agram illustrating the principle of the relation-based
illation techniques.

hus being faster to compute (Phuong and Lampert,

many different knowledge distillation techniques
2021). The first element that helps distinguish
type, referring to the material the student network
copy. For example, in the 2D segmentation
Chen et al. (2020), the student learns to copy
r response) of the teacher network, making it a
ed knowledge distillation technique. There are
ased techniques where the student learns to copy
teacher’s features (Liu et al., 2019) or a latent

n of its features, created by an auto-encoder, which
ercome the models architecture differences (He
. Those two types of knowledge distillation are
gure 12. Differently, in relation-based knowledge
chniques (Yang et al., 2022), the student network
rn to independently mimic the teacher’s output
rmediate features from single data samples, but

py the relationship between the inputs and the
s across multiple data samples as shown in Figure
iu et al. (2019) show that a single method can fuse
of distillation types.

n to the type, what can differ is the mode of
Most methods use an offline distillation scheme,
t the teacher network is fully trained before
ransfer and its weights are frozen during the

performed simultaneously, which is called “online di
Finally, a single network can teach itself by tr
knowledge from deep layers to early layers, which
“self-distillation”.

Knowledge distillation is a very powerful meth
used in many domains where fast inference is requi
there are several examples of semantic video seg
techniques that rely on it in different ways. Liu et
illustrate the thin boundary between frame-wise
segmentation techniques. Indeed, the goal of thi
to create a compact network that can perform
consistent semantic segmentation at inference tim
processing more than one frame at a time. To achiev
model is intensively trained with multiple temporal c
However, there is a gap between small and large
terms of the temporal consistency that the model ca
itself. To narrow this gap, the compact model learn
the behavior of a deeper model thanks to knowledge d

Knowledge distillation can be applied not only
with similar architectures, but also to models with
structural differences (Carreira et al., 2018; Shim
2019; Bai et al., 2022), which can help to train effi
difficult-to-train designs. Holliday et al. (2017) s
knowledge from multiple semantic segmentation ar
can be transferred to a unified network, resul
lightweight model that combines the diverse stren
teachers while being significantly faster than th
them. Differently, Hu et al. (2020) explain that
of multiple shallow networks used in parallel ca
much representational power as one deeper netw
the case of semantic video segmentation, the idea
compute the multiple networks simultaneously, but
the redundancy between successive frames by comp
shallow network per frame in a circular fashion (as
in Section 5.3.5). To be efficient, this process requir
features produced by each shallow network are comp
To achieve this, and to build a strong representat
frames, knowledge distillation is used. Here, the te
deep feature extractor model that the shallow studen
to replace. In order for them to learn complementar
the deep features produced by the teacher are divid
many groups as there are shallow networks, so that ea
focuses on learning a different subset of features.

5.6. Network Compression

One approach for reducing the memory footp
network is by modifying its parameters. The two mos
approaches are either to reduce the number of p
by pruning or to reduce the number of bits use
each parameter, which is called quantization. In b
compressing a network is useful to make it suitable f
with limited memory, such as mobile devices. For
Iandola et al. (2016) take Alexnet, a deep image cla
model, and reduce its memory size by significant
the model weights and quantizing the resulting we
32 bits each to 6 bits. At the end, they manage to
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ting its performance. Moreover, Paupamah et al.
that reducing the memory size of models has other
ts on image classification tasks, such as reducing
e and increasing robustness to overfitting. In this
ill discuss how these strategies can be applied to

eo segmentation.

ts Quantization
antization seems to be very effective when applied
le tasks such as classification. Some works design

t achieve an astonishing memory reduction, using
rameter (namely “binary networks”) (Courbariaux
2016; Rastegari et al., 2016) that can be orders
e faster than their unquantized version while
good quality. However, segmentation is usually

more challenging task and sometimes requires
x layers with, for example, upsampling or dilated
. Nevertheless, some work has been done in the
tization of image segmentation networks (Vogel
Miyama, 2021; Ahamad et al., 2021). The results
s possible to reduce the size of the original 32-bit
o 8 or 3 bits, depending on the models, without
of the original quality.
tely, to the best of our knowledge, there are no
e quantization of semantic video segmentation

ch would be even more challenging than its 2D
evertheless, the quantization of a 3D UNet model
volumetric image segmentation demonstrates the
f doing so on models adapted to video content,
rmat is also three-dimensional (AskariHemmat

g
particularly well suited to networks containing

ted layers. The first reason is that these layers
ost parameters compared to convolutional layers.
demonstrated by Iandola et al. (2016), these
such densely connected architectures that many
be removed without degrading the most important
This is illustrated Figure 14a.
e of fully convolutional networks, this is more
ause removing a neuron has a more significant
he behavior of the network. A convolutional
rt of a feature extractor that is applied to each
he input tensor. Moreover, even though pruning
memory footprint significantly, most hardware

e not designed to efficiently load the resulting
onvolutional filters. Consequently, the reduction
on time is limited. Nevertheless, Shimoda et al.
se a way to prune a FCNN network with efficient
e reduction. To do this, the pruned network is
dense network via knowledge distillation (see
More importantly, the pruning strategy (which

Figure 14c) consists of taking each filter and
ights by their absolute value, then pruning a fixed
f the smallest ones. As such, since each filter is

in the load and the inference time can be improved.
In a convolutional layer, there are typically multi

each of which produces a channel output of variable i
compared to others. Thus, instead of pruning
weights, one could remove entire channels/filters a
in Figure 14b. This principle is applied in several me
as the one from Chen et al. (2022) where a network is
for both classification and 2D segmentation tasks. T
use the scaling factor of the batch normalization
determine the importance of each channel. By apply
normalization to the scaling factors, they obtain spa
and can therefore drop the filters/channels that ha
normalized scaling factor close to 0. A similar pr
used by Huang et al. (2018a) to accelerate the cla
task. There, the importance of an input channel is d
by the filters that use it: if the L1 norm of the weigh
that channel is small compared to the weights tr
other channels, then that input channel is no longer n
the filter that produces it can be dropped. To rein
phenomenon, the authors use group convolutions (s
5.4.2) and encourage the filters belonging to the sam
use the same input channels thanks to a group-lasso
(Zhang et al., 2020). This way, each group takes on
of the remaining channels and thus performs less
computations.

Finally, Bai et al. (2022) present a pruning mech
does not lighten the memory footprint of the net
is specifically designed to reduce the inference ti
segformer architecture (Xie et al., 2021), a transfor
2D semantic segmentation network. First, the author
the magnitude variation of the segformer’s neuro
different instance inferences. The results show
some neurons are informative most of the time,
highly informative only in some cases, and finally
neurons that are almost never informative regardl
context they are in. This motivates the development
mechanism that uses both the current input and t
linear layer parameters to create a mask of which
keep and which to discard. The mask is then appli
the current linear layer parameters and the input o
linear layer. This saves time by avoiding the comp
currently unnecessary neurons and by telling the
which output to ignore. The results show that th
previously identified as never informative are inde
masked, while those whose usefulness depends on t
are dynamically activated only when necessary.

Similar to quantization, so far there is not much
pruning applied to semantic video segmentation.
effectiveness of pruning on 2D tasks, its application t
video segmentation is an interesting avenue for futur

5.7. Network Search

The most suitable neural architecture can be ver
depending on the task. The construction o
architectures often relies on manual trial and err
can be very slow and tedious, especially given th
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are several ways to prune a network. In networks with
a) such as (Iandola et al., 2016), pruning can be done in
removing the least useful neurons and connections. In fully
etworks, pruning can be done in two main ways: The first
e entire feature maps and their respective kernels instead
dividual neurons as in (Chen et al., 2022; Huang et al.,
her method (c), is to set a fixed fraction of the weights in
nal filter to zero as in (Shimoda et al., 2019).

able. A field of study called “Network Search”
esigning better search strategies to determine the
itecture for a given task. There are several search

exploring the space of possible networks. Yang
suggest a method that starts the search with a

etwork whose complexity is above the desired
timize the latency of the model while maintaining

f its results, the method works iteratively. At each
eral candidate networks of identical complexity
d by removing filters from the current model.
ate is then briefly fine-tuned and evaluated. The
th the best accuracy is then defined as the new
l for the next iteration. Once the target complexity
e iterative process stops and the resulting model is
uned.
, Tan et al. (2019) follow a reinforcement learning

an RNN as the controller (i.e., the candidate
enerator). It also has the peculiarity of factorizing
ace into modules in a hierarchical way. The idea
h layer of a network is considered independently,
ace defined by the set of possible combinations of
riation is too large to be explored efficiently. Thus,
some layers together so that they adopt the same
the same time, one can greatly reduce the search
ver, depending on their position in the network,

ifferent roles and data flows, so it is not necessarily
o group layers with these differences together. In
e term “hierarchical” describes the fact that the
d by the factorization are made in such a way that
ide them share a close role and data flow.
r approach is based on a gradient optimization
et al., 2018). The strategy trains a one-shot

called a supermodel) that contains all variations
h space and jointly relaxes this space in a
anner so that the network progressively selects the

sharing to greatly reduce redundant training, in c
strategies that independently train nearly identica
Finally, network search can be used directly to
model specifically designed for semantic video seg
(Nekrasov et al., 2020). The authors use a reinforcem
strategy with a two-layer LSTM network as the con
suggested by Tan et al. (2019). Here, only a part of th
is modified, which reduces the search space. The c
of the search is further reduced by using factorization
that share the same internal architecture. At the end, t
converges to architectures that do not need to per
optical flow estimation and are thus much faster.

5.8. Activation Functions
Activation functions are an essential part of mod

architectures because they introduce nonlineariti
behavior of the network. Depending on the task at
architecture of the model, but also on the network
more appropriate activation function can vary. The
activation function for each network layer has an imp
quality of the network results, but can also have an im
inference time. Some of the most popular activation
are the Sigmoid function and the Rectified Linear Un
function. Since its introduction, ReLU has led to man
such as Relu6 (Krizhevsky, 2010), Leaky ReLU, E
Linear Unit (ELU) (Clevert et al., 2016), Parametric
et al., 2015), Gaussian Error Linear Unit (GELU) (
and Gimpel, 2016), and Swish (Ramachandran et
These variants can fix some drawbacks of ReLU
the dead neuron problem or the fact that the f
not continuously differentiable. However, while th
function is computationally simple, these improvem
come at the cost of increased complexity. To ad
Avenash and Viswanath (2019) propose a low-c
version of the swish activation function that outperfo
in some image- and video-related tasks. Similarly, C
et al. (2015) introduce the Hard Sigmoid function,
discrete and thus faster version of the Sigmoid.

6. Available Datasets

Semantic video segmentation is a complex task t
requires a large amount of training data. In this sectio
describe the existing datasets for such a goal.

• Camvid (Cambridge-driving Labeled Video
(Brostow et al., 2008) contains five video seque
the dashboard viewpoint of a driving car.
the five sequences, one frame per second of
footage is densely annotated with 32 semant
In the remaining sequence, one out of every t
is annotated with semantic classes. In total, t
contains over ten minutes of video and up to 701
frames.

• Cityscapes (Cordts et al., 2016) is a dataset
videos of urban scenes from 50 cities, tak
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s and seasons. These videos are annotated with
ntic classes belonging to 8 groups. The first part
ataset contains a selection of 5,000 highly diverse
ippets taken in 27 of the aforementioned cities.

h frame of each of these 30 frame (1.8s) snippets is
d with precise pixel-wise annotations. The second
this dataset contains the remaining footage from
ther cities, with roughly annotated frames every
nds or every time the vehicle moves 20 meters
, for a total of 20,000 coarsely annotated frames.
otations are made using polygons, and overlaps are
rated, even when the footage contains transparent
e objects such as windows or tree leaves.

pes-VPS (Kim et al., 2020) is an extension of
scapes dataset for panoptic segmentation. In fact,
the 5,000 finely annotated video snippets from
inal dataset, 500 of them also contain instance
at make them usable for panoptic segmentation

s. This extension further enriches these 500 clips
iding for each snippet a panoptic annotation of the
h, 15th, 25th, and 30th frames in addition to the
annotated 20th frame. This provides additional
aterial for semantic segmentation as well.

pth (Silberman and Fergus, 2011) is a panoptic
ataset of indoor scenes recorded by a Microsoft
amera. 64 scenes, classified into 7 scene types,

corded at a frame rate of 20 to 30fps. Out of a
110,964 frames recorded, including both RGB and
stimation, 2,347 are associated with dense labels
g to a set of more than 1,000 classes, which
s to approximately one labeled frame every 2 to
s.

pth V2 (Nathan Silberman and Fergus, 2012) is
e kind of dataset as NYUDepth and contains 464
al scenes of 26 types. This makes up to 408,473

es, including 1,449 densely labeled ones.

(Raza et al., 2013) is a dataset originally designed
rstanding the 3D geometric structure of outdoor
cenes, but it can also be used for semantic
tation of videos. It contains 160 videos obtained
ouTube or obtained by filming while walking
ing in urban areas. The videos have different

atios and resolutions, and each contains 60 to 400
More than a hundred of them (20,000 frames) are
notated with 6 general labels (mix, sky, ground,
rous, and object). However, because the manual
truth labeling was done on a superpixel scale

han a pixel-wise scale, the annotations contain
gmentation errors.

g Forest (Valada et al., 2016) is a multispectral
ltimodal video dataset for semantic segmentation
ructured environments. It contains sequences

by an autonomous robot that traveled 4.7 km

dataset contains 15,000 frames obtained by su
the original 20Hz content at 1Hz. Among the
366 were manually annotated at the pixel lev
labels (obstacle, trail, sky, grass, vegetation, and

• Indian Driving Dataset (IDD) (Varma et al
similar to Cityscapes, containing 182 driving
that take place in two Indian cities and their
suburbs. It provides scenes that are much less
and contain very different traffic than Citysc
account for the scene diversity and label
additional classes were created, resulting in a
labels organized in a 4-level hierarchy. The vid
are mostly at 1024p resolution, are annotated
that depends on the interest of the scene. I
densely annotate the 10,004 selected frames, the
replicated some of the Cityscapes annotations
the domain gap between the two datasets.

• GTA5 (Richter et al., 2016) is a synthet
for semantic segmentation. The content
a photorealistic view of a driving car pers
urban scenes from the video game “Grand T
5”. To select the 24,966 frames to densely
team recorded one frame for every 40 frames
by the software during a game session.
Cityscapes-compatible labels were then appl
frames in a semi-automatic process using data
from the game’s shaders.

• SYNTHIA-Seqs (Ros et al., 2016) is a synthe
containing four photorealistic video sequences
each frame is densely annotated with 13 potentia
labels. More specifically, the 200,000 annota
represent the multi-view perspective of a c
through a Unity-rendered city that contains
objects in addition to static elements.

• VSPW (Miao et al., 2021) is a semantic seg
dataset containing 3,337 videos from YouTub
from 2 to 10 seconds in length, with high
(720P to 4K), describing a wide range of real-wo
taking place either indoors or outdoors. Th
videos contain moderate object and camera moti
sampled at 15fps, resulting in 239,934 densely
frames with 124 labels. This dataset also has
extension called VIPSeg.

• KITTI-STEP (Weber et al., 2021) is a
segmentation dataset containing 50 videos of st
the perspective of a driving car. The 1280×3
are sampled at 10 fps (19,103 frames in total) a
annotated with 19 semantic classes.

6.1. Annotation Sparsity

Semantic segmentation is a task that aims to crea
boundaries between objects of different nature. Lea
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Dataset
Label

per
second

Camvid 1 to 15

Cityscape 0.55

Cityscapes 3.3

NYUDept 0.33 to
0.5

NYUDept
V2

0.33 to
0.5

Gatech > 10

Freiburg
Forest ≈ 0.02

IDD ≈ 0.88

GTA5 1.5 - 3

SYNTHIA 5

VSPW 15

KITTI-ST 10
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Example Year Fields Semantic
Classes Videos Format FPS Frames Labelled

Frames

2008 Semantic 32 5 960×720
RGB 30 18202 701

s 2016 Semantic,
Panoptic 30 25,000 1024×2048

RGB 17 150,000
20,000
+

5,000

-VPS 2019 Panoptic 30 500 1024×2048
RGB 17 15000 3000

h 2011 Panoptic 1000+ 64 640×480
RGBD

20 to
30 108,617 2347

h 2012 Panoptic 1000+ 464 640×480
RGBD

20 to
30 408,473 1449

2013 Semantic 6 100 +
60

320×480
to

600×800
RGB

> 10 34000 20,000

2016 Semantic 6 3+
1024×768
RGBD +

others
1 15,000 366

2018 Panoptic 34 182
1920×1080

RGB or
less

≈ 15 10,004 10,004

2016 Semantic 19 unknown 1914×1052
RGB 1.5 - 3 24,966 24,966

-Seqs 2016 Semantic 13 5 960 × 720
RGBD 5 200,000 200,000

2021 Semantic 124 3,536

1280x720
to

3,840×2,160
RGB

15 239,934 251,633

EP 2021 Panoptic 19 50 1280×384
RGB 10 19,103 19,103

Table 1. A table summarizing key information about the available datasets

y requires a large amount of training data with
ecise annotations. Annotating a 2024x2048 frame
age 1.5 hours (Cordts et al., 2016). However, with

semantic video segmentation, the volume of data t
is very high, as one second of content represents
frames. To address this problem, one solution could b
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r et al., 2016; Ros et al., 2016). However, models
ch data may struggle to adapt to real examples
omain gap. As we can see, natural annotated
necessary, so the solution commonly used to
data is to annotate only one frame at a regular

dts et al., 2016). Among the annotated frames,
fraction is densely annotated and the rest is only
otated. Because of this reality, semantic video
methods must adopt strategies to effectively train
ly annotated data.

he training of the segmentation task requires dense
notations, this is not the case for every vision task.
, the multi-class video classification task requires
ise or frame-wise annotations, which are much
n because they are easier to produce. Interestingly,
fication model is trained, it becomes possible to
n example and then follow the gradient flow to
ch features influence the classification decision.
n maps corresponding to these features then show
hose activation is the strongest. This makes it
ocate the classified objects and determine their
shape. Saleh et al. (2017) exploit this and combine
spatial information of the current frame with the
rmation provided by the optical flow estimations

us frames. The obtained spatio-temporal features
ther combined with deeper spatial features to
mantic segmentation map of the current frame.

himoda and Yanai (2020) suggest up-sampling
lassifier features of different scales and subtracting
esponding to different objects in order to create
onding to specific semantics. These enhanced

hen fed to a CRF to produce precise segmentation

pproach is to use knowledge distillation, as
Section 5.5 (Chen et al., 2020). There, a teacher
ained on the available labeled frames. Then, the
k is used to produce segmentation trials of the
mes. To improve the robustness of the predictions,
segmented several times using data augmentation
rent results are then averaged. The improved
candidates of the unlabeled frames can then be
training set of the teacher network for further
training on this additional data, which has been

obust than the initial naive predictions, the teacher
and thus produce new segmentation maps of better
e unlabeled frames. This process is repeated for
ions, with each iteration producing both a more
cher network and better quality pseudo-labels. At
e, a student network learns the segmentation task
e labeled frames and the frames with pseudo-labels
the teacher. Finally, the student is fine-tuned using
led frames.

video segmentation methods typically require
ts of task-specific training data than their image
On the other hand, semi-automatic video instance
techniques are designed to efficiently propagate

(Badrinarayanan et al., 2010; Wang et al., 2019b;
2020; Cheng and Schwing, 2022; Qin et al., 2023
have seen in the Sections 4.2 and 5.3.1 that mask pro
also possible for video semantic segmentation tasks.
it may be advantageous to adapt 2D segmentation m
video (Miksik et al., 2013; Cheng et al., 2023), espe
the use of VIS methods, as demonstrated by Cheng et

The latter work indeed presents a universal
propagation model that can convert any 2D seg
method to work with video without the need for
task-specific training data. This propagatio
which produces more accurate results than app
2D segmentation model to each frame indepen
bidirectional and makes use of several tools. Fir
Cheng and Schwing (2022), a model described
4.6, is slightly modified and trained so that it can
class-agnostic segmentation candidate for a given fr
on the segmentation results of past frames. Another
by this method is the “in-clip consensus”, which tak
a fixed number of future frames in addition to the cu
These input frames are then segmented using the
and aligned to the current frame space using the
XMem. The aligned set of segmentation candidate
be compared by measuring the mIoU between all pos
of candidates. The segments with the most and hig
ratings are selected as the consensus candidate. In su
segment a given frame, the model computes a mask
frames with the modified Xmem network and merges
result of the in-clip consensus from future frames.

6.1.1. Frames Prediction
As described in Section 4.3.1, some semisupervi

segmentation methods use optical flow estimation to
a ground-truth segmentation map to the next frames.
one might think that this technique could be used t
new training examples to help train semantic seg
methods that do not rely on optical flow. However,
of the training examples generated in this way is direc
to the quality of the optical flow estimation. If the
is not sufficiently precise, the generated examples ca
counterproductive for training due to misalignment
the propagated labels and the associated video
Furthermore, classical optical flow methods do n
occlusions and disocclusions. Hopefully, there
of research that focuses on predicting the next
a given sequence. More specifically, it can co
likely deformations of the current frame that wi
the next frame while handling occlusions and diso
The same deformations can then be applied to t
segmentation map to generate the next one. U
technique for training purposes is interesting bec
is no risk of misalignment between the moveme
video and the deformations of the annotation sequ
et al., 2019). However, the warping done on the f
introduce interpolation-induced approximations at th
the objects. To reduce the impact of these small err
training performance of the produced examples, t
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are applied. Finally, by training their model with
examples in addition to the ground truth examples,
better results than by training it with the ground

es alone.
prediction technique can also be used directly for a
eo segmentation task, as demonstrated by Jin et al.
d, a frame prediction network does not need label
o be trained. Once the network is trained, it can
rovide spatiotemporal features from the previous
erefore work as a better performing alternative to
stimation.

n

t this survey, we have discussed about various
g methods that have been used or could be used
the quality or the efficiency of video semantic
. As we saw in Section 3, although semantic

methods achieve impressive performance on
ts, they suffer from three main limitations when
video:
tational complexity: Computationally intensive

can be used in many image-based practical
ions, but the same cannot be said for video-based
l applications because the associated data flow
ely be processed in a reasonable time. This
particularly important since most of the induced
tions are temporally redundant due to the nature
content.

al consistence: Video semantic segmentation
ust be temporally consistent to be applicable to

l-world applications, but this is not possible with
se methods.

al cues: Image methods rely only on spatial cues
rm segmentation. However, video content contains
l cues that should be exploited to improve the
tation results.

these challenge, some methods have proposed to
-specific tools to deal with the temporal dimension

4.2). This was done with RNN, then with
uch as LSTM and GRU. Improvements have been
pt these units to image processing (convGRU,
ut they are decreasingly used in recent work on
tic segmentation. The reason may be that they
rallelized, but more importantly, that they have a
y to retain long-range information, in contrast to
ore dynamic architectures such as transformers.
w estimation has been widely used to support
ent of video segmentation methods (see Section
be used to improve segmentation accuracy and
y warping features from different time steps, or
educe the overall inference time and redundant
by propagating features or segmentation masks
es. Furthermore, optical flow itself can be used
since it provides spatiotemporal edges that are

by revealing the way objects move. Finally, optical fl
computed with hand-crafted methods, and if it is bas
learning, it can be trained beforehand when the seg
training data is scarce, or it can be trained togethe
segmentation in order to make both methods benefit
other. However, optical flow also has some drawb
example, it is typically not robust to occlusion and co
motion. Also, when trained separately from the seg
it can suffer from a domain gap that reduces the
As for keyframe propagation, some semi-supervise
segmentation methods are more efficient than op
warping (see Section 6.1). Finally, keyframe m
not ideal because although they reduce the overall
time, the inference time is inconsistent between
and non-keyframes, which is not suitable for many
applications.

On another hand, some early work adapted image
video by converting 2D convolution kernels to 3D c
kernels (see Section 4.1). However, a limit was soo
due to the induced computational overhead. Depend
task at hand, it has been shown that using 3D convolu
in some parts of the network can sometimes be su
gain accuracy and/or temporal consistency. In addit
saw in Section 5.4, it is possible to reduce the comp
3D convolutions by factorizing kernels or by using g
convolutions. However, convolutions in general suff
dilemma that becomes even more pronounced whe
to 3D convolutions: to perform well, a network
capture abstract semantics thanks to a large recep
which can be built by stacking many convolutiona
the cost of heavy computation. To enlarge the rece
at reasonable computational cost, researchers have
techniques such as pooling, stride, and dilation ra
work by downsampling the features fed to each layer.
low-resolution features lack the details required by th
to produce accurate, and thus qualitative, results.
branch of research has therefore focused on solving t
dilemma: Multiscale methods (see Section 5.1) pro
to generate features of different scales in parallel,
both features containing details and large scale fe
increase the receptive field (pooling pyramid, incepti
Alternatively, most state-of-the-art methods emplo
make deep features communicate with features f
layers (see Section 5.2). In this way, shallow fe
used to produce deeper features, but also later to res
spatial detail to deep features that have become co
process of acquiring meaningful semantics. Find
to create efficient convolutions (including 3D con
is a promising research direction, since convolution
used in the vast majority of state-of-the-art video seg
methods, at least in the backbones. The same ca
about finding links between features of different scale
no matter how they are created (convolutions, tran
mixing them in an effective way is still a challenge, w
at the core of the segmentation task.

For some time, graphs have been used
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They are useful for imposing priors on the input
ints on the output, and for modeling the structure

However, they are usually carefully designed
pplications, which does not follow the trend of
itectures that can be easily adapted to multiple
theless, they continue to be used and improved,
recent work introducing graph neural networks.

t of dynamic methods and attention has led to
ces in the field of video semantic segmentation
4.4). There is a wealth of new tools (deformable
, dynamic convolutional kernels, transformers)
applied to whole feature tensors or to parts of
el attention, spatial attention, temporal attention).
a powerful tool for creating links between distant
nts, allowing for large receptive fields and clever
eature mixing. Such discoveries have also led
f query-based methods, which aim to become
thods that can perform different tasks without
architecture. These attention-based methods have
effectiveness and offer promising prospects, so
continue to find what are the most effective tools
e new ones. Recent methods, while providing
y results, often face some limitations in terms of
, training difficulty, and computation required to
rence. Great improvements have already been
attention, local attention, factorized attention), but
ould continue in order to obtain effective models
used for various real-world applications.

, recent methods focus improving the quality of
tion results. However, rare are the works that
r constraints. In fact, there are several challenges
ns other than accuracy that limit the real-world
of such methods. First, some methods claim to be
video without evaluating the temporal consistency
entation results, which is essential for some
Inference time is obviously a major drawback

rent methods, but is quite rarely mentioned, and
compare when methods are not evaluated on

forms. The consistency of the inference time may
e possibility of using a method for a given task.
memory footprint, memory usage, computational
nergy consumption during inference can be a
r applications on embedded systems or frugal
some models progress toward becoming universal
, it becomes increasingly important to simplify the
in or tune a given model for a specific task. This
complexity of the structural changes required to
hitecture to a given task, the simplicity of finding
bination of hyperparameters, the computational

ime required to train the network, the amount
training data required, and the ability to handle

data. Binary segmentation maps may not be
some real-world applications that require knowing
ty of the predictions. Finally, while almost all
ds test their effectiveness on short videos, some
ay require consistent results on longer sequences.

these many challenges. Loss functions are importa
they define the goals and constraints associated wi
task (see Section 4.8). Some commonly used lo
shown their limitations and could be replaced by on
losses that better formalize the goals and lead to mor
training. While losses are often associated with the
of a model, it has also been shown that applying
shallower layers can help guide the network towa
training. Moreover, since losses are only appli
training, they can improve results without adding an
inference. As discussed above, many methods ach
results at the cost of heavy architectures, so the
of knowledge distillation will only increase as it
possibility of transferring capabilities that emerged
models to compact architectures (see Section 5.5). I
vein, quantization (see Section 5.6.1) and pruning (s
5.6.2) allow to lighten trained models to some e
minimal impact on their performance. Pruning is qui
to apply to fully convolutional architectures, but m
comeback with the rise of transformer-based models
this is limited by the need for retraining.

Activation functions are at the core of the effect
deep learning architectures (see Section 5.8). Howe
activation functions can be computationally intensive
be replaced by lighter alternatives. In addition,
activation function is adapted to every part of the ne
order to use them to their full potential and to find
balance between accuracy and computational overh
in this field should be pursued. Finally, there is s
on long-term memory (Section 4.6) and uncertainty
(Section 4.7), but much remains to be done. It is
to note that most of these research fields are orth
methods designed to improve accuracy, and also
to each other, suggesting that they could be used t
improve the applicability of models to real-world co

On another note, some recent architectures incl
hyperparameters that can be very difficult to tune f
task. In Section 5.7) certain works addressing this
discussed and offer promising results. Neverthele
opinion, such tools should only be used to improve
of real-world applications. When used in a research
improve the performance of a network that introdu
method unrelated to hyperparameter tuning, netwo
can make comparisons with other methods unfair
reproducibility.

Finally, irrespective of the network architecture
importance of datasets should not be understated
context of video semantic segmentation, dataset
somewhat lacking. Dense labeling is often scar
affects the training capability. This problem is be
be addressed with the advent of better labeling work
the emergence of synthetic datasets. However, metho
on synthetic data currently suffer from a domain
applied to non-synthetic examples, showing that th
room for improvement in this area. Furthermore
the datasets for video semantic segmentation curren
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Survey on dense video segmentation approaches focusing on accuracy and 
inference time improvements.
The temporal dimension of video content brings both new features and 
redundancies.
The trade-off is multi-scale: from the network architecture down to the basic units.
Some improvements are orthogonal and can therefore be used simultaneously.
Densely labeled datasets are rare. Thus, the training strategy plays a critical role.
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