N

HAL

open science

Survey on fast dense video segmentation techniques

Quentin Monnier, Tania Pouli, Kidiyo Kpalma

» To cite this version:

Quentin Monnier, Tania Pouli, Kidiyo Kpalma. Survey on fast dense video segmentation techniques.
Computer Vision and Image Understanding, 2024, 241, pp.103959. 10.1016/j.cviu.2024.103959 . hal-

04465197

HAL Id: hal-04465197
https://hal.science/hal-04465197

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-04465197
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Research Highlights (Required)

To create your highlights, please type the highlights against each \item command.

It should be short collection of bullet points that convey the core findings of the article. It should include 3 to 5 bullet points
(maximum 85 characters, including spaces, per bullet point.)

o The temporal dimension of video content brings both new features and redundancies.
e Video content involve finding the right trade-off between quality and inference time.
o The trade-off is multi-scale: from the network architecture down to the basic units.

e Some improvements are orthogonal and can therefore be used simultaneously.

Densely labeled datasets are rare. Thus, the training strategy plays a critical role.

Survey on Fast Dense Video Segmentation Techniques

Quentin MONNIER?, Tania POULI?, Kidiyo KPALMAY

b <> com, 1219 Av. des Champs Blancs, Cesson-Sévigné 35510, France
"Vaader, IETR,Bat 11D263 Av General Leclerc, Rennes 35700, France

ABSTRACT

Semantic segmentation aims at classifying image pixels according to given categories. Deep learning
approaches have proven to be very effective for this task. However, extensions to video content are
more challenging, typically requiring more complex architectures, given the temporal constraints and
the additional data that video introduces. At the same time, video application tend to necessitate
real-time, or at least interactive performances: self-driving cars, industrial applications, or live
broadcasting to name a few, imposing even stronger constraints to video methods. In recent years,
considerable efforts have been made in addressing these somewhat opposing challenges. In this survey,
we explore the solutions proposed to improve the quality and accuracy of video segmentation, as well
as the different techniques that can be employed to improve the efficiency of such approaches, in
particular in terms of inference time. Finally, we briefly describe the datasets related to the semantic

video segmentation task and the challenges involved.

1. Introduction

Segmentation in general terms is the process of separating
an image into several sets of pixels that have common image
features such as color, texture, location, or semantic meaning.
This process is a cornerstone of image processing since it
provides a simplified version of the image content that can
be used in further processing (Subramaniam et al., 2022).
In recent years, significant improvements have been made in
this field thanks to new deep learning techniques (Hao et al.,
2020). However, compared to single image segmentation,
segmentation applied to video is still very challenging due to
the temporal dimension and the constraints it introduces.

The main challenge brought by video content is that of
temporal consistency. The human visual system is particularly
sensitive to temporal changes (Borghuis et al., 2019). As
such, if the result of the segmentation serves for processing
that will be visually observed, inconsistencies over time in the
segmentation process must be avoided. To that end, objects
need to be accurately tracked over time, handling their motion,
occlusions or even objects potentially leaving the frame. Aside
from tracking accuracy challenges, video contents also tend
to contain a lot of motion blur which complicates accurate
segmentation as object boundaries become harder to delineate.

Video sequences contain significantly more data than a single

image. The consequences are twofold. First, while image
segmentation often relies on complex neural architectures with
many parameters to achieve high quality results, adapting
these architectures to video content directly would likely
lead to networks that would be too large to train and
too time-consuming to use in practical inference scenarios
(Mahadevan et al., 2020). Further, in many applications, videos
not only contain more data than images but are also compressed
using lossy compression methods that can introduce a great
variety of artifacts (Unterweger, 2012; Lin et al., 2020), which
need to be taken into account.

The above reasons show that video segmentation is a
complex task, but many applications related to video processing
and segmentation in particular require real time performances,
without loss of quality: live TV, security applications,
self-driving cars to name a few. Considering this set
of challenges, in this survey, we mainly focus on two
different aspects of video segmentation techniques: quality and
efficiency.

The quality criterion can be understood as the ability of
a given method to accurately segment videos relative to a
ground truth, and can be evaluated subjectively or objectively.
Intersection-over-Union is the most commonly used metric in
the context of semantic video segmentation, but depending on
the goal, other metrics can also be used, namely precision,

recall, pixel accuracy, Dice coefficient, and metrics that
consider temporal consistency (Varghese et al., 2020; Zhang
et al., 2022).

In this paper, the efficiency criterion refers to how fast a
given method is able to produce segmentation maps. It can be
assessed by measuring the FLOPS (number of basic operations)
required to segment a frame, but this metric is not considered
as reliable (Ma et al., 2018). Therefore, the speed of a model
is usually measured by the number of frames the model can
segment in one second (FPS) on a reference platform.

To provide a basis for the discussion of video segmentation
works, Section 3 presents key methods in the context of
single-image segmentation. Then, state-of-the-art methods
in relation to the two main challenges in semantic video
segmentation are presented, as can be seen in Figure 1. More
specifically, approaches focusing on quality are discussed
in Section 4, while methods and techniques for improving
efficiency are presented in Section 5. Section 6 describes the
datasets than can be used for semantic video segmentation, as
well as the challenges raised by such data. Finally, the various
methods, challenges, and solutions mentioned throughout the
survey are summarized and compared in Section 6.1.1.

It should be noted that the goal of this survey is not to provide
an exhaustive list of all video segmentation approaches, nor
a detailed benchmark of the state-of-the-art methods (such as
Zhou et al. (2023)), but rather to explore concepts and ideas
from the scientific literature (related to video segmentation,
but also from other domains) that can or could be used to
improve the performance of semantic segmentation methods,
either in terms of the quality of their results or the speed of
execution. Since, most real-world applications would need
to achieve both of these goals, the approaches described here
provide us with useful hints and a basis on which we can build
upon in subsequent work towards practical video segmentation
methods.

2. Background

In this section, we first formalize the problem and state its
links with relative fields. Then we briefly describe its historical
background.

2.1. Problem Taxonomy

The dense segmentation task applied to images consists of
seeking a function that ideally maps any input image to a map
of identical height and width, containing pixel-wise simplified
information about the input content. The dense segmentation
applied to videos follows the same principle in the sense
that, ideally, each frame of each input video must be mapped
to a map of identical height and width which that contains
pixel-wise simplified information about the input content. The
nature of the information highlighted in the outputs creates
several categories of segmentation:

e Video Semantic Segmentation refers to the task of
assigning each pixel to a semantic label from a list of
predetermined classes. The output of such methods
contains a class label for every pixel of the input video.

3D Convolutionsl

Recurrent Architecturesl
Optical Flow Based Methodsl
Dynamic Methodsl

Graphs Based Methodsl

Ajijend Buinoadwy

Long-Term Memory Based Methodsl

Uncertainty Estimationl

Losses FunctionsI

Multiscale Methodsl

Reusing Early Layers Featuresl

Temporal Redundancies Reductionl

[ified C ions and I

Knowledge Distillationl

Network Compressionl

@ouaJau] Hunesa@doy

Network Searchl

Activation Functionsl

Fig. 1. Diagram showing the two main sections of this paper. The topics
covered in the subsections are sometimes related to both main parts to
some extent, so in this case they are attached to the main part they cover
most.

Such methods tend to learn visual representations of the
classes they encounter.

e Video Object Segmentation or Video Instance
Segmentation refers to methods whose goal is to
detect, segment, separate and track objects that stand out
from the background. Such methods do not focus on the
semantic meaning of the objects depicted in the input
videos but instead focus on their interactions to detect and
separate the objects that stand out from the background.
To be clear, when multiple objects of same nature are
present in the foreground of a scene, VOS methods must
assign a unique label to each of these objects. Methods
that, instead of separating the prominent objects, simply
assign a binary label indicating whether each pixel
belongs to the foreground or the background, are called
Video Background/Foreground Segmentation. It is
also interesting to note that "Object Segmentation” in the
images domain often refers to tasks that are very similar
to “Panoptic Segmentation” and can therefore be easily
confused.

e Video Panoptic Segmentation is the combination of
”Video Semantic Segmentation” and “Video Object
Segmentation” in the sense that the goal is to associate
each pixel with a semantic label as well as an
instance/object index.

e Matting differs from classical segmentation tasks in the

sense that it considers that each pixel does not necessarily
map to a single class but rather to a mixture of classes.
Thus, the output map contains alpha values that determine
the proportions of the classes for each pixel of the input.

Video segmentation methods can be further categorized based
on the amount of human interaction used during the inference:

o Interactive Video Segmentation methods are guided
by live human hints on how to perform the current
segmentation and how to refine it.

e Semi-interactive Video Segmentation or
Semi-automatic Video Segmentation methods only
require human input at the beginning of a video to process
the entire sequence. The initial cues can be of several
types. They can be a textual description of the objects
to be segmented, or they can indicate the initial object
locations using bounding boxes, a segmentation map, or a
sketch of the first frame.

¢ Automatic Video Segmentation methods do not require
any human interaction to perform the video segmentation
task.

As with other deep learning problems, video segmentation
methods can have differences in learning strategy and, more
specifically, in the amount of supervision needed to train the
method:

e Supervised training requires dense ground truth
annotations, but makes training easier for most video
segmentation methods.

o Weakly supervised training also requires ground truth
annotations. However, the annotations are sparser and
thus much easier to obtain (typically bounding boxes or
frame-level labels of the objects present in the frame), but
also make the training more challenging and thus only
suitable for some methods that are carefully designed for
1t.

e Unsupervised training is dedicated only to methods
that are mostly self-supervised, i.e. they generate
pseudo-labels based on prior knowledge about the
properties of the objects to be distinguished. Thus, there is
no need to label any data for these methods.

As we have just described, there is a wide variety of video
segmentation methods. Some categories of methods do not
fulfill the same goal (e.g., object versus semantic segmentation)
or do not have access to the same input information (e.g.,
interactive versus automatic segmentation). The work of
Zhou et al. (2023) provides a complete comparison of the
state-of-the-art methods for each category. Our work focuses on
another aspect of this diversity: despite important differences,
methods developed for distinct segmentation purposes can also
share similarities and compatibilities. Thus, a mechanism
developed for a specific purpose can sometimes be applied
to other segmentation applications and help improve the
performance of that other domain. In this work we therefore

3

review innovative methods in various segmentation domains
and discuss how they can or could be used to make
progress in the specific context of Automatic Video Semantic
Segmentation.

2.2. History

Semantic segmentation has been a subject of research since
the 1970s. The first works on the subject used basic image
operations (Csurka et al., 2023) and focused mainly on two
priors: pixels belonging to the same class tend to be similar,
while pixels belonging to different classes tend to be different.
Thresholding methods (Otsu, 1979; Nock and Nielsen, 2004;
Dhanachandra et al., 2015) and edge-based methods (Canny,
1986; Kass et al., 1988) highlight the early use of these two
priors which were also combined in other methods using graphs
(Boykov et al., 2001; Hochbaum, 2001; Plath et al., 2009).
These principles have also been applied to video content (Xu
and Corso, 2012; Chang et al., 2013).

The application of segmentation to video also opened up the
possibility of using motion as a prior, based on the fact that
different objects in the scene may not move in the same way
(occlusions, parallax due to camera motion, intrinsic motion),
creating temporal edges, and that some motion is typical for
certain classes of objects (Brox and Malik, 2010; Fragkiadaki
et al., 2012; Ochs et al., 2014). However, these cues only
worked for semantic segmentation tasks dealing with simple
classes with very distinctive colors or motions, limiting their
applications.

To extend semantic segmentation to more complex tasks,
some methods started to use shape and texture priors thanks
to image descriptors (Lowe, 2004; Schroff et al., 2006; Shotton
et al., 2006), statistical algorithms, and early machine learning
methods (Lowe, 2004; Schroff et al., 2008; Yu et al., 2011).
These techniques were also applicable to video semantic
segmentation methods (Jain et al., 2013; Liu and He, 2015),
which were computationally intensive, and required selecting
the right features depending on the classes at hand to maintain
effectiveness.

More recently, the field of semantic segmentation has
evolved tremendously with the advent of deep learning models
(Long et al., 2015) that replace hand-crafted features with
automatic ones. The following work will presents some
of the developments that have occurred since then and that
can be exploited to create better methods for video semantic
segmentation.

2.3. Related Research Areas

Video semantic segmentation can be used as a cornerstone
for many image and video processing techniques such as depth
estimation (Wang and Piao, 2023), super-resolution (Aakerberg
et al., 2022), and colorization (Xu and Ding, 2021). It can
also have more direct applications such as automated diagnosis
in the medical field (Krithika alias AnbuDevi and Suganthi,
2022), precise analysis of satellite data (Neupane et al., 2021),
or industrial applications such as autonomous driving (Siam
et al., 2018) or waste sorting (Wang et al., 2020).

3. Image-based Methods

Considering the performance achievements of recent image
segmentation methods (Tao et al., 2020; Wang et al., 2022b,a),
one could naively consider applying these same techniques
to videos by processing each frame independently. However,
both the volume and type of data encountered in video
makes a direct application of image-based approaches not
straightforward. Yet, a subset of these techniques focuses on
improving inference time to make them real-time and therefore
applicable to pipelines like self-driving cars. At the time
of writing this survey, one of the ways to achieve a good
trade-off between quality and inference time is to use parallel
branches (Hong et al., 2021), where one branch focuses on
rapidly obtaining a global and meaningful context while the
other branch gathers low-level details.

An alternative approach can be used by respectively linking
the coarse semantics and fine details of those architectures to
the proportional (P) and integral (I) parts of controllers used
in many industrial control systems (Xu et al., 2022). The
authors claim that dual networks face a similar issue as PI
controllers, called “overshoot”, which in this context consists
of the detailed branch being overwhelmed by the overspread
semantic context. Therefore, they propose to add a third
branch playing a derivative role to mimic the behavior of a PID
controller and tackle the “overshoot” issue.

Other 2D methods (Gao, 2021; Peng et al., 2022) also gather
multiscale features by using parallel branches with various
strides and dilation coefficients and fuse them using pyramid
pooling modules (Zhao et al., 2017). Reusing early features to
guide the upsampling of deep semantic features is frequently
employed since the introduction of U-net (Ronneberger et al.,
2015) and can be enhanced by attention modules (Peng et al.,
2022; Xu et al., 2022). To achieve the same quality of results
as larger models, but with a more compact architecture, some
strategies rely on pruning (Chen et al., 2022) (see Section 5.6.2)
or knowledge distillation (Liu et al., 2019; He et al., 2019) (see
Section 5.5).

Overall, recent 2D semantic segmentation techniques
achieve great results, both in terms of quality and inference
time. Yet, they are not suitable for many video-related
pipelines because of their lack of temporal consistency. This is
particularly problematic when a visual output is produced and
further used (e.g. movie colorization, SDR to HDR conversion,
style transfer) or in robotics when sudden and large changes can
lead to undesirable actions.

Furthermore, as highlighted in Figure 2, restricting the
analysis to the spatial domain while dealing with highly
redundant spatiotemporal data is not necessarily the most
efficient strategy. Aside for guaranteeing temporal consistency,
temporal links between frames can be used in two ways. Either
to get a wider context to improve quality, or to get rid of the
temporally redundant part of the spatial analysis to accelerate
the inference.

Fig. 2. The spatial neighborhood of a single natural image contains spatial
information and redundancy as depicted by the red arrows. This inductive
bias is what motivates the design of convolutional neural networks.
In natural video sequences, the same can be said about the temporal
dimension. However, this information and redundancy cannot be taken
into account by frame-wise methods, which is suboptimal both in terms of
quality and inference time.

4. Improving Segmentation Quality

State-of-the-art image segmentation methods achieve
impressive results for many cases. However, there is still
room for improvement when the scenes to be segmented are
more challenging, or when considering temporal consistency.
Indeed, frame-wise methods have no awareness of the temporal
context of the surrounding frames, so they cannot know if their
current result is consistent with the surrounding ones, and as
such cannot retrieve contextual information from other frames
to guide the segmentation result. In the following section, we
will focus on methods that take advantage of the video format,
and in particular the temporal dimension available, to improve
segmentation quality.

4.1. 3D Convolutions

To address the temporal inconsistencies of 2D semantic
segmentation techniques when applied to video, earlier
approaches treated the temporal dimension in the same manner
as the two spatial dimensions (Mahadevan et al., 2020). In
medical imaging, data covering the three spatial dimensions
is common and is processed using 3D convolutions. So
pioneering works on semantic video segmentation replaced
classic 2D convolutions from existing architectures with 3D
convolutions to process the temporal dimension alongside the
spatial ones (Ji et al., 2010; Karpathy et al., 2014; Tran et al.,
2015; Varol et al., 2018).

Although the increase of the number of parameters due to
the transition from 2D to 3D was manageable for the relatively
small networks from that time, the consequences in terms of
computational cost and training difficulty are more significant
when the same transition is applied to more modern and
more complex architectures. Even if the amount of video
segmentation data is now higher and attenuates the training
difficulty problem (Hara et al., 2018), the computational cost
remains an issue.

Features extracted from deep layers are of much lower
resolution than those of shallow layers, yet contain semantics

that are very influential on the final segmentation decision.
Thus, to keep a reasonable computational cost, some works
propose to keep 2D convolutions in all layers except the ones
close to the output, therefore only considering the temporal
dimension in one part of the network (Xie et al., 2018; Athar
et al., 2020; Grammatikopoulou et al., 2023).

Certain computational and mathematical “tricks”, described
in Section 5.4, have made it possible to employ 3D convolutions
throughout the complete network. In Hou et al. (2019a)
take advantage of that possibility and design a fully 3D
convolutional network made of an encoder deeply connected
to a decoder by parallel convolutions of different strides, and
by convolutional connections between early layers from the
encoder to deep layers from the decoder.

Nevertheless, considering the temporal dimension simply as
an addition to spatial information comes with certain caveats.
First, making no distinction between the computation of the
spatial and temporal dimensions is not necessarily a good idea
since their nature is very different. Secondly, while dense (i.e.:
without stride) convolutions are required to detect spatial details
and subtle temporal movements and deformations, they also
introduce a lot of redundancy in the computation since the
sliding windows overlap a lot. As a network’s spatial receptive
field is limited by its depth and the size/stride/dilation of its
convolution kernels, the network’s temporal memory is also
bounded by those factors (Long et al., 2022).

The distribution of valuable information along the temporal
dimension of a video can vary greatly depending on criteria
such as camera movement, scene complexity, and the
movement of individual objects within the scene. In the
following section, we will focus on methods that can adapt to
this diversity.

4.2. Recurrent Architectures

One way to incorporate temporal consistency into a network
without significantly modifying its architecture is to connect the
output of the network to a module that can handle sequential
data. In deep learning, Recurrent Neural Networks (RNN)
are designed to handle such data (Sherstinsky, 2020). Each
RNN unit takes a vector as input and outputs a nonlinear
transformation of its current hidden state. The current hidden
state of the cell results from the nonlinear combination of the
previous hidden state and the current input. As each output
depends on the previous one, this mechanism creates a sort of
dynamic memory that can process temporal information.

However, capturing long-term dependencies with RNN is not
efficient because of the vanishing gradient problem (Bengio
et al., 1994). For example, when a recurrent unit reaches
a stable state for several iterations, the previous state that
is responsible for this situation has faded away. Gated
architectures were therefore introduced to better control which
information should be kept or forgotten at each time step.
One historically popular architecture is the Long Short Term
Memory (LSTM) unit (Vennergd et al., 2021) that uses tree
gates that respectively control for each step what should be
forgotten, what should be memorized from the current input,
and in what proportion the current hidden state and the current

5

input should be mixed to create the output. More recent work
shows that it is possible to achieve similar results without
regulating the output with a gate (Chung et al., 2014). Gated
Recurrent Units (GRU) (Cho et al., 2014) hence use a lighter
architecture that is less computationally expensive and that has
a lower memory footprint. Gating units can be used at the
output of a 2D CNN backbone to create spatiotemporal features
that are then further processed by a CNN and up-sampled to
match the input’s dimensions (Fayyaz et al., 2017; Siam et al.,
2017). The work from Song et al. (2018) goes a step further by
using a multiscale approach (see Section 5.1) in both the spatial
CNN and the temporal unit, and by refining the result with a
conditional random field (see section 4.5). Adding a temporal
unit at the end of deep Fully Convolutional Networks (FCN)
has, among others, the advantage of optimizing computational
load by using spatially reduced features. Despite that, classic
GRU and LSTM units that work with vectors passing through
gates made of fully connected layers of neurons, are still not
suited to the spatial dimensions inherent to videos (Siam et al.,
2017).

To better represent the inductive bias of local spatial
connectivity of natural images and to avoid the parameter
waste induced by fully connected layers dealing with such data,
convLSTMs and convGRUs (Figure 3), were introduced. They
consist of replacing each fully connected layer from the inner
gates by convolutional layers (Shi et al., 2015; Ballas et al.,
2016). These convolutional gates can be used for semantic
segmentation (Siam et al., 2017; Song et al., 2018). They have
the advantage of not necessarily requiring fine-tuning of the 2D
backbone to produce temporally coherent results. On the other
hand, producing temporal features only at a highly semantic
level do not fully account for the richness of temporal cues
provided by video content.

The aforementioned issue is taken into account by a similar
architecture using a parallel 3D fully convolutional network that
considers a few frames at a time to generate spatiotemporal
features with short-term dependencies (Qiu et al., 2018). The
features generated in this way are then fused with the long-term
features given by the convLSTM that follows the 2D backbone.
However, this method introduces a lot of redundancy in the
computation by processing each frame several times. A similar
strategy consists of providing not only the 2D segmentation of
the current frame to the recurrent unit but also the previous
one warped to the current geometry thanks to optical flow
estimation (Nilsson and Sminchisescu, 2018). The use of
optical flow help to provide more precise temporal clues but has
no influence on the creation of the semantics in this method.

To account for temporal cues at both low and high levels,
(Tokmakov et al., 2017) suggest creating an architecture
consisting of a classical CNN connected to stacked convGRU
units, so that each convGRU takes as input the feature map
produced by the same level CNN layer as well as the output
of the shallower convGRU unit. In this way, each layer
produces spatiotemporal features at its scale. However, to
the best of our knowledge, this idea has not yet been applied
to semantic video segmentation. The reason for this may
be that, since each convGRU has a significant computational

Convolutional GRU

________________ i
Pointwise |1
ultiplicatio :

-

ajen ajepdn

-

Pointwise
ultiplication

21e9 1853y

Fig. 3. A diagram representing the convolutional GRU architecture. In
the reset gate, the unit decides which information from the past (stored in
the last hidden state, namely /,_;) should be discarded to produce the new
hidden state candidate by being concatenated with the input value x;. The
update gate then produces the new output (,) by pondering between the
new information from the candidate and the historical information from
the previous hidden state.

cost, the quality gain of spatiotemporal features provided by
adding one in each layer may be a poor trade-off. Another
drawback of gating mechanisms and RNNs is that they process
data sequentially and therefore cannot be parallelized. Finally,
even if gating mechanisms can retain information better than
simple RNNs, the problem of long-range information loss is
inherent to sequential processing, especially if the processed
data change a lot over time. This last drawback can be
mitigated by using multiple units working on the same sequence
in reverse order, but as noted above, this comes at the cost
of increased computation time without addressing the core
problem of long-range information decay.

4.3. Optical Flow Based Methods

Optical flow is the result of estimating the apparent motion
of pixels describing a scene over time (Zhai et al., 2021). The
estimated motion is relative to the scene and to the observer
(or camera). This feature can be used in several ways to
improve the quality of semantic video segmentation models.
Optical flow can be computed using rule-based methods, but
to ensure that their method can be fine-tuned in an end-to-end
fashion, many methods use deep learning based optical flow
in their architecture (Dosovitskiy et al., 2015; Nilsson and
Sminchisescu, 2018; Liu et al., 2017; Ilg et al., 2017; Gadde
etal., 2017; Xu et al., 2018; Li et al., 2018a; Ding et al., 2020).

4.3.1. Optical Flow for Warped Features Aggregation

The first way that optical flow can be used to improve quality
is by aggregating the spatial context of multiple frames. The
idea is that the content of the frames changes over time, so
that an object whose color or texture is difficult to distinguish

6

from its background at one time may have different lighting
conditions or appear against a more contrasting background
at another time. By using optical flow estimation to warp
features from different times into a common reference frame,
one can group together those complementary features that were
previously scattered across time. This idea is illustrated Figure
4a.

There is a 2D CNN architecture in which multiple layers
receive warped features from the same layers at the previous
time step (Gadde et al., 2017). The warping is obtained through
a unique optical flow estimation between the current frame and
the previous frame. However, most of the time, consecutive
frames are very similar and contain variations that are too small
to provide different contexts. Frames that are further away
from the current one may have changed more and therefore be
more interesting to gather various contexts. On the other hand,
optical flow is likely to be more accurate between adjacent
frames, and thus more similar frames, than between frames
spaced further apart in time. To pick the best of the two,
(Gadde et al., 2017) first compute a rough segmentation map
for the current frame, then estimate the optical flow between
the current frame and both the previous frame and a much
earlier frame. In this way, the current segmentation map can
benefit from a precise but not very distinctive segmentation
map from the previous frame and an imprecise but distinctive
segmentation map from the much earlier frame. The optical
flow results are also used to compute “confidence score” maps,
which can then weight the contribution of the corresponding
distorted segmentation maps to the current one.

The combination of different frames is further exploited by
Li et al. (2018a), which combines optical flow-based warping
with LSTM cell processing, as described in Section 4.2.
Nilsson and Sminchisescu (2018) use a similar process where
previous segmentation maps first pass through a convGRU
before being warped to the current frame space thanks to optical
flow estimation on the corresponding frames. The warped
segmentation frames are then further processed by passing
through a second GRU to obtain the final result.

The fact that optical flow can be computed separately
from the segmentation architectures allows to use it as a
post-processing step for classical 2D architectures. This is
emphasized by a method that can make any 2D segmentation
model temporally consistent as long as the model produces a
class probability distribution as output (Miksik et al., 2013).
To do this, they first use optical flow to associate each pixel
of the previous frame with the pixels of the current frame.
Then, for each pixel of the current frame, they perform a
weighted average between itself and the neighboring pixels of
its match from the previous frame. The weight coefficients are
determined by a learned similarity metric that takes low-level
features such as RGB data, gradients, and Local Binary Pattern
(LPB) as input.

In all of these methods, optical flow is used as a tool to
align spatial contexts from different times but it is never used
as a feature itself. Motion, however, can be very effective
in distinguishing objects. When the viewer moves, objects
of different depths move differently on the screen due to

the parallax effect. Independent of camera movement, many
objects can make their own movements and thus provide clues
as to their nature. It is thus clear that the methods described so
far do not exploit the full potential of optical flow. In the next
section, we will explore the approaches that use optical flow as
a feature.

4.3.2. Optical Flow as a Feature

Optical flow used as a feature (figure 4b) is mostly used
by object/saliency segmentation methods. This is because
these methods have fewer available assumptions about the
shape of the objects they are segmenting and therefore require
more resources to infer object boundaries, and also because
atypical motion is often correlated with saliency. Many
methods compute spatial features and optical flow separately,
then combine them to create superpixels or saliency maps in
which strong edges (in the spatial or temporal domain) often
delineate object boundaries (Fang et al., 2013; Wang et al.,
2015b,a; Liu et al., 2016; Koh and Kim, 2017). Temporal
cues are then further exploited by adding temporal consistency
constraints to the energy functions that are minimized to
produce segmentation outputs. Most of them do not rely
on convolutional neural networks to work. However, Jain
et al. (2017) compute optical flow and spatial features of
the current frame in separate CNN paths to produce saliency
prediction maps, which are then multiplied element-wise to
produce a third prediction map that takes into account both
flows. The final output for each pixel is the maximum of the
three prediction maps.

In the preceding paragraph, we have seen that optical flow
can be used in object segmentation to compute temporal
edges, thereby enhancing the model’s ability to create precise
boundaries of objects whose implicit shape is unknown to the
model. We have also seen that strong or atypical object motion
can also be used to detect saliency locations, again for object
segmentation. Based on this knowledge, one can understand
that these atypical movements can also be used in the context
of semantic segmentation as a cue to improve semantic
understanding as well as the precision of object boundaries
thanks to the motion edges (Saleh et al., 2017). The way to
improve boundaries thanks to motion edges starts by using
a pre-trained 2D CNN classifier to localize the approximate
positions of objects. While the classifiers are not trained to
localize objects in a scene, the output of the convolutional
backbone (before the densely connected layers) contains highly
semantic features that are roughly localized thanks to the
inherent structure of CNNs. By designing a deep temporal
branch that takes multiple optical flow frames as input, one can
obtain the more precise boundary information lacked with the
classifier output. Both rough semantics and precise boundary
information are then mixed in a sub-convolutional network to
produce a semantic segmentation map.

However, optical flow estimation is not a trivial task. There
are several methods that try to solve this problem (Tu et al.,
2019). Some are based on deep learning (Dosovitskiy et al.,
2015; Ilg et al., 2017) and some are not (Memin and Perez,
1998; Brox and Malik, 2011), some are fast (Kong et al.,
2021; Young et al., 2020) and some focus more on the quality

Feature
extractor

model

(a) TR

(b) EREE

Fig. 4. Optical flow can be used to warp features from different times
into a common space to aggregate different contextual information, as in
(a). But it can also be used directly as a feature, as in (b), because its
motion information is semantically rich and its temporal edges can be
complementary to the spatial ones.

of the estimations (Huang et al., 2022b; Jiang et al., 2021).
Although precise estimations are not necessarily crucial when
optical flow is used to improve semantic features that are
already coarse, using the estimation to extract precise temporal
edges imposes stronger constraints. As such, it is important to
choose wisely how to balance the trade-off between precision
and complexity depending on the task for which optical flow
is used. In addition, even using complex estimation methods
is not always enough to obtain very sharp results in some
conditions. In fact, aside from the need for textures for
the methods to work, such approaches are also ineflicient
when the scene undergoes large movements, occlusions, and
disocclusions (Hu et al., 2020). Finally, one can easily
understand that most of the movements of objects are related
to their nature. Thus, regular optical flow estimation methods
are hampered by their inability to understand scene semantics.
In the next section, we will describe methods that overcome this
problem.

4.3.3. Joint Computation of Spatiotemporal Features

The methods described thus far either use optical flow to
warp features or as a feature itself, and compute it separately
from spatial features. The previous section highlighted the
fact that optical flow can benefit semantic segmentation at both
high and low levels, showing that the two different tasks are in
some ways linked. Nevertheless, obtaining an accurate optical
flow estimate without significant computational overhead is
challenging. Those two facts raise the question whether the
optical flow estimation could benefit from the semantic cues
given by the segmentation results.

Following this idea, Sevilla-Lara et al. (2016) perform an
initial 2D segmentation whose result is then further reduced
to three classes of different motion properties: objects that
can move independently, objects that are mostly still, uniform,
planar, and in the background, and lastly, objects that do not

move, but whose shape and texture create complex parallax.
The motion cues generated in this way can then be used to guide
the computation of an accurate optical flow estimation. Finally,
the enhanced optical flow provides the ability to correct errors
and inaccuracies in the initial 2D segmentation to produce
better results.

Hur and Roth (2016) define each scene as a
three-dimensional space in which there is a set of plans subject
to epipolar constraint (principle according to which each line
formed by the 3D point of an object and its corresponding point
on the projection screen must converge to the focal point of the
camera) conditioned by semantics, occlusions, and temporal
consistency. At each time step, the current segmentation and
flow maps are computed jointly based on the current frame, the
previous frame, and the previous refined segmentation map.
occlusion detection prevents occluded regions from influencing
the semantics. The semantics themselves are used to weight the
epipolar constraint to make it more stringent for still objects.

Another way to ensure that the segmentation and optical flow
estimation tasks benefit from each other is to create feature
interactions at different levels of both models (Ding et al.,
2020). In this work, an encoder takes two consecutive frames
as input to produce common features, which are then further
processed in a first decoder branch that estimates the optical
flow and occlusion maps, and a second decoder branch that
produces segmentation maps. The two branches interact at
different scales through two kinds of modules that take features
from the same depth layers of both branches as input (i.e.,
segmentation, occlusion, and optical flow candidates). The first
kind of module is one that computes temporal consistency and
returns its output to the segmentation branch, while the goal of
the second kind of module is to help the optical flow branch
handle occlusions.

We have seen that two different tasks can benefit from each
other by alternately refining one task with the result of the other,
or by sharing features during the one-pass inference of both
tasks. Even with improvements, the usefulness of optical flow
estimation for video segmentation remains limited to modeling
short to medium-term dependencies, but is not well suited for
modeling long-term dependencies (Yang et al., 2019). The
reason is that optical flow estimation boils down to finding
associations between frames. however, finding associations
between distant frames is difficult because much may have
changed in that time, and propagating the estimated motion
of successive frames over a long period of time accumulates
inaccuracies and increases the risk of error.

4.4. Dynamic Methods

Traditional semantic segmentation techniques rely heavily on
convolutional layers. Each convolution kernel is able to detect
how much each region of the input matches a particular simple
pattern. By adding more kernels to a layer, it enables it to
recognize different patterns. Thus, by stacking one convolution
layer on top of another, the deeper layer can learn to detect
patterns in the combined results of the previous layer. The
combination of the two can itself be seen as a pattern detector
of a larger scale and higher level of abstraction, and so on

8

as one increases the number of stacked layers. Individually,
each kernel is just a small regular lattice in which weights
can be learned. Therefore, convolutional neural networks are
quite easy to train. Nevertheless, they are not without some
drawbacks.

The patterns in each convolutional kernel are fixed at
inference time, which means that to be robust to object
deformations, rotations, or changes in perspective, multiple
kernels from the same layer must encode slightly different
versions of the same pattern. Using many kernels makes the
model heavy and difficult to train. Some robustness can be
introduced against small transformations by using handcrafted
modules such as pooling layers between convolutional ones.
However, this comes at the cost of reduced resolution in
the produced features. Further, the abstraction is built by
stacking layers. However, due to the regular structure of the
convolution kernels, the field of view of a model grows slowly
with increasing depth. To capture larger and more complex
object representations, the model must be very deep, which
makes it slow and heavy. This problem can be mitigated by
using strides or dilation rates, but just like pooling, adding
those techniques reduces resolution and can cause the loss of
important details. Finally, each convolution kernel must process
the entire input, even if at the given depth it is not necessarily
useful to apply the kernel to some parts of the input feature. In
conclusion, to handle various situations, regular convolutional
neural networks must have many parameters, which makes
them heavy and slow, and they must sacrifice some of their
resolution while processing data.

To make 2D CNNs more robust to transformations, Jaderberg
et al. (2015) suggest adding a dynamic warping module
between convolution layers. This module takes a feature
as input and processes it with convolutions followed by a
dense layer to produce transformation parameters (one can
choose whether non-linear transformations are allowed or not).
The given feature is then warped according to the estimated
parameters before being passed to the next convolution layer.
One of the techniques used by Li et al. (2020) follows the
same principle, but is mainly applied to the decoder part of
the architecture. Given two features of different resolutions,
an optical flow field is dynamically computed to warp the
low-resolution feature into an upsampled and more detailed
version at the same resolution as the other feature.

Another way to address the challenges mentioned before is to
use deformable convolutions (Dai et al., 2017). A deformable
convolution layer consists of two regular convolution layers.
The first one contains twice more kernels than there are
weights in a kernel from the second layer. This is because
it is used to generate 2D offsets for the entire convolution
window at each pixel location of the input. Then, when
processing the convolutions in the second layer, each pixel
value is replaced by the value of the pixel at the corresponding
offset with respect to the current location. In this way, the
receptive field can be quickly expanded as needed, and different
spatial transformations can be represented. The principle is
further improved in methods which adds dynamic weighting
coeflicients based on the same principle (Wang et al., 2022b).

While some methods focus on 2D data, they also note that they
can be easily applied to 3D segmentation, i.e. videos (Jaderberg
et al.,, 2015; Su et al., 2023).

These concepts are applied to object segmentation (Schmidt
et al., 2022). However, the authors claim that deformable
convolutions, as previously presented, lack the inductive bias
that regular convolutions have. Thus, instead of computing
dynamic offsets for each pixel location, they compute dilation
rates for the three axes (two spatial and one temporal), and they
also use dynamic weights, as in (Wang et al., 2022b), to further
dynamically adapt the convolutions to the content.

In Li et al. (2018b) a dynamic method is employed for
semantic video segmentation. The principle is not just to
compute dynamic weighting or deformation parameters, but to
compute whole kernel coefficients. This means that for each
pixel of a given feature, a kernel is created and applied only at
that location.

This concept can be pushed even further thanks to the joint
use of convolution and attention (see Section 4.4.1), leading to
high-performance panoptic segmentation Zhang et al. (2021).
To achieve this, frames are first passed through a backbone
and a decoder to produce high resolution and highly abstract
features F. Then, N convolutional kernels are randomly
initialized and applied to the features F to produce mask
predictions for both semantic classes and instances.

From there, an iterative process refines the kernels and
thus the predictions. The refinement process is as follows:
First, the candidate masks are multiplied by the features F
in order to generate instance/class-dependent features. Then,
the former kernels as well as the modified features are fed
into fully connected layers, followed by batch normalization
to create new kernels. The kernels are further modified by
passing through a multi-head attention head followed by a
feed-forward layer, that allows the kernels to interact in order
to model the image context. The updated class prediction can
then be obtained through a fully connected layer taking the
kernels as input. Meanwhile, the updated masks are obtained
by a convolution with the kernels first passing through a fully
connected layer.

This refinement process can be repeated several times,
with each iteration yielding better kernels and predictions.
Furthermore, the method can be adapted to video panoptic
segmentation (Li et al., 2022a). The idea is to introduce an
embedding constraint on the kernels thanks to a contrastive
loss (see Section 4.8), a query system (see Section 4.4.1) that
makes connections between current kernels and those from
previous timesteps, and a fusion system that adapts kernels
from previous timesteps and fits them to the current frame.

4.4.1. Attention Mechanisms

Both regular and modified convolutions have been widely
used for semantic video segmentation tasks. Recently, however,
an alternative called “attention” has replaced convolutions in
some of the state-of-the-art segmentation methods. Attention
refers to a set of techniques that attempt to mimic the human
attention mechanism by adapting to the content rather than
working independently of the context.

9

Attention-based architectures first gained popularity in
speech processing tasks (Vaswani et al., 2017). In that work,
the encoder part relies on the self-attention mechanism, which
tries to guess the strength of word dependencies within a text,
as a human would do while reading. This is possible by
first converting each word from the text into a vector which
is the sum of the word’s semantic embedding vector and the
word’s positional embedding vector describing its position in
the sentence. The obtained vectors are then transformed into
three different vector representations, namely the “query”, the
“key” and the “value” vectors, thanks to three linear layers.
Then, the dot product of the queries by the keys is computed,
producing a self-attention matrix, which is then normalized and
multiplied by the value vectors to produce attention-weighted
outputs. This type of module is called an “attention head”.
The three linear layers are learned to help select a context to
focus on, so it is possible to compute multiple attention heads in
parallel to capture attention in multiple contexts. The decoder
part is similar to the encoder part, except that it guides what
the model should currently focus on by introducing attention
between the input embeddings and the currently produced
output embeddings.

While transformers were originally designed to deal with
sequential data, Dosovitskiy et al. (2020) showed that the same
principle could be applied to images by using image patches
as input embeddings. This form of attention is used in some
works focusing on semantic image segmentation, which claim
that features from different scales are complementary(Tao et al.,
2020; Xie et al., 2021). Tao et al. (2020) therefore propose
to use CNNs to generate segmentation maps, then introduce a
module that considers two segmentation candidates of adjacent
scales as input and use attention to produce a segmentation
candidate that takes the best of both. This system can then be
used in a hierarchical fashion, taking the result of a module of a
given scale and another segmentation candidate of adjacent but
lower scale as inputs to another such module, and so on. Since
then, several attention-based semantic segmentation methods
have been developed (Thisanke et al., 2023).

Attention for image processing can be spatial (Tao et al.,
2020; Xie et al., 2021), but it can also be applied to feature
channels. Hu et al. (2018) introduce channel-wise attention
where they consider the importance of the produced features of
a given layer given the current data-relative context. To do this,
a set of k features is transformed into a vector of size k by global
max pooling. Then, a small fully connected network takes the
vector as input and produces another vector of the same size
in which each element is used to weight the associated feature
map to increase or decrease its importance.

Peng et al. (2022) introduce another 2D semantic
segmentation method similar to the one of Tao et al. (2020)
in the sense that attention is used to decide what to propagate
between the high-level but coarse features of the decoder and
the low-level but detailed features of the encoder. The main
difference from this other paper is that attention is not applied
to segmentation maps, but directly to sets of features, thus
requiring both spatial and feature-wise attention.

Both channel-wise and spatial attention are used in the

context of video object segmentation. For example, Zhen et al.
(2020) use a variant of channel-wise attention to select the
most relevant features to describe the scene for the entire video.
Specifically, a backbone computes features for each frame of
the video, which are then clustered into £ groups. The k clusters
are then weighted in a manner similar to channel-wise attention.
Once the k-weighted features are computed, their currently
most relevant pixels in each frame are selected by computing
the spatial attention between them and the frame features. For
each frame, both the current frame features and the selected
portions of the k-features are then passed to a CNN to perform
the final segmentation.

The above mentioned methods model attention mostly in
the spatial domain and do not consider temporal information.
This is because attention has several drawbacks that limit its
use in video applications. Notably, it lacks inductive bias
and it has a large computational overhead as the amount of
data increases. To address these issues, other video object
segmentation methods (Duke et al., 2021; Yu et al., 2022)
propose to use spatiotemporal attention, but with a limited
scope, in contrast to global attention mechanisms. The work
from Duke et al. (2021) introduce “grid attention” and “strided
attention”, which enable to jointly compute, with a CNN, the
features from the current frame and the features from previous
frames selected by the spatiotemporal attention process. Yu
et al. (2022) do not use a fixed window to compute local
attention, considering both low-level features and optical flow
estimation to choose in which spatial patches spatiotemporal
attention should be computed to collect features from previous
frames.

Finally, attention is also used in some semantic video
segmentation methods (Hu et al., 2020; Wang et al., 2021a;
Li et al., 2021; Subramaniam et al., 2022; Wu et al., 2022;
Li et al.,, 2023; Su et al., 2023; Zhang et al., 2023; Athar
et al., 2023). In the work of Hu et al. (2020), frames are
preprocessed by different shallow CNNs that alternate in a
circular fashion. Thus, in a sequence of consecutive frames,
features of different nature are produced. These features are
then propagated in a hierarchical way to the current space
domain thanks to “attention propagation” modules that can
associate features from one frame to the space of the next
frame. In this way, the segmentation output benefits from
information provided by previous contexts and from features of
different types. In a different approach, attention is employed
to build a kind of retrieval system (Wang et al., 2021a).
The current frame is preprocessed by a backbone and the
features are processed in parallel branches, each consisting of
two convolutional layers. The first branch produces ‘query”
features encoding the semantics of the current frame, while
the other branch produces “current value” features with more
channels and storing visual details. On the other hand, each
previous frame in a fixed temporal window with respect to the
current frame has previously gone through a similar process,
producing “key” and “value” features, respectively, which are
stored in memory. Thus, the matrix multiplication of the
query by the keys produces a matrix that indicates which
“value” information should be retrieved from the memory of

10

past frames. The result of the values multiplied by this matrix
is then concatenated with the “value” features of the current
frame, and given to a segmentation head. The segmentation
head thus benefits from both the details of the current frame
and relevant long-term information. In the next section, we will
focus on methods that use graph architectures to improve their
quality.

4.4.2. Query-based Architectures

DETR (Carion et al., 2020) is an object detection method that
relies on a novel “query-based” approach. DETR uses a CNN
backbone to produce features that are further processed by a
transformer encoder that takes positional encoding as a side
input to induce the ability to make global links between feature
elements. The improved features coming out of the encoder are
then fed to a transformer decoder along with learned vectors
called “queries”. These “queries”, which are independent of
the input, help the decoder interact with the encoder features
and manage potential object locations.

DETR has inspired methods beyond the field of object
detection, in particular, some have proposed to apply this
concept to instance segmentation (Fang et al., 2021; He et al.,
2023), and others even aim to produce an architecture that
could be used for any kind of image segmentation (Cheng
et al., 2022). Instead of a transformer encoder, the latter work,
includes a pixel decoder that creates a feature pyramid by
gradually upsampling the low-resolution features produced by
the backbone CNN, thus preventing the model from ignoring
small objects. The transformer decoder also uses masked
attention instead of cross attention, which restricts the attention
to the surroundings of the predicted mask for each decoder
query.

Query-based models can also be applied to Video Instance
Segmentation (Cheng et al., 2021; Huang et al., 2022a), but
also to Panoptic Video Segmentation (Wu et al., 2022; Li et al.,
2023). The latter work notes that video segmentation methods
produce either frame-wise or clip-wise results: the methods
following the first option (such as Wu et al. (2022); Huang
et al. (2022a)) often lack of understanding of the temporal cues,
while methods following the second option (such as Cheng
et al. (2021)) are unable to segment long videos consistently.
To address this problem, this work splits videos into sub-clips
that are first processed independently using the backbone
and decoders of Cheng et al. (2021), and then the temporal
consistency between adjacent clips is ensured by applying a
contrastive loss to the output of self-attention layers that take
the clip-wise decoder output embeddings as input.

The model of (Athar et al., 2023) can be applied to various
video segmentation tasks (including panoptic segmentation)
simply by learning different queries. To do this, the input
frames are fed to a 2D backbone, then the resulting features
are transformed into spatio-temporal features thanks to a
subnetwork made of alternating deformable attention layers
(Zhu et al., 2021), which are spatially global but limited to
the current frame, and temporal attention layers, which are
spatially local but temporally global. The features produced
at multiple scales by the spatio-temporal module are then fed

to a transformer decoder along with the target queries in order
to refine the queries through multiple layers of self and masked
cross-attention. Finally, the refined queries are multiplied with
the high-resolution output of the spatio-temporal module to
produce the predictions.

4.5. Graphs based methods

A graph is a powerful tool that can be used to model the
relationship between data instances. Unlike many methods
that deal with temporal continuity only at a short range,
relationships modeled through graphs can be long-range in
both spatial and temporal domains. Moreover, the graph
construction can take into account priors and constraints, which
make it easy to adapt to a given task. These features are
especially useful in object segmentation methods. Wang et al.
(2015a), use a graph to model the long-range relationships
between superpixels (i.e., groups of pixels separated by strong
edges in the spatial or temporal domain). The spatial
connections of the graph are weighted according to the color
distance, and the temporal connections are made only between
superpixels that overlap, taking into account the displacement
of the objects and the camera motion.

Wang et al. (2019a) rely on graphs to aid the exchange
of information among frames. To do this, each frame is
converted into an embedding by passing through an FCN.
Then, the embeddings are used as nodes to construct a graph
neural network. In this graph, each node is connected to itself
and to every other node. Thus, the embedding nodes can
update their information in multiple iterations, during which
each node is modified by the sum of its own attention and
that of its neighbors. Once all the iterations are done, each
frame is segmented in a coherent way thanks to the shared
information. However, such a method is not suitable for
real-time applications.

Conditionnal Random Fields (CRF)

A special type of graph called “Conditional Random Field”
or CRF is used in many segmentation techniques. This
discriminative model is a generalization of Markov Random
Fields that takes the form of a probabilistic graph. It models the
dependencies between nodes so that the state of a given node is
affected by the state of its neighbors.

Notably, CRFs are used in many segmentation methods
because they can moderate the independence of the pixel-wise
annotations, thus producing smoother and more consistent
results. They can be used in video object segmentation
networks (Song et al., 2018; Zhen et al., 2020) or in
semantic video segmentation networks (Tripathi et al., 2015;
Kundu et al., 2016; Saleh et al., 2017; Chandra et al.,
2018). Sometimes the CRF module can be used as a
2D post-processing module that only spatially refines the
segmentation maps (Song et al., 2018), but 3D CRF can also be
integrated into a network to improve both spatial smoothness
and temporal consistency in an end-to-end fashion (Zhen et al.,
2020; Tripathi et al., 2015; Kundu et al., 2016; Chandra
et al., 2018). In contrast, in (Saleh et al., 2017), the CRF is
integrated into the training pipeline so that the segmentation
head learns to mimic its behavior and no longer needs it at

11

inference time. To use CRFs efficiently, some peculiarities
should be taken into account. In particular, due to motions
such as rotations that produce complex pixel displacements,
the resulting spatiotemporal space is non-Euclidean and should
therefore be transformed into Euclidean space before passing
through a spatiotemporal CRF (Kundu et al., 2016). A
drawback of CRFs trained jointly with the network is that
the gradient can be hard to compute if their loss function is
non-convex. Chandra et al. (2018) solve this problem by using
a special kind of CRF called “Gaussian Conditional Random
Field”, which presents the peculiarity of having a convex loss
function that is therefore easier to compute and optimize.

4.6. Long Term Memory Based Methods

Semantic segmentation and object segmentation in video
are two closely related but distinct areas of research. Video
object segmentation methods are often developed for a
semi-supervised setting, which consists of reliably propagating
an initial segmentation mask over time. For this task, the
ability of a given network to rely on object appearance priors
is very limited. Thus, the network focuses on adapting the
segmentation mask to new frames. As described in Section
4.3, some methods rely on short-term cues to propagate the
prediction. However, this type of strategy tends to accumulate
errors over time and is generally unable to recover from large
changes such as temporary occlusions. In contrast, some
suggest to focus only on long-term temporal dependencies
(Yang et al., 2019). In this sense, their method consists in
directly linking the original frame and its segmentation map
to the current frame. To do this, first the embeddings of
both frames are computed using a feature extractor. Then,
the network is split into three branches. The first branch is
a skip connection that feeds the current frame’s embedding
to the segmentation head. The second branch computes
the long-range spatial connections within the current frame
embedding before feeding the result to the segmentation head.
The third branch computes a correspondence map between
the two frames using non-local operations that are closely
related to the attention mechanism, and then feeds the result
to the segmentation head as well. The segmentation head
concatenates the features and performs a segmentation of the
current frame guided by a long-range dependency.

However, one could argue that both short and long range
dependencies matter. While early frames provide more reliable
segmentation information, the current content is increasingly
likely to be different from the original frame as the video length
increases, thus requiring knowledge from intermediate frames
to link the two contexts. It is therefore easy to understand the
importance of memory in this domain. On the other hand, the
storage and complexity requirements increase the more frames
any memory mechanism employed considers. As such, finding
the right trade-off is crucial.

Cheng and Schwing (2022) aim to achieve the best
information selection for arbitrarily long videos. To do this,
the authors designed a memory network, which stores data
associated with keys that can be retrieved with specific requests.
In this work, three types of memory are implemented: a

short-term memory, a working memory, and a long-term
memory. For each frame, the network gathers relevant
information from the three types of memory to produce the
corresponding segmentation output using a decoder. Each
type of memory works differently and has a different purpose.
The short-term memory, which is simply a GRU, is used
to smooth the results at each frame. Retrieving information
from both working memory and long-term memory works
similarly: an encoder takes the current frame as input and
produces a set of “Query” features. The query is then
multiplied by the concatenation of “keys” features, which come
from both working memory and long-term memory. The
operation produces an affinity matrix that aims to select the
most appropriate “value” features from both memories. At
regular intervals, key and value features are generated from the
current query and segmentation map and stored in the working
memory. The oldest features from the working memory are
regularly discarded, but to keep the most valuables ones longer,
features whose ponderated affinity scores cumulated over time
are the highest are transferred to long-term memory. When the
long-term memory is full, the less relevant key/value pairs are
discarded using the same selection process.

4.7. Uncertainty Estimation

Traditionally, the segmentation task maps each input pixel to
a unique hard label. However, when applied to real-world tasks,
this may not be sufficient. For example, when the segmentation
task is applied to medical diagnostic applications, clinicians
need to know the confidence of the class predictions for each
pixel. The same is true for systems that make critical decisions,
such as autonomous vehicles. Also, in reality, a given pixel
is not always best described by a single label, but rather by a
mixture of labels, due to sampling quality, blur effect, or the
intrinsic fuzziness of some objects.

To account for uncertainty, one approach is to apply a model
several times for each frame with small variations such as
dropout, and then average the results (Gal and Ghahramani,
2016). However, this type of strategy is slow because it requires
each frame to be processed multiple times. To overcome this
problem, Huang et al. (2018b) propose to take advantage of the
properties of video content. The idea is that in semantic video
segmentation, each frame must be processed anyway to produce
its segmentation map. However, neighboring frames are often
very similar except for some small displacements. These small
shifts can be enough to produce inconsistent results if the
network is not confident in some of its estimations. By using
optical flow to model the small displacements, one can warp the
segmentation maps of neighboring frames to a common space,
thus allowing the possibility to average the segmentation results
and thus obtain an uncertainty estimation.

However, when a method aggregates estimations of the
same frame with a network that has the same goal, it only
takes into account the model uncertainty, but not the intrinsic
fuzziness of some input data. Considering this problem, Wang
et al. (2021b) develop a pipeline that can produce accurate
matting maps of intrinsically fuzzy images. To do this, the
ground truth continuous annotation is first used to generate

12

several pseudo-masks using random thresholds. Then, these
pseudo-masks are used to train a probabilistic UNet (Kohl
et al., 2018), which is a combination of UNet and a conditional
variational autoencoder (CVAE) that can learn to generate
multiple segmentation hypotheses, each associated with a
position in a low-dimensional latent space. For a given input
image, the probabilistic UNet thus produces several prediction
masks corresponding to different confidence levels. These
prediction masks are then converted into an uncertainty map
using the entropy of the pixel-wise annotations. Finally, the
input image, the latent features from the probabilistic UNet,
and the uncertainty map are fed to a matting network, which
produces a smooth output based on the cues it has been given.

Finally, to perform video matting with high quality and
consistency while remaining fast, Wu et al. (2018b) exploit
the temporal information inherent in the video format thanks
to a recurrent architecture. This work demonstrates the
effectiveness of training such a network to perform both the
matting and segmentation tasks, especially when dealing with
synthetic training data. It also uses a trainable guided filter,
which can efficiently upsample a coarse segmentation output to
match the details of high-resolution input frames.

4.8. Loss Functions

Most of the improvements described so far involve changes
to the model architecture. However, it is not the only thing
that can be improved. The loss function describes how well
the model achieves its objective. However, defining a metric
for a task as complex as semantic video segmentation is not
trivial. Thus, the way a given model will perform depends
heavily on its loss function. Jadon (2020) gives an overview
of loss functions for image semantic segmentation and identify
what is best to deal with unbalanced datasets, hard to segment
boundaries, focus on hard examples, or focus on shapes and
structures.

Even if these loss functions are not directly designed for
video content, some of them can be easily adapted to semantic
video segmentation because of their independence from model
architectures. For example, an “inverse transformation
network™ that learns to guess the homographic transformation
between two edge maps can be used to train a model to
compensate for the limitations of pixel-wise losses (Borse
et al,, 2021). To train a network using this method, the
student network produces high-level features that are fed to
a segmentation head, which produces a segmentation map.
This segmentation map is compared to the ground truth using
a pixel-wise cross-entropy loss. In parallel, the high-level
features are also fed to a boundary detection head, which
outputs an edge map. The result is compared to the edges of
the ground truth with a balanced cross-entropy loss to train the
edge detection head. Then, both edge maps are divided into
tiles whose size and number depend on the trade-off between
the importance of local and global context. Finally, the “inverse
transformation network” is used to estimate deformation
parameters between corresponding tiles. This last step allows
to measure the total deformations between the segmentation
candidate boundaries and the ground truth boundaries. This is

interesting because most of the loss functions are pixel-wise
and therefore cannot measure the spatial variations such as
translation, rotation, and scaling. Similarly, “contrastive losses”
(Wu et al., 2022; Li et al., 2023) can be used to ensure temporal
consistency between consecutive frames or sub-clips that are
computed independently. It can also improve robustness to
phenomena such as occlusion. The key idea is to put successive
outputs into a common embedding space and add a constraint
that encourages vectors representing the same object or class
to be closer together while encouraging vectors representing
different objects or classes to be further apart.

To train deep networks, it can be inefficient to apply a loss
function only to the final output layer. Therefore, one can add
a second segmentation head in a shallower part of the network
and apply a loss function to it in order to guide the previous
layers to learn meaningful features in a less indirect way than
deep back-propagation (Zhao et al., 2017). The additional
segmentation head and its associated loss function are only
useful during the training phase and can be dropped afterward,
thus having no impact on the inference time during testing.

The loss function can even help to adapt image semantic
segmentation methods to video content by using knowledge
distillation (see Section 5.5) and a temporal loss function
to train a frame-by-frame student network to be temporally
consistent (Liu et al., 2020).

5. Accelerating the Inference

Video content provides access to the temporal dimension.
The variation between frames can be analyzed and used to
create spatio-temporal features, aggregate different contexts,
and provide semantic clues about object semantics through
motion analysis. All of these are useful for improving
segmentation quality. However, the architectural improvements
that take advantage of the temporal dimension often come at a
significant increase in computational cost if nothing is done to
compensate. Moreover, such methods do not take into account
the fact that, just as the spatial neighborhood of a pixel in a
natural image is often similar, it is also the same for images
that are close in time. Therefore, in this section we will focus
on methods that accelerate the inference to compensate for the
data increase of video content or to account for the redundancy
of data.

5.1. Multiscale Methods

The goal of semantic segmentation is to assign a label to
each pixel of the input. As a model trained for classification,
a semantic segmentation model must generate high-level
semantic features to distinguish the different classes. To do
this, a convolutional neural network stacks layers that produce
features of increasing complexity and receptive field. The
assumption is that the more layers, the better the semantics.
However, deep networks suffer from several drawbacks. While
they can produce meaningful features, these semantics are
not well localized, and thus are not suitable for precise
determination of object shapes. Further, deep networks contain
many weights, but increasing the number of parameters makes

13

the model harder to train, slower to perform inference, and
prone to overfitting.

The receptive field of a model can be increased using
pooling, stride and dilation strategies, requiring fewer layers
to produce meaningful semantics. However, while this can
be effective for classifiers, it is not suitable for segmentation
task because all of these techniques affect the resolution of
the features, making them unsuitable for precise pixel labeling.
To address this challenge, Szegedy et al. (2015) introduce
“inception layers”, which is a module that breaks the idea
of using convolutions in a sequential way by proposing to
use them in parallel. More specifically, the idea is to use
a single-layer convolution kernel of several sizes in parallel,
and then concatenate their outputs, thus obtaining features of
both large and small scale. Originally, one of these modules
contained convolutions of size 1x1, 3x3, and 5x5, as well as a
parallel pooling of size 3x3. Recently, the design has been made
even more temporally efficient by adding 1x1 convolutions, as
discussed in Section 5.4.2. Individually, an inception layer is
more computationally intensive than a regular convolutional
layer, but by increasing the richness of features produced in
each layer, fewer layers are necessary to build meaningful yet
precise features, resulting in shallower and thus faster networks.
Nevertheless, even if this approach offers an improvement for
semantic segmentation models, it may not be sufficiently fast
to be applied to video segmentation models because it still uses
5x5 convolution kernels that are slow to compute.

An alternative to inception layers is introduced by Zhao
et al. (2017). The module, which is called “pyramid pooling
module”, relies on the use of pooling kernels of varying size
instead of convolution ones. Pooling is indeed faster to compute
than convolutions and makes it possible to gather information
from a much larger scale through global pooling for instance.
In such a module, each pooling operation is followed by a
1x1 convolution that reduces the number of channels. At the
end of the pyramid pooling module, each output is upsampled
to match the spatial dimensions of the input feature maps,
and then concatenated with them to form a tensor containing
information at multiple scales. The pyramid pooling module
is used in semantic segmentation methods adapted to images
(Li et al., 2020; Xu et al., 2022; Peng et al., 2022) and videos
(Hou et al., 2019b; Zhao et al., 2021). Although the pyramid
pooling module allows the model to be shallower, it is itself
computationally intensive. Therefore, to further reduce the
computations, the module is used in the bottleneck part of the
network, at the interface between the encoder and decoder parts
of the network, where the dimensions of the input features are
smaller and thus require fewer operations to be processed.

Another way to quickly increase the receptive field of a
multiscale layer without increasing the computation time is to
use convolutions with multiple stride or dilation values. Parallel
convolution kernels with different dilation rates have been
employed for semantic image segmentation (Gao, 2021) and
video object segmentation (Song et al., 2018). Alternatively,
different stride values can be used to obtain local and precise
features as well as more global but coarse features (Hou et al.,
2019a).

We have seen that using multiscale paths can help build
strong features without the need for deep networks. Such
methods therefore reduce the number of parameters to learn
and the computations needed to perform inference. However,
such parallel architectures can paradoxically reduce the GPU’s
ability to parallelize operations in the model (Ma et al., 2018).
To ensure that the multiscale strategies employed are not
counterproductive in terms of inference time, they must be
carefully designed, for example by avoiding parallel paths with
too heterogeneous complexity.

5.2. Reusing Early Layers Features

In a regular convolutional network, early layers are able to
extract local patterns that form detailed but simple feature maps,
while deeper convolutional layers learn more complex features.
However, by definition, high-level features retain semantic
information rather than visual details that can help create an
accurate segmentation map. And since each convolutional layer
is only connected to adjacent layers, the only way to access
early low-level features that could be helpful is to force their
regeneration in each layer. Because the number of generated
features in each layer is limited, this phenomenon creates a
competition between the generation of new high-level features
and the preservation of low-level features, which is detrimental
to network performance (Huang et al., 2017). This phenomenon
is illustrated Figure 5a.

As mentioned in the previous sections, another problem with
deep networks is that they are difficult to train. The reason for
this is called the “vanishing gradient problem” and is related
to the way back-propagation works (i.e., the mechanism that
calculates the error contribution of each neuron in the network
to update its weight). In the last layer of a model, errors can
be directly assigned to the neurons that produced that output,
so the strength of their responsibility is high and their weight
is updated strongly. However, those neurons were themselves
influenced by the output of a larger number of neurons from the
previous layer, so some of those previous neurons are indirectly
responsible for the errors and are updated. But, because there
are many of them, their responsibility is diluted and the updates
of their weights will be weaker than those of the last layer. We
can repeat this reasoning for each previous layer in the trace
chain until we reach the input layer. There, the responsibility
for the errors is so diluted that it will be hard for the neurons
to learn anything useful, the gradient has “vanished”. This
problem is easily illustrated by the fact that it is hard to teach a
very deep network to learn a simple function (i.e., the identity
function) (He et al., 2016).

Instead of building slow and hard to train networks
with many features for each layer to regenerate the early
features, it is possible to reuse already produced features
without further processing them. Following this idea, He
et al. (2016) introduce “skip connexions”, which allow early
features to be passed directly to the next layer, bypassing the
convolutions. Architectures using these skip connections are
called “residual networks” because, unlike regular networks
that try to approximate a target function, each layer learns the
“residue” to add to the input to produce the layer’s output.

14

(a)

Fig. 5. If a shallow feature is useful for deeper processing, a classical CNN
like (a) has to propagate it with a filter through each convolution layer
along the way. With residual networks like (b), the task is simpler because
the network only has to learn to create a zero residue at the right location
for each convolution layer. However, with densely connected architectures
like (c), no filters are needed to propagate early features. However, the
number of input features increases with the depth of the layer.

Because there are ways to skip each layer, the shallow neurons
have connections that are relatively close to the output, making
back-propagation more efficient and thus solving the vanishing
gradient problem. Returning to the example from the previous
paragraph of a network learning the identity function, we can
see that it would now be much simpler, since all the model has
to do is learn to pass the input through the skip connections all
the way to the output, as illustrated Figure 5b.

In residual networks, the output of each skip connection is
added to the output of the skipped layer. Thus, deep layers
still cannot access the unaltered early features (unless the layers
produce a zero residue). To improve the ability of layers to
access early features, Huang et al. (2017) suggest creating
connections so that each layer has access to every feature
that precedes it. This type of network performs better than
ResNets. However, as illustrated Figure Sc, the number of
features provided to the layers grows rapidly with depth. Thus,
such networks are limited in depth. To address this, the authors
improve these architectures in subsequent work by pruning the
connections during training (Huang et al., 2018a). The idea is to
start with all the connections and gradually remove those that
are associated with small weights compared to other weights.
In this way, only the most important features are transmitted
through the network, which is more memory and time efficient.

As shown by Huang et al. (2018a), not all features are equally
important at every step of the network. For example, some
early features that contain details are not particularly important
when creating high-level, coarse semantics. Also, dense
networks like the ones discussed in the previous paragraph
are not compatible with the progressive reduction of feature
sizes in deeper layers. In contrast, feature downsampling
helps to generalize, to gain robustness to small variations, and
also to improve inference time. Thus, dense architectures
are not necessarily the best way to produce efficient and
fast networks. In fact, reusing early features to improve
segmentation quality remains a good idea, but can be done

Encoder ; Decoder

v BN

[l Convolution

B Pooling
Upsampling

i Concatenation

Fig. 6. A diagram showing the principle of the U-Net architecture
(Ronneberger et al., 2015). The encoder progressively reduces the
resolution of the features as it improves their semantics. Then, the decoder
progressively upsamples these semantics and reconstructs the details,
guided by the concatenated high-resolution features from the encoder.

after the semantic production part. Ronneberger et al. (2015)
divides the model into two main components, namely the
encoder and the decoder, as illustrated Figure 6. The encoder
consists of blocks of two successive convolutions followed by
a max-pooling layer. Each block produces features of reduced
resolution compared to its input. The output of the last block
of the encoder is then provided to the decoder, which is made
up of blocks of two successive convolutions followed by an
up-convolution layer. The role of these blocks is opposite to
that of the encoder, since it is to increase the resolution of the
features. To achieve this, the decoder blocks also receive the
features from the encoder whose resolutions match the target
resolution. To summarize, the semantics are built classically,
without accessing any features other than those of the previous
layer, and then the semantics are upsampled with the guidance
of early features. This architecture is therefore much more time
efficient while maintaining very high precision. In a similar
vein, Pinheiro et al. (2016) replace the simple link between
early features and their corresponding refinement module with
a convolution layer to adapt the features to the new context.
Other 2D segmentation techniques use this principle (Lin et al.,
2017) or some attention-based variants (Peng et al., 2022)
including in the Video domain (Su et al., 2023). The detail
level of segmentation methods can be greatly improved by
using guided filters, which upsample a coarse output using the
high-resolution frame directly as a guide (Wu et al., 2018b).
Finally, the concept of guided upsampling can be applied to
video segmentation by linking layers of different scales with
3D separable convolutions (Hou et al., 2019a). In many
architectures, the transition between encoder and decoder also
has a multiscale mechanism, as discussed in Section 5.1.

To produce qualitative semantic segmentation results,
most encoder-decoder networks must first produce high-level
semantics with their encoder. Typically, the deeper the layer,
the higher the level of semantics produced, and the lower
the spatial resolution. In a sense, the bottom of the decoder
produces a low-resolution proto-segmentation map. Thus, the
quality of a network output also depends on its ability to
progressively upsample this proto-segmentation map with the
decoder.

15

As discussed above, some methods do this by progressively
fusing the interpolated proto-segmentation map with
higher-layer features that contain more spatial detail. However,
according to Elhassan et al. (2022), if the network is effective
at preserving the semantics from the initial proto-segmentation
map, the interactions with the feature maps from shallower
layers have an increasing semantic gap, and thus, making
associations between the semantics and the spatial details
becomes more difficult, leading to a degraded result. To
address this issue, the this work proposes a network with
three parts: one is the backbone encoder, the second one is a
multi-scale feature fusion module, and the third is a semantic
upsampler module. In such an architecture, the multi-scale
feature fusion module can learn the associations between
features from multiple layers of the encoder without worrying
about the loss of high-level semantics. Meanwhile, the
semantic upsampler, guided by the multi-scale feature fusion
module, can effectively upsample the proto-segmentation map
without suffering from semantic gaps with the features it relies
on.

Kopiikli et al. (2022) make the observation that 3D
convolutions are a powerful tool for video processing because
such operators can process the temporal dimension along
with the spatial dimensions. = However, to process two
consecutive frames, such a network performs a lot of redundant
computations in the temporal dimension, because both frames
share common previous frames. Inspired by the skip
connections described in this section, the authors propose to
create “temporal skip connections” that propagate a part of the
tensor of a given layer at the previous timestamp to the same
layer at the current timestamp. More precisely, the part of the
tensor that is propagated corresponds to the previous frames
that are not processed together with the current frame in the
given layer and therefore do not need to be recomputed. This
principle, illustrated Figure 7, provides a good transition to the
next section, where we will describe methods to further reduce
temporal redundancy.

5.3. Temporal Redundancy Reduction

Natural video content has a lot of temporal redundancy,
meaning that successive frames often share most of their
content. So far, the mechanisms we have described do
not take this into account and thus perform some redundant
computations. Hopefully, there are ways to exploit this
redundancy to reduce inference time.

5.3.1. Segmentation Propagation to Reduce Redundancy

The simplest way to exploit temporal redundancy is to reuse
the segmentation map of the previous frame for the current
one. To propagate a segmentation map between consecutive
frames and account for changes between them, one can use
optical flow estimation. As explained in Section 4.3, optical
flow estimation, which can be computed with neural networks
(Dosovitskiy et al., 2015; Ilg et al., 2017), allows, for example,
to warp one frame to the next. Consequently, it is possible
to apply the same transformation to warp the corresponding
segmentation map to the next frame, thus correcting the small

Fig. 7. The principle of “temporal skip connections” (Kopiiklii et al., 2022).
In this illustration, the parts of the tensors that are not involved in a
recalculation process are not represented. New content is represented in
orange, and temporal skip connections are represented by black arrows
that transfer the bold framed features from the previous time step to the
current time step at the position represented in transparent blue.

deformations due to motion. However, optical flow estimation
is not perfect, and neither is the resulting warping. If the
warping operation is applied many times in a row, errors
can accumulate and produce a poor quality result. Similarly,
estimating the motion/distortion between two distant frames
also leads to poor results because the content between the two
frames is too different to accurately match the corresponding
pixels.

To address this, Jain et al. (2018) propose a compromise
between segmentation map reusability and error accumulation
by selecting reference keyframes at regular intervals and
propagating the segmentation for the other frames. Specifically,
keyframes are segmented by a deep convolutional network,
which is slow but powerful. Then, until another keyframe
is reached, the generated segmentation map is warped to the
current frame thanks to optical flow estimation. In parallel,
a much shallower network computes low-level features of
the current frame and concatenates them with the warped
segmentation map to guide a 1x1 convolutional layer that
outputs the final current segmentation. Because this model
treats a video sequentially, it cannot use future keyframes to
guide the estimation of the current frame. Also, the fact that
the keyframes are determined by a regular time interval makes
them not adaptable to sudden changes in the scene. To account
for this, an LSTM cell can be employed to select keyframes
(Mahasseni et al., 2017), which are then segmented using a
deep 2D segmentation method. Finally, the segmentation of
the remaining frames is done by interpolating the neighboring
keyframes with a single 5x5 CNN layer.

5.3.2. Reusing High Level Features

Segmentation maps are the end product of segmentation
techniques. Ideally, the segmentation head that produces them
takes the semantics from high-level features and reframes them
in a precise way using low-level details, discarding the general
neighborhood knowledge that high-level features typically

16

have. The result is highly meaningful, but also very specific and
localized, so it does not lend itself well to further modifications
or corrections. Thus, a middle ground is to propagate high-level
features instead of just the final segmentation map. Propagating
high-level features instead of segmentation maps also has the
advantage that such methods are easily adaptable to tasks other
than semantic video segmentation.

One such approach is proposed by Zhu et al. (2017), where
keyframes are selected in a regular schedule and processed by a
deep CNN to obtain high-level features. Each non-keyframe is
fed together with the last associated keyframe into a shallow
network, which determines a deformation flow map and an
uncertainty field. The flow map is then used to warp the
high-level features to the current frame. The warped features
are then multiplied term by term by the uncertainty field to
account for potential warping errors due to phenomena such
as occlusion. Each high-level feature is then processed by the
same segmentation head, regardless of whether the features
are directly generated or warped from a keyframe. Similarly,
a lightweight detail enhancement network can be applied to
each frame after feature propagation to account for inter-frame
distortions and occlusions (Li et al., 2019).

Li et al. (2018b) note that simply warping features in which
each pixel contains cues about spatial neighborhood is not
optimal. Also, as mentioned above, regularly spaced keyframes
do not account for significant scene changes. To address
this, Li et al. (2018b) suggest that each frame passes through
a low-level feature extractor. Then the result is fed to a
small network along with the low-level features from the last
keyframe. The small network then decides whether the current
frame should become a keyframe or not. If so, the low-level
features are fed into a deeper network that creates high-level
features. If not, the low-level features of both the keyframe and
the current frame are fed into a convolution layer that outputs
convolution kernels for each pixel. These convolution kernels
are used to perform a dynamic convolution (as explained in
Section 4.4) on the high-level features from the last keyframe,
warping them to the current frame space with more freedom
and reliability than optical flow-based methods. Finally, for
each frame, the high-level features are processed by the same
segmentation head, regardless of whether they are directly
generated or not.

Some work claims that most methods that warp past features
do not take into account the intra-frame correlation between
pixels within the current frame, and thus reduce the accuracy
(An et al., 2023). To address this problem, a dual local and
global correlation network can be constructed. First, such a
network has a heavy branch that is used to process the first
frame as well as keyframes. The heavy branch starts with a
low-level feature encoder that takes any frame as input, then
it is followed by a heavy encoder that produces high-level
features, and finally, the branch ends with a segmentation head.
Any frame that is not the first in the sequence passes through
the low-level encoder. Then, corresponding relations on the
low-level features of both the current frame and the last key
frame are processed thanks to a local attention module (see
Section 4.4.1.

To determine whether the current frame will become the
new keyframe, the inputs and outputs of the local attention
module are fed into a decision network that is trained to predict
the error between the results of the heavy and light branches
respectively. If the predicted error is a above a predefined
threshold, the frame becomes the keyframe, otherwise the
frame computation continues with the light branch. The next
step in the light branch is simply to multiply the output of the
local attention module by the high-level features from the last
keyframe so that the derived high-level features are pondered
by the local correspondence between the two compared frames
low-level features. Meanwhile, the low-level features from
the current frame are further processed by three convolutional
layers and the output is added to the propagated high-level
features described above. The resulting tensor, which is subject
to a temporal consistency constraint, is finally transformed into
a segmentation map by passing through the same segmentation
head as in the heavy branch.

5.3.3. Clock Networks

In the previous sections, we saw that segmentation maps,
and more generally high-level features, change slowly (Wiskott
and Sejnowski, 2002). More specifically, low-level signals
(or features) of a given video content change faster than
high-level ones. In a classical CNN, however, each level of
features is computed at each temporal step. Methods that
reuse segmentation maps or high-level features for multiple
frames provide an incomplete solution to this problem because
redundancy reduction is only considered at one scale. To
minimize redundancy, a refresh rate adapted to the speed
of feature changes can be applied at multiple scales within
the network. This is the idea behind clock convnets where
low-level features are refreshed every time, while deeper
features are refreshed less frequently depending on their depth
(Shelhamer et al., 2016). The work rely on networks that use
skip connections to form a residual network. Thus, changes
in early layers are propagated to the end of the network even
if the outputs of some layers are frozen. In this method,
a layer update can be triggered by scheduling, but also by
detecting important changes in the features of the previous
layer. A similar concept is exploited by Carreira et al. (2018),
which also focus on improving the parallelization of each CNN
layer. This method also uses other tricks such as knowledge
distillation (see Section 5.5) and feedback, which is the fact
that the segmentation result of the previous frame is given as
input along with the current frame. One of the drawbacks
of methods that use uneven layer activations over time is that
their computational load is inconsistent over time and can be
equivalent to frame-by-frame methods during computational
peaks. Thus, while fast on average, these peak delays make
such methods incompatible with real-time applications.

5.3.4. Reusing Unchanged Regions

Instead of dynamically adapting the computation of the
network to its depth, some semantic video segmentation
methods propose to spatially adapt the feature computation
depending on the amount of changes in that area (Xu et al.,
2018). In concrete terms, there are no keyframes, but rather

17

regional keys. In fact, each input frame is first divided into
several fixed regions. Then, for each region, the current input
and the last corresponding key region are fed into an optical
flow network followed by a decision network that determines
the amount of motion between the two. If the amount is
small, the segmentation map from the key region is warped
to the current space, thus avoiding the computation of the
current one. Otherwise, the warping would be imprecise, so
the segmentation map of the current region is computed with a
deep CNN and the result serves as the regional key for the next
frames.

Rhee et al. (2022) use a different approach where they create
a network that can learn to compute only features that help
correct the segmentation evolution relative to the current and
previous frames. To do this, the current frame first goes through
a low-level feature extractor. Then, both outputs of the current
and the previous frame are fed to a network that determines a
pruning mask for the blocks of a deeper ResNet. At the same
time, the low-level features of both frames are partitioned into
patches, and the similarity between corresponding patches is
estimated using the cosine similarity metric. As a result, in
addition to the previously computed mask, we obtain a 2D
mask that contains the similarity between adjacent frames for
each patch. The current frame is then fed into a deep residual
network, some parts of which have been frozen by the first
mask. Since the high-level features from the previous frame
have already been computed, they can be mixed with the current
frame by using the 2D mask to weight the contributions from
both sources. Finally, the blended features pass through a
segmentation head to create the current segmentation map. In
the next section, we will see that it is possible to go even further
in terms of feature calculation savings.

5.3.5. Removing High-Level Features

As we discussed earlier, high-level features are built by
aggregating low-level ones. Computing and aggregating
various low-level features is a slow process. Thus, if high-level
features could be approximated by low-level features from
different time steps, it would be possible to distribute their
computation over time, thus reducing inference time. To
achieve this, frames can be alternately processed by different
shallow networks in a circular fashion (Hu et al., 2020). These
shallow networks, trained with knowledge distillation, produce
complementary low-level features. Because they are from
different time steps, the features produced by a full cycle are
not aligned with the current frame. Thus, instead of using
optical flow to align previous features to the current space, the
authors propose to use a sequence of “attention propagation
modules” that dynamically select what to take from each of two
successive feature sources and propagate it to the latest one. At
the end of the chain, the output corresponds to the segmentation
of the current frame.

5.4. Modified Convolutions and Substitutes

Convolution is a computationally intensive operation. While
large kernels increase the receptive field, they require more
computations than small kernels. A large number of kernels

is also preferred when the network needs to be able to
produce various features. However, this is another factor of
computational overhead. Finally, 3D convolutions, which are
often used in the context of semantic video segmentation, are
also a cause of increased inference time. To compensate for
this computational overhead, several modifications have been
applied to convolutions. We summarize the most common ones
in the following.

5.4.1. Stride and Dilation

One of the most common ways to reduce computation time is
to increase the stride hyper-parameter, as depicted in Figure 8a.
This increases the offset step between convolution operations,
thus preventing successive operations from overlapping too
much on the same pixels. Another effect is that the output
tensor size is reduced compared to convolutions with smaller
strides, thus reducing the number of operations on the next
layers. However, stride does not increase the effective size
of the convolution kernel. Hence, the nature of the features
produced by 3x3 convolutions with or without a large stride
is identical, the ones with a large stride are just sparser, thus
missing some intermediate features.

To create features of a larger scale without increasing the
number of parameters or without having inconsistent outputs,
one can use dilation coefficients instead. The idea is to make
the kernel larger without changing the number of neurons by
adding space between each of them. In this way, the features
produced represent a larger but less detailed portion of the
input features, as shown in Figure 8b. Dilated convolutions
are notably used in a semantic video segmentation technique
based on 3D convolutions (Qiu et al., 2018). Since 3D
convolutions are by nature very computationally expensive, the
use of dilation in this case helps to have large kernels without
unbearable complexity.

However, both stride and dilation coefficients are associated
with the loss of some input detail. A high stride coefficient
results in the creation of highly detailed features that are
sampled more sparsely in the input tensor, while a high
dilation coefficient results in larger scale features produced
without increasing the kernel size (and thus the resolution).
To take advantage of the computational reduction offered by
such convolutions without suffering from their shortcomings,
it is possible to combine a multiscale approach (see Section
5.1) with the use of dilated convolutions (Song et al., 2018;
Gao, 2021). In this way, paths using regular convolution
kernels of small size produce detailed local features without
much computation, while parallel paths using convolutions with
dilated coefficients of different scales can produce coarser but
more general features at about the same time.

Intuitively, one can understand that it would be great
if a convolution layer dealing with natural images could
dynamically adapt its behavior depending on the nature of the
area currently being computed. Some parts of a given input
may indeed contain important details, while other parts may
contain structural information on a larger scale. Schmidt et al.
(2022) propose a strategy that makes this possible. This method
falls into the category of dynamic methods described in Section
4.4 and is based on the frame-wise segmentation technique

<> Step n

(a)

(b)

Fig. 8. The behavior of two different convolution kernels (in orange) on an
input feature map (in blue): (a) A 3x3 convolution with same padding and
a stride of 2. (b) A 3x3 convolution with same padding and a dilation factor
of 2.

of Dai et al. (2017). Specifically, they introduce “dynamic
convolution modules”. Such a module first contains a regular
3D convolution layer with small-scale kernels, whose goal is
to determine for each position whether it is more useful to
extract details or larger-scale structural information. To achieve
this, the layer is trained to produce three dilation values and
one emphasis value at each position. The three dilation values
are then used by a second 3D convolution layer within the
module. For each location of the module’s input, the second
layer takes the previously computed dilation values and applies
them to the three dimensions of its kernels before performing
the convolutions. Each local result is then multiplied by the
corresponding emphasis value to produce the module’s output.
By using such modules, the model is able to dynamically adapt
to its content while maintaining the inductive bias given by the
grid of convolutional kernels. Furthermore, such a network
learns the trade-off between detail and structural information
while maintaining an identical computational time for each
case.

5.4.2. Kernel Factorization

A 2D convolution kernel has two spatial dimensions.
However, regular convolution kernels also have a third
dimension whose size is equal to the number of channels in
the input tensor. This is because regular convolutions always
compute the full depth of the input tensor for each spatial
location. A 2D convolution kernel is represented Figure 10a
and a 2D convolution layer of three kernels is illustrated
Figure 9a. In most CNN-based models treating images, the
first input has three channels corresponding to the three color
components. Then, each layer contains multiple convolution
kernels allowing the model to capture different features and
contexts. Thus, as we go deeper into a CNN, the spatial size

(a)

Fig. 9. The difference between regular convolutional layers and group
convolutional layers. (a) A regular 2D convolutional layer of three 3x3
kernels, each with a depth of 6 channels, for a total of 162 neurons. (b)
The same input tensor is divided into 3 groups, so that each convolutional
kernel computes only two layers. This reduces the number of neurons to
54.

of the input features typically gets smaller, but the number of
channels increases. Since regular convolutions consider each
channel from the previous tensor, most of the computation time
of the deep layers is due to the large number of channels.

To address this problem, Krizhevsky et al. (2012) propose
“group convolutions”, illustrated Figure 9b. The idea is to
perform parallel convolutions on subsets of the input channels
to reduce computation. Xie et al. (2017) show that this not only
helps to reduce inference time but also helps to produce better
representations, thus increasing quality. Sifre and Mallat (2014)
go further and introduce “depthwise convolutions”, which are
an extreme case of group convolution where each channel is
computed by an independent kernel. In both cases, the channel
interactions are greatly reduced. Thus, to ensure that the
network retains links between features without increasing the
computation time, one can use 1x1xd pointwise convolutions
that apply on the whole channel depth. Group convolutions and
depthwise separable convolutions can then be used to create
lightweight yet well performing architectures (Ioannou et al.,
2017; Howard et al., 2017).

More specifically, group convolutions and depthwise
convolutions are used in various video-related applications
such as classification (Tran et al., 2019), object segmentation
(Mahadevan et al., 2020), and semantic segmentation (Jin et al.,
2017). However, Ma et al. (2018) suggest that while using
group convolutions and 1x1 convolutions reduces the number
of operations, it also increases the storage cost, which can
reduce the speed of the network. Therefore, the number of such
modules must be chosen properly to avoid the opposite effect
of what is intended.

The idea of reducing the number of neurons of convolution
kernels without changing their size can be pushed further
by stating that just as the channel dimension can be used
to factorize regular convolutions, the same is true for the
spatial dimensions (Jaderberg et al., 2014). A regular 2D
convolution kernel can be factorized in several ways other
than group, depth-wise, and point-wise convolutions. Spatial
dimensions are first processed using a 1D convolution, and
then, the other spatial dimension along with the channel
dimension are processed using a 2D “flat” convolution. Another

19

(a)

Fig. 10. (a) Features maps being processed by a 3x3 2D convolution. (b)
Features maps being processed by a separable 3x3 2D convolution that uses
less neurons (represented in orange).

solution, which is suggested in the same work, is similar
to depth-wise convolutions but go even further by replacing
each 2D depth-wise kernel by two successive channel-wise 1D
convolutions. This is illustrated Figure 10b. Interestingly, the
larger the original kernel, the more the kernel factorization
reduces the computational complexity.

Since 3D convolutions are even more computationally
intensive than 2D ones, Tran et al. (2018) suggest that instead
of using regular 3D convolutions to process videos, each could
be approximated by a factorization of a regular 2D convolution
followed by a temporal 1D convolution. Theoretically,
such a module offers less descriptive power than regular 3D
convolutions. However, due to the computational overhead
of regular 3D convolutions, it is rarely possible to replace
every 2D convolutional layer with its 3D alternative, so video
processing methods have to choose which layers to replace
2D convolutions in and which not to. Such a choice is not
trivial and often depends on the task at hand and the network
architecture. Nevertheless, as factorized 3D convolutions are
much lighter, they can be used in many layers of a given
network (Mahadevan et al., 2020), thus eliminating the need
to make a difficult choice.

Qu et al. (2020) propose to further reduce the computational
overhead of 3D volume computation by factorizing each 3D
convolution kernel into three perpendicular 1D convolutions
interleaved with dense connections. On the other hand, Gonda
et al. (2018) offer a trade-off between factorized convolutions,
which are fast but approximate, and regular 3D convolutions,
which are more precise but slow. In this latter work, three
modules like those from Tran et al. (2018) are parallelized
in such a way that the 2D convolutions of the three paths
are orthogonal to each other. In this way, rich features
can be generated in each dimension, thus replacing several
successive regular 3D convolutions. However, to the best of
our knowledge, these two methods have not yet been used for
semantic video segmentation.

5.4.3. Modified Convolution Modules

The modified convolutions described so far can be used
as building blocks to construct modules that make CNN
architectures even more efficient. Sandler et al. (2018) explain
that the information contained in a regular set of feature maps

3x3
1x1 (Relu) 1x1
(Relu) (Relu)
(a) | ™

3x3
(Depthwise, Relu6) —
1x1 Relu6)
(b) =& l =

y Y y y

Fig. 11. (a) A regular residual block. The skip connection is made between
channels with many layers, and the Relu activation is applied at each step,
even if the information is in a compressed form. (b) An inverted residual
block, which uses less computational resources and uses Relu activation
only where it does not cause information loss (Sandler et al., 2018).

can be efficiently embedded in a lower-dimensional subspace.
On the other hand, 1D convolutions can be used to change the
number of channels of a given tensor, including compressing
some feature information into a lower-dimensional subspace.
However, the authors also tell us that compressed subspaces are
not suitable for transformations followed by ReLLU activation
because they either result in information loss or poorly
descriptive linear transformations. Therefore, the classical
ResNet architectures (illustrated in Figure 11a) that use skip
connections between uncompressed features and that use
slow 2D convolutions and destructive activation functions
between the intermediate compressed features are poorly
efficient. On the contrary, this paper explains how to construct
“inverted residual blocks” (illustrated in Figure 11b) that
consist of having skip connections between dimensionality
reduced tensors and using 1x1 convolutions to construct wide
intermediate tensors whose redundant information can then
be pruned by depthwise convolutions followed by ReLU6
activation (see Section 5.8).

Zhang et al. (2017) explain that in a model that uses group
convolutions followed by 1x1 convolutions, the pointwise
operations represent most of the computational overhead. In
fact, each group produces multiple channels as output, which
are then mixed with all the other channels from the other
groups thanks to 1x1 convolutions that take the entire set of
channels as input. The authors then state that while channel
interaction between different groups is essential to building
strong representations, the way it is done can be more efficient

20

than that. The idea of the improvement is to avoid the use
of 1x1 convolutions that take all channels as input. Instead,
they use 1x1 convolutions that take only one channel from each
group as input. Thus, several small 1x1 convolutions can be
used in parallel to create new groups based on mixed features
from the previous groups. To ensure that all previous features
are used to create the new groups, each 1x1 convolution takes a
different channel from a given group. This preserves the group
interaction high with minimal computational overhead. Even
though it is not random at all, the authors call this process
“channel shuffle”.

Moreover, a study by Ma et al. (2018) highlights several
architecture-related practices that are counterproductive for
inference speed. First, it is not advisable to have convolution
layers with a large difference in the number of input and
output channels. Second, using many group convolutions
creates too many channels, which has a negative impact on
memory consumption and thus on inference speed. Splitting
the network into many parallel paths that are not identity paths
can also reduce the ability to parallelize. Finally, element-wise
operations such as “ReLU”, “AddTensor”, and “AddBias”
also affect memory consumption and thus inference speed.
Considering all these aspects, the authors design two types
of blocks that use both “channel shuffle” and another type of
operator called “channel split”. This new operator simply splits
the input channels into two separate paths. The architectures
mentioned so far in this section can be modified to be efficiently
applied to video-related tasks (Kopuklu et al., 2019).

While many works propose to apply some modifications
to spatial convolutions, Wu et al. (2018a) propose a different
approach by replacing spatial convolutions with another
operation called “shift”. The principle is that each channel
of the input tensor is shifted in an independent and learned
spatial direction. Then, the shifted information is mixed across
channels by means of 1x1 convolutions. This alternative has
the advantage of mixing spatial information without additional
computation, as opposed to spatial convolutions, and it is
orthogonal to most other model optimizations, so it can be
used in many circumstances. Even though it does not seem
to have been used for semantic video segmentation, it might be
interesting to try it in this context.

Fast Transformers

We have already discussed the contribution of
transformer-based architectures to improve model outputs
quality in Section 4.4.1. However, such architectures,
if designed efficiently, can also help improve quality for
frame-wise tasks (Li et al., 2022b). A recent work on fast
transformers for video segmentation presents an architecture
based on sparse spatiotemporal transformers for video object
segmentation, and claims that the method is also applicable to
other tasks such as semantic segmentation (Duke et al., 2021).
Just as convolutions can be made easier to compute using stride
or dilation, self-attention layers can also be modified in this
way. To achieve good results and to be robust to important
temporal changes while remaining fast, the proposed model
takes as input a fixed-size sequence consisting of the current
frame and the previous frames as well as their respective

segmentation map. This input is then fed into a 2D ResNet
to produce embeddings, which are optionally summed to a
positional embedding. The resulting tensor is then fed into
a series of spatiotemporal self-attention modules with sparse
connectivity. These modules consist of multi-head attention
followed by a feed-forward layer, the two being interleaved
with skip connections and normalization layers. The role
of such modules is twofold. First, the final output of the
sequence of modules gives features that incorporate temporal
information. Second, in each layer, the “object affinity”
tensors produced by the multi-head attention component are
collected, so that the information about how to propagate
segmentation information across frames is passed directly to
the decoder part of the network, along with the final output of
the sequence of modules and the current frame. The decoder
part of the network, which is also a CNN, then computes the
final segmentation map for the current frame. The reason
this architecture is fast is that the self-attention components
of multi-heads are sparse. A given pixel does not have
direct access to all other pixels, but only to a small fraction
determined by a spatiotemporal pattern. However, because
these self-attention layers are stacked, a dense connectivity
between all pixels is built indirectly as depth increases,
allowing long-range dependencies in the spatiotemporal
domain at low computational cost.

The approach of Li et al. (2021) also aims at reducing
the inference time using transformers, but in the context of
semantic segmentation. This work uses a classical 2D CNN
architecture as encoder and decoder, and the same kind of
self-attention modules as the approach of Duke et al. (2021).
However, instead of adding sparsity directly in the self-attention
modules as in the previous paper, this time the sparsity
intervenes at the point where the attention module is applied
(similar to the methods discussed in Section 5.3.4). The
idea is that in a typical scene, the segmentation difficulty is
spatially inconsistent: there are some large regions that contain
a single class, while other regions contain multiple objects of
different nature. Therefore, the time-consuming operation of
aggregating content from previous frames does not significantly
help to improve quality in simple regions, while it can be
useful to distinguish object boundaries in complex regions.
Specifically, the features from the current frame are used to
determine the complex regions. Then, each complex region
detected in the current tensor is used as a query to find cues in
the previous frames. Since each previous frame has produced
features, they can be used as keys and values to perform the
attention mechanism. However, to further avoid unnecessary
computations, the attention between a given query region and a
previous frame is not performed globally, but in a local region
centered around the spatial position of the query and whose
radius increases as the frames are temporally distant relative
to the current time step. These mechanisms, once combined,
allow the model to incorporate temporal information where it is
most needed while remaining fast.

As we saw in Section 5.4.3, 3D convolutions can be
factorized into simpler units to reduce the computation. The
same can be said for spatio-temporal transformers as seen in

21

the approach of Su et al. (2023). In this work, each frame
is preprocessed independently by a CNN backbone. Then,
the extracted features of adjacent frames must communicate
to produce spatio-temporal features. However, creating an
attention matrix to link pixels from features coming from
multiple frames is very computationally intensive. To address
this problem, “decoupled transformers” are introduced. The
idea is to first take features belonging to frames of a fixed
time window and gradually downsize the spatial resolution of
the oldest features. Then, multi-head self-attention can be
performed independently on the modified features, the process
being faster on the oldest and thus smallest features. The
low-resolution results are then upsampled to match the current
frame results. To handle feature misalignments due to motion,
the past features are passed through deformable convolutions
(see Section 4.4). Once the features from different times
are aligned in a common space, a 1D temporal transformer
can be applied at each pixel location, mixing information
across time. This process results in much less computation
than directly applying attention to features from different
frames. The method described above can be combined with
another transformer branch whose goal is to aggregate current
frame features from different backbone stages (concatenated
with the result of the temporal branch corresponding to the
current frame) and process them in a 1D fashion along the
channel dimension. An object detection method has introduced
“deformable transformers” (Zhu et al., 2021), which are very
similar to the way “deformable convolutions” work (see Section
5.4). Notably, this principle has been used in a video panoptic
segmentation method (Athar et al., 2023).

5.5. Knowledge Distillation

It is generally accepted that the more parameters a deep
learning model has, the more knowledge capacity it has. With
insufficient training, large models tend to learn the data “by
heart” and thus overfit. However, given a sufficient amount of
quality data, a large model can learn more complex functions
than a small model. Even so, the complexity of the functions
that a model can learn with a regular training strategy may be
limited to a fraction of its theoretical knowledge capacity (Ba
and Caruana, 2014).

To overcome this challenge, the first step is to create a model
that is large enough so that it can solve the task at hand by
learning complex features despite the lack of inductive bias of
the training samples. The large capacity of this initial model
improves its ability to learn complex features, but once they are
learned, such capacity is no longer needed to store them. The
second step is therefore to create a smaller “student” model that
will receive the knowledge gathered by the larger model, called
the “teacher” in this context. By setting the goal to mimic the
behavior of the teacher, the student learns the same task as the
teacher, but the training has a much stronger inductive bias and
thus requires much less capacity to build up interesting features.
This process is called “knowledge distillation” and allows us to
create compact networks that behave the same way (or even
better, if the downscaling has allowed some generalization)
as their large teacher model, while having considerably fewer

Teacherg’

Feature-based
Distillation Loss
A

Response-based
Distillation Loss
A

Student i

Fig. 12. A diagram illustrating the principle of feature-based and
response-based knowledge distillation techniques.

Fig. 13. A diagram illustrating the principle of the relation-based
knowledge distillation techniques.

weights and thus being faster to compute (Phuong and Lampert,
2019).

There are many different knowledge distillation techniques
(Gou et al., 2021). The first element that helps distinguish
them is their type, referring to the material the student network
is trying to copy. For example, in the 2D segmentation
technique of Chen et al. (2020), the student learns to copy
the output (or response) of the teacher network, making it a
response-based knowledge distillation technique. There are
also feature-based techniques where the student learns to copy
some of the teacher’s features (Liu et al., 2019) or a latent
representation of its features, created by an auto-encoder, which
allows to overcome the models architecture differences (He
et al., 2019). Those two types of knowledge distillation are
illustrated Figure 12. Differently, in relation-based knowledge
distillation techniques (Yang et al., 2022), the student network
does not learn to independently mimic the teacher’s output
logits or intermediate features from single data samples, but
rather to copy the relationship between the inputs and the
network states across multiple data samples as shown in Figure
13. Finally, Liu et al. (2019) show that a single method can fuse
several types of distillation types.

In addition to the type, what can differ is the mode of
distillation. Most methods use an offline distillation scheme,
meaning that the teacher network is fully trained before
knowledge transfer and its weights are frozen during the

22

transfer. However, the training of both models can be
performed simultaneously, which is called “online distillation”.
Finally, a single network can teach itself by transferring
knowledge from deep layers to early layers, which is called
“self-distillation”.

Knowledge distillation is a very powerful method that is
used in many domains where fast inference is required. Thus,
there are several examples of semantic video segmentation
techniques that rely on it in different ways. Liu et al. (2020)
illustrate the thin boundary between frame-wise and video
segmentation techniques. Indeed, the goal of this work is
to create a compact network that can perform temporally
consistent semantic segmentation at inference time without
processing more than one frame at a time. To achieve this, the
model is intensively trained with multiple temporal constraints.
However, there is a gap between small and large models in
terms of the temporal consistency that the model can learn by
itself. To narrow this gap, the compact model learns to mimic
the behavior of a deeper model thanks to knowledge distillation.

Knowledge distillation can be applied not only to models
with similar architectures, but also to models with significant
structural differences (Carreira et al., 2018; Shimoda et al.,
2019; Bai et al., 2022), which can help to train efficient but
difficult-to-train designs. Holliday et al. (2017) shows that
knowledge from multiple semantic segmentation architectures
can be transferred to a unified network, resulting in a
lightweight model that combines the diverse strengths of its
teachers while being significantly faster than the sum of
them. Differently, Hu et al. (2020) explain that the output
of multiple shallow networks used in parallel can have as
much representational power as one deeper network. In
the case of semantic video segmentation, the idea is not to
compute the multiple networks simultaneously, but to exploit
the redundancy between successive frames by computing one
shallow network per frame in a circular fashion (as explained
in Section 5.3.5). To be efficient, this process requires that the
features produced by each shallow network are complementary.
To achieve this, and to build a strong representation across
frames, knowledge distillation is used. Here, the teacher is a
deep feature extractor model that the shallow students will try
to replace. In order for them to learn complementary features,
the deep features produced by the teacher are divided into as
many groups as there are shallow networks, so that each student
focuses on learning a different subset of features.

5.6. Network Compression

One approach for reducing the memory footprint of a
network is by modifying its parameters. The two most common
approaches are either to reduce the number of parameters
by pruning or to reduce the number of bits used to store
each parameter, which is called quantization. In both cases,
compressing a network is useful to make it suitable for devices
with limited memory, such as mobile devices. For example,
Iandola et al. (2016) take Alexnet, a deep image classification
model, and reduce its memory size by significantly pruning
the model weights and quantizing the resulting weights from
32 bits each to 6 bits. At the end, they manage to reduce the

number of parameters by 50 and the size of the model by 510
without affecting its performance. Moreover, Paupamah et al.
(2020) show that reducing the memory size of models has other
positive effects on image classification tasks, such as reducing
inference time and increasing robustness to overfitting. In this
section, we will discuss how these strategies can be applied to
semantic video segmentation.

5.6.1. Weights Quantization

Weight quantization seems to be very effective when applied
to rather simple tasks such as classification. Some works design
networks that achieve an astonishing memory reduction, using
one bit per parameter (namely “binary networks”) (Courbariaux
and Bengio, 2016; Rastegari et al., 2016) that can be orders
of magnitude faster than their unquantized version while
maintaining good quality. However, segmentation is usually
considered a more challenging task and sometimes requires
more complex layers with, for example, upsampling or dilated
convolutions. Nevertheless, some work has been done in the
area of quantization of image segmentation networks (Vogel
et al., 2019; Miyama, 2021; Ahamad et al., 2021). The results
show that it is possible to reduce the size of the original 32-bit
parameters to 8 or 3 bits, depending on the models, without
losing much of the original quality.

Unfortunately, to the best of our knowledge, there are no
studies on the quantization of semantic video segmentation
models, which would be even more challenging than its 2D
alternative. Nevertheless, the quantization of a 3D UNet model
designed for volumetric image segmentation demonstrates the
plausibility of doing so on models adapted to video content,
since this format is also three-dimensional (AskariHemmat
et al., 2019).

5.6.2. Pruning

Pruning is particularly well suited to networks containing
fully connected layers. The first reason is that these layers
contain the most parameters compared to convolutional layers.
Second, as demonstrated by landola et al. (2016), these
layers have such densely connected architectures that many
neurons can be removed without degrading the most important
connections. This is illustrated Figure 14a.

In the case of fully convolutional networks, this is more
complex because removing a neuron has a more significant
impact on the behavior of the network. A convolutional
neuron is part of a feature extractor that is applied to each
position of the input tensor. Moreover, even though pruning
reduces the memory footprint significantly, most hardware
resources are not designed to efficiently load the resulting
unbalanced convolutional filters. Consequently, the reduction
in computation time is limited. Nevertheless, Shimoda et al.
(2019) propose a way to prune a FCNN network with efficient
inference time reduction. To do this, the pruned network is
guided by a dense network via knowledge distillation (see
Section 5.5). More importantly, the pruning strategy (which
is illustrated Figure 14c) consists of taking each filter and
sorting its weights by their absolute value, then pruning a fixed
percentage of the smallest ones. As such, since each filter is

23

affected by the pruning in the same way, there is no imbalance
in the load and the inference time can be improved.

In a convolutional layer, there are typically multiple filters,
each of which produces a channel output of variable importance
compared to others. Thus, instead of pruning individual
weights, one could remove entire channels/filters as depicted
in Figure 14b. This principle is applied in several methods such
as the one from Chen et al. (2022) where a network is optimized
for both classification and 2D segmentation tasks. The authors
use the scaling factor of the batch normalization layers to
determine the importance of each channel. By applying an L1
normalization to the scaling factors, they obtain sparse results
and can therefore drop the filters/channels that have an L1
normalized scaling factor close to 0. A similar procedure is
used by Huang et al. (2018a) to accelerate the classification
task. There, the importance of an input channel is determined
by the filters that use it: if the L1 norm of the weights treating
that channel is small compared to the weights treating the
other channels, then that input channel is no longer needed and
the filter that produces it can be dropped. To reinforce this
phenomenon, the authors use group convolutions (see Section
5.4.2) and encourage the filters belonging to the same group to
use the same input channels thanks to a group-lasso regularizer
(Zhang et al., 2020). This way, each group takes only a subset
of the remaining channels and thus performs less intensive
computations.

Finally, Bai et al. (2022) present a pruning mechanism that
does not lighten the memory footprint of the network, but
is specifically designed to reduce the inference time of the
segformer architecture (Xie et al., 2021), a transformer-based
2D semantic segmentation network. First, the authors observed
the magnitude variation of the segformer’s neurons across
different instance inferences. The results show that while
some neurons are informative most of the time, others are
highly informative only in some cases, and finally there are
neurons that are almost never informative regardless of the
context they are in. This motivates the development of a gating
mechanism that uses both the current input and the current
linear layer parameters to create a mask of which neurons to
keep and which to discard. The mask is then applied to both
the current linear layer parameters and the input of the next
linear layer. This saves time by avoiding the computation of
currently unnecessary neurons and by telling the next layer
which output to ignore. The results show that the neurons
previously identified as never informative are indeed always
masked, while those whose usefulness depends on the context
are dynamically activated only when necessary.

Similar to quantization, so far there is not much work on
pruning applied to semantic video segmentation. Given the
effectiveness of pruning on 2D tasks, its application to semantic
video segmentation is an interesting avenue for future work.

5.7. Network Search

The most suitable neural architecture can be very different
depending on the task. The construction of efficient
architectures often relies on manual trial and error, which
can be very slow and tedious, especially given the possible

Not Pruned

Pruned

Fig. 14. There are several ways to prune a network. In networks with
hidden layers (a) such as (Iandola et al., 2016), pruning can be done in
those layers by removing the least useful neurons and connections. In fully
convolutional networks, pruning can be done in two main ways: The first
(b), is to remove entire feature maps and their respective kernels instead
of removing individual neurons as in (Chen et al., 2022; Huang et al.,
2018a). The other method (c), is to set a fixed fraction of the weights in
each convolutional filter to zero as in (Shimoda et al., 2019).

options available. A field of study called “Network Search”
focuses on designing better search strategies to determine the
optimal architecture for a given task. There are several search
strategies for exploring the space of possible networks. Yang
et al. (2018) suggest a method that starts the search with a
pre-trained network whose complexity is above the desired
budget. To optimize the latency of the model while maintaining
the quality of its results, the method works iteratively. At each
iteration, several candidate networks of identical complexity
are generated by removing filters from the current model.
Each candidate is then briefly fine-tuned and evaluated. The
candidate with the best accuracy is then defined as the new
current model for the next iteration. Once the target complexity
is reached, the iterative process stops and the resulting model is
further fine-tuned.

In contrast, Tan et al. (2019) follow a reinforcement learning
strategy with an RNN as the controller (i.e., the candidate
architecture generator). It also has the peculiarity of factorizing
the search space into modules in a hierarchical way. The idea
is that if each layer of a network is considered independently,
the search space defined by the set of possible combinations of
each layer variation is too large to be explored efficiently. Thus,
by grouping some layers together so that they adopt the same
variations at the same time, one can greatly reduce the search
space. However, depending on their position in the network,
layers have different roles and data flows, so it is not necessarily
a good idea to group layers with these differences together. In
this work, the term “hierarchical” describes the fact that the
groups formed by the factorization are made in such a way that
the layers inside them share a close role and data flow.

Yet another approach is based on a gradient optimization
method (Liu et al., 2018). The strategy trains a one-shot
model (also called a supermodel) that contains all variations
of the search space and jointly relaxes this space in a
continuous manner so that the network progressively selects the

24

wisest operations. This method takes advantage of parameter
sharing to greatly reduce redundant training, in contrast to
strategies that independently train nearly identical models.
Finally, network search can be used directly to obtain a
model specifically designed for semantic video segmentation
(Nekrasov et al., 2020). The authors use a reinforcement-based
strategy with a two-layer LSTM network as the controller, as
suggested by Tan et al. (2019). Here, only a part of the network
is modified, which reduces the search space. The complexity
of the search is further reduced by using factorization into cells
that share the same internal architecture. At the end, the method
converges to architectures that do not need to perform slow
optical flow estimation and are thus much faster.

5.8. Activation Functions

Activation functions are an essential part of modern neural
architectures because they introduce nonlinearities in the
behavior of the network. Depending on the task at hand, the
architecture of the model, but also on the network layer, the
more appropriate activation function can vary. The choice of
activation function for each network layer has an impact on the
quality of the network results, but can also have an impact on its
inference time. Some of the most popular activation functions
are the Sigmoid function and the Rectified Linear Unit (ReLU)
function. Since its introduction, ReLU has led to many variants
such as Relu6 (Krizhevsky, 2010), Leaky ReLLU, Exponential
Linear Unit (ELU) (Clevert et al., 2016), Parametric ReLU (He
et al., 2015), Gaussian Error Linear Unit (GELU) (Hendrycks
and Gimpel, 2016), and Swish (Ramachandran et al., 2017).
These variants can fix some drawbacks of ReLU, such as
the dead neuron problem or the fact that the function is
not continuously differentiable. However, while the original
function is computationally simple, these improvements also
come at the cost of increased complexity. To address this,
Avenash and Viswanath (2019) propose a low-complexity
version of the swish activation function that outperforms ReLU
in some image- and video-related tasks. Similarly, Courbariaux
et al. (2015) introduce the Hard Sigmoid function, which is a
discrete and thus faster version of the Sigmoid.

6. Available Datasets

Semantic video segmentation is a complex task that ideally
requires a large amount of training data. In this section, we will
describe the existing datasets for such a goal.

e Camvid (Cambridge-driving Labeled Video Database)
(Brostow et al., 2008) contains five video sequences from
the dashboard viewpoint of a driving car. In four of
the five sequences, one frame per second of this 30fps
footage is densely annotated with 32 semantic classes.
In the remaining sequence, one out of every two frames
is annotated with semantic classes. In total, the dataset
contains over ten minutes of video and up to 701 annotated
frames.

e Cityscapes (Cordts et al., 2016) is a dataset containing
videos of urban scenes from 50 cities, taken during

daytime, in good or average weather, and in different
situations and seasons. These videos are annotated with
30 semantic classes belonging to 8 groups. The first part
of the dataset contains a selection of 5,000 highly diverse
video snippets taken in 27 of the aforementioned cities.
The 20th frame of each of these 30 frame (1.8s) snippets is
annotated with precise pixel-wise annotations. The second
part of this dataset contains the remaining footage from
the 23 other cities, with roughly annotated frames every
20 seconds or every time the vehicle moves 20 meters
forward, for a total of 20,000 coarsely annotated frames.
The annotations are made using polygons, and overlaps are
not tolerated, even when the footage contains transparent
or sparse objects such as windows or tree leaves.

Cityscapes-VPS (Kim et al., 2020) is an extension of
the Cityscapes dataset for panoptic segmentation. In fact,
among the 5,000 finely annotated video snippets from
the original dataset, 500 of them also contain instance
labels that make them usable for panoptic segmentation
purposes. This extension further enriches these 500 clips
by providing for each snippet a panoptic annotation of the
Sth, 10th, 15th, 25th, and 30th frames in addition to the
original annotated 20th frame. This provides additional
useful material for semantic segmentation as well.

NYUDepth (Silberman and Fergus, 2011) is a panoptic
video dataset of indoor scenes recorded by a Microsoft
Kinect camera. 64 scenes, classified into 7 scene types,
were recorded at a frame rate of 20 to 30fps. Out of a
total of 110,964 frames recorded, including both RGB and
depth estimation, 2,347 are associated with dense labels
belonging to a set of more than 1,000 classes, which
translates to approximately one labeled frame every 2 to
3 seconds.

NYUDepth V2 (Nathan Silberman and Fergus, 2012) is
the same kind of dataset as NYUDepth and contains 464
additional scenes of 26 types. This makes up to 408,473
new frames, including 1,449 densely labeled ones.

Gatech (Raza et al., 2013) is a dataset originally designed
for understanding the 3D geometric structure of outdoor
video scenes, but it can also be used for semantic
segmentation of videos. It contains 160 videos obtained
from YouTube or obtained by filming while walking
and driving in urban areas. The videos have different
aspect ratios and resolutions, and each contains 60 to 400
frames. More than a hundred of them (20,000 frames) are
fully annotated with 6 general labels (mix, sky, ground,
solid, porous, and object). However, because the manual
ground truth labeling was done on a superpixel scale
rather than a pixel-wise scale, the annotations contain
under-segmentation errors.

Freiburg Forest (Valada et al., 2016) is a multispectral
and multimodal video dataset for semantic segmentation
of unstructured environments. It contains sequences
captured by an autonomous robot that traveled 4.7 km

25

per day in the forest during 3 different days. Thus, the
dataset contains 15,000 frames obtained by subsampling
the original 20Hz content at 1Hz. Among these frames,
366 were manually annotated at the pixel level with 6
labels (obstacle, trail, sky, grass, vegetation, and void).

Indian Driving Dataset (IDD) (Varma et al., 2019) is
similar to Cityscapes, containing 182 driving sequences
that take place in two Indian cities and their respective
suburbs. It provides scenes that are much less structured
and contain very different traffic than Cityscapes. To
account for the scene diversity and label ambiguity,
additional classes were created, resulting in a total of 34
labels organized in a 4-level hierarchy. The videos, which
are mostly at 1024p resolution, are annotated at a rate
that depends on the interest of the scene. In order to
densely annotate the 10,004 selected frames, the team first
replicated some of the Cityscapes annotations to reduce
the domain gap between the two datasets.

GTAS (Richter et al., 2016) is a synthetic dataset
for semantic segmentation. The content represents
a photorealistic view of a driving car perspective in
urban scenes from the video game “Grand Theft Auto
5”. To select the 24,966 frames to densely label, the
team recorded one frame for every 40 frames generated
by the software during a game session. The 19
Cityscapes-compatible labels were then applied to the
frames in a semi-automatic process using data extracted
from the game’s shaders.

SYNTHIA-Seqs (Ros et al., 2016) is a synthetic dataset
containing four photorealistic video sequences in which
each frame is densely annotated with 13 potential semantic
labels. More specifically, the 200,000 annotated frames
represent the multi-view perspective of a car driving
through a Unity-rendered city that contains dynamic
objects in addition to static elements.

VSPW (Miao et al., 2021) is a semantic segmentation
dataset containing 3,337 videos from YouTube, ranging
from 2 to 10 seconds in length, with high resolution
(720P to 4K), describing a wide range of real-world scenes
taking place either indoors or outdoors. The selected
videos contain moderate object and camera motion and are
sampled at 15fps, resulting in 239,934 densely annotated
frames with 124 labels. This dataset also has a panoptic
extension called VIPSeg.

KITTI-STEP (Weber et al, 2021) is a panoptic
segmentation dataset containing 50 videos of streets from
the perspective of a driving car. The 1280x384 videos
are sampled at 10 fps (19,103 frames in total) and densely
annotated with 19 semantic classes.

6.1. Annotation Sparsity

Semantic segmentation is a task that aims to create precise
boundaries between objects of different nature. Learning such

26

Semantic Labelled Label
Dataset Example Year Fields Videos Format FPS Frames
Classes Frames
second
Camvid 2008 Semantic 32 5 9612?}]7320 30 18202 701 1to15
. 20,000
2016 ls,emanglc’ 30 25,000 10‘?&‘?48 17 150,000 + 0.55
anoptic 5,000
2019 Panoptic 30 500 1024%2048 17 15000 3000 3.3
RGB
. 640x480 20 to 0.33 to
2011 Panoptic 1000+ 64 RGBD 30 108,617 2347 05
NYUDepth . 640x480 20 to 0.33 to
V2 2012 Panoptic 1000+ 464 RGBD 30 408,473 1449 05
320x480
. 100 + to
Gatech 2013 Semantic 6 60 600x800 > 10 34000 20,000 > 10
RGB
Freibur 1024x768
erburg 2016 Semantic 6 3+ RGBD+ 1 15000 366 ~0.02
Forest
others
1920x1080
IDD 2018 Panoptic 34 182 RGB or ~ 15 10,004 10,004 ~0.88
less
GTAS 2016 Semantic 19 unknown 19?&;052 1.5-3 24966 24966 15-3
SYNTHIA-Seqs ‘ 2016 Semantic 13 5 960 % 720 5 200,000 200,000 5
RGBD
1280x720
. to
VSPW 2021 Semantic 124 3,536 3.840%2.160 15 239,934 251,633 15
RGB
KITTI-STEP 2021 Panoptic 19 50 ! ZEO(;(];’ 84 10 19,103 19,103 10

7

Table 1. A table summarizing key information about the available datasets

a task usually requires a large amount of training data with
dense and precise annotations. Annotating a 2024x2048 frame
takes on average 1.5 hours (Cordts et al., 2016). However, with

semantic video segmentation, the volume of data to annotate
is very high, as one second of content represents dozens of
frames. To address this problem, one solution could be to create

synthetic data to simultaneously generate the segmentation
maps (Richter et al., 2016; Ros et al., 2016). However, models
trained on such data may struggle to adapt to real examples
due to the domain gap. As we can see, natural annotated
data is quite necessary, so the solution commonly used to
produce such data is to annotate only one frame at a regular
interval (Cordts et al., 2016). Among the annotated frames,
only a small fraction is densely annotated and the rest is only
coarsely annotated. Because of this reality, semantic video
segmentation methods must adopt strategies to effectively train
on this sparsely annotated data.

Although the training of the segmentation task requires dense
pixel-wise annotations, this is not the case for every vision task.
For example, the multi-class video classification task requires
only video-wise or frame-wise annotations, which are much
more common because they are easier to produce. Interestingly,
once a classification model is trained, it becomes possible to
infer it on an example and then follow the gradient flow to
discover which features influence the classification decision.
The activation maps corresponding to these features then show
the pixels whose activation is the strongest. This makes it
possible to locate the classified objects and determine their
approximate shape. Saleh et al. (2017) exploit this and combine
the obtained spatial information of the current frame with the
temporal information provided by the optical flow estimations
of the previous frames. The obtained spatio-temporal features
are then further combined with deeper spatial features to
produce a semantic segmentation map of the current frame.
Similarly, Shimoda and Yanai (2020) suggest up-sampling
frame-wise classifier features of different scales and subtracting
features corresponding to different objects in order to create
maps corresponding to specific semantics. These enhanced
features are then fed to a CRF to produce precise segmentation
maps.

Another approach is to use knowledge distillation, as
described in Section 5.5 (Chen et al., 2020). There, a teacher
network is trained on the available labeled frames. Then, the
same network is used to produce segmentation trials of the
unlabeled frames. To improve the robustness of the predictions,
each frame is segmented several times using data augmentation
and the different results are then averaged. The improved
segmentation candidates of the unlabeled frames can then be
added to the training set of the teacher network for further
training. By training on this additional data, which has been
made more robust than the initial naive predictions, the teacher
can improve and thus produce new segmentation maps of better
quality for the unlabeled frames. This process is repeated for
several iterations, with each iteration producing both a more
powerful teacher network and better quality pseudo-labels. At
the same time, a student network learns the segmentation task
using both the labeled frames and the frames with pseudo-labels
generated by the teacher. Finally, the student is fine-tuned using
only the labeled frames.

End-to-end video segmentation methods typically require
larger amounts of task-specific training data than their image
counterparts. On the other hand, semi-automatic video instance
segmentation techniques are designed to efficiently propagate

27

an initial mask to the next frames of a video sequence
(Badrinarayanan et al., 2010; Wang et al., 2019b; Lu et al.,
2020; Cheng and Schwing, 2022; Qin et al., 2023), and we
have seen in the Sections 4.2 and 5.3.1 that mask propagation is
also possible for video semantic segmentation tasks. Therefore,
it may be advantageous to adapt 2D segmentation methods to
video (Miksik et al., 2013; Cheng et al., 2023), especially with
the use of VIS methods, as demonstrated by Cheng et al. (2023).

The latter work indeed presents a universal temporal
propagation model that can convert any 2D segmentation
method to work with video without the need for additional
task-specific training data. This propagation model,
which produces more accurate results than applying the
2D segmentation model to each frame independently, is
bidirectional and makes use of several tools. First, XMem
Cheng and Schwing (2022), a model described in Section
4.6, is slightly modified and trained so that it can propose a
class-agnostic segmentation candidate for a given frame based
on the segmentation results of past frames. Another tool used
by this method is the “in-clip consensus”, which takes as input
a fixed number of future frames in addition to the current one.
These input frames are then segmented using the 2D model
and aligned to the current frame space using the modified
XMem. The aligned set of segmentation candidates can then
be compared by measuring the mloU between all possible pairs
of candidates. The segments with the most and highest mIoU
ratings are selected as the consensus candidate. In summary, to
segment a given frame, the model computes a mask from past
frames with the modified Xmem network and merges it with the
result of the in-clip consensus from future frames.

6.1.1. Frames Prediction

As described in Section 4.3.1, some semisupervised object
segmentation methods use optical flow estimation to propagate
a ground-truth segmentation map to the next frames. Therefore,
one might think that this technique could be used to generate
new training examples to help train semantic segmentation
methods that do not rely on optical flow. However, the quality
of the training examples generated in this way is directly related
to the quality of the optical flow estimation. If the estimation
is not sufficiently precise, the generated examples can become
counterproductive for training due to misalignments between
the propagated labels and the associated video content.
Furthermore, classical optical flow methods do not handle
occlusions and disocclusions. Hopefully, there is an area
of research that focuses on predicting the next frame of
a given sequence. More specifically, it can compute the
likely deformations of the current frame that will produce
the next frame while handling occlusions and disocclusions.
The same deformations can then be applied to the current
segmentation map to generate the next one. Using this
technique for training purposes is interesting because there
is no risk of misalignment between the movements in the
video and the deformations of the annotation sequence (Zhu
et al., 2019). However, the warping done on the frames can
introduce interpolation-induced approximations at the edges of
the objects. To reduce the impact of these small errors on the
training performance of the produced examples, the authors

propose to reduce the label weights where the destructive
deformations are applied. Finally, by training their model with
the synthetic examples in addition to the ground truth examples,
they achieve better results than by training it with the ground
truth examples alone.

The frame prediction technique can also be used directly for a
semantic video segmentation task, as demonstrated by Jin et al.
(2017). Indeed, a frame prediction network does not need label
annotations to be trained. Once the network is trained, it can
be used to provide spatiotemporal features from the previous
frames and therefore work as a better performing alternative to
optical flow estimation.

7. Discussion

Throughout this survey, we have discussed about various
deep learning methods that have been used or could be used
to improve the quality or the efficiency of video semantic
segmentation. As we saw in Section 3, although semantic
segmentation methods achieve impressive performance on
image datasets, they suffer from three main limitations when
dealing with video:

o Computational complexity: Computationally intensive
methods can be used in many image-based practical
applications, but the same cannot be said for video-based
practical applications because the associated data flow
can rarely be processed in a reasonable time. This
issue is particularly important since most of the induced
computations are temporally redundant due to the nature
of video content.

e Temporal consistence: Video semantic segmentation
results must be temporally consistent to be applicable to
most real-world applications, but this is not possible with
framewise methods.

e Temporal cues: Image methods rely only on spatial cues
to perform segmentation. However, video content contains
temporal cues that should be exploited to improve the
segmentation results.

To address these challenge, some methods have proposed to
use sequence-specific tools to deal with the temporal dimension
(see Section 4.2). This was done with RNN, then with
gated units such as LSTM and GRU. Improvements have been
made to adapt these units to image processing (convGRU,
convLSM), but they are decreasingly used in recent work on
video semantic segmentation. The reason may be that they
cannot be parallelized, but more importantly, that they have a
limited ability to retain long-range information, in contrast to
newer and more dynamic architectures such as transformers.

Optical flow estimation has been widely used to support
the development of video segmentation methods (see Section
4.3). It can be used to improve segmentation accuracy and
consistency by warping features from different time steps, or
it can help reduce the overall inference time and redundant
computation by propagating features or segmentation masks
from keyframes. Furthermore, optical flow itself can be used
as a feature, since it provides spatiotemporal edges that are

28

complementary to spatial ones, and it provides semantic cues
by revealing the way objects move. Finally, optical flow can be
computed with hand-crafted methods, and if it is based on deep
learning, it can be trained beforehand when the segmentation
training data is scarce, or it can be trained together with the
segmentation in order to make both methods benefit from each
other. However, optical flow also has some drawbacks. For
example, it is typically not robust to occlusion and complex/fast
motion. Also, when trained separately from the segmentation,
it can suffer from a domain gap that reduces the accuracy.
As for keyframe propagation, some semi-supervised instance
segmentation methods are more efficient than optical flow
warping (see Section 6.1). Finally, keyframe methods are
not ideal because although they reduce the overall inference
time, the inference time is inconsistent between keyframes
and non-keyframes, which is not suitable for many real-world
applications.

On another hand, some early work adapted image models to
video by converting 2D convolution kernels to 3D convolution
kernels (see Section 4.1). However, a limit was soon reached
due to the induced computational overhead. Depending on the
task at hand, it has been shown that using 3D convolutions only
in some parts of the network can sometimes be sufficient to
gain accuracy and/or temporal consistency. In addition, as we
saw in Section 5.4, it is possible to reduce the computation of
3D convolutions by factorizing kernels or by using group-wise
convolutions. However, convolutions in general suffer from a
dilemma that becomes even more pronounced when it comes
to 3D convolutions: to perform well, a network must first
capture abstract semantics thanks to a large receptive field,
which can be built by stacking many convolutional layers at
the cost of heavy computation. To enlarge the receptive field
at reasonable computational cost, researchers have introduced
techniques such as pooling, stride, and dilation rates, which
work by downsampling the features fed to each layer. However,
low-resolution features lack the details required by the network
to produce accurate, and thus qualitative, results. A large
branch of research has therefore focused on solving this crucial
dilemma: Multiscale methods (see Section 5.1) provide ways
to generate features of different scales in parallel, to capture
both features containing details and large scale features that
increase the receptive field (pooling pyramid, inception layers).
Alternatively, most state-of-the-art methods employ ways to
make deep features communicate with features from early
layers (see Section 5.2). In this way, shallow features are
used to produce deeper features, but also later to restore some
spatial detail to deep features that have become coarse in the
process of acquiring meaningful semantics. Finding ways
to create efficient convolutions (including 3D convolutions)
is a promising research direction, since convolutions are still
used in the vast majority of state-of-the-art video segmentation
methods, at least in the backbones. The same can be said
about finding links between features of different scales, because
no matter how they are created (convolutions, transformers),
mixing them in an effective way is still a challenge, while being
at the core of the segmentation task.

For some time, graphs have been used either for

post-processing or as part of the networks themselves (see
Section 4.5). They are useful for imposing priors on the input
data, constraints on the output, and for modeling the structure
of a video. However, they are usually carefully designed
for specific applications, which does not follow the trend of
creating architectures that can be easily adapted to multiple
tasks. Nevertheless, they continue to be used and improved,
especially in recent work introducing graph neural networks.

The advent of dynamic methods and attention has led to
major advances in the field of video semantic segmentation
(see Section 4.4). There is a wealth of new tools (deformable
convolutions, dynamic convolutional kernels, transformers)
that can be applied to whole feature tensors or to parts of
them (channel attention, spatial attention, temporal attention).
Attention is a powerful tool for creating links between distant
feature elements, allowing for large receptive fields and clever
multi-scale feature mixing. Such discoveries have also led
to the rise of query-based methods, which aim to become
universal methods that can perform different tasks without
changing the architecture. These attention-based methods have
proven their effectiveness and offer promising prospects, so
work should continue to find what are the most effective tools
among all the new ones. Recent methods, while providing
high accuracy results, often face some limitations in terms of
network size, training difficulty, and computation required to
perform inference. Great improvements have already been
made (sparse attention, local attention, factorized attention), but
the efforts should continue in order to obtain effective models
that could be used for various real-world applications.

In general, recent methods focus improving the quality of
the segmentation results. However, rare are the works that
consider other constraints. In fact, there are several challenges
and limitations other than accuracy that limit the real-world
applications of such methods. First, some methods claim to be
applicable to video without evaluating the temporal consistency
of the segmentation results, which is essential for some
applications. Inference time is obviously a major drawback
of many current methods, but is quite rarely mentioned, and
is difficult to compare when methods are not evaluated on
identical platforms. The consistency of the inference time may
also affect the possibility of using a method for a given task.
The model’s memory footprint, memory usage, computational
load, and energy consumption during inference can be a
hindrance for applications on embedded systems or frugal
projects. As some models progress toward becoming universal
architectures, it becomes increasingly important to simplify the
ability to train or tune a given model for a specific task. This
includes the complexity of the structural changes required to
adapt the architecture to a given task, the simplicity of finding
the right combination of hyperparameters, the computational
power and time required to train the network, the amount
of annotated training data required, and the ability to handle
unbalanced data. Binary segmentation maps may not be
sufficient for some real-world applications that require knowing
the uncertainty of the predictions. Finally, while almost all
recent methods test their effectiveness on short videos, some
applications may require consistent results on longer sequences.

29

Work has been done and should be continued to assess
these many challenges. Loss functions are important because
they define the goals and constraints associated with a given
task (see Section 4.8). Some commonly used losses have
shown their limitations and could be replaced by one or more
losses that better formalize the goals and lead to more effective
training. While losses are often associated with the last layer
of a model, it has also been shown that applying losses to
shallower layers can help guide the network towards better
training. Moreover, since losses are only applied during
training, they can improve results without adding any delay to
inference. As discussed above, many methods achieve great
results at the cost of heavy architectures, so the usefulness
of knowledge distillation will only increase as it offers the
possibility of transferring capabilities that emerged in heavy
models to compact architectures (see Section 5.5). In the same
vein, quantization (see Section 5.6.1) and pruning (see Section
5.6.2) allow to lighten trained models to some extent with
minimal impact on their performance. Pruning is quite difficult
to apply to fully convolutional architectures, but may make a
comeback with the rise of transformer-based models, although
this is limited by the need for retraining.

Activation functions are at the core of the effectiveness of
deep learning architectures (see Section 5.8). However, some
activation functions can be computationally intensive and could
be replaced by lighter alternatives. In addition, not every
activation function is adapted to every part of the network. In
order to use them to their full potential and to find the right
balance between accuracy and computational overhead, work
in this field should be pursued. Finally, there is some work
on long-term memory (Section 4.6) and uncertainty estimation
(Section 4.7), but much remains to be done. It is interesting
to note that most of these research fields are orthogonal to
methods designed to improve accuracy, and also orthogonal
to each other, suggesting that they could be used together to
improve the applicability of models to real-world constraints.

On another note, some recent architectures include many
hyperparameters that can be very difficult to tune for a given
task. In Section 5.7) certain works addressing this issue were
discussed and offer promising results. Nevertheless, in our
opinion, such tools should only be used to improve the results
of real-world applications. When used in a research context to
improve the performance of a network that introduces a new
method unrelated to hyperparameter tuning, network search
can make comparisons with other methods unfair and affect
reproducibility.

Finally, irrespective of the network architecture used, the
importance of datasets should not be understated. In the
context of video semantic segmentation, datasets are still
somewhat lacking. Dense labeling is often scarce, which
affects the training capability. This problem is beginning to
be addressed with the advent of better labeling workflows and
the emergence of synthetic datasets. However, methods trained
on synthetic data currently suffer from a domain gap when
applied to non-synthetic examples, showing that there is still
room for improvement in this area. Furthermore, most of
the datasets for video semantic segmentation currently contain

urban driving content, which, albeit well-suited to autonomous
driving applications, represents a poor diversity for different use
cases. Therefore, a future goal would be to create more diverse
and accessible datasets.

8. Conclusion

In this survey, we have described the different mechanisms
that can help improve the performance of semantic video
segmentation approaches, and in particular deep learning
approaches adapted for this task, either by reducing its
inference time or by improving the quality of its results. The
nature of these mechanisms is very diverse: some are based on
modified operators, others on structural changes on the network
architecture, or on specific training strategies.

In some cases, described improvements are orthogonal to
others and could be combined to achieve even better results.
Moreover, the respective goals of improving inference speed
and the output quality may be complementary. Indeed, to be
usable for real-world applications, deep learning approaches are
often constrained by a minimum inference speed budget, which
inevitably limits the ability to incorporate computationally
intensive mechanisms to improve quality. Thus, finding ways
to speed up a given network may open the possibility to add the
aforementioned quality improving methods while respecting
the inference speed budget.

We have also highlighted that while some techniques have
been proven for years, the new state-of-the-art methods also
show promising results that should be further investigated.
Nevertheless, several challenges remain and semantic video
segmentation is still a complex task with a growing application
area, and research in this area has room for improvement.

References

Aakerberg, A., Johansen, A.S., Nasrollahi, K., Moeslund, T.B., 2022.
Semantic segmentation guided real-world super-resolution, in: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACYV) Workshops, pp. 449-458.

Ahamad, A., Sun, C.C., Nguyen, HM., Kuo, WK., 2021. Q-segnet:
Quantized deep convolutional neural network for image segmentation on
fpga, in: 2021 International Symposium on Intelligent Signal Processing and
Communication Systems (ISPACS), pp. 1-2. doi:10.1109/ISPACS51563.
2021.9650929.

An, S., Liao, Q., Lu, Z., Xue, J.H., 2023. Dual correlation network for efficient
video semantic segmentation. IEEE Transactions on Circuits and Systems
for Video Technology , 1-1doi:10.1109/TCSVT.2023.3298644.

Krithika alias AnbuDevi, M., Suganthi, K., 2022. Review of semantic
segmentation of medical images using modified architectures of unet.
Diagnostics 12. URL: https://www.mdpi.com/2075-4418/12/12/
3064, doi:10.3390/diagnostics12123064.

AskariHemmat, M., Honari, S., Rouhier, L., Perone, C.S., Cohen-Adad,
J., Savaria, Y., David, J.P, 2019. U-net fixed-point quantization for
medical image segmentation, in: Zhou, L., Heller, N., Shi, Y., Xiao,
Y., Sznitman, R., Cheplygina, V., Mateus, D., Trucco, E., Hu, X.S.,
Chen, D., Chabanas, M., Rivaz, H., Reinertsen, I. (Eds.), Large-Scale
Annotation of Biomedical Data and Expert Label Synthesis and Hardware
Aware Learning for Medical Imaging and Computer Assisted Intervention,
Springer International Publishing, Cham. pp. 115-124.

Athar, A., Hermans, A., Luiten, J., Ramanan, D., Leibe, B., 2023. Tarvis: A
unified approach for target-based video segmentation, in: 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 18738-18748. URL:

30

https://doi.ieeecomputersociety.org/10.1109/CVPR52729.
2023.01797, doi:10.1109/CVPR52729.2023.01797.

Athar, A., Mahadevan, S., OSep, A., Leal-Taixé, L., Leibe, B., 2020.
Stem-seg: Spatio-temporal embeddings for instance segmentation in videos,
in: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision
— ECCV 2020, Springer International Publishing, Cham. pp. 158-177.

Avenash, R., Viswanath, P., 2019. Semantic segmentation of satellite images
using a modified cnn with hard-swish activation function, in: VISIGRAPP.

Ba, J., Caruana, R., 2014. Do deep nets really need to be deep?, in:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
K. (Eds.), Advances in Neural Information Processing Systems, Curran
Associates, Inc.

Badrinarayanan, V., Galasso, F., Cipolla, R., 2010. Label propagation in video
sequences, pp. 3265-3272. doi:10.1109/CVPR.2010.5540054.

Bai, H., Mao, H., Nair, D., 2022. Dynamically pruning segformer for
efficient semantic segmentation, in: ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3298-3302. doi:10.1109/ICASSP43922.2022.9747634.

Ballas, N., Yao, L., Pal, C., Courville, A.C., 2016. Delving deeper
into convolutional networks for learning video representations, in:
Bengio, Y., LeCun, Y. (Eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Bengio, Y., Simard, P., Frasconi, P, 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks 5,
157-166. doi:10.1109/72.279181.

Borghuis, B.G., Tadin, D., Lankheet, M.J., Lappin, J.S., van de Grind, W.A.,
2019. Temporal limits of visual motion processing: Psychophysics and
neurophysiology. Vision 3. doi:10.3390/vision3010005.

Borse, S., Wang, Y., Zhang, Y., Porikli, F, 2021. Inverseform: A loss
function for structured boundary-aware segmentation, in: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 5897-5907. doi:10.1109/
CVPR46437.2021.00584.

Boykov, Y., Veksler, O., Zabih, R., 2001. Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 1222-1239. doi:10.1109/34.969114.

Brostow, G.J., Fauqueur, J., Cipolla, R., 2008. Semantic object classes in video:
A high-definition ground truth database. Pattern Recognition Letters .

Brox, T., Malik, J., 2010. Object segmentation by long term analysis of point
trajectories, in: European Conference on Computer Vision. URL: https:
//api.semanticscholar.org/CorpusID:16608752.

Brox, T., Malik, J., 2011. Large displacement optical flow: Descriptor matching
in variational motion estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 33, 500-513. doi:10.1109/TPAMI.2010.143.

Canny, J., 1986. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8,
679-698. doi:10.1109/TPAMI. 1986.4767851.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S., 2020. End-to-end object detection with transformers, in: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision — ECCV 2020,
Springer International Publishing, Cham. pp. 213-229.

Carreira, J., Patraucean, V., Mazare, L., Zisserman, A., Osindero, S.,
2018. Massively parallel video networks, in: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (Eds.), Computer Vision — ECCV 2018,
Springer International Publishing, Cham. pp. 680-697.

Chandra, S., Couprie, C., Kokkinos, I., 2018. Deep spatio-temporal random
fields for efficient video segmentation, in: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 8915-8924. doi:10.1109/CVPR.
2018.00929.

Chang, J., Wei, D., Fisher III, J.W.,, 2013. A video representation using
temporal superpixels, in: 2013 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2051-2058. doi:10.1109/CVPR.2013.267.

Chen, L.C., Lopes, R.G., Cheng, B., Collins, M.D., Cubuk, E.D., Zoph, B.,
Adam, H., Shlens, J., 2020. Naive-student: Leveraging semi-supervised
learning in video sequences for urban scene segmentation, in: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision — ECCV 2020,
Springer International Publishing, Cham. pp. 695-714.

Chen, X., Zhang, Y., Wang, Y., 2022. Mtp: Multi-task pruning for efficient
semantic segmentation networks, in: 2022 IEEE International Conference
on Multimedia and Expo (ICME), pp. 1-6. doi:10.1109/ICME52920.

2022.9859583.

Cheng, B., Choudhuri, A., Misra, I, Kirillov, A., Girdhar, R.,
Schwing, A.G., 2021. Mask2former for video instance segmentation.
ArXiv abs/2112.10764. URL: https://api.semanticscholar.org/
CorpusID:245335013.

Cheng, B., Misra, 1., Schwing, A.G., Kirillov, A., Girdhar, R., 2022.
Masked-attention mask transformer for universal image segmentation, in:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1280-1289. doi:10.1109/CVPR52688.2022.00135.

Cheng, H.K., Oh, S.W., Price, B.L., Schwing, A., Lee, J.Y., 2023. Tracking
anything with decoupled video segmentation. ArXiv abs/2309.03903. URL:
https://api.semanticscholar.org/CorpusID:261582334.

Cheng, H.K., Schwing, A.G., 2022. Xmem: Long-term video object
segmentation with an atkinson-shiffrin memory model, in: Avidan, S.,
Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision
— ECCV 2022, Springer Nature Switzerland, Cham. pp. 640-658.

Cho, K., van Merriénboer, B., Bahdanau, D., Bengio, Y., 2014. On the
properties of neural machine translation: Encoder—decoder approaches,
in: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation, Association for Computational
Linguistics, Doha, Qatar. pp. 103-111. doi:10.3115/v1/W14-4012.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation
of gated recurrent neural networks on sequence modeling, in: NIPS 2014
Workshop on Deep Learning, December 2014.

Clevert, D., Unterthiner, T., Hochreiter, S., 2016. Fast and accurate deep
network learning by exponential linear units (elus), in: Bengio, Y., LeCun,
Y. (Eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B., 2016. The cityscapes dataset for semantic
urban scene understanding, in: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE Computer Society, Los Alamitos,
CA, USA. pp. 3213-3223. doi:10.1109/CVPR. 2016 . 350.

Courbariaux, M., Bengio, Y., 2016. Binarynet: Training deep neural
networks with weights and activations constrained to +1 or —1. CoRR
abs/1602.02830.

Courbariaux, M., Bengio, Y., David, J.P,, 2015. Binaryconnect: Training deep
neural networks with binary weights during propagations, in: Proceedings
of the 28th International Conference on Neural Information Processing
Systems - Volume 2, MIT Press. pp. 3123-3131.

Csurka, G., Volpi, R., Chidlovskii, B., 2023. Semantic image segmentation:
Two decades of research. Found. Trends Comput. Graph. Vis. 14, 1-162.
URL: https://api.semanticscholar.org/CorpusID:253028117.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y., 2017. Deformable
convolutional networks, in: 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 764-773. doi:10.1109/ICCV.2017.89.

Dhanachandra, N., Manglem, K., Chanu, Y.J., 2015. Image segmentation using
k -means clustering algorithm and subtractive clustering algorithm.
Procedia Computer Science 54, 764-771. URL: https://www.
sciencedirect.com/science/article/pii/S1877050915014143,
doichttps://doi.org/10.1016/j.procs.2015.06.090. eleventh
International Conference on Communication Networks, ICCN 2015,
August 21-23, 2015, Bangalore, India Eleventh International Conference
on Data Mining and Warehousing, ICDMW 2015, August 21-23, 2015,
Bangalore, India Eleventh International Conference on Image and Signal
Processing, ICISP 2015, August 21-23, 2015, Bangalore, India.

Ding, M., Wang, Z., Zhou, B., Shi, J., Lu, Z., Luo, P., 2020. Every frame counts:
Joint learning of video segmentation and optical flow. Proceedings of the
AAAI Conference on Artificial Intelligence 34, 10713-10720. doi:10.
1609/aaai.v34i07.6699.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J., Houlsby, N., 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. CoRR abs/2010.11929.

Dosovitskiy, A., Fischer, P, Ilg, E., Hausser, P., Hazirbas, C., Golkov, V.,
Smagt, P., Cremers, D., Brox, T., 2015. Flownet: Learning optical flow
with convolutional networks, in: 2015 IEEE International Conference on
Computer Vision (ICCV), IEEE Computer Society, Los Alamitos, CA,
USA. pp. 2758-2766. doi:10.1109/ICCV.2015.316.

Duke, B., Ahmed, A., Wolf, C., Aarabi, P., Taylor, G.W., 2021. Sstvos:
Sparse spatiotemporal transformers for video object segmentation. 2021

31

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 5908-5917.

Elhassan, M.E.A., Yang, C., Huang, C., Munea, T.L., 2022. Spfnet: Subspace
pyramid fusion network for semantic segmentation. ArXiv abs/2204.01278.
URL: https://api.semanticscholar.org/CorpusID:247939262.

Fang, Y., Wang, Z., Lin, W., 2013. Video saliency incorporating spatiotemporal
cues and uncertainty weighting. IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society 23, 1-6. doi:10.1109/
ICME.2013.6607572.

Fang, Y., Yang, S., Wang, X., Li, Y., Fang, C., Shan, Y., Feng, B., Liu, W.,
2021. Instances as queries, pp. 6890-6899. doi:10.1109/ICCV48922.
2021.00683.

Fayyaz, M., Saffar, M.H., Sabokrou, M., Fathy, M., Huang, F., Klette,
R., 2017. Stfen: Spatio-temporal fully convolutional neural network for
semantic segmentation of street scenes, in: Chen, C.S., Lu, J., Ma, K.K.
(Eds.), Computer Vision — ACCV 2016 Workshops, Springer International
Publishing, Cham. pp. 493-509.

Fragkiadaki, K., Zhang, G., Shi, J., 2012. Video segmentation by tracing
discontinuities in a trajectory embedding, in: 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1846-1853. doi:10.1109/
CVPR.2012.6247883.

Gadde, R., Jampani, V., Gehler, P.V., 2017. Semantic video cnns through
representation warping, in: 2017 IEEE International Conference on
Computer Vision (ICCV), IEEE Computer Society, Los Alamitos, CA,
USA. pp. 4463—4472. doi:10.1109/ICCV.2017.477.

Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning, in: Balcan, M.E,
Weinberger, K.Q. (Eds.), Proceedings of The 33rd International Conference
on Machine Learning, PMLR, New York, New York, USA. pp. 1050-1059.

Gao, R., 202I. Rethink dilated convolution for real-time semantic
segmentation. CoRR abs/2111.09957.

Gonda, F., Wei, D., Parag, T., Pfister, H., 2018.
3d convolution for video and volumetric data understanding.
abs/1809.04096.

Gou, J., Yu, B., Maybank, S.J., Tao, D., 2021. Knowledge distillation: A
survey. International Journal of Computer Vision 129, 1789-1819. doi:10.
1007/s11263-021-01453-z.

Grammatikopoulou, M., Sanchez-Matilla, R., Bragman, F., Owen, D., Culshaw,
L., Kerr, K., Stoyanov, D., Luengo, I., 2023. A spatio-temporal network for
video semantic segmentation in surgical videos. Int] Comput Assist Radiol
Surg .

Hao, S., Zhou, Y., Guo, Y., 2020. A brief survey on semantic segmentation
with deep learning. Neurocomputing 406, 302-321. doichttps://doi.
org/10.1016/j.neucom.2019.11.118.

Hara, K., Kataoka, H., Satoh, Y., 2018. Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet?, in: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6546—6555. doi:10.1109/
CVPR.2018.00685.

He, J., Li, P, Geng, Y., Xie, X., 2023. Fastinst: A simple query-based
model for real-time instance segmentation, in: 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 23663-23672. URL: https://
doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02266,
doi:10.1109/CVPR52729.2023.02266.

He, K., Zhang, X., Ren, S., Sun, J, 2015. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification,
in: 2015 IEEE International Conference on Computer Vision (ICCV), pp.
1026-1034. doi:10.1109/ICCV.2015.123.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778. doi:10.1109/CVPR.2016.90.

He, T., Shen, C., Tian, Z., Gong, D., Sun, C., Yan, Y., 2019. Knowledge
adaptation for efficient semantic segmentation, in: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 578-587. doi:10.1109/
CVPR.2019.00067.

Hendrycks, D., Gimpel, K., 2016. Bridging nonlinearities and stochastic
regularizers with gaussian error linear units. CoRR abs/1606.08415.

Hochbaum, D.S., 2001. An efficient algorithm for image segmentation, markov
random fields and related problems. J. ACM 48, 686-701. URL: https:
//doi.org/10.1145/502090.502093, doi:10.1145/502090.502093.

Holliday, A., Barekatain, M., Laurmaa, J., Kandaswamy, C., Prendinger, H.,

Parallel separable
CoRR

2017. Speedup of deep learning ensembles for semantic segmentation using
amodel compression technique. Computer Vision and Image Understanding
164, 16-26. doichttps://doi.org/10.1016/j.cviu.2017.05.004.
deep Learning for Computer Vision.

Hong, Y., Pan, H., Sun, W, Jia, Y., 2021. Deep dual-resolution networks
for real-time and accurate semantic segmentation of road scenes. CoRR
abs/2101.06085.

Hou, R., Chen, C., Sukthankar, R., Shah, M., 2019a. An efficient 3d CNN
for action/object segmentation in video, in: 30th British Machine Vision
Conference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019, BMVA
Press. p. 170.

Hou, R., Chen, C., Sukthankar, R., Shah, M., 2019b. An efficient 3d CNN
for action/object segmentation in video, in: 30th British Machine Vision
Conference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019, BMVA
Press. p. 170.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T,
Andreetto, M., Adam, H., 2017. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR abs/1704.04861.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks, in: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7132-7141. doi:10.1109/CVPR.2018.00745.

Hu, P, Caba, F, Wang, O., Lin, Z., Sclaroff, S., Perazzi, F., 2020.
Temporally distributed networks for fast video semantic segmentation, in:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8815-8824. doi:10.1109/CVPR42600.2020.00884.

Huang, D.A., Yu, Z., Anandkumar, A., 2022a. Minvis: A minimal video
instance segmentation framework without video-based training. doi:10.
48550/arXiv.2208.02245.

Huang, G., Liu, S., Maaten, L., Weinberger, K.Q., 2018a. Condensenet: An
efficient densenet using learned group convolutions, in: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 2752-2761. doi:10.1109/
CVPR.2018.00291.

Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.Q., 2017. Densely
connected convolutional networks, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE Computer Society, Los
Alamitos, CA, USA. pp. 2261-2269. doi:10.1109/CVPR.2017.243.

Huang, P.Y., Hsu, W.T., Chiu, C.Y., Wu, T.F, Sun, M., 2018b. Efficient
uncertainty estimation for semantic segmentation in videos, in: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.), Computer Vision — ECCV
2018, Springer International Publishing, Cham. pp. 536-552.

Huang, Z., Shi, X., Zhang, C., Wang, Q., Cheung, K.C., Qin, H., Dai, J., Li, H.,
2022b. Flowformer: A transformer architecture for optical flow, in: Avidan,
S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer
Vision — ECCV 2022, Springer Nature Switzerland, Cham. pp. 668—685.

Hur, J., Roth, S., 2016. Joint optical flow and temporally consistent semantic
segmentation, in: Hua, G., Jégou, H. (Eds.), Computer Vision — ECCV 2016
Workshops, Springer International Publishing, Cham. pp. 163-177.

Iandola, EN., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.,
2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR abs/1602.07360.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T., 2017.
Flownet 2.0: Evolution of optical flow estimation with deep networks,
in: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1647-1655. doi:10.1109/CVPR.2017.179.

Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A., 2017. Deep roots:
Improving cnn efficiency with hierarchical filter groups, in: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 5977-5986. doi:10.1109/
CVPR.2017.633.

Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k., 2015. Spatial
transformer networks, in: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (Eds.), Advances in Neural Information Processing Systems
28, Curran Associates, Inc.. pp. 2017-2025.

Jaderberg, M., Vedaldi, A., Zisserman, A., 2014. Speeding up convolutional
neural networks with low rank expansions. BMVC 2014 - Proceedings of
the British Machine Vision Conference 2014 doi:10.5244/C.28.88.

Jadon, S., 2020. A survey of loss functions for semantic segmentation, in:
2020 IEEE Conference on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), pp. 1-7. doi:10.1109/CIBCB48159.
2020.9277638.

Jain, A., Chatterjee, S., Vidal, R., 2013. Coarse-to-fine semantic video

32

segmentation using supervoxel trees, in: Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

Jain, S., Wang, X., Gonzalez, J.E., 2018. Accel: A corrective fusion network
for efficient semantic segmentation on video. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) , 8858-8867.

Jain, S., Xiong, B., Grauman, K., 2017. Fusionseg: Learning to combine
motion and appearance for fully automatic segmentation of generic objects
in videos, in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA.
pp. 2117-2126. doi:10.1109/CVPR.2017 .228.

Ji, S., Xu, W.,, Yang, M., Yu, K., 2010. 3d convolutional neural networks
for human action recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35, 221-231.

Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R., 2021. Learning to estimate
hidden motions with global motion aggregation, in: 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9752-9761.
doi:10.1109/ICCV48922.2021.00963.

Jin, X., Li, X., Xiao, H., Shen, X., Lin, Z., Yang, J., Chen, Y., Dong, J., Liu,
L., Jie, Z., Feng, J., Yan, S., 2017. Video scene parsing with predictive
feature learning, in: 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 5581-5589. doi:10.1109/ICCV.2017.595.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.,
2014. Large-scale video classification with convolutional neural networks,
in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.
1725-1732. doi:10.1109/CVPR.2014.223.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: Active contour models.
International Journal of Computer Vision 1, 321-331. URL: https://doi.
org/10.1007/BF00133570, doi:10.1007/BF00133570.

Kim, D., Woo, S., Lee, J.Y., Kweon, L.S., 2020. Video panoptic segmentation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Koh, Y.J., Kim, C.S., 2017. Primary object segmentation in videos based on
region augmentation and reduction, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7417-7425. doi:10.1109/
CVPR.2017.784.

Kohl, S.A.A., Romera-Paredes, B., Meyer, C., Fauw, J.D., Ledsam, J.R.,
Maier-Hein, K.H., Eslami, S.M.A., Rezende, D.J., Ronneberger, O., 2018. A
probabilistic u-net for segmentation of ambiguous images, in: Proceedings
of the 32nd International Conference on Neural Information Processing
Systems, Curran Associates Inc.. p. 6965-6975.

Kong, L., Shen, C., Yang, J., 2021. Fastflownet: A lightweight network for fast
optical flow estimation, in: 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10310-10316. doi:10.1109/ICRA48506.
2021.9560800.

Kopuklu, O., Kose, N., Gunduz, A., Rigoll, G., 2019. Resource efficient
3d convolutional neural networks, in: 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 1910-1919. doi:10.1109/ICCVW.
2019.00240.

Krizhevsky, A., 2010. Convolutional deep belief networks on cifar-10, in: Not
published.

Krizhevsky, A., Sutskever, 1., Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks, in: Pereira, F., Burges, C., Bottou, L.,
Weinberger, K. (Eds.), Advances in Neural Information Processing Systems,
Curran Associates, Inc.

Kundu, A., Vineet, V., Koltun, V., 2016. Feature space optimization for
semantic video segmentation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Kopiiklii, O., Hormann, S., Herzog, F., Cevikalp, H., Rigoll, G., 2022.
Dissected 3d cnns: Temporal skip connections for efficient online video
processing. Computer Vision and Image Understanding 215, 103318.
doi:https://doi.org/10.1016/j.cviu.2021.103318.

Li, G., Xie, Y., Wei, T., Wang, K., Lin, L., 2018a. Flow guided recurrent
neural encoder for video salient object detection, in: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3243-3252.
doi:10.1109/CVPR.2018.00342.

Li, J., Wang, W., Chen, J., Niu, L., Si, J., Qian, C., Zhang, L., 2021. Video
semantic segmentation via sparse temporal transformer, in: Proceedings
of the 29th ACM International Conference on Multimedia, Association for
Computing Machinery. p. 59-68. doi:10.1145/3474085.3475409.

Li, M., Sun, L., Huo, Q., 2019. Flow-guided feature propagation with occlusion
aware detail enhancement for hand segmentation in egocentric videos.

Computer Vision and Image Understanding 187, 102785.
//doi.org/10.1016/j.cviu.2019.07.005.

Li, X., You, A., Zhu, Z., Zhao, H., Yang, M., Yang, K., Tan, S., Tong, Y., 2020.
Semantic flow for fast and accurate scene parsing, in: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.M. (Eds.), Computer Vision — ECCV 2020, Springer
International Publishing, Cham. pp. 775-793.

Li, X., Yuan, H., Zhang, W., Cheng, G., Pang, J., Loy, C.C., 2023. Tube-link:
A flexible cross tube baseline for universal video segmentation.

Li, X., Zhang, W., Pang, J., Chen, K., Cheng, G., Tong, Y., Loy, C,
2022a. Video k-net: A simple, strong, and unified baseline for
video segmentation, in: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE Computer Society,
Los Alamitos, CA, USA. pp. 18825-18835. URL: https://doi.
ieeecomputersociety.org/10.1109/CVPR52688.2022.01828,
doi:10.1109/CVPR52688.2022.01828.

Li, Y, Shi, J.,, Lin, D., 2018b. Low-latency video semantic segmentation, in:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5997-6005. doi:10.1109/CVPR.2018.00628.

Li, Y, Yuan, G., Wen, Y., Hu, J., Evangelidis, G., Tulyakov, S., Wang, Y.,
Ren, J., 2022b. Efficientformer: Vision transformers at mobilenet speed.
doi:10.48550/ARXIV.2206.01191.

Lin, L., Yu, S., Zhou, L., Chen, W., Zhao, T., Wang, Z., 2020. Pea265:
Perceptual assessment of video compression artifacts. TEEE Transactions
on Circuits and Systems for Video Technology 30, 3898-3910. doi:10.
1109/TCSVT.2020.2980571.

Lin, T., Dollar, P,, Girshick, R., He, K., Hariharan, B., Belongie, S., 2017.
Feature pyramid networks for object detection, in: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 936-944. doi:10.1109/CVPR.2017.
106.

Liu, B., He, X., 2015. Multiclass semantic video segmentation with object-level
active inference, in: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4286-4294. doi:10.1109/CVPR.2015.
7299057.

Liu, H., Simonyan, K., Yang, Y., 2018. DARTS: differentiable architecture
search. CoRR abs/1806.09055.

Liu, S., Wang, C., Qian, R., Yu, H., Bao, R., Sun, Y., 2017. Surveillance
video parsing with single frame supervision, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society,
Los Alamitos, CA, USA. pp. 1013-1021. doi:10.1109/CVPR.2017.114.

Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J., 2019. Structured
knowledge distillation for semantic segmentation, in: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2599-2608. doi:10.1109/CVPR.2019.00271.

Liu, Y., Shen, C., Yu, C., Wang, J., 2020. Efficient semantic video segmentation
with per-frame inference, in: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M.
(Eds.), Computer Vision — ECCV 2020, Springer International Publishing,
Cham. pp. 352-368.

Liu, Z., Li, J., Ye, L., Sun, G., Shen, L., 2016. Saliency detection
for unconstrained videos using superpixel-level graph and spatiotemporal
propagation. IEEE Transactions on Circuits and Systems for Video
Technology PP, 1-1. doi:10.1109/TCSVT.2016.2595324.

Long, F., Qiu, Z., Pan, Y., Yao, T., Ngo, C.W., Mei, T., 2022. Dynamic temporal
filtering in video models, in: Avidan, S., Brostow, G., Cissé, M., Farinella,
G.M.,, Hassner, T. (Eds.), Computer Vision — ECCV 2022, Springer Nature
Switzerland, Cham. pp. 475-492.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks
for semantic segmentation, pp. 3431-3440. doi:10.1109/CVPR.2015.
7298965.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60, 91-110. URL: https://doi.
org/10.1023/B:VISI.0000029664.99615.94, doi:10.1023/B:VISI.
0000029664 .99615. 94.

Lu, X., Wang, W., Danelljan, M., Zhou, T., Shen, J., Van Gool, L., 2020. Video
object segmentation with episodic graph memory networks, in: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision — ECCV 2020,
Springer International Publishing, Cham. pp. 661-679.

Ma, N., Zhang, X., Zheng, H.T., Sun, J., 2018. Shufflenet v2: Practical
guidelines for efficient cnn architecture design, in: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (Eds.), Computer Vision — ECCV 2018,
Springer International Publishing, Cham. pp. 122-138.

Mahadevan, S., Athar, A., OSep, A., Hennen, S., Leal-Taixé, L., Leibe, B.,

doichttps:

33

2020. Making a case for 3d convolutions for object segmentation in videos,
in: BMVC.

Mabhasseni, B., Todorovic, S., Fern, A., 2017. Budget-aware deep semantic
video segmentation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Memin, E., Perez, P., 1998. Dense estimation and object-based segmentation
of the optical flow with robust techniques. IEEE Transactions on Image
Processing 7, 703-719. doi:10.1109/83.668027.

Miao, J., Wei, Y., Wu, Y., Liang, C., Li, G., Yang, Y., 2021. Vspw: A large-scale
dataset for video scene parsing in the wild, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Miksik, O., Munoz, D., Bagnell, J.A., Hebert, M., 2013. Efficient temporal
consistency for streaming video scene analysis, in: 2013 IEEE International
Conference on Robotics and Automation, pp. 133-139. doi:10.1109/
ICRA.2013.6630567.

Miyama, M., 2021. Fpga implementation of 3-bit quantized cnn for semantic
segmentation. Journal of Physics: Conference Series 1729, 012004. doi:10.
1088/1742-6596/1729/1/012004.

Nathan Silberman, Derek Hoiem, PK., Fergus, R., 2012. Indoor segmentation
and support inference from rgbd images, in: ECCV.

Nekrasov, V., Chen, H., Shen, C., Reid, I., 2020. Architecture search
of dynamic cells for semantic video segmentation, in: 2020 IEEE
Winter Conference on Applications of Computer Vision (WACV), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 1959-1968. doi:10.1109/
WACV45572.2020.9093531.

Neupane, B., Horanont, T., Aryal, J., 2021. Deep learning-based semantic
segmentation of urban features in satellite images: A review and
meta-analysis. Remote Sensing 13. URL: https://www.mdpi.com/
2072-4292/13/4/808, doi:10.3390/rs13040808.

Nilsson, D., Sminchisescu, C., 2018. Semantic video segmentation by gated
recurrent flow propagation, in: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE Computer Society, Los
Alamitos, CA, USA. pp. 6819-6828. doi:10.1109/CVPR.2018.00713.

Nock, R., Nielsen, F., 2004. Statistical region merging. IEEE transactions
on pattern analysis and machine intelligence 26, 1452-8. doi:10.1109/
TPAMI.2004.110.

Ochs, P., Malik, J., Brox, T., 2014. Segmentation of moving objects by long
term video analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 1187-1200. doi:10.1109/TPAMI.2013.242.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics 9, 62—-66. doi:10.1109/
TSMC.1979.4310076.

Paupamah, K., James, S., Klein, R., 2020. Quantisation and pruning for
neural network compression and regularisation, in: 2020 International
SAUPEC/RobMech/PRASA Conference, pp. 1-6. doi:10.1109/SAUPEC/
RobMech/PRASA48453.2020.9041096.

Peng, J., Liu, Y., Tang, S., Hao, Y., Chu, L., Chen, G., Wu, Z., Chen, Z., Yu, Z.,
Du, Y., Dang, Q., Lai, B., Liu, Q., Hu, X., Yu, D., Ma, Y., 2022. Pp-liteseg:
A superior real-time semantic segmentation model. doi:10.48550/ARXIV.
2204.02681.

Phuong, M., Lampert, C., 2019. Towards understanding knowledge distillation,
in: Chaudhuri, K., Salakhutdinov, R. (Eds.), Proceedings of the 36th
International Conference on Machine Learning, PMLR. pp. 5142-5151.

Pinheiro, P.O., Lin, T.Y., Collobert, R., Dolldr, P., 2016. Learning to refine
object segments, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.),
Computer Vision — ECCV 2016, Springer International Publishing, Cham.
pp. 75-91.

Plath, N., Toussaint, M., Nakajima, S., 2009. Multi-class image segmentation
using conditional random fields and global classification, in: Proceedings
of the 26th Annual International Conference on Machine Learning,
Association for Computing Machinery, New York, NY, USA. p. 817-824.
URL: https://doi.org/10.1145/1553374.15653479, doi:10.1145/
1553374.1553479.

Qin, Z., Lu, X., Nie, X., Liu, D., Yin, Y., Wang, W., 2023. Coarse-to-fine
video instance segmentation with factorized conditional appearance flows.
IEEE/CAA Journal of Automatica Sinica 10, 1192-1208. doi:10.1109/
JAS.2023.123456.

Qiu, Z., Yao, T., Mei, T., 2018. Learning deep spatio-temporal dependence
for semantic video segmentation. IEEE Transactions on Multimedia 20,
939-949. doi:10.1109/TMM. 2017 .2759504.

Qu, L., Wu, C, Zou, L., 2020. 3d dense separated convolution module for
volumetric medical image analysis. Applied Sciences 10. doi:10.3390/

app10020485.

Ramachandran, P., Zoph, B., Le, Q.V., 2017. Searching for activation functions.
CoRR abs/1710.05941.

Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A., 2016. Xnor-net: Imagenet
classification using binary convolutional neural networks, in: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (Eds.), Computer Vision — ECCV 2016,
Springer International Publishing, Cham. pp. 525-542.

Raza, S., Grundmann, M., Essa, 1., 2013. Geometric context from videos,
in: Proceedings / CVPR, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 3081-3088. doi:10.1109/
CVPR.2013.396.

Rhee, H., Min, D., Hwang, S., Andreis, B., Hwang, S.J., 2022.
Distortion-aware network pruning and feature reuse for real-time video
segmentation. doi:10.48550/ARXIV.2206.09604.

Richter, S.R., Vineet, V., Roth, S., Koltun, V., 2016. Playing for data: Ground
truth from computer games, in: Leibe, B., Matas, J., Sebe, N., Welling, M.
(Eds.), Computer Vision — ECCV 2016, Springer International Publishing,
Cham. pp. 102-118.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for
biomedical image segmentation, in: Navab, N., Hornegger, J., Wells, WM.,
Frangi, A.F. (Eds.), Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2015, Springer International Publishing, Cham. pp.
234-241.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M., 2016.
The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes, in: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3234-3243. doi:10.1109/
CVPR.2016.352.

Saleh, E.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.,
2017. Bringing background into the foreground: Making all classes
equal in weakly-supervised video semantic segmentation, in: 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 2125-2135.
doihttps://doi.org/10.1109/ICCV.2017.232.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C., 2018.
Mobilenetv2: Inverted residuals and linear bottlenecks, in: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4510-4520.
doi:10.1109/CVPR.2018.00474.

Schmidt, C., Athar, A., Mahadevan, S., Leibe, B., 2022. D2conv3d: Dynamic
dilated convolutions for object segmentation in videos, in: 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), IEEE
Computer Society, Los Alamitos, CA, USA. pp. 1929-1938. doi:10.1109/
WACV51458.2022.00199.

Schroff, F., Criminisi, A., Zisserman, A., 2006. Single-histogram class
models for image segmentation, in: Kalra, P.K., Peleg, S. (Eds.), Computer
Vision, Graphics and Image Processing, Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 82-93.

Schroff, F., Criminisi, A., Zisserman, A., 2008. Object class segmentation using
random forests, in: British Machine Vision Conference. URL: https://
api.semanticscholar.org/CorpusID:2136976.

Sevilla-Lara, L., Sun, D., Jampani, V., Black, M.J., 2016. Optical flow with
semantic segmentation and localized layers, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society,
Los Alamitos, CA, USA. pp. 3889-3898. doi:10.1109/CVPR.2016.422.

Shelhamer, E., Rakelly, K., Hoffman, J., Darrell, T., 2016. Clockwork convnets
for video semantic segmentation, in: Hua, G., Jégou, H. (Eds.), Computer
Vision — ECCV 2016 Workshops, Springer International Publishing, Cham.
pp. 852-868.

Sherstinsky, A., 2020. Fundamentals of recurrent neural network (rnn) and long
short-term memory (Istm) network. Physica D: Nonlinear Phenomena 404,
132306. doichttps://doi.org/10.1016/j.physd.2019.132306.

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.k., Woo, W.c., 2015.
Convolutional Istm network: A machine learning approach for precipitation
nowcasting, in: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, MIT Press. p. 802-810.

Shimoda, M., Sada, Y., Nakahara, H., 2019. Filter-wise pruning approach
to fpga implementation of fully convolutional network for semantic
segmentation, in: Hochberger, C., Nelson, B., Koch, A., Woods, R.,
Diniz, P. (Eds.), Applied Reconfigurable Computing, Springer International
Publishing, Cham. pp. 371-386.

Shimoda, W., Yanai, K., 2020. Weakly supervised semantic segmentation
using distinct class specific saliency maps. Computer Vision and Image

34

Understanding 191, 102712. doi:https://doi.org/10.1016/j.cviu.
2018.08.006.

Shotton, J., Winn, J., Rother, C., Criminisi, A., 2006. Textonboost: Joint
appearance, shape and context modeling for multi-class object recognition
and segmentation, in: Leonardis, A., Bischof, H., Pinz, A. (Eds.), Computer
Vision — ECCV 2006, Springer Berlin Heidelberg, Berlin, Heidelberg. pp.
1-15.

Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M., Zhang,
H., 2018. A comparative study of real-time semantic segmentation for
autonomous driving, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.

Siam, M., Valipour, S., Jagersand, M., Ray, N., 2017. Convolutional gated
recurrent networks for video segmentation, in: 2017 IEEE International
Conference on Image Processing (ICIP), pp. 3090-3094. doi:10.1109/
ICIP.2017.8296851.

Sifre, L., Mallat, S., 2014. Rigid-motion scattering for texture classification.
CoRR abs/1403.1687.

Silberman, N., Fergus, R., 201 1. Indoor scene segmentation using a structured
light sensor, in: Proceedings of the International Conference on Computer
Vision - Workshop on 3D Representation and Recognition.

Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.M., 2018. Pyramid dilated
deeper convlstm for video salient object detection, in: Proceedings of the
European Conference on Computer Vision (ECCV).

Su, J., Yin, R., Zhang, S., Luo, J., 2023. Motion-state alignment for video
semantic segmentation, in: 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 3571-3580. URL: https://doi.
ieeecomputersociety.org/10.1109/CVPRW59228.2023.00365,
doi:10.1109/CVPRW59228.2023.00365.

Subramaniam, A., Vaidya, J., Ameen, M.A.M., Nambiar, A., Mittal, A., 2022.
Co-segmentation inspired attention module for video-based computer vision
tasks. Computer Vision and Image Understanding 223, 103532. doi:https:
//doi.org/10.1016/j.cviu.2022.103532.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P,, Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions,
in: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1-9. doi:10.1109/CVPR.2015.7298594.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,
Le, Q.V, 2019. Mnasnet: Platform-aware neural architecture search for
mobile, in: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision
Foundation / IEEE. pp. 2820-2828. doi:10.1109/CVPR.2019.00293.

Tao, A., Sapra, K., Catanzaro, B., 2020. Hierarchical multi-scale attention for
semantic segmentation. CoRR abs/2005.10821.

Thisanke, H., Deshan, C., Chamith, K., Seneviratne, S., Vidanaarachchi,
R., Herath, D., 2023. Semantic segmentation using vision
transformers: A survey. Engineering Applications of Aurtificial
Intelligence 126, 106669. URL: https://www.sciencedirect.
com/science/article/pii/S0952197623008539, doichttps:
//doi.org/10.1016/j.engappai.2023.106669.

Tokmakov, P., Alahari, K., Schmid, C., 2017. Learning Video Object
Segmentation with Visual Memory, in: ICCV - IEEE International
Conference on Computer Vision, IEEE, Venice, Italy. pp. 4491-4500.
doi:10.1109/ICCV.2017.480.

Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M., 2015. Learning
spatiotemporal features with 3d convolutional networks, in: 2015 IEEE
International Conference on Computer Vision (ICCV), pp. 4489-4497.
doi:10.1109/ICCV.2015.510.

Tran, D., Wang, H., Feiszli, M., Torresani, L., 2019. Video classification
with channel-separated convolutional networks, in: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 5551-5560. doi:10.1109/ICCV.
2019.00565.

Tran, D., Wang, H., Torresani, L., Ray, J., Lecun, Y., Paluri, M., 2018. A closer
look at spatiotemporal convolutions for action recognition, in: Proceedings -
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2018, IEEE Computer Society. pp. 6450-6459. doi:10.1109/CVPR.
2018.00675.

Tripathi, S., Belongie, S., Hwang, Y., Nguyen, T., 2015. Semantic video
segmentation : Exploring inference efficiency, in: ISOCC.

Tu, Z., Xie, W., Zhang, D., Poppe, R., Veltkamp, R.C., Li, B., Yuan, J.,
2019. A survey of variational and cnn-based optical flow techniques. Signal

Processing: Image Communication 72, 9-24. doi:https://doi.org/10.
1016/j.image.2018.12.002.

Unterweger, A., 2012. Compression artifacts in modern video coding and
state-of-the-art means of compensation. ~Multimedia Networking and
Coding , 28-49d0i:10.4018/978-1-4666-2660-7.ch002.

Valada, A., Oliveira, G., Brox, T., Burgard, W., 2016. Deep multispectral
semantic scene understanding of forested environments using multimodal
fusion, in: International Symposium on Experimental Robotics (ISER).

Varghese, S., Bayzidi, Y., Bar, A., Kapoor, N., Lahiri, S., Schneider, J.D.,
Schmidt, N.M., Schlicht, P., Huger, F., Fingscheidt, T., 2020. Unsupervised
temporal consistency metric for video segmentation in highly-automated
driving, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops.

Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M., Jawahar, C.,
2019. Idd: A dataset for exploring problems of autonomous navigation
in unconstrained environments, in: 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1743-1751. doi:10.1109/
WACV.2019.00190.

Varol, G., Laptev, I., Schmid, C., 2018. Long-term Temporal Convolutions for
Action Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 1510-1517. doi:10.1109/TPAMI.2017.2712608.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I., 2017. Attention is all you need, in: Guyon,
1., Luxburg, U.V,, Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R. (Eds.), Advances in Neural Information Processing Systems,
Curran Associates, Inc.

Vennergd, C.B., Kjerran, A., Bugge, E.S., 2021. Long short-term memory
RNN. CoRR abs/2105.06756.

Vogel, S., Springer, J., Guntoro, A., Ascheid, G., 2019. Efficient acceleration
of cnns for semantic segmentation on fpgas, in: Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Association for Computing Machinery. p. 309. doi:10.1145/
3289602.3294006.

Wang, H., Wang, W., Liu, J., 202la. Temporal memory attention for
video semantic segmentation, in: 2021 IEEE International Conference
on Image Processing (ICIP), pp. 2254-2258. doi:10.1109/ICIP42928.
2021.9506731.

Wang, L., Ju, L., Zhang, D., Wang, X., He, W., Huang, Y., Yang, Z., Yao,
X., Zhao, X., Ye, X., Ge, Z., 2021b. Medical matting: A new perspective
on medical segmentation with uncertainty, in: de Bruijne, M., Cattin, P.C.,
Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (Eds.), Medical Image
Computing and Computer Assisted Intervention — MICCAI 2021, Springer
International Publishing, Cham. pp. 573-583.

Wang, Q., Piao, Y., 2023. Depth estimation of supervised monocular images
based on semantic segmentation. Journal of Visual Communication and
Image Representation 90, 103753. URL: https://www.sciencedirect.
com/science/article/pii/S1047320323000032, doi:https://doi.
org/10.1016/j.jvcir.2023.103753.

Wang, T., Cai, Y., Liang, L., Ye, D., 2020. A Multi-Level approach to waste
object segmentation. Sensors (Basel) 20.

Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu, Q., Aggarwal, K.,
Mohammed, O.K., Singhal, S., Som, S., Wei, F., 2022a. Image as a foreign
language: Beit pretraining for all vision and vision-language tasks. doi:10.
48550/ARXIV.2208.10442.

Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu, X., Lu, T., Lu, L.,
Li, H., Wang, X., Qiao, Y., 2022b. Internimage: Exploring large-scale vision
foundation models with deformable convolutions. doi:10.48550/ARXIV.
2211.05778.

Wang, W., Lu, X., Shen, J., Crandall, D.J., Shao, L., 2019a. Zero-shot video
object segmentation via attentive graph neural networks, in: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).

Wang, W., Shen, J., Porikli, F., 2015a. Saliency-aware geodesic video
object segmentation, in: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3395-3402. doi:10.1109/CVPR.2015.
7298961.

Wang, W., Shen, J., Porikli, F, Yang, R., 2019b. Semi-supervised video
object segmentation with super-trajectories. IEEE Transactions on Pattern
Analysis and Machine Intelligence 41, 985-998. doi:10.1109/TPAMI.
2018.2819173.

Wang, W., Shen, J., Shao, L., 2015b. Consistent video saliency using local
gradient flow optimization and global refinement. IEEE Transactions on
Image Processing 24, 4185-4196. doi:10.1109/TIP.2015.2460013.

35

Weber, M., Xie, J., Collins, M., Zhu, Y., Voigtlaender, P., Adam, H., Green, B.,
Geiger, A., Leibe, B., Cremers, D., Osep, A., Leal-Taixe, L., Chen, L.C.,
2021. Step: Segmenting and tracking every pixel, in: Neural Information
Processing Systems (NeurIPS) Track on Datasets and Benchmarks.

Wiskott, L., Sejnowski, T.J., 2002. Slow feature analysis: Unsupervised
learning of invariances. Neural Computation 14, 715-770.

Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Gholaminejad,
A., Gonzalez, J., Keutzer, K., 2018a. Shift: A zero flop, zero parameter
alternative to spatial convolutions, in: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society,
Los Alamitos, CA, USA. pp. 9127-9135. doi:10.1109/CVPR.2018.
00951.

Wu, H., Zheng, S., Zhang, J., Huang, K., 2018b. Fast end-to-end trainable
guided filter, in: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1838-1847. doi:10.1109/CVPR.2018.00197.

Wu, J,, Liu, Q., Jiang, Y., Bai, S., Yuille, A.L., Bai, X., 2022. In defense of
online models for video instance segmentation, in: European Conference
on Computer Vision. URL: https://api.semanticscholar.org/
CorpusID:250918749.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P., 2021.
Segformer: Simple and efficient design for semantic segmentation with
transformers, in: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P,
Vaughan, J.W. (Eds.), Advances in Neural Information Processing Systems,
Curran Associates, Inc.. pp. 12077-12090.

Xie, S., Girshick, R., Dollar, P,, Tu, Z., He, K., 2017. Aggregated residual
transformations for deep neural networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K., 2018. Rethinking
spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification, in: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.),
Computer Vision — ECCV 2018, Springer International Publishing, Cham.
pp- 318-335.

Xu, C., Corso, J.J., 2012. Evaluation of super-voxel methods for early video
processing, in: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1202-1209. doi:10.1109/CVPR.2012.6247802.

Xu, J., Xiong, Z., Bhattacharyya, S.P.,, 2022. Pidnet: A real-time semantic
segmentation network inspired from pid controller. doi:10.48550/ARXIV.
2206.02066.

Xu, M., Ding, Y., 2021. Fully automatic image colorization based on semantic
segmentation technology. PLoS One 16, €0259953.

Xu, Y., Fu, T.,, Yang, H,, Lee, C., 2018. Dynamic video segmentation
network, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA. pp.
6556—6565. doi:10.1109/CVPR.2018.00686.

Yang, C., Zhou, H., An, Z., Jiang, X., Xu, Y., Zhang, Q., 2022.
Cross-image relational knowledge distillation for semantic segmentation,
in: 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA.
pp. 12309-12318. doi:10.1109/CVPR52688.2022.01200.

Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V.,
Adam, H., 2018. Netadapt: Platform-aware neural network adaptation for
mobile applications, in: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(Eds.), Computer Vision — ECCV 2018, Springer International Publishing,
Cham. pp. 289-304.

Yang, Z., Wang, Q., Bertinetto, L., Bai, S., Hu, W., Torr, P, 2019. Anchor
diffusion for unsupervised video object segmentation, in: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), IEEE Computer
Society, Los Alamitos, CA, USA. pp. 931-940. doi:10.1109/ICCV.2019.
00102.

Young, S.I., Girod, B., Taubman, D., 2020. Fast optical flow extraction from
compressed video. IEEE Transactions on Image Processing 29, 6409-6421.
doi:10.1109/TIP.2020.2985866.

Yu, Y., Yuan, J., Mittal, G., Fuxin, L., Chen, M., 2022. Batman: Bilateral
attention transformer in motion-appearance neighboring space for video
object segmentation, in: Avidan, S., Brostow, G., Cissé, M., Farinella,
G.M., Hassner, T. (Eds.), Computer Vision — ECCV 2022, Springer Nature
Switzerland, Cham. pp. 612-629.

Yu, Z., Wong, H.S., Wen, G., 2011. A modified support vector
machine and its application to image segmentation. Image and Vision
Computing 29, 29-40. URL: https://www.sciencedirect.com/
science/article/pii/S0262885610001113, doi:https://doi.org/
10.1016/j.imavis.2010.08.003.

Zhai, M., Xiang, X., Lv, N., Kong, X., 2021. Optical flow and scene flow
estimation: A survey. Pattern Recognition 114, 107861. doi:https://
doi.org/10.1016/j.patcog.2021.107861.

Zhang, H., Wang, J., Sun, Z., Zurada, J.M., Pal, N.R., 2020. Feature selection
for neural networks using group lasso regularization. IEEE Transactions on
Knowledge and Data Engineering 32, 659-673. doi:10.1109/TKDE. 2019.
2893266.

Zhang, T., Tian, X., Wu, Y., Ji, S., Wang, X., Zhang, Y., Wan, P., 2023. Dvis:
Decoupled video instance segmentation framework. ArXiv abs/2306.03413.
URL: https://api.semanticscholar.org/CorpusID:259089082.

Zhang, W., Pang, J., Chen, K., Loy, C.C., 2021. K-net: Towards unified
image segmentation. ArXiv abs/2106.14855. URL: https://api.
semanticscholar.org/CorpusID:235658076.

Zhang, X., Zhou, X., Lin, M., Sun, J., 2017. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition , 6848-6856.

Zhang, Y., Borse, S., Cai, H., Wang, Y., Bi, N., Jiang, X., Porikli, F,
2022. Perceptual consistency in video segmentation, in: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pp. 2564-2573.

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing
network, in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA.
pp. 6230-6239. doi:10.1109/CVPR.2017.660.

Zhao, Z., Zhao, S., Shen, J., 2021. Real-time and light-weighted unsupervised
video object segmentation network. Pattern Recognition 120, 108120.
doichttps://doi.org/10.1016/j.patcog.2021.108120.

Zhen, M., Li, S., Zhou, L., Shang, J., Feng, H., Fang, T., Quan, L., 2020.
Learning discriminative feature with CRF for unsupervised video object
segmentation, in: European Conference on Computer Vision.

Zhou, T., Porikli, F., Crandall, D.J., Van Gool, L., Wang, W., 2023. A survey on
deep learning technique for video segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 45, 7099-7122. URL: https://doi.org/10.1109/TPAMI.
2022.3225573, doi:10.1109/TPAMI . 2022.3225573.

Zhu, X., Su, W., Lu, L., Li, B.,, Wang, X., Dai, J., 2021. Deformable
DETR: deformable transformers for end-to-end object detection, in: 9th
International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, OpenReview.net. =~ URL: https://
openreview.net/forum?id=gZ9hCDWe6ke.

Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y., 2017. Deep feature flow for video
recognition, in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA.
pp. 4141-4150. doi:10.1109/CVPR.2017 .441.

Zhu, Y., Sapra, K., Reda, F.A., Shih, K.J., Newsam, S., Tao, A., Catanzaro,
B., 2019. Improving semantic segmentation via video propagation and label
relaxation, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8848-8857. doi:10.1109/CVPR.2019.00906.

36

Highlights

Survey on dense video segmentation approaches focusing on accuracy and
inference time improvements.

The temporal dimension of video content brings both new features and
redundancies.

The trade-off is multi-scale: from the network architecture down to the basic units.
Some improvements are orthogonal and can therefore be used simultaneously.
Densely labeled datasets are rare. Thus, the training strategy plays a critical role.

Quentin MONNIER is responsible for ensuring that the descriptions are accurate and
agreed by all authors

Quentin MONNIER has participated in the roles of Conceptualization, Resources,
Writing - Original Draft, Visualization

Tania POULLI has participated in the roles of Conceptualization, Writing - Review &
Editing

Kidiyo KPALMA has participated in the roles of Conceptualization, Writing - Review
& Editing

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

L1 The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

