
HAL Id: hal-04465173
https://hal.science/hal-04465173

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SpikeGrad: An ANN-equivalent Computation Model for
Implementing Backpropagation with Spikes
Johannes Christian Thiele, Olivier Bichler, Antoine Dupret

To cite this version:
Johannes Christian Thiele, Olivier Bichler, Antoine Dupret. SpikeGrad: An ANN-equivalent Com-
putation Model for Implementing Backpropagation with Spikes. ICLR International Conference on
Learning Representations, 2020, �10.48550/arXiv.1906.00851�. �hal-04465173�

https://hal.science/hal-04465173
https://hal.archives-ouvertes.fr

SpikeGrad: An ANN-equivalent Computation Model
for Implementing Backpropagation with Spikes

Johannes C. Thiele
CEA, LIST

91191 Gif-sur-Yvette CEDEX, France
johannes.thiele@cea.fr

Olivier Bichler
CEA, LIST

91191 Gif-sur-Yvette CEDEX, France
olivier.bichler@cea.fr

Antoine Dupret
CEA, LIST

91191 Gif-sur-Yvette CEDEX, France
antoine.dupret@cea.fr

Abstract

Event-based neuromorphic systems promise to reduce the energy consumption
of deep learning tasks by replacing expensive floating point operations on dense
matrices by low power sparse and asynchronous operations on spike events. While
these systems can be trained increasingly well using approximations of the back-
propagation algorithm, these implementations usually require high precision errors
for training and are therefore incompatible with the typical communication infras-
tructure of neuromorphic circuits. In this work, we analyze how the gradient can be
discretized into spike events when training a spiking neural network. To accelerate
our simulation, we show that using a special implementation of the integrate-and-
fire neuron allows us to describe the accumulated activations and errors of the
spiking neural network in terms of an equivalent artificial neural network, allowing
us to largely speed up training compared to an explicit simulation of all spike events.
This way we are able to demonstrate that even for deep networks, the gradients can
be discretized sufficiently well with spikes if the gradient is properly rescaled. This
form of spike-based backpropagation enables us to achieve equivalent or better
accuracies on the MNIST and CIFAR10 dataset than comparable state-of-the-art
spiking neural networks trained with full precision gradients. The algorithm, which
we call SpikeGrad, is based on accumulation and comparison operations and can
naturally exploit sparsity in the gradient computation, which makes it an interesting
choice for a spiking neuromorphic systems with on-chip learning capacities.

1 Introduction

Spiking neural networks (SNNs) are a new generation of artificial neural network models [9], which
try to harness potentially useful properties of biological neurons for energy efficient neuromorphic
systems. In traditional artificial neural networks (ANNs), processing is based on operations on dense,
real valued tensors. In contrast to this, SNNs communicate with asynchronous spike events, which
potentially allows them to process efficiently information with high temporal and spatial sparsity if
implemented in custom event-based hardware (see for instance [10] and [14]).

Previous work on optimizing SNNs with backpropagation The recent years have seen a
large number of approaches devoted to optimization of spiking neural networks with the back-
propagation algorithm, either by converting ANNs to SNNs [5][12][6][15] or by simulating

Preprint. Under review.

ar
X

iv
:1

90
6.

00
85

1v
1

 [
cs

.N
E

]
 3

 J
un

 2
01

9

spikes explicitly in the forward pass and optimizing these dynamics with full precision gradients
[8][25][24][23][18][7][3][26]. These methods do usually not communicate gradients as spike signals
(for a recent and more detailed review of training algorithms for SNNs, see [13] or [20]). It would
however be desirable to enable on-chip learning in neuromorphic chips using the power of the
backpropagation algorithm, while maintaining the advantages of spike-based processing also in the
backpropagation phase. Recent work of [4] and [22] has discussed how forward processing in an
SNN could be mapped to an ANN. Our work extends this analysis to the backward propagation pass,
to yield a fully spike-based implementation of the backpropagation algorithm.

Previous work on approximating backpropagation with spikes In the works of [11] and [16]
a spike-based version of the backpropagation algorithm is implemented, using direct feedback to
neurons via spike propagation through fixed weights to each layer of the network. While good
performance on the MNIST dataset is achieved, they do not demonstrate the capacity of their
algorithm on large ANNs and more realistic benchmarks. The exact backpropagation algorithm, which
backpropagates through symmetric weights might however be required to reach good performance
on large-scale problems [1][2]. [21] uses an approximation of the backpropagation algorithm where
the error is propagated via spike events to train a network for relational inference. However, no
mathematical analysis of the approximate capacities of the algorithm is provided and no scalability to
large scale classification problems is demonstrated.

Paper contributions Our contributions are twofold: First, we demonstrate how backpropagation
can be seamlessly integrated into the spiking neural network framework by using a second accumula-
tion compartment for error propagation, which discretizes the error into spikes. This way we obtain
a system that is able to perform learning and inference based on accumulations and comparisons
alone. As for the forward pass, this allows us to exploit the dynamic precision and sparsity provided
by the discretization of all operations into asynchronous spike events. Secondly, we show that the
system obtained in this way can be mapped to an ANN with equivalent accumulated responses in all
layers. This allows us to simulate training of large-scale SNNs efficiently on graphic processing units
(GPUs), using their equivalent ANN. We demonstrate classification accuracies equivalent or superior
to existing implementations of SNNs trained with full precision gradients, and comparable to the
precision of standard ANNs. Based on our review of the literature, our work provides for the first
time an analysis of how the sparsity of the gradient during backpropagation can be exploited within a
large-scale SNN processing structure. This is the first time competitive classification performances
are reported on a large-scale spiking network where training and inference are fully implemented
with spikes.

2 The SpikeGrad algorithm

We begin with the description of SpikeGrad, the spike-based backpropagation algorithm. For each
training example/mini-batch, integration is performed from t = 0 to t = T for the forward pass and
from t = T + ∆t to t = T in the backward pass. Since no explicit time is used in the algorithm,
∆t represents symbolically the (very short) time between the arrival of an incoming spike and the
response of the neuron, which is only used here to describe causality.

Integrate-and-fire neuron model Our architecture consists of multiple layers (labeled by l ∈
[0, L]) of integrate-and-fire (IF) neurons with integration variable V li (t) and threshold Θff :

V li (t+ ∆t) = V li (t)−Θffs
l
i(t) +

∑
j

wlijs
l−1
j (t), V li (0) = bli. (1)

The variable wlij is the weight and bli a bias value. The spike activation function sli(t) ∈ {−1, 0, 1} is
a function which triggers a signed spike event depending on the internal variables of the neuron. It
will be shown later that the specific choice of the activation function is fundamental for the mapping
to an equivalent ANN. After a neuron has fired, its integration variable is decremented or incremented
by the threshold value Θff , which is represented by the second term on the r.h.s. of (1).

As a representation of the neuron activity, we use a trace xli(t) which accumulates spike information
over a single example:

xli(t+ ∆t) = xli(t) + ηsli(t). (2)

2

By weighting the activity with the learning rate η we avoid performing a multiplication when
weighting the input with the learning rate for the weight update (8).

Implementation of implicit ReLU and surrogate activation function derivative It is possible
to define an implicit activation function based on how the neuron variables affect the spike activation
function sli(t). In our implementation, we use the following fully symmetric function to represent
linear activation functions (used for instance in pooling layers):

sl,lini

(
V li (t)

)
:=

1 if V li (t) ≥ Θff

−1 if V li (t) ≤ −Θff

0 otherwise

. (3)

The following function corresponds to the rectified linear unit (ReLU) activation function:

sl,ReLU
i

(
V li (t), xli(t)

)
:=

1 if V li (t) ≥ Θff

−1 if V li (t) ≤ −Θff and xli(t) > 0

0 otherwise

. (4)

The pseudo-derivative of the activation function is denoted symbolically by S
′l
i . We use S

′l,lin
i (T) = 1

for the linear case. For the ReLU, we use a surrogate of the form:

S
′l,ReLU
i (T) :=

{
1 if V li (T) > 0 or xli(T) > 0

0 otherwise
. (5)

These choices will be motivated in the following sections. Note that the derivatives depend only on
the final states of the neurons at time T .

Discretization of gradient into spikes For gradient backpropagation, we introduce a second
compartment with threshold Θbp in each neuron, which integrates error signals from higher layers.
The process discretizes errors in the same fashion as the forward pass discretizes an input signal into
a sequence of signed spike signals:

U li (t+ ∆t) = U li (t)−Θbpz
l
i(t) +

∑
k

wl+1
ki δ

l+1
k (t). (6)

To this end, we introduce a ternary error spike activation function zli(t) ∈ {−1, 0, 1} which is defined
in analogy to (3) using the error integration variable U li (t) and the backpropagation threshold Θbp.
The error is then obtained by gating this ternarized variable zli(t) with one of the surrogate activation
function derivatives of the previous section (linear or ReLU):

δli(t) = zli(t)S
′l
i (T). (7)

This ternary spike signal is backpropagated through the weights to the lower layers and also applied
in the update rule of the weight increment accumulator ωlij :

ωlij(t+ ∆t) = ωlij(t)− δli(t)xl−1
j (T), (8)

which is triggered every time an error spike signal (7) is backpropagated. The weight updates are
accumulated during error propagation and are applied after propagation is finished to update each
weight simultaneously. In this way, the backpropagation of errors and the weight update will, exactly
as forward propagation, only involve additions and comparisons of floating point numbers.

The SpikeGrad algorithm can also be expressed in an event-based formulation, described in algorithms
1, 2 and 3. This formulation is closer to how the algorithm would be implemented in an actual SNN
hardware system.

Loss function and error scale We use the cross entropy loss function in the final layer applied
to the softmax of the total integrated signal V Li (T) (no spikes are triggered in the top layer during
inference). This requires more complex operations than accumulations, but is negligible if the number
of classes is small. To make sure that sufficient error spikes are triggered in the top layer, and that
error spikes arrive even in the lowest layer of the network, we apply a scaling factor α to the error
values before transferring them to ULi . This scaling factor also implicitly sets the precision of the
gradient, since a higher number of spikes means that a large range of values can be represented. To
counteract the relative increase of the gradient scale, the learning rates have to be rescaled by a factor
1/α.

3

Input encoding As pointed out in [15] and [23], it is crucial to maintain the full precision of
the input image to obtain good performances on complex standard benchmarks with SNNs. One
possibility is to encode the input in a large number of spikes [17]. Another possibility, which has
been shown to require a much lower number of spikes in the network, is to multiply the input values
directly with the weights of the first layer (just like in a standard ANN). The drawback is that the first
layer then requires multiplication operations. The additional cost of this procedure may however be
negligible if all other layers can profit from spike-based computation. This problematic does not exist
for stimuli which are natively encoded in spikes.

Algorithm 1 Forward

function PROPAGATE([l, i, j], s)
V li ← V li + s · wlij
sli ← sli(V

l
i , x

l
i) . spike activation function

if sli 6= 0 then
V li ← V li − sli ·Θff

xli ← xli + ηsli
for k in l + 1 connected to i do

PROPAGATE([l + 1, k, i], sli)

Algorithm 2 Backward

function BACKPROPAGATE([l, i, k], δ)
U li ← U li + δ · wl+1

ki

zli ← zli(U
l
i) . error activation function

δli ← zli · S
′l
i

if zli 6= 0 then
U li ← U li − zli ·Θbp

for j in layer l − 1 connected to i do
BACKPROPAGATE([l − 1, j, i], δli)
ωlij ← ωlij − δli · xl−1

j

Algorithm 3 Training of single example/batch

init: V← b, U← 0, x← 0, ω ← 0 . variables in bold describe all neurons in network/layer
while input spikes sini do

for k in l = 0 receiving sini do . spikes corresponding to training input
PROPAGATE([0, k, i], sini)

S′ ← S′(V,x) . calculate surrogate derivatives
UL ← α · ∂L/∂ softmax(VL) . calculate classfication error
while |ULi | ≥ Θbp do . backpropagate error spikes

BACKPROPAGATE([L, i,−], 0) . last layer receives no error from higher neurons
w← w + ω

3 Formulation of the equivalent ANN

The simulation of the temporal dynamics of spikes requires a large number of time steps or events
if activations are large. It would therefore be extremely beneficial if we were able to map the SNN
to an equivalent ANN that can be trained much faster on standard hardware. In this section, we
demonstrate that it is possible to find such an ANN using the forward and backward propagation
dynamics described in the previous section.

Spike discretization error We start our analysis with equation (1). We reorder the terms and sum
over the increments ∆V li (t) = V li (t+ ∆t)− V li (t) every time the integration variable is changed
either by a spike that arrives at time tsj ∈ [0, T] via connection j, or by a spike that is triggered at
time tsi ∈ [0, T]. With the initial conditions V li (0) = bli, s

l
i(0) = 0, we obtain the final value V li (T):

V li (T) =
∑
tsj ,t

s
i

∆V li = −Θff

∑
tsi

sli(t
s
i) +

∑
j

wlij
∑
tsj

sl−1
j (tsj) + bli (9)

By defining the total transmitted output of a neuron as Sli :=
∑
tsi
sli(t

s
i) we obtain:

1

Θff
V li (T) = Sli − Sli, Sli :=

1

Θff

∑
j

wlijS
l−1
j + bli

 (10)

4

The same reasoning can be applied to backpropagation of the gradient. We define the summed
responses over error spikes times τsj ∈ [T + ∆t, T] as Zli :=

∑
τs
i
zli(τ

s
i) to obtain:

1

Θbp
U li (T) = Zli − Zli , Zli :=

1

Θbp

(∑
k

wl+1
ki E

l+1
k

)
(11)

El+1
k =

∑
τs
k

δl+1
k (τsk) =

∑
τs
k

S
′l+1
k (T)zl+1

k (τsk) = S
′l+1
k (T)Zl+1

k . (12)

In both equation (10) and (11), the terms Sli and Zli are equivalent to the output of an ANN with
signed integer inputs Sl−1

j and El+1
k . The scaling factors 1/Θff and 1/Θbp can be interpreted as a linear

activation function in the case of the forward pass, and a gradient rescaling in the case of the backward
pass. If gradients shall not be explicitly rescaled, backpropagation requires Θbp = Θff . The values of
the residual integrations 1/ΘffV li (T) and 1/ΘbpU li (T) therefore represent the spike discretization error
SDEff := Sli − Sli or SDEff := Zli − Zli between the ANN outputs Sli and Zli and the accumulated
SNN outputs Sli and Zli . Since we know that V li (T) ∈ (−Θff ,Θff) and U li (T) ∈ (−Θbp,Θbp), this
gives bounds of |SDEff | < 1 and |SDEbp| < 1.

So far we can only represent linear functions. We now consider an implementation where the ANN
applies a ReLU activation function instead. The SDE in this case is:

SDEReLU
ff := ReLU

(
Sli
)
− Sli. (13)

We can calculate the error by considering that (4) forces the neuron in one of two regimes (note that
xli > 0⇔ Sli > 0): In one case, Sli = 0, V li (T) < Θff (this includes V li (T) ≤ −Θff). This implies
Sli = 1/ΘffV li (T) and therefore |SDEReLU

ff | < 1 (or even |SDEReLU
ff | = 0 if V li (T) ≤ 0). In the other

case, Sli > 0, V li (t) ∈ (−Θff ,Θff), where (4) is equivalent to (3).

This equivalence motivates the choice of (5) as a surrogate derivative for the SNN: the condition
(V li (T) > 0 or xli(T) > 0) can be seen to be equivalent to Sli(T) > 0, which defines the derivative
of a ReLU. Finally, for the total weight increment ∆wlij , it can be seen from (2) and (8) that:

xli(T) =
∑
tsi

∆xli(t
s
i) = ηSli, ⇒ ∆wlij(T) =

∑
τs
i

∆ωlij(τ
s
i) = −ηSl−1

j Eli, (14)

which is exactly the weight update formula of an ANN defined on the accumulated variables. We
have therefore demonstrated that the SNN can be represented by an ANN by replacing recursively all
S and Z by S and Z and applying the corresponding activation function directly on these variables.
The error that will be caused by this substitution compared to using the accumulated variables S
and Z of an SNN is described by the SDE. This ANN can now be used for training of the SNN on
GPUs. The SpikeGrad algorithm formulated on the variables s, z, δ and x represents the algorithm
that would be implemented on a event-based spiking neural network hardware platform. We will
now demonstrate how the SDE can be further reduced to obtain an ANN and SNN that are exactly
equivalent.

Response equivalence For a large number of spikes, the SDE may be negligible compared to the
activation of the ANN. However, in a framework whose objective it is to minimize the number of
spikes emitted by each neuron, this error can have a potentially large impact.

One option to reduce the error between the ANN and the SNN output is to constrain the ANN during
training to integer values. One possibility is to round the ANN outputs:

Sl,round
i := round[Sli] = round

 1

Θff

∑
j

wlijS
l−1
j + bli

 , (15)

The round function here rounds to the next integer value, with boundary cases rounded away from
zero. This behavior can be implemented in the SNN by a modified spike activation function which is
applied after the full stimulus has been propagated. To obtain the exact response as the ANN, we
have to take into account the current value of Sli and modify the threshold values:

sl,res
i

(
V li (T), Sli

)
:=

1 if V li (T) > Θff/2 or (Sli ≥ 0, V li (T) = Θff/2)

−1 if V li (T) < −Θff/2 or (Sli ≤ 0, V li (T) = −Θff/2)

0 otherwise

. (16)

5

Because this spike activation function is applied only to the residual values, we call it the residual
spike activation function. The function is applied to a layer after all spikes have been propagated
with the standard spike activation function (3) or (4). We start with the lowest layer and propagate all
residual spikes to the higher layers, which use the standard activation function. We then proceed with
setting the next layer to residual mode and propagate the residual spikes. This is continued until we
arrive at the last layer of the network.

By considering all possible rounding scenarios, it can be seen that (16) indeed implies:

Sli + sl,res
i

(
V li (T), Sli

)
= round[Sli + 1/ΘffV

l
i (T)] = round[Sli]. (17)

The same principle can be applied to obtain integer-rounded error propagation:

Zl,round
i := round

[
Zli
]

= round

[
1

Θbp

(∑
k

wl+1
ki E

l+1
k

)]
. (18)

We have to apply the following modified spike activation function in the SNN after the full error has
been propagated by the standard error spike activation function:

zl,res
i

(
U li (T , Zli

)
:=

1 if U li (T)) > Θbp/2 or (Zli ≥ 0, U li (T) = Θbp/2)

−1 if U li (T) < −Θbp/2 or (Zli ≤ 0, U li (T) = −Θbp/2)

0 otherwise

, (19)

which implies:

Zli + zl,res
i

(
U li (T), Zli

)
= round[Zli + 1/ΘbpU

l
i (T)] = round[Zli]. (20)

We have therefore shown that the SNN will after each propagation phase have exactly the same
accumulated responses as the corresponding ANN. The same principle can be applied to obtain other
forms of rounding (e.g. floor and ceil), if (16) and (19) are modified accordingly.

Computational complexity estimation Note that we have only demonstrated the equivalence of
the accumulated neurons responses. However, for each of the response values, there is a large number
of possible combinations of 1 and −1 values that lead to the same response. The computational
complexity of the event-based algorithm depends therefore on the total number n of these events. The
best possible case is when the accumulated response value Sli is represented by exactly |Sli| spikes.
In the worst case, a large number of additional redundant spikes is emitted which sum up to 0. The
maximal number of spikes in each layer is bounded by the largest possible integration value that can
be obtained. This depends on the maximal weight value wlmax, the number of connections N l

in and
the number of spike events nl−1 each connection receives, which is given by the maximal value of
the previous layer (or the input in the first layer):

nlmin = |Sli|, nlmax =

⌊
1

Θff
N l

inw
l
maxn

l−1
max

⌋
. (21)

The same reasoning applies to backpropagation. Our experiments show that for input encodings
where the input is provided in a continuous fashion, and weight values which are much smaller
than the threshold value, the deviation from the best case scenario is rather small. This is because
in this case the sub-threshold integration allows to average out the fluctuations in the signal. This
way the firing rate stays rather close to its long term average and few redundant spikes are emitted.
For the total number of spikes n in the full network on the CIFAR10 test set, we obtain empirically
n−nmin/nmin < 0.035.

4 Experiments

For all experiments, the means, errors and maximal values are calculated over 20 simulation runs.

Classification performance Tables 1 and 2 compare the state-of-the-art results for SNNs on the
MNIST and CIFAR10 datasets. It can be seen that in both cases our results are competitive with
respect to the state-of-the-art results of other SNNs trained with high precision gradients. Compared
to results using the same topology, our algorithm performs at least equivalently.

6

Table 1: Comparison of different state-of-the-art spiking CNN architectures on MNIST. * indicates
that the same topology (28x28-15C5-P2-40C5-P2-300-10) was used.

Architecture Method Rec. Rate (max[mean±std])

Wu et al. [24]* Direct training float gradient 99.42%
Rueckauer et al. [15] CNN converted to SNN 99.44%
Jin et al. [7]* Direct Macro/Micro BP 99.49%
This work* Direct float gradient 99.48[99.36± 0.06]%
This work* Direct spike gradient 99.52[99.38± 0.06]%

Table 2: Comparison of different state-of-the-art spiking CNN architectures on CIFAR10. * indicates
that the same topology (32x32-128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512-10) was used.

Architecture Method Rec. Rate (max[mean±std])

Rueckauer et al. [15] CNN converted SNN (with BatchNorm) 90.85%
Sengupta et al. [17] VGG-16 converted to SNN 91.55%
Wu et al. [23]* Float gradient (no NeuNorm) 89.32%
This work* Direct float gradient 89.72[89.38± 0.25]%
This work* Direct spike gradient 89.99[89.49± 0.28]%

The final classification performance of the network as a function of the error scaling term α in
the final layer can be seen in figure 1. Previous work on low bitwidth gradients [19] found that
gradients usually require a higher precision than both weights and activations. Our results also seem
to indicate that a certain minimum number of error spikes is necessary to achieve convergence. This
strongly depends on the depth of the network and if enough spikes are triggered to provide sufficient
gradient signal in the bottom layers. For the CIFAR10 network, convergence becomes unstable for
approximately α < 300. If the number of operations is large enough for convergence, the required
precision for the gradient does not seem to be extremely large. On the MNIST task, the difference in
test performance between a gradient rescaled by a factor of 50 and a gradient rescaled by a factor of
100 becomes insignificant. In the CIFAR10 task, this is true for a rescaling by 400 or 500. Also the
results obtained with the float precision gradients in tables 1 and 2 demonstrate the same performance,
given the range of the error.

Sparsity in backpropagated gradient To evaluate the potential efficiency of the spike coding
scheme relative to an ANN, we use the metric of relative synaptic operations. A synaptic operation
corresponds to a multiply-accumulate (MAC) in the case of an ANN, and a simple accumulation
(ACC) in the case of an SNN. This metric allows us to compare networks based on their fundamental
operation. The advantage of this metric is the fact that it does not depend on the exact implementation
of the operations (for instance the number of bits used to represent each number). Since an ACC is
however generally cheaper and easier to implement than a MAC, we can be sure that an SNN is more
efficient in terms of its operations than the corresponding ANN if the number of ACCs is smaller
than the number of MACs.

In figure 1 it can be seen that the number of operations (i.e. the number of spikes) decreases
with increasing inference precision of the network. This is a result of the decrease of error in the
classification layer, which leads to the emission of a smaller number of error spikes. Numbers were
obtained with the integer activation of the equivalent ANN to keep simulation times tractable. As
explained previously, the actual number of events and synaptic operations in an SNN may therefore
slightly deviate from these numbers. Figure 2 demonstrates how the number of operations during
the backpropagation phase is distributed in the layers of the network (float precision input layer and
average pooling layers were omitted). While propagating deeper into the network, the relative number
of operations decreases and the error becomes increasingly sparse. This tendency is consistent during
the whole training process for different epochs.

7

0 20 40 60

epoch

10−3

10−2

10−1

A
C

C
s/

co
nn

ec
ti

on

α = 10; 99.26± 0.07%

α = 20; 99.32± 0.07%

α = 50; 99.38± 0.06%

α = 100; 99.36± 0.06%

(a) MNIST

0 100 200 300

epoch

10−2

10−1

A
C

C
s/

co
nn

ec
ti

on

α = 300; 89.22± 0.25%

α = 400; 89.49± 0.28%

α = 500; 89.43± 0.23%

(b) CIFAR10

Figure 1: Number of relative synaptic operations during backpropagation for different error scaling
factors α as a function of the epoch. Numbers are based on activation values of the equivalent ANN.
Test performance with error is given for each α.

fc2 fc1 conv2

layer

10−3

10−2

10−1

A
C

C
s/

co
nn

ec
ti

on

epoch: 5

epoch: 20

epoch: 35

(a) MNIST

fc3 fc2 fc1 conv5 conv4 conv3 conv2

layer

10−3

10−2

10−1

100

101

102

A
C

C
s/

co
nn

ec
ti

on

epoch: 5

epoch: 150

epoch: 295

(b) CIFAR10

Figure 2: Number of relative synaptic operations during backpropagation in each layer (connections
in direction of backpropagation) for different epochs. For MNIST α = 100, for CIFAR10 α = 500.

5 Discussion and conclusion

Using spike-based propagation of the error gradient, we demonstrated that the paradigm of event-
based information propagation can be translated to the backpropagation algorithm. We have not only
shown that competitive inference performance can be achieved, but also that gradient propagation
seems particularly suitable to leverage spike-based processing by exploiting high signal sparsity. For
both forward and backward propagation, SpikeGrad requires a similar communication infrastructure
between neurons, which simplifies a possible spiking hardware implementation. One restriction of
our algorithm is the need for negative spikes, which could be problematic depending on the particular
hardware implementation.

In particular the topology used for CIFAR10 classification is rather large for the given task. We
decided to use the same topologies as the state-of-the-art to allow for better comparison. In an ANN
implementation, it is generally undesirable to use a network with a large number of parameters,
since it increases the need for memory and computation. The relatively large number of parameters
may to a certain extent explain the very low number of relative synaptic operations we observed
during backpropagation. In an SNN, a large number of parameters is however less problematic
from a computational perspective, since only the neurons which are activated by input spikes will
trigger computations. A large portion of the network will therefore remain inactive. It would still be
interesting to investigate signal sparsity and performance of SpikeGrad in ANN topologies that were
explicitly designed for minimal computation and memory requirements.

8

References

[1] P. Baldi and P. Sadowski. A theory of local learning, the learning channel, and the optimality of
backpropagation. Neural Networks, 38:51–74, 2016.

[2] S. Bartunov, A. Santoro, B. A. Richards, G. E. Hinton, and T. P. Lillicrap. Assessing the
Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures. In Advances
in Neural Information Processing Systems (NIPS) 2018, 2018.

[3] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory and
learning-to-learn in networks of spiking neurons. In Advances in Neural Information Processing
Systems (NIPS) 2018, 2018.

[4] J. Binas, G. Indiveri, and M. Pfeiffer. Deep counter networks for asynchronous event-based
processing. arXiv:1611.00710v1, NIPS 2016 workshop "Computing with Spikes", Barcelona,
Spain, 2016.

[5] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer. Fast-Classifying, High-
Accuracy Spiking Deep Networks Through Weight and Threshold Balancing. In International
Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015.

[6] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J.
Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D.
Flickner, and D. S. Modha. Convolutional networks for fast, energy-efficient neuromorphic
computing. Proceedings of the National Academy of Sciences, 113(41):11441–11446, 2016.

[7] Y. Jin, P. Li, and W. Zhang. Hybrid Macro/Micro Level Backpropagation for Training Deep
Spiking Neural Networks. In Advances in Neural Information Processing Systems (NIPS) 2018,
pages 7005–7015, 2018.

[8] J. H. Lee, T. Delbruck, and M. Pfeiffer. Training Deep Spiking Neural Networks Using
Backpropagation. Frontiers in Neuroscience, (10:508), 2016.

[9] W. Maass. Networks of Spiking Neurons: The Third Generation of Neural Network Models.
Electronic Colloquium on Computational Complexity, (9):1659–1671, 1997.

[10] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy,
B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha. A million
spiking-neuron integrated circuit with a scalable communication network and interface. Science,
345(6197):668–673, 2014.

[11] E. Neftci, C. Augustine, P. Somnath, and G. Detorakis. Event-Driven Random Backpropagation:
Enabling Neuromorphic Deep Learning Machines. Frontiers in Neuroscience, 11(324), 2017.

[12] P. O’Connor and M. Welling. Deep Spiking Networks. arXiv:1602.08323v2, NIPS 2016
workshop "Computing with Spikes", Barcelona, Spain, 2016.

[13] M. Pfeiffer and T. Pfeil. Deep Learning With Spiking Neurons: Opportunities and Challenges.
Frontiers in Compututational Neuroscience, 12(774), 2018.

[14] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri. A
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and
128K synapses. Frontiers in Neuromorphic Engineering, 2015.

[15] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu. Conversion of Continuous-Valued
Deep Networks to Efficient Event-Driven Networks for Image Classification. Frontiers in
Neuroscience, 11(682), 2017.

[16] A. Samadi, T. P. Lillicrap, and D. B. Tweed. Deep Learning with Dynamic Spiking Neurons
and Fixed Feedback Weights. Neural Computation, (29):578–602, 2017.

[17] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy. Going Deeper in Spiking Neural Networks:
VGG and Residual Architectures. Frontiers in Neuroscience, 13:95, 2019.

[18] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone. Training deep neural
networks for binary communication with the Whetstone method. Nature Machine Intelligence,
(1):86–94, 2019.

[19] Z. Shuchang, W. Yuxin, N. Zekun, Z. Xinyu, W. He, and Z. Yuheng. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv:1606.06160v3, 2018.

9

[20] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida. Deep learning in
spiking neural networks. Neural Networks, 111:47 – 63, 2019.

[21] J. C. Thiele, O. Bichler, A. Dupret, S. Solinas, and G. Indiveri. A Spiking Network for Inference
of Relations Trained with Neuromorphic Backpropagation. arXiv:1903.04341, 2019.

[22] J. Wu, Y. Chua, M. Zhang, Q. Yang, G. Li, and H. Li. Deep Spiking Neural Network with Spike
Count based Learning Rule. arXiv:1902.05705v1, 2019.

[23] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi. Direct Training for Spiking Neural Networks: Faster,
Larger, Better. arXiv:1809.05793v1, 2018.

[24] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi. Spatio-Temporal Backpropagation for Training
High-Performance Spiking Neural Networks. Frontiers in Neuroscience, (12:331), 2018.

[25] S. Yin, S. K. Venkataramanaiah, G. K. Chen, R. Krishnamurthy, Y. Cao, C. Chakrabarti, and
J.-s. Seo. Algorithm and Hardware Design of Discrete-Time Spiking Neural Networks Based
on Back Propagation with Binary Activations. arXiv:1709.06206v1, 2017.

[26] F. Zenke and S. Ganguli. Superspike: Supervised learning in multilayer spiking neural networks.
Neural Computation, (30):1514–1541, 2018.

10

	1 Introduction
	2 The SpikeGrad algorithm
	3 Formulation of the equivalent ANN
	4 Experiments
	5 Discussion and conclusion

