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Introduction

The notions of props and operads arose in the work of Mac Lane [START_REF] Lane | Categorical algebra[END_REF], in the aim of encoding algebraic structures. While operads encode products with a single output, props allow for working with algebraic structures involving operations with multiple outputs. Such structures include Hopf algebras, Frobenius algebras, or Lie bialgebras, which arouse interest after the discovery of quantum groups for instance, see [START_REF] Drinfeld | Hamiltonian structures on lie groups, lie bialgebras and the geometric meaning of classical yang-baxter equations[END_REF][START_REF] Drinfeld | Quantum groups[END_REF]. A prop is a symmetric monoidal category with objects the natural numbers and whose symmetric monoidal structure ⊗ is given by the sum of integers on objects. The notions of operads and props are intrinsically related: one can consider the prop freely generated by a given operad and to any prop, one can associate its underlying operad. Working with set operads, it is well known that the prop freely generated by the terminal operad Com is the category of surjections Surj, see e.g. [START_REF] Hartl | Polynomial Functors from Algebras over a Set-Operad and Nonlinear Mackey Functors[END_REF].

The present paper focuses on the graded linear prop E freely generated by the operadic suspension of the commutative operad. In this context, the suspension gives rise to signs. Let K denote the underlying ground field of characteristic zero. As a graded K-vector space, the space E • (m, n) is concentrated in degree m -n, where we have an isomorphism

E m-n (m, n) ≃ K[Surj(m, n)] .
In [START_REF] Kawazumi | On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients[END_REF], the authors exhibit a system of generators having the advantage that the monoidal structure simply corresponds to the disjoint union of sets. However, the composition involves signs. In Section 1, we provide another system of generators which has the advantage that the left and right actions of the symmetric groups are by sign, and the composition agrees with the set composition of surjections. Considering idempotents of the symmetric groups, one can construct various categories out of the prop E, defined as subcategories of its Karoubi envelope. The general construction is recalled in Section 2. In particular, for any prop C, one can consider a certain subcategory ΛC of the Karoubi envelope of C. It is equivalent to a category C Λ where the vector space of morphisms is obtained from C by taking the quotient by the symmetric group actions. Its composition is described in Theorem 2.7. In the case of the prop E, the space E • Λ (m, n) is concentrated in degree m -n and is spanned by partitions of m into n parts. The category structure, coming from that of E, is described in Section 3. Nonetheless, the monoidal product of E, does not induce any prop structure on E Λ . In Theorem 3.10, we introduce a different monoidal product which turns the category E Λ into a prop and thus leads to a particular prop structure on partitions.

Our interest in these props comes from their link with extensions between functors from free groups which is explored in Section 4. In fact, functor homology turned out to be a useful tool for computing stable homology with twisted coefficients of various families of groups, and in particular of automorphism groups of free groups Aut(Z * n ), for n ∈ N. Djament proved in [START_REF] Djament | Décomposition de hodge pour l'homologie stable des groupes d'automorphismes des groupes libres[END_REF] that stable cohomology of Aut(Z * n ) with coefficients given by a reduced polynomial covariant functor is governed by Ext-groups in the category F(gr) of functors from finitely generated free groups to K-vector spaces. From this perspective, [START_REF] Vespa | Extensions between functors from free groups[END_REF] gives an explicit computation of the graded K-vector spaces

Ext • F (gr) ((T n • a) ⊗ K, (T m • a) ⊗ K) ,
where a is the abelianization functor and T n is the n-th tensor power functor. Together with the Yoneda product and external product of extension, this family forms a prop which is shown to be isomorphic to the prop E. This prop structure was leveraged to give explicit computations of stable homology of Aut(Z * n ) with coefficients given by particular contravariant functors, see [START_REF] Vespa | Extensions between functors from free groups[END_REF]Theorem 4]. The aformentionned results were extended in [START_REF] Kawazumi | On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients[END_REF][START_REF] Djament | Décomposition de hodge pour l'homologie stable des groupes d'automorphismes des groupes libres[END_REF] in order to deal with bivariant coefficients. One can study extensions between other functors, by replacing T n by exterior power functors Λ n for example. By [START_REF] Vespa | Extensions between functors from free groups[END_REF], the extensions between these functors are concentrated in one degree and are spanned by partitions. A prop structure on these groups can thus be derived from that of E Λ . We conclude this paper by exploiting the construction of Section 2 in order to give some other explicit computations of extension groups between simple functors.

Notation.

(1) Let K be a characteristic zero field and let grVect K be the symmetric monoidal category of graded vector spaces over K. We use the cohomological grading convention V • , and the degree of an element x in V is denoted d(x). For every set S, we denote by K[S] the K-vector space spanned by S.

(2) We denote by |S| the cardinal of a finite set S.

(3) The set of surjections from {1, . . . , m} to {1, . . . , n} is denoted Surj(m, n). Composition of surjections is denoted •. Given f ∈ Surj(m, n) and g ∈ Surj(m ′ , n ′ ) we denote by f × g the element in Surj(m + m ′ , n + n ′ ) defined by

(f × g)(i) = f (i), for 1 ⩽ i ⩽ m, g(i -m) + n, for m + 1 ⩽ i ⩽ m + m ′ .
(4) The symmetric group on n letters is denoted S n .

(5) τ i,i+1 denotes the transposition of S n that permutes i and i + 1. ϵ(σ) denotes the sign of the permutation σ. (6) A (p, q)-unshuffle is the inverse of a (p, q)-shuffle permutation, that is, a permutation σ such that σ -1 (1) < . . . < σ -1 (p) and σ -1 (p + 1) < . . . < σ -1 (p + q). Similarly we define a (p 1 , . . . , p n )-unshuffle. For a surjection f ∈ Surj(m, n), we denote by Sh f the set of (p 1 , . . . , p n )-unshuffles with

p i = |f -1 (i)|. (7) We denote by Surj or (m, n) the set of order-preserving surjections. For f ∈ Surj(m, n),
there is a unique decomposition f = s • α with s ∈ Surj or (m, n) and α ∈ Sh f . (8) A partition λ of m into n parts is a sequence of positive integers λ 1 ⩾ . . . ⩾ λ n such that i λ i = m. We denote by Part(m, n) the set of partitions of m into n parts. To a surjection f ∈ Surj(m, n), we can associate a partition of m into n parts given by ordering the cardinals of its fibers in the decreasing order. We denote by

proj : Surj(m, n) → Part(m, n)
this map. By linear extension we have a surjective morphism

proj : K[Surj(m, n)] → K[Part(m, n)] .

A graded linear prop spanned by surjections

The aim of this section is to give an explicit description of the prop freely generated by the suspension of the commutative operad. We emphasize a choice of generators for which the symmetric group actions are given by the sign and which behave well with respect to the composition of maps.

1.1. Recollections on props. This section recalls the definition of a prop and the freely generated prop associated to an operad. We refer the reader to [START_REF] Markl | Operads and props, handbook of algebra[END_REF] for more details on props and to [START_REF] Loday | Algebraic operads[END_REF] for more details on operads. Definition 1.1 (Graded linear prop). A graded linear prop, or simply prop, is a symmetric monoidal category (C, ⊗, 1), enriched over the category of graded vector spaces grVect K , with objects the natural numbers and whose symmetric monoidal structure ⊗ is given by the sum of integers on objects. In other words, a graded linear prop is the data of a collection {C(m, n)} m,n∈N of graded K-vector spaces together with compatible morphisms: a vertical composition given by the categorical composition,

⋄ : C(n, l) ⊗ C(m, n) -→ C(m, l)
an horizontal composition coming from the monoidal product,

⊗ : C(m, n) ⊗ C(m ′ , n ′ ) -→ C(m + m ′ , n + n ′ ) isomorphisms s m,m ′ ∈ C(m + m ′ , m + m ′ ) such that we have (-1) d(f )d(g) (g ⊗ f ) ⋄ s m,m ′ = s n,n ′ ⋄ (f ⊗ g) ,
for all f ∈ C(m, n) and all g ∈ C(m ′ , n ′ ). Throughout the paper, we will use the terminology prop to refer to a graded linear prop.

Remark 1.2. The isomorphisms s m,m ′ induce a morphism of K-algebras φ : K[S n ] → P(n, n). This gives a K[S m ]-right action and K[S n ]-left action on P(m, n) defined for σ ∈ S n , τ ∈ S m , and f ∈ P(m, n) by

(1) σ • f • τ = φ(σ) ⋄ f ⋄ φ(τ ).
In particular, one can find an equivalent definition in the literature of prop using only the action of the symmetric groups and its compatibility with vertical and horizontal compositions, see e.g. [START_REF] Hackney | On the category of props[END_REF].

Remark 1.3. For every prop (C, ⊗, 1), the collection {C(n, 1)} n∈N forms an operad in grVect K where the composition maps are given for all k, n 1 , . . . , n k ⩾ 0 by

C(k, 1) ⊗ C(n 1 , 1) ⊗ . . . ⊗ C(n k , 1) → C(k, 1) ⊗ C(n 1 + . . . + n k , k) → C(n 1 + . . . + n k , 1) ,
where the first map is induced by the monoidal product ⊗ and the second map by the composition in the category C. We will refer to it as the underlying operad of the prop (C, ⊗, 1). This leads to a forgetful functor from the category of props to the one of operads. Its restriction to reduced props and operads admits a left ajoint Ω which associates to any reduced operad P, the prop ΩP freely generated by P.

Definition 1.4 (Freely generated prop). Let P be a reduced operad in grVect K (i.e. P(0) = 0). The graded linear prop ΩP freely generated by P is given by the following data.

The collection {ΩP(m, n)} m,n∈N : It is defined by

ΩP(m, n) = p 1 +...+pn=m P(p 1 ) ⊗ . . . ⊗ P(p n ) ⊗ Sp 1 ×...×Sp n K[S n ] = f ∈Surj(m,n) P(|f -1 (1)|) ⊗ . . . ⊗ P(|f -1 (n)|) .
We denote by ΩP f the summand corresponding to a surjection f ∈ Surj(m, n) in the previous decomposition.

The monoidal product is obtained by concatenation, i.e. we consider

x ⊗ y ∈ ΩP f ×g ,
for all x ∈ ΩP f and all y ∈ ΩP g . The S n -left action is defined for all σ ∈ S n , all f ∈ Surj(m, n) and all x = x 1 ⊗. . .⊗x n ∈ ΩP f , where

x i ∈ P(|f -1 (i)|) by the formula (2) σ • x = ±x σ -1 (1) ⊗ . . . ⊗ x σ -1 (n) ∈ ΩP σ•f ,
where ± is the Koszul sign rule induced by the degrees of each element

x i . The S m -right action is defined for τ ∈ S m , f ∈ Surj(m, n) and x = x 1 ⊗ . . . ⊗ x n ∈ ΩP f as follows. Decompose f as s • α with s ∈ Surj or (m, n) and α ∈ Sh f , and decompose α • τ as α • τ = (σ 1 × . . . × σ n ) • u with σ i ∈ S |f -1 (i)| and u ∈ Sh f . Then, we have (3) (x 1 ⊗ . . . ⊗ x n ) • τ = (x 1 • σ 1 ) ⊗ . . . ⊗ (x n • σ n ) ∈ ΩP f •τ .
The composition morphisms

ΩP(m, n) ⊗ ΩP(l, m) ⋄ -→ ΩP(l, n)
are described as follows. Let s ∈ Surj or (m, n) be an order-preserving surjection and let g ∈ Surj(l, m). Let us consider x = x 1 ⊗ . . . ⊗ x n ∈ ΩP s and y = y 1 ⊗ . . . ⊗ y n ∈ ΩP g , with

y i = y 1 i ⊗ . . . ⊗ y p i i where p i = |s -1 (i)|. Then, we have (4) x ⋄ y = (-1) ω γ(x 1 ; y 1 ) ⊗ . . . ⊗ γ(x n ; y n ) ∈ ΩP s•g ,
where γ denotes the composition in the operad P and ω is given by the Koszul sign rule, namely

ω := n i=1 d(y i-1 ) (d(x i ) + • • • + d(x n )) . For f ∈ Surj(m, n), let us consider the decomposition f = s • α with s ∈ Surj or (m, n) and α ∈ Sh f . Let us denote by x s ∈ ΩP s the unique element satisfying x s • α = x ∈ ΩP f . Then, we have x ⋄ y = (x s • α) ⋄ y = x s ⋄ (α • y)
, which can be computed through the composition with an order-preserving surjection and the left action of the symmetric group already defined.

The isomorphisms s n,m ∈ ΩP(n + m, n + m) are defined as s n,m = 1 ⊗n+m ∈ ΩP σ where σ is the unshuffle defined as

σ(i) = m + i for 1 ≤ i ≤ n and σ(i) = i -n for n + 1 ≤ i ≤ n + m.
The map φ : K[S n ] → ΩP(n, n) sends σ to 1 ⊗n ∈ ΩP σ where 1 ∈ P(1) denotes the unit of the operad P.

1.2. The prop freely generated by the operadic suspension of Com. Let us consider sCom the operadic suspension of the commutative operad, see [LV12, Section 7.2.2] for more details. The graded operad sCom is generated by a single operation µ 2 , of degree 1 and arity 2, subject to the relation

µ 2 • 1 µ 2 = -µ 2 • 2 µ 2
, and the action of S 2 on µ 2 is by sign. By using the conventions of [KV23, Section 9], we have that sCom(n) = Kµ n ⊗ sgn n is concentrated in degree n -1, and

µ 3 = µ 2 • 1 µ 2 = -µ 2 • 2 µ 2 , so that µ n • i µ k = (-1) (i-1)(k-1) µ n+k-1 ,
where µ 1 = 1 is the unit of the operad sCom. The operadic composition in sCom is then given by µ n (µ p 1 , . . . , µ pn ) = (-1) κ(p 1 ,...,pn) µ p 1 +...+pn where (5)

κ(p 1 , . . . , p n ) = n j=1 (p j -1)(p 1 + . . . + p j-1 ) = n k=1 p k (p k+1 -1 + . . . + p n -1) .
Notation 1.5. Let us denote by E the graded linear prop ΩsCom freely generated by the operad sCom.

By Definition 1.4, for f ∈ Surj(m, n), we have

E • f = sCom(|f -1 (1)|) ⊗ . . . ⊗ sCom(|f -1 (n)|) ≃ K if • = m -n and m ⩾ n, 0 otherwise
as a graded vector space. In order to give an explicit description of this prop using Definition 1.4 we need to choose, for any f ∈ Surj(m, n), a generator in the vector space E m-n f

. In [START_REF] Kawazumi | On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients[END_REF], the authors consider the generators

µ f := µ p 1 ⊗ . . . ⊗ µ pn of E m-n f for f ∈ Surj(m, n) and p i = |f -1 (i)|.
For these generators the composition ⋄ and the action of the symmetric groups give rise to complicated signs whereas the monoidal structure is simply given by concatenation without signs. More precisely, the left action by τ i,i+1 is given by ( 6)

τ i,i+1 • µ f = (-1) (p i -1)(p i+1 -1) µ τ •f .
For the right action, following Definition 1.4, we decompose

f as f = s • α, with s ∈ Surj or (m, n) and α ∈ Sh f . Given τ ∈ S m , there exist σ = (σ 1 × . . . × σ n ), σ i ∈ S p i and u ∈ Sh f such that α • τ = σ • u.
The right action on ΩsCom is given by sign, so that (7)

µ f • τ = ϵ(σ)µ f •τ .
We give below an alternative choice of generators in E m-n f having the advantage that the description of the composition ⋄ is easy and that the action of the symmetric groups on these generators on both sides is given by sign.

Notation 1.6. Let f ∈ Surj(m, n) be a surjection such that p i = |f -1 (i)| and let κ(f ) be the integer κ(p 1 , . . . , p n ) defined in (5). Let us denote

ν f := ϵ(α)(-1) κ(f ) µ p 1 ⊗ • • • ⊗ µ pn = ϵ(α)(-1) κ(f ) µ f ,
where s • α is the decomposition of f with s ∈ Surj or (m, n) and α ∈ Sh f . Let us note that ν σ = ϵ(σ)µ σ for all σ ∈ S m , or equivalently that φ(σ) = ϵ(σ)ν σ . The degree is given by d

(ν f ) = m -n and E m-n f ≃ Kν f .
The following theorem describes the prop structure on E • in terms of the generators ν f .

Theorem 1.7. Let E be the graded linear prop ΩsCom.

(a) The S n -left action and the S m -right action are given by

σ • ν f • τ = ϵ(σ)ϵ(τ )ν σ•f •τ , for all f ∈ Surj(m, n), all σ ∈ S n and all τ ∈ S m . (b) Let s ∈ Surj or (m, n) and t ∈ Surj or (m ′ , n ′ )
be order-preserving surjections. The monoidal product is given by the concatenation up to a sign, i.e.

ν s ⊗ ν t = (-1) d(νt)m ν s×t .
If f and g are not order-preserving surjections, the formula for ν f ⊗ ν g can be derived by decomposing f and g into order-preserving surjections and unshuffles. (c) The composition is defined for f ∈ Surj(m, n) and h ∈ Surj(l, m) by

ν f ⋄ ν h = ν f •h . Proof. Let f ∈ Surj(m, n) be a surjection which decomposes uniquely as s • α with s ∈ Surj or (m, n) and α ∈ Sh f . Let us denote p i = |f -1 (i)| = |s -1 (i)|. We have κ(f ) = κ(s).
Let us prove Point (a). The S m -right action is given for τ ∈ S m as follows. Let us write α • τ = σ • u with σ = (σ 1 × . . . × σ n ), σ i ∈ S p i and u ∈ Sh f . By definition of µ f and Relation (7), we have

ν f • τ = (-1) κ(f ) ϵ(α)ϵ(σ)µ f •τ . Since s • σ = s, we have f • τ = s • u and µ f •τ = ϵ(u)(-1) κ(f ) ν f •τ . This leads to ν f • τ = ϵ(τ )ν f •τ .
The S n -left action is given for σ ∈ S n as follows. Let s ∈ Surj or (m, n) be an order preserving surjection such that

p i = |s -1 (i)| and let us write σ • s = t • β with t ∈ Surj or (m, n) and β ∈ Sh σ•s . First, we claim that ϵ(σ)σ • µ s = ϵ(β)(-1) n i=1 p i (σ(i)-i) µ σ•s
Since this formula is clearly multiplicative, it is enough to prove it for σ = τ i,i+1 . By Formula (6), we have

τ i,i+1 • µ s = (-1) (p i -1)(p i+1 -1) µ τ i,i+1
•s , and ϵ(β) = (-1) p i p i+1 , since β exchanges the fibers i and i + 1, which gives the desired formula. It leads to

σ • ν s = (-1) κ(s) σ • µ s = (-1) κ(s) ϵ(σ)ϵ(β)(-1) n i=1 p i (σ(i)-i) µ σ•s . One can prove that (-1) κ(σ•s) = (-1) κ(s) (-1) n i=1 p i (σ(i)-i) , which gives σ • ν s = (-1) κ(σ•s) ϵ(σ)ϵ(β)µ σ•s = ϵ(σ)ν σ•s .
We get the result for any surjection f ∈ Surj(m, n) using its decomposition f = s • α and the formula of the right action. Let us prove Point (b). Let s ∈ Surj or (m, n) and t ∈ Surj or (m ′ , n ′ ) be order-preserving surjections. It is sufficient to prove that

κ(s × t) = κ(s) + κ(t) + (m ′ -n ′ )m .
We have κ(s × t) = κ(s) + κ(t) + n ′ i=1 (q i -1)m, for q i = |t -1 (i)|, which gives the desired result. Let us prove Point (c). For any h ∈ Surj(l, m), the surjection α • h decomposes as t • β with t an order-preserving surjection and β an unshuffle. We have

ν f ⋄ ν h = ϵ(α)(ν s • α) ⋄ ν h = ν s ⋄ ν α•h = ϵ(β)(ν s ⋄ ν t ) • β.
Hence, it is sufficient to prove the result for order-preserving surjections s ∈ Surj or (m, n) and t ∈ Surj or (l, m). Let us denote

m 1 = |s -1 (1)|, m 2 = m -m 1 , l 1 = m 1 i=1 |t -1 (i)| and l 2 = l -l 1 .
We proceed by induction on n. For n = 1, it is a consequence of the operadic composition in sCom and the definition of κ. We decompose s = s 1 × s 2 with s 1 ∈ Surj or (m 1 , 1), s 2 ∈ Surj or (m 2 , n -1) and t = t 1 × t 2 with t 1 ∈ Surj or (l 1 , m 1 ) and t 2 ∈ Surj or (l 2 , m 2 ). We have

ν s ⋄ ν t = ν s 1 ×s 2 ⋄ ν t 1 ×t 2 = (-1) d(νs 2 )m 1 +d(νt 2 )l 1 (ν s 1 ⊗ ν s 2 ) ⋄ (ν t 1 ⊗ ν t 2 ) = (-1) (d(νs 2 )+d(νt 2 ))l 1 ν s 1 •t 1 ⊗ ν s 2 •t 2 = ν (s 1 •t 1 )×(s 2 •t 2 ) = ν s•t . □ 2.
On subcategories of the Karoubi envelope of a prop

In this section, we recall the construction of the Karoubi envelope of a category (also called idempotent completion or pseudo-abelian hull), see [Kar68, Section 1.2]. This construction aims to add objects and morphisms to a category so that every idempotent, i.e. every endomorphism e A : A → A satisfying e A ⋄ e A = e A , is split.

Definition 2.1 (Karoubi envelope). The Karoubi envelope of a given category C is the category Kar(C) defined by the following data.

The objects are the pairs (A, e A ) where A is an object in C and e A : A → A is an idempotent. A morphism f : (A, e A ) → (B, e B ) between two objects in Kar(C) is a morphism

f : A → B in C such that f = f ⋄ e A = e B ⋄ f = e B ⋄ f ⋄ e A .
The composition is the same as the one in C and the identity morphism on (A, e A ) is e A .

There is a fully faithful functor η C : C → Kar(C) defined as follows. For an object A in C, we have that η C (A) = (A, 1 A ) and for a morphism f in C, we have that η

C (f ) = f . Remark 2.2. A morphism f : A → B in a category C is a morphism in Kar(C) from (A, e A ) to (B, e B ) if and only if f = e B ⋄ f ⋄ e A .
Proposition 2.3. Suppose that (C, ⊗, I) is a symmetric monoidal structure on C. Then (Kar(C), ⊗, (I, 1 I )) is a symmetric monoidal category with

(A, e A ) ⊗ (B, e B ) = (A ⊗ B, e A ⊗ e B ) f ⊗ g = f ⊗ g .
Proof. We observe that e A ⊗ e B is an idempotent. For f : (A, e A ) → (A ′ , e A ′ ) and g : (B, e B ) → (B ′ , e B ′ ) two morphisms in Kar(C), we have that f ⊗ g is a morphism from (A, e A ) ⊗ (B, e B ) to (A ′ , e A ′ ) ⊗ (B ′ , e B ′ ) since

(e A ′ ⊗ e B ′ ) ⋄ (f ⊗ g) ⋄ (e A ⊗ e B ) = (e A ′ ⋄ f ⋄ e A ) ⊗ (e B ′ ⋄ g ⋄ e B ) = f ⊗ g .
If ρ is the left unitor in C, that is, a natural isomorphism defined by ρ A : A ⊗ I → A, then by naturality one has e A ⋄ ρ A = ρ A ⋄ (e A ⊗ 1 I ). Hence ρ(A,e A ) := e A ⋄ ρ A ⋄ (e A ⊗ 1 I ) is a well defined morphism in Kar(C) from (A, e A ) ⊗(I, 1 I ) to (A, e A ). It is natural and it is an isomorphism. The associator, the right unitor and the swap map are defined similarly, and the desired diagrams between the natural transformations (the commutative pentagon, hexagon, and triangle) commute. □

Let C and D be two categories. A semifunctor F : C → D maps objects (resp. arrows) in C to objects (resp. arrows) in D, preserving domain, codomain and composition, see [START_REF] Mitchell | The dominion of Isbell[END_REF]Section 4]. The difference between semifunctors and functors is that semifunctors need not preserve identities. Definition 2.4. There is a forgetful semifunctor ϵ C : Kar(C) → C defined as follows. For (A, e A ) an object of Kar(C), we have that ϵ C (A, e A ) = A and any morphism is sent to itself. In particular, the identity e A of (A, e A ) is sent to e A which is not equal to 1 A in general.

Let (C, ⊗, 1) be a prop. By Remark 1.2, the morphism φ : K[S n ] → C(n, n), maps any idempotent e in K[S n ] to an idempotent in C(n, n). Via an abuse of notation, we will denote the idempotents φ(e) by e, so that by relation (1), the action • of the symmetric group on C corresponds to the composition ⋄ in the prop C. There is a well-known construction of a set of primitive orthogonal idempotents of K[S n ] indexed by the partitions of n (see [FH91, Section 4.1]). For λ a partition of n, we denote by e λ the associated idempotent. For example, we have:

e (1 n ) := 1 n! σ∈Sn ϵ(σ)σ and e (n) := 1 n! σ∈Sn σ
In this section, we are interested in particular subcategories of Kar(C) built from the idempotents e (1 n ) .

Definition 2.5. Let (C, ⊗, 1) be a prop. We denote by ΛC the full subcategory of Kar(C) whose objects are given by (n, e (1 n ) ) for all n ∈ N.

By Definition 2.1 and Remark 2.2, an element of ΛC((m, e (1 m ) ), (n, e (1 n ) )) is necessarily of the form

e (1 n ) ⋄ f ⋄ e (1 m ) = 1 n!m! σ∈Sn,τ ∈Sm ϵ(σ)ϵ(τ )σ • f • τ , with f ∈ C(m, n).
In what follows, we denote objects in ΛC simply n instead of (n, e (1 n ) ).

In order to give in Section 3, an explicit description of the composition of partitions we introduce the category C Λ which is equivalent to ΛC. More generally, if the graded vector spaces C(m, n) are endowed with a basis such that composition of elements of the basis is up to a sign an element of the basis, then the combinatorics of the category C Λ is more easily understood than that of ΛC. Definition 2.6. Let (C, ⊗, 1) be a prop. We denote by C Λ (m, n) the quotient of C(m, n) by the relation

f ∼ ϵ(σ)ϵ(τ )τ • f • σ , for τ ∈ S n , σ ∈ S m . The normalization map f → e (1 n ) ⋄ f ⋄ e (1 m ) induces an isomorphism C Λ (m, n) ∼ = → ΛC(m, n) ,
for all m, n ∈ N. Via these isomorphisms, one can define a category C Λ isomorphic to the category ΛC. Next Theorem gives the explicit composition in C Λ induced by that in ΛC.

Theorem 2.7. Let C be a prop and φ : K[S n ] → C(n, n) be the map induced by the action of the symmetric group. For

[f ] ∈ C Λ (m, n) and [g] ∈ C Λ (l, m), the composition [f ] * [g] in the category C Λ has the following form [f ] * [g] = 1 m! σ∈Sm ϵ(σ)[f ⋄ φ(σ) ⋄ g] .
Proof. For all n ∈ N, let us denote e n := e (1 n ) . Let f ∈ C(m, n) and g ∈ C(l, m). The normalization map sends any

[f ] in C Λ (m, n) to e n ⋄ f ⋄ e m in ΛC(m, n).
The composition of e n ⋄ f ⋄ e m with e m ⋄ g ⋄ e l in the category ΛC, or equivalently in the category C(m, n) is :

e n ⋄ f ⋄ e m ⋄ e m ⋄ g ⋄ e l = e n ⋄ f ⋄ e m ⋄ g ⋄ e l
which is the image of [f ⋄ e m ⋄ g] ∈ C Λ (l, n) by the normalization map. This leads to

[f ] * [g] = [f ⋄ e m ⋄ g].
In addition, we have [

1 m ] * [g] = [e m ⋄ g] = [g] and [f ] * [1 m ] = [f ⋄ e m ] = [f ]. □
Remark 2.8. Note that the family of quotient maps C(m, n) → C Λ (m, n) does not provide a functor from C to C Λ . The equivalence of categories → C Λ is, on morphisms, the composition of the restriction of the semi-functor

ϵ C : Kar(C)((m, e (1 m ) ), (n, e (1 n ) )) → C(m, n)
to the category ΛC((m, e (1 m ) ), (n, e (1 n ) )) with the quotient map.

A graded linear prop spanned by partitions

In Section 2, we associate to every prop C a category C Λ , which is equivalent to a subcategory ΛC of the Karoubi envelope of C. This section focuses on the particular case of the prop E = ΩsCom (see Section 1) and its associated category E Λ (see Section 2). The Karoubi envelope Kar(E) inherits a prop structure from that of E, see Proposition 2.3. However, it does not induce a prop structure at the level of a given subcategory of Kar(E) in general. For ΛE, a necessary condition would be that

e (1 m ) ⊗ e (1 n ) = e (1 m+n ) ,
in E which is not the case. Nonetheless, in Section 3.2, we extend the category E Λ into a graded linear prop by introducing another monoidal product ⊙.

3.1.

The composition in the category E Λ . In this section, we describe the category structure E Λ given by Theorem 2.7 in the case of C = E. We start by proving that this category is spanned by partitions.

Proposition 3.1. For all n, m ∈ N, there is an isomorphism Proof. The result follows directly from Lemma 3.2. □ Lemma 3.2. For all f, g ∈ Surj(m, n), the following propositions are equivalent :

E • Λ (m, n) ∼ = K [Part (m, n)] if • = m -n,
(i) [ν f ] = [ν g ] ∈ E m-n Λ (m, n) ; (ii) there exist τ ∈ S m and σ ∈ S n such that g = σ • f • τ ; (iii) proj(f ) = proj(g),
where proj : Surj(m, n) → Part(m, n) is the map defined in Notation (8).

Proof. We have [ν f ] = [ν g ] if and only if there exist τ ∈ S m and σ ∈ S n such that

ν g = ϵ(σ)ϵ(τ )σ • ν f • τ = ν σ•f •τ .
This proves the equivalence (i) ⇐⇒ (ii). The implication (ii) =⇒ (iii) is immediate. Conversely, we assume that proj(f ) = proj(g) and let us denote by λ 1 ⩾ . . . ⩾ λ n this partition.

There is a unique s ∈ Surj or (m, n) such that |s -1 (i)| = λ i , for all i and there exists a permutation β ∈ S n such that |f -1 (i)| = λ β(i) . In particular, the surjection β • f writes uniquely as

β • f = s • u with u ∈ Sh β•f , so that f decomposes as β -1 • s • u. Similarly, there exist γ ∈ S n , v ∈ S m such that g = γ -1 • s • v. By construction, σ = γ -1 • β and τ = u -1 • v are such that g = σ • f • τ , which proves (iii) =⇒ (ii).
□ Notation 3.3. For a given partition λ ∈ Part(m, n), we denote

ρ λ := [ν f ] ∈ E m-n Λ (m, n)
the class of ν f , where f is any surjection such that proj(f ) = λ.

Theorem 3.4. The composition of two basis elements in the category E Λ is a weighted average of basis elements, i.e. for λ ∈ Part(m, n) and µ ∈ Part(l, m), we have

ρ λ * ρ µ = α∈Part(l,n) c λ,µ α ρ α
where m!c λ,µ α ∈ N and α c λ,µ α = 1. The identity morphisms are given by ρ (1 m ) ∈ E Λ (m, m).

Proof. Let f ∈ Surj(m, n) and g ∈ Surj(l, m) such that proj(f ) = λ and proj(g) = µ. By Theorem 2.7 we have

[ν f ] * [ν g ] = 1 m! σ∈Sm ϵ(σ)[ν f ⋄ φ(σ) ⋄ ν g ]
and φ(σ) = ϵ(σ)ν σ , see Notation 1.6. This leads to

□ (8) [ν f ] * [ν g ] = 1 m! σ∈Sm [ν f •σ•g ] .
Corollary 3.5. For any partition λ = λ 1 ⩾ . . . ⩾ λ n ∈ Part(m, n), we have

ρ λ * ρ (2,1 m-1 ) = 1 m n i=1 λ i [ν s(λ 1 ,...,λ i-1 ,λ i +1,λ i+1 ,...,λn) ] ,
where s(p 1 , . . . , p n ) denotes the unique order-preserving surjection s ∈ Surj or (m, n) such that

|s -1 (i)| = p i and m = p 1 + • • • + p n .
Proof. Let f = s(λ 1 , . . . , λ n ) ∈ Surj or (m, n) and g = s(2, 1, . . . , 1) ∈ Surj or (m + 1, m). By Formula (8), we have

ρ λ * ρ (2,1 m-1 ) = 1 m! σ∈Sm [ν f •σ•g ] . For σ ∈ S m , there is a unique decomposition σ • g = t • u with t ∈ Surj or (m + 1, m) and u ∈ Sh σ•g . For all 1 ⩽ j ⩽ m, we have that |t -1 (j)| = 2 ⇐⇒ σ(1) = j .
There are (m-1)! permutations σ such that σ(1) = j. In that case, we have t = s(1 j-1 , 2, 1 m-j ). By Lemma 3.2, we have

[ν f •t•u ] = [ν f •t ] , so that ρ λ * ρ (2,1 m-1 ) = 1 m m j=1 [ν f •s(1 j-1 ,2,1 m-j ) ].
Finally, we decompose the sum as

m j=1 [ν f •s(1 j-1 ,2,1 m-j ) ] = n i=1 λ 1 +•••+λ i-1 +λ i j=λ 1 +•••+λ i-1 +1 [ν f •s(1 j-1 ,2,1 m-j ) ] .
We conclude by noting that for λ 1 + . . .

+ λ i-1 + 1 ⩽ j ⩽ λ 1 + . . . + λ i-1 + λ i , we have [ν f •s(1 j-1 ,2,1 m-j ) ] = [ν s(λ 1 ,...,λ i-1 ,λ i +1,λ i+1 ,...,λn) ] . □
Example 3.6. The formula of Corollary 3.5 gives

ρ (3,3,1) * ρ (2,1 6 ) = 1 7 (3[ν s(4,3,1) ] + 3[ν s(3,4,1) ] + [ν s(3,3,2) ]) = 1 7 (6ρ (4,3,1) + ρ (3,3,2) ) .

3.2.

A particular prop structure. In this section, we introduce a particular monoidal product ⊙ which turns the category E Λ into a prop.

Notation 3.7. Let us define a family of elements

P m,n ∈ E m-n Λ (m, n) for m ⩾ n as follows: (1) P m,m = ρ (1 m ) ∈ E 0 Λ (m, m), (2) P m,m-1 = ρ (2,1 m-2 ) ∈ E 1 Λ (m, m -1), (3) P m,n = P n+1,n * . . . * P m,m-1 ∈ E m-n Λ (m, n). Lemma 3.8. The element P m,n ∈ E m-n Λ (m, n) satisfies P m,n = 1 |Surj or (m, n)| s∈Surj or (m,n) [ν s ] = 1 |Surj or (m, n)| s∈Surj or (m,n) ρ proj(s) .
Proof. Let us prove the result by induction on m ⩾ n. For m = n, we have by definition P n,n = ρ (1 n ) and there is only one s ∈ Surj or (n, n) such that proj(s) = (1 n ). Similarly, Part(n + 1, n) has only one element, so that the formula boils down to

P n+1,n = ρ (2,1 n-1 ) .
Assume the formula is true for P m,n . We have P m+1,n = P m,n * P m+1,m , that is,

P m+1,n = 1 |Surj or (m, n)| s∈Surj or (m,n) [ν s ] * ρ (2,1 m-1 ) .
By Theorem 3.4, we know that P m+1,n is a weighted average of the elements ρ λ , where λ runs in Part(m+1, n). For s = s(p 1 , . . . , p n ) the order-preserving surjection such that |s -1 (i)| = p i , we have

[ν s ] * ρ (2,1 m-1 ) = 1 m n i=1 p i [ν s(p 1 ,...,p i-1 ,p i +1,p i+1 ,...,pn) ] ,
by Proposition 3.5. Let s(q 1 , . . . , q n ) ∈ Surj or (m + 1, n). In the composition P m,n * ρ (2,1 m-1 ) , the element [ν s(q 1 ,...,qn )] appears with weight

1 m|Surj or (m, n)| n i=1 (q i -1) = m + 1 -n m|Surj or (m, n)|
which is independant of the chosen order-preserving surjection in Surj or (m + 1, n). This gives the desired result. We also obtain that for m + 1 > n,

|Surj or (m + 1, n)| = |Surj or (m, n)| m m + 1 -n . □
Remark 3.9. One can also express P m,n in the basis ρ λ with λ ∈ Part(m, n), by counting the number of order-preserving surjections s such that proj(s) = λ. As an example, we have P 6,3 = 1 10 (3ρ (4,1,1) + 6ρ (3,2,1) + ρ (2,2,2) ) .

Theorem 3.10. For α ∈ Part(m, n) and β ∈ Part(m ′ , n ′ ), the monoidal product defined as

ρ α ⊙ ρ β = (-1) d(ρα)n ′ P m+m ′ ,n+n ′ ,
endows the category E Λ with a structure of symmetric monoidal category. On the one hand, we have

(ρ λ ⊙ ρ λ 2 ) * (ρ β ⊙ ρ β 2 ) = (-1) d(ρ λ )n 2 +d(ρ β )m 2 P l+l 2 ,n+n 2 ,
and on the other hand, we have

(ρ λ * ρ β ) ⊙ (ρ λ 2 * ρ β 2 ) = α∈Part(l,n) α 2 ∈Part(l 2 ,n 2 ) c λ,β α c λ 2 ,β 2 α 2 ρ α ⊙ ρ α 2 = (-1) (l-n)n 2 ( α∈Part(l,n) α 2 ∈Part(l 2 ,n 2 ) c λ,β α c λ 2 ,β 2 α 2 )P l+l 2 ,n+n 2 .
By Theorem 3.4, we obtain that

(ρ λ ⊙ ρ λ 2 ) * (ρ β ⊙ ρ β 2 ) = (-1) d(ρ β )d(ρ λ 2 ) (ρ λ * ρ β ) ⊙ (ρ λ 2 * ρ β 2 ) .

Finally, let us set

s m,m ′ := (-1) mm ′ ρ (1 m+m ′ ) ∈ E Λ (m + m ′ , m + m ′ ) . We have (-1) d(ρα)d(ρ β ) (ρ β ⊙ ρ α ) * s m,m ′ = s n,n ′ * (ρ α ⊙ ρ β ) = (-1) mn ′ P m+m ′ ,n+n ′ . □
Remark 3.11. The underlying operad associated to the prop E Λ is isomorphic to the operad sCom via the isomorphism given by

ρ (m) ∈ E Λ (m, 1) -→ (-1) m(m-1) 2 µ m .
For dimension reasons, the prop E Λ is nevertheless not isomorphic to the prop freely generated by the operad sCom, and thus to E. Let us note that the prop E Λ is also not finitely generated since any family of generators would necessary contain a generator in each E 1 Λ (m, m -1).

Additional computations suggest the following conjecture.

Conjecture 3.12. The prop structure given by Theorem 3.10 is the unique prop structure on the category E • Λ which is the sum of integers on objects and such that for all m ⩾ 0,

ρ (1) ⊙ ρ (1 m ) = ρ (1 m+1 ) and ρ (1) ⊙ ρ (2,1 m ) = ρ (2,1 m+1 ) .

Relation with functor homology on free groups

This work is motivated by the relation between the prop freely generated by the operadic suspension of Com and the extension groups between the tensor powers of the abelianisation functor obtained in [START_REF] Vespa | Extensions between functors from free groups[END_REF]. More precisely, let gr be the category of finitely generated free groups, ab the category of finitely generated free abelian groups and Vect K the category of K-vector spaces. We denote by F (gr) the category of functors from gr to Vect K . Let a : gr -→ ab be the abelianization functor and let T n : Vect K -→ Vect K be the n th tensor product functor. Let us consider the functor

a K := a ⊗ Z K : gr -→ Vect K .
We consider the category E T enriched in graded K-vector spaces whose objects are the integers N and whose morphisms are given by E

• T (m, n) := Ext • F (gr) (T n • a K , T m • a K )
with the composition given by the Yoneda product. It was shown in [START_REF] Vespa | Extensions between functors from free groups[END_REF] that, together with the external product of extensions, this category forms a prop which is freely generated by its underlying operad. This operad is identified in [KV23, Section 9] as being the suspension of Com. The authors introduce the generator

[π ⊗n ] ∈ E n-1 T (n, 1)
and they define an isomorphism of props ι :

E T → E given by [π ⊗p 1 ] ⊗ . . . ⊗ [π ⊗pn ] ∈ E T (m, n) -→ µ p 1 ⊗ . . . ⊗ µ pn .
By Section 1.2 we have an isomorphism E ∼ = E given for every surjection f ∈ Surj(m, n) by,

E m-n f -→ E m-n f µ p 1 ⊗ . . . ⊗ µ pn -→ ν f .
The composition of ι with the previous isomorphism leads to a natural equivalence:

Kar(E T ) ∼ -→ Kar(E) .
Let Λ n : Vect K -→ Vect K be the n th exterior power functor. We consider the category ΛE T whose objects are the integers and whose morphisms are given by

ΛE T (m, n) = Ext • F (gr) (Λ n • a K , Λ m • a K )
, with the composition given by the Yoneda product. The prop isomorphism

E T ≃ E induces isomorphisms ΛE T ∼ = ΛE ∼ = E Λ . Thus, we recover the following isomorphism established in [Ves18, Theorem 4.2] Ext • F (gr) (Λ n • a K , Λ m • a K ) ∼ = K[Part(m, n)] if • = m -n 0 otherwise ,
and ΛE T inherits a prop structure from that of E Λ . The Yoneda product of ΛE T coincides with the composition and Theorem 3.4 thus gives an explicit formula.

Remark 4.1. We could hope that the monoidal product of ΛE T corresponds to an external product defined on extensions of exterior powers functors, as it was the case for E. However, this is not the case: exploiting the Hopf structure of the functor Λ, one can actually define an external product on ΛE T but it is not compatible with the Yoneda product.
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  and m ⩾ n, 0 otherwise where Part (m, n) denotes the partitions of m into n parts.

Proof.

  It is immediate to prove that the product ⊙ is associative. Let us prove the compatibility between the composition * and the monoidal product ⊙. Let us consider λ ∈ Part(m, n), λ 2 ∈ Part(m 2 , n 2 ), β ∈ Part(l, m), and β 2 ∈ Part(l 2 , m 2 ) .

K

  [S d ] ∼ = λ⊢d S ⊕dim(S λ ) λ, where S λ is the simple module indexed by the partition λ of d. Moreover, a simple K[S d ]module is isomorphic to S λ for a unique partition λ of d. We deduce from the previous decomposition thatT d • a K ∼ = λ⊢d S ⊕ dim(S λ ) λ where S λ = (T d • a K ) ⊗ S d S λis a simple functor. For λ a partition of m and µ a partition of n we have:Kar(E T )((m, e λ ), (n, e µ )) = e µ • Ext • F (gr) (T n • a K , T m • a K ) • e λ = Ext • F (gr) (S µ , S λ ) , and thus (9) Ext • F (gr) (S µ , S λ ) ≃ e µ • E(m, n) • e λ .Using Formula (9) and the generators ν f introduced in Notation 1.6, one can compute these extension groups. We conclude by giving some examples below.Example 4.2. For all n and all m, we haveΛE T (m, n) = Ext • F (gr) S (1 n ) , S (1 m ) . For example, we have Ext 1 F (gr) S (1 2 ) , S (1 3 ) ≃ e (1 2 ) • E(3, 2) • e (1 3 ) , with e (1 2 ) = 1 2 (1 -τ 1,2) and e (1 3 )By Theorem 1.7, any surjection f ∈ Surj(3, 2) satisfiese (1 2 ) • ν f • e (1 3 ) = 1 6 g∈Surj(3,2) ν g , confirming that Ext 1 F (gr) S (1 2 ) , S (1 3 ) is 1-dimensional.Example 4.3. We recover the following result of [Ves18, Theorem 4.2] :Ext • F (gr) (T n • a K , S m • a K ) = K if n = m and • = 0, 0 else.We already know that the graded vector space is concentrated in degree m -n. For m = n,Ext 0 F (gr) (T m • a K , S m • a K ) is one dimensional, generated by the image of the idempotent e (m) of S m via the isomorphism K[S m ] ≃ E(m, m). If m ̸ = n, we can assume m > n. Working in the Karoubi envelope of E T , we have Kar(E T )((m, e (m) ), (n, id)) = Ext • F (gr) (T n • a K , S m • a K ) ≃ E(m, n) • e (m) . Let f ∈ Surj(m, n) be a surjection which decomposes as s • α with s ∈ Surj or (m, n). Since ν f = ϵ(α)ν s • α, it is enough to prove that ν s • e (m) = 0. Let us denote p i = |s -1 (i)|. AnyDana Hunter, Kalamazoo College, 1200 Academy Street, Kalamazoo, Michigan, 49006-3295, USA Email address: Dana.Hunter@kzoo.edu Muriel Livernet, Univ. Paris Cité, Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS, SU, DMA, ENS-PSL, Paris, France
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σ ∈ S m writes uniquely as σ = (σ 1 ×. . .×σ n )•u with σ i ∈ S i and u ∈ Sh s , so that s

If m > n, then there exists i such that p i > 1. In particular, in S i , there are as many odd permutations as even permutations, so that ν s • e (m) = 0.

Example 4.4. With the help of Formula (9), let us compute

and Ext 1 F (gr) S (2) , S (2,1) . Following [FH91, Section4], we have

where ( 132) is the cyclic permutation. Using Theorem 1.7, we obtain that Ext 1