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Abstract. Herewith, we present a learning procedure that allows to
deal with a partially labeled sequence dataset, i.e. when each sequence
in the train dataset may contain labeled as well as unlabeled chunks. In
our application case, this occurs when motor activity has been manually
annotated (due to the recognition based on the video recording) and in-
dependently registered by the measuring system of high precision (touch
sensors): human annotation misses some events that have been captured
by the sensors. In the general setting, we aim at predicting the labels for
a new fully unlabeled movement sequence, while the training has been
performed on the partially labeled dataset. For this purpose we propose
to use classical sequence model (hidden Markov model) that is furnished
with a constrained Viterbi algorithm, which gives us a quick access to the
hard approximation of the correct labeling sequences. We demonstrate,
that this simple modification that constrained Viterbi provide, allows the
HMM model to be trained on sparse data, and overall results in surpris-
ingly high log-likelihood and accuracy level in annotating the partially
labeled behavioral sequences in climbing. The same time we show the
way to access correct labeling of the unannotated signal that can be
helpful in various sport science studies for movement pattern sequential
prediction.

Keywords: partially labeled data · hidden Markov model · constrained
Viterbi algorithm · behavioral signal labeling · climbing pattern discovery

1 Introduction

In the real word, we very rarely posses the full information about the environ-
ment. For a machine learning prediction task, in the ideal setting, we shall dispose
reliable and fully described data to train the model for pattern prediction in the
newly observed data set; whereas this condition is hardly ever met in practice.
Even for the experimental training data set, there can be missing information
due to the errors or gaps in annotation, especially if the large information set is
labeled by human and/or the labels are not trivially accessed. Depending on the
type of data (discrete or continuous) and the suspected distributions of labels,
there can be different approaches to solve this problem. In this type of tasks (e.g.
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behavioral signal annotation, entity recognition, protein structure recognition),
we want to label the observation sequences with a respective sequences that con-
sist of the finite set of labels. Furthermore, the provided training sequences have
some labels missing, while the missing ratio vary from sample to sample. Thus,
all our training sequences may be partially labeled, but we still need to build a
model that fully annotates the validation/test unlabeled sequences.

Proposed approach In the following article we will study a generative model that
has been usually used in the context of sequential learning [8] adjusted to learn
on sparsely labeled sequences. Namely, we will construct the procedure for the
hidden Markov model to be learned from the sequences with voids in annotation,
thanks to the Viterbi algorithm, that is modified in a way to find the optimal
path passing by few constrained, known states. The proposed algorithm learns
the distribution of the states with hidden Markov model and uses constrained
Viterbi algorithm to predict the missing labels in the sequences; iteration over
these two steps until convergence, emerges the stable sequence labeling close to
the true one, which has been evaluated herewith in terms of log-likelihood and
similarity (accuracy) ratio. We will show, how this relatively simple approach,
resolves complex task, that is frequently encountered when we dispose only very
little knowledge about the observation states. Our analysis aims at proving the
efficiency of the proposed approach within the task of labeling the observation
behavioral signal for which we never access the full information about the proper
labels (not even for the training data sample). This situation is potentially fre-
quently present in sport, when the access to the whole range of annotation is
difficult and expensive (in terms of time and expert knowledge), while we need
to draw generalized knowledge about the patterns present in large data sets,
which as in our case, are registered time series. The motor task that produced
the signal of our interest is the relative climber’s position on the wall in the
moment of touching the hold. The state (label) that we would like to find, is
the kind of limb used for the support. The so obtained designation is crucial to
find climbers profiles in the skill acquisition patterns discovery [3]. We suppose
however, that the proposed approach in the same way may be applied to design
the patterns of subjects’ strategy during any other motor task.

Article structure The paper is organized as follows. After introducing he state-of-
the-art (Section 2), we illustrate the context in which the model has been tested
and we provide the characteristics of the model (Section 3). Then, in Section 4,
we detail the model and the adjustments for partial learning. The experiments
and evaluation methods for the results are defined in Section 5. Next, we specify
the type of evaluation used and finally we interpret the results and conclude
(Section 6).

2 Related work

Research works using both labelled and unlabeled data for training have mostly
considered the classical case of semi-supervised learning in which each sequence
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example is either fully labeled or fully unlabeled [5]. The techniques that are used
for semi-supervised sequential learning (within the broader area of structural
learning) are multiple and deeply studied (mostly in the framework of NLP)
over a number of recent years (e.g. deep learning models with pre-training word
vectors [14] or self-training [6], [7], co-training [2], conditional random fields [19]
and many other). We would like to however insist in the distinction of the above
mentioned situation from the one we study in the present article: we here address
observable sequences which are incompletely annotated, in which the presence
of gaps and voids within each sequence reduce the labelling ratio (that is 1 for
fully labelled sequence). Notwithstanding thus obtained partially labeled data
sets are omnipresent, the situation of scarce access to the experimental data for
sequential learning, has not yet been extensively explored in the literature.

One known discriminative approach to address this challenge has been pro-
posed by Fernandes and Brefeld [9]. They used structured perceptron furnished
with Viterbi algorithm to cope with the non-labeled parts of the sequences.
This allowed them to train the perceptron on only the labelled parts of the se-
quences. Thus obtained model (simple transductive loss-augmented perceptron,
STLAP), in spite of its simplicity, results in proper annotation for the initial
labeling ratio larger than 0.5, which is comparable with standard supervised or
semi-supervised methods. Also, in [10] the hidden Markov model with Baum-
Welch algorithm has been compared by the same authors to the above mentioned
STLAP in the partial training framework (see also [18]). The distinction with
our approach however is that in our contribution we apply constrained Viterbi
to even simpler model (hidden Markov model), for which we claim very good
label annotation level. A separate branch of research employs conditional ran-
dom fields, for example in Li et al. [13] different learning models are trained
and subsequently combined for large scale sequential learning by adapting the
idea of ensemble training. The result obtained on some types of partially labeled
data were comparable to basic conditional random field approach, however the
concept of many learning models may not be applicable to some type of data,
especially when the transition between the tokens in the sequence is crucial as
in our case. Conditional random fields combined with deep learning has been
also recently studied in [22] in order to learn with annotation of various degrees
(unsupervised, fully supervised and partially labeled sequences) in a unified way.
Surprisingly, almost all the above mentioned papers claimed that the outcomes
received for the partially labeled training data result in comparable performance
or even outperform the ones received for the fully labeled data set (as they may
avoid overfitting). Even though we do not study this property in the present
article, some detailed studies of the phenomenon have been presented in [15]
and [21]. Due to this fact and facing costly annotations of partially labeled data,
there is a growing number of publications in the field, as for example the re-
cent experiments in combining contradictory partial annotations from different
datasets conduced by Huang et al. [12]. Additionally, and given that the above
models have been tested the data only empirically, the required statistical con-
sistency justification for the published discriminative models used for structural
learning has been provided by Antoniuk et al. in [1].
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3 Application context

The partially labeled learning has been studied mostly for the linguistic tasks
(entity recognition, natural language processing) or biological sequence analysis
(protein structure, DNA sequences). Our application in sport science requires
to work on the behavioral signal that is difficult to be systematically processed
due to its innate complexity and its spatio-temporal continuous nature. For a
sport science application later purpose (climbers’ patterns discovery, as in [3]),
we study the following case. The climbing data (mass center position combined
with handhold touch time of the climber while moving up the artificial wall, Fig.
1(a)) is recorded by a camera (for the mass center) and, separately, by the wall
sensors (for hold touch time). Hold touches that are visible on the video recording
have been manually annotated by which kind of foot or hand (left hand, right
hand, left foot, right foot) performs the action. Naturally, so obtained labeling
contains a lot of voids as part of the events recorded by the hold sensors are not
present or hidden in the video used by human for annotating. Meanwhile, the
manual annotation has been rendered only for a subset of the recordings.

Fig. 1. (a) Experimental setting for climbing of the artificial wall (the mass-center
trajectory of the climber is marked with the yellow line). The signal is composed by the
time train of the distance between the climber’s hip and limb position, when touching
the hold. Different types of climbing routes and training paradigms have been used all
along the data collection protocol. (b) Position of climber’s body center collapsed to
1D by summation (x + y) - evolution in time. (c) Observation signal as the relative
position of the body centre vs the limb that is touching the hold (collapsed to 1D by
summation).

Since human annotation is very costly (it requires expert knowledge and is
time consuming) and at the same time - as being based on the visual attribution
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- it is not precise, hence we face two challenges simultaneously: 1) the label-
ing does not cover the whole set of experimentally collected recordings and 2)
annotations do carry the mistakes or gaps in the describing sequences. Thus,
dealing with these both difficulties (as well as with possible noise) is not a trivial
task. One another difficulty we encounter when annotating only subset of the
recordings, is the supposed difference in the distributions between the annotated
and the unannotated set. Due to the climbing learning protocol evolution, the
sequences were not stationary, Fig. 2. The protocol (as explained in [11]) con-
sisted in thirteen climbing sessions: three test sessions and ten training sessions.
The test sessions aimed at scanning the behavioral repertoire of the participants.
More specifically, to assess to what extent the participants could perform hand
alternations (i.e., they used the two different hands on two subsequent move-
ments) and hand repetitions (i.e., they used the same hand on two subsequent
movements). In this purpose, they had to climb three different routes that either
encouraged to perform alternations, repetitions or both coordination patterns
(i.e., the Neutral route). Additionally on the test sessions, participants climbed
the three routes in three different instruction conditions: a free condition (to ob-
serve the spontaneous behavior), an alternation condition (i.e., they were invited
to perform as much alternations as they could on the routes) and a repetition
condition (i.e., they were invited to perform as much repetitions as they could).
Then, on the training sessions, participants climbed on more sophisticated routes
where they were instructed to use all the handholds in a bottom-up order and
to climb as fluently as possible, that is, avoiding saccades and stops during the
ascents. That way, they had to search for the most adapted chain of movements
for the route. According to their training group, participants climbed one to ten
different routes during the training sessions. All groups had one route in com-
mon that they climbed at least three times per session (i.e., the Control route).
Finally, the training protocol started (i.e., first ascent of the first training ses-
sion) and ended (i.e., last ascent of the tenth training session) with one trial on
a Transfer route for which they had no additional practice during the training
sessions. This route was designed to assess whether the participants were able
to find adapted chain of movements on new routes with training.

In many cases we dispose large registered data sets that can be labelled
manually based on observations. Therefore in the whole process human mistakes
in the labeling and the presence of artifacts in the recordings are inevitable -
both error sources can prompt missing values in the labeling sequences. We would
like to use the subset of partially labeled observations (recording of handhold
touch time combined with the mass centre position, see Fig. 1 (b)) to predict
the labeling (i.e left or right, hand or foot) of the whole dataset. As the data set
consists of the pair sequences (observations and incomplete labels), thus we will
apply the sequential learning with hidden Markov model. The challenging part
is to manage the missing parts of the sequences and learn from the annotated
parts to fill up the gaps with constrained Viterbi algorithm. Our task is similar to
entity recognition with the average labeling ratio about one third of the sequence.
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Fig. 2. The protocol of data collection with session profile (number of ascends in each
session is provided in the box). The PREtest, POSTtest and RETention sessions (yel-
low) stand for the partially labeled sequences in our training dataset. They consist of
simple routes (Neutral, Alternation and Repetition type); Transfer route opens and
closes the Training Session. Each of the 10 Training Sessions (the unannotated data
set, for which we predict the labels with our model) starts with the Control Route.

4 Methods

4.1 HMM Viterbi training on fully labeled sequences

The sequential learning task [8] is to find the relation between the observation
sequence o = (o1, o2, ..., oT ) and its pair label sequence l = (l1, l2, ..., lT ), where
each lt ∈ {L1, L2, ..., Ln} = L (assuming the sequences o are some continuous
trains of measurements of length T and labels are the limbs: LH, RH, LF, RF).
For HMM supervised learning framework [17], with fully labeled pairs (o, l), this
relationship is described with a generative model m. It is subsequently applied,
with the use of Viterbi algorithm [20], on new sequences of observations in order
to find most likely corresponding label sequences (Fig. 3(a)). We notify, that
by applying the Viterbi algorithm we obtain hard label assignation, whereas by
using Baum-Welsh algorithm we would get probabilistic one. The former hard
assignation is necessary for the next step of the processing in sport science: climb
profiling by clustering (not presented here). Seemingly, there is a relation within
each pair (ot, lt) all along the sequences, which we describe with probability of
observation emission es(ot) = P (ot|lt = s). In case of a Markov process, there
is no dependence between non-adjacent labels, whereas, there is one between
the adjacent labels in the sequence l, that is described with the probability
of transition frs = P (lt+1 = r|lt = s). Both mentioned types of conditional
probabilities, that in case of sequences apply to every element of sequences o
and l, in form of matrices E = (es(ot))s∈L,1≤t≤T and F = (frs)r,s∈L, as well
as initial probabilities ps = P (l1 = s), adjusted to data pairs (o, l) are the
parameters of our model m = (p,E, F ). We find the optimal parameters by
maximizing the joint probability P (o, l). Once the model parameters are found,
we predict new labels for unlabeled observations o with Viterbi algorithm. The
algorithm, starting from p and propagating through the observation sequence o,
stores the probabilities of most likely path of labels l that generated o and same
time, the most likely label sequence. The resulting optimal l̂ is the sequence
of argmax, once we have found all the probabilities. At first, in the framework
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of hidden Markov model, we calculate the joint probability for the sequence of
observations o and the sequence of labels l as

P (o, l) = ps

T∏
t=1

P (ot|lt)
T−1∏
t=1

P (lt+1|lt) (1)

and we estimate the parameters of model m by maximizing log-likelihood

m̂ = argmax
m

n∑
i=1

logP (o, l|m). (2)

Subsequently, with the Viterbi algorithm, the parameters, in a recursive man-
ner and through T steps, serve to compute the maximum-likelihood label se-
quence l̂ given the observation sequence o .

The recurrence is used to track the v and w intermittent variables:

v0,s = ps (3)

vt,s = max
r
vt−1,rfrses(ot) (4)

wt,s = argmax
r

vt−1,rfrs (5)

and that for the last estimate label element

l̂T = argmax
r

vT,r (6)

by backtracking we find the whole estimate sequence

l̂t = wt+1,l̂t+1
. (7)

Thus, the ultimate sequence l̂ is the optimal sequence of labels. The optimality
of the Viterbi algorithm can be shown as in [16].

4.2 Our contribution: HMM Viterbi training on partially labeled
sequences

In case of partially labeled sequences in training set, we must adapt the basic
supervised HMM procedure in order to train only from the labeled chunks of the
sequences. For this purpose we will use the constrained Viterbi algorithm [4], [9].
Firstly, we can notify that for unsupervised learning (when all the observations
are unlabeled), we can randomly initialize the model parameters m and use the
Expectation-Maximization algorithm to find both the m and the sequence of
labels in fully unsupervised framework. The herewith technique combines the
supervised and unsupervised learning so that initially and in each EM iteration,
we take advantage of the labeled chunks of the sequences and constrain the
unsupervised scenario.

Namely, we initialize the model with random parameters or with pre-training
held on only labeled chunks of the sequences (lt, ot), for which we get interim



8 Aniszewska-Stępień et al.
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Fig. 3. (a) Standard Viterbi algorithm. The magenta path is the optimal one, ending
with the maximum v value (magenta circle). All the possible paths (in cyan) are ex-
plored. At each tracking/forward step the most likely path to each state is recorded
(dark magenta). At the end, only the path that leads to the most likely ending state
is retained (magenta). (b) Constrained Viterbi algorithm. Here, only the paths that
contain the first and last pre-fixed states are explored during the forward stage.

labeled part unlabeled part labeled part

Constrained first state
of the unlabeled part

Constrained last state
of the unlabeled part

Fig. 4. Example of partially annotated sequence. Constrained Viterbi is applied on
blue chunk accounting for the last magenta token of the first labelled chunk and first
magenta token of the second labelled chunk.

parameters m̂. In the next step, we find the interim labels l̂ for the partially
labeled sequence (Fig. 4) with the use of constrained Viterbi, that is enforced to
move through the already known label chunks, by maximizing the probability
of the most likely label path. Indeed, in the constrained scheme, the traditional
Viterbi algorithm operates on the unlabeled segments of sequences, but with the
first and the last states labeled (which are the fixed adjacent tokens), treating
each chunk sequence independently (Fig. 3(b) ). Subsequently, we use the fully
labeled sequences l̂ to generate new model parameters m̂ and further adjust the
labeling on the initially unlabeled parts of the sequences. While EM finds the
local optimum, we iterate until convergence to find the best representation in
terms of log-likelihood of the label sequence joint probability (Algorithm 1).

Algorithm 1 HMM with constrained Viterbi
1: Initialization: train model m̂ with only fully labeled chunks of sequences (o, l)
2: repeat
3: Step 1 (E): complete the gaps in the sequences of labels with constrained Viterbi

algorithm (parameters calculated with model m̂), to get fully labeled estimates (o, l̂)
4: Step 2 (M): update model m̂ due to new labels (o, l̂)
5: until End condition: iteration number
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5 Results

5.1 Experimental setting

We test the model on the following data:
1. synthetic data set from known model parameters where some annotations

are randomly discarded,
2. experimental climbing data - chunks of full sequences with some annotations

randomly discarded,
3. experimental climbing data - original partially labelled sequences.

For the synthetic data generation we used the Gaussian bi-variate distribu-
tion for the four label states. All the four states have the same covariance S,
they differ on their mean m. For each of the two dimension of the mean, we used
either −µ or µ, leading to 4 possibles states as shown in Equation 8:

m1 =

(
µ
µ

)
, m2 =

(
µ
−µ

)
, m3 =

(
−µ
µ

)
, m4 =

(
−µ
−µ

)
, S = σI. (8)

So defined synthetic data distribution was to approximate the statistics of
the climbing data. To apply random label discarding in fully labeled sequences,
the level of gap ratio has been fixed (0.25). For the experimental sport data set
(points 2 and 3), we dispose the 497 partially annotated sequences of observations
(simple sessions), which are divided into train and test sets. The labeling with
four types of limbs, reaches the annotation level of about 0.3 for the sequences
of the average length of 20 tokens. Finally, the established model will be used
for the annotation of overall number of about 3700 sequences recorded with
touch sensors. In order to evaluate model performance in case of the first two
data sets (where ground true labeling has been initially known), we calculated
accuracy measure which is similarity ratio (averaged sum over whole sequence,
scoring 0 for mismatch and 1 for match on each token in the sequence) employed
on the fully labeled initial sequence l (before label removal) vs the sequence
estimated by the model l̂. Hence, the evaluation score for a whole sequence l and
its prediction l̂ reads

d(l, l̂) =
1

T

T∑
t=1

dt(lt, l̂t) (9)

with the loss function dt defined over two tokens lt and l̂t as

dt(lt, l̂t) =

{
1 for lt = l̂t,
0 otherwise.

(10)

To test the hidden Markov model with constrained Viterbi we used synthet-
ically generated data with known parameters. The missing labels was to best
resemble the true annotation present in real data (the gap ratio of about 0.3).
We compared the predicted model parameters with the original counterpart as
well as the scoring in two sequences: label sequence generated with original model
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and label sequence estimated with predicted model parameters. The same way
of evaluation has been employed for experimental data with full annotations. In
these cases we are able to compare the resulting fully labelled sequences with
the initial true labels, before label removal. For all the dataset however, the
likelihood of the observation sequences knowing the model parameters is always
accessible whether the true labels are fully known, partially known or totally
unknown. To sum-up, in case of fully labelled sequences altered artificially to
partially labelled ones (dataset 1 and 2), we can compute a similarity ratio com-
paring the estimated labels to the true ones. Otherwise (dataset 3), only the
likelihood of the HMM is accessible as an evaluation measure.

5.2 Evaluation

Synthetic data set As explained in point 1, firstly we have tested the model
on artificially generated data (with either random initialization or pre-trained
on labeled chunks of sequences). The number of sequences in trained and test
sets was 1000, the average length of sequences was about 20 tokens, with label
gap ratio equal to 0.25. We analyse the log-likelihood over the joint probability
of observation and labeling sequences that evolves across the iterations for label
distribution with mean 1.5 and covariance 0.2 (Fig. 5). This value determines how
well the label sequence describes their pair observation sequence, based on the
label distribution. As expected, we observe monotonic increase of log-likelihood
over the iterations, as well as for the similarity score computed for unannotated
chunks. The stability is reached after 2nd iteration. The log-likelihood evolution
proves that the model fits well with the experimental data and at the same
time leads to the generation of optimal labels. Likewise, score analysis confirm
increasing recognition of labels if compared to the ground true annotations in
the subsequent steps.

Fig. 5. Synthetic data set (generated with mean parameter µ = 1.5 and covariance
parameter σ = 0.2): log-likelihood value evolution (left) and similarity ratio (right).
The labels have been discarded with ratio 0.25. The applied initialization was either
random (blue) or pre-trained (orange) on the labeled chunks.

Climbing data set We first explore the real experimental dataset with artificial
deletion of the annotations (with an alteration rate of 0.3). On the artificially
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deleted slots, we do have knowledge of the true labeling, thus we can compute
the similarity ratio. After alternation, first, we pre-trained the HMM on the fully
labeled chunks of sequences, bypassing the voids. Then, the HMM was trained
using the constrained Viterbi in the manner exposed in the Methods 4, with all
the partially labelled sequences. In the Figure 6(a), we observe learning through
iterations (growth of the log-likelihood), and at the same time - the annotations
of the labels are mostly correct (the maximum similarity ratio is over 0.9).

(a) (b)

Fig. 6. Sport data set. (a) Sequences originally fully labeled but with artificial label
deletion: log-likelihood evolution (left) and similarity ratio (right). In order to apply
the model, the labels have been synthetically discarded with ratio of about 0.25. (b)
original data, partially labeled with gap ratio about 0.3: log-likelihood evolution.

Based on this fact, we studied the case of partially labeled original sequences
registered by touch sensors (Point 3). Similarly, for experimental sport data
we observe monotonic growth of the log-probability function, which is - as in
synthetic data case and the artificially discarded labelings in sport data - de-
picting learning across the iterations. While the ratio of unannotated labels in
all three experimental data cases was about 0.3, we may expect that the re-
sults are comparable. Like in the previous data sets, in the original partially
labeled sport data, the model log-likelihood converges also very fast, within two
iterations (Fig. 6(b)). In this case, unlike the previous two cases, since the true
labels remain unknown, the similarity ratio is not accessible. The end-values of
log-likelihood function however, are lower than in the artificially label discarded
sport data case. We may suppose that this fact could have an impact on the
quality of the label prediction. Although we do not dispose any other objective
evaluation method, the convergence of the model may be a proof of leading to-
wards the correct solution. We assume that the mislabelling, if applicable, might
have occurred in case the artifacts appear in the collected data (e.g. when the
sensor registered a touch made not by the hand or foot).

To complete the analysis, we pursued the machine learning evaluation method
in which for synthetic data train set to test set ratio was 1000:1000 and for the
sport data annotated sequences we split the data set with the ratio 400:97.
Namely, we verified the accuracy of the model trained on one subset of partially
labeled data (train set), when applied on the previously unused subset of data
with no labeling (test set). For this setting, the similarity score evaluated on the
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new test sequences were not substantially different from the previously observed
training evaluation (Tab.1), and confirmed correct label attribution.

Data set training testing
synthetic 0.99 0.99
climbing 0.91 0.90

Table 1. Similarity score for synthetic data set vs climbing data set.

6 Conclusion and perspective

In the present article, we have been studying how the generative model (HMM)
with a simple adjustment (constrained Viterbi) deals with the learning the par-
tial labelling in the training sequences. It is a predictive model, that allows to
access the distribution of the limbs used while climbing the artificial wall. We
tested the approach on the real climbing data as well as on the synthetic data,
that was alike. We claim that, based on the log-likelihood value, which spec-
ifies how good is the description that we find for the measured data, due to
our experiments we can judge on model performance. We must admit however,
that the additional challenge we face in our application is the discrete set of
states (labels). This situation renders difficult to measure the effective labelling
ratio based only on log-likelihood value. We have compared the log-likelihood
ratio with similarity score computed for unannotated chunks in cases, when the
full labelling has been known in order to assert patterns of likelihood function.
We observed that it proves apt attribution of labels in case of the data set,
when the prior full labelling is not accessible, as in the sport data set. We have
demonstrated, that the log-likelihood matches scoring and can be used for model
evaluation in case of training on only partially labeled data sets.

Perspective We can show experimentally that the log-likelihood convergence
with a general tendency of monotonic increase (and not decrease) approximates
correct label attribution. In a broader setting though, HMM with constrained
Viterbi may not be a perfect label predictor for the continuous behavioral signal,
but is a simple way to approximate labelling of unknown sequence, with scarce
prior knowledge about training sample. Therefore, to outperform our algorithm,
some more sophisticated method, as for instance neural networks would have
to be applied. Likewise, the convergence of optimality function for the leading
model (not only for the Viterbi constrained, but its implementation into the
framework of EM-like full Algorithm 1), requires more systematic research and
theoretically correct proof. Although the model is simplistic and its output may
not be faultless, it is still sufficient for the first approximation of the behavioral
signal labelling in sport application and it can be the baseline for the further re-
search on the subject, that could be tested in the contexts of different paradigms
in human movement science.
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