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Abstract
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most
successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives
that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances
in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation
should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms
by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning
using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft
contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based
on their learned similarities. We validate empirically our approach on both image and video representation learning. We show
that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining
epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for
pretraining video representation and that the learned representation can generalize to video downstream tasks. Source code
is available here: https://github.com/juliendenize/eztorch.

Keywords Deep learning · Self-supervised learning · Contrastive · Representation

1 Introduction

Self-Supervised learning (SSL) is an unsupervised learning
procedure in which the data provide its own supervision to
learn a practical representation of the data. A pretext task
is designed to make this supervision. The pretrained model
is then fine-tuned on downstream tasks, and several works
have shown that a self-supervised pretrained network can
outperform its supervised counterpart for image [1–3] and
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video [4, 5]. It has been successfully applied to various image
and video applications such as image classification, action
classification, object detection and action localization.

Contrastive learning is a state-of-the-art self-supervised
paradigm based on Noise Contrastive Estimation (NCE) [6]
whose most successful applications rely on instance discrim-
ination [7–10]. Pairs of views from same images or videos
are generated by carefully designed data augmentations [4,
8, 11]. Elements from the same pairs are called positives, and
their representations are pulled together to learn view invari-
ant features. Other instances called negatives are considered
as noise, and their representations are pushed away from pos-
itives. Frameworks based on contrastive learning paradigm
require a procedure to sample positives and negatives to learn
a good data representation. Videos add the time dimension
that offers more possibilities than images to generate pos-
itives such as sampling different clips as positives [4, 12],
using different temporal context [13–15].

A large number of negatives are essential [16], and var-
ious strategies have been proposed to enhance the number
of negatives [7, 8, 17, 18]. Sampling hard negatives [18–22]
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improves the representations but can be harmful if they are
semantically false negativeswhich causes the “class collision
problem” [23–25].

Other approaches that learn from positive views without
negatives have been proposed by predicting pseudo-classes
of different views [1, 3, 26], minimizing the feature distance
of positives [2, 4, 27] or matching the similarity distribution
between views and other instances [28]. These methods free
the mentioned problem of sampling hard negatives.

Based on the weaknesses of contrastive learning using
negatives, we introduce a self-supervised soft contrastive
learning approach called Similarity Contrastive Estimation
(SCE) that contrasts positive pairs with other instances and
leverages the push of negatives using the inter-instance
similarities. Our method computes relations defined as a
sharpened similarity distribution between augmented views
of a batch. Each view from the batch is paired with a differ-
ently augmented query. Our objective function will maintain
for each query the relations and contrast its positive with
other images or videos. A memory buffer is maintained to
produce a meaningful distribution. Experiments on several
datasets show that our approach outperforms our contrastive
and relational baselines MoCov2 [29] and ReSSL [28] on
images. We also demonstrate using relations for video rep-
resentation learning is better than contrastive learning.

Our contributions can be summarized as follows:

• We propose a self-supervised soft contrastive learning
approach called Similarity Contrastive Estimation (SCE)
that contrasts pairs of augmented instances with other
instances and maintains relations among instances for
either image or video representation learning.

• We demonstrate that SCE outperforms on several bench-
marks its baselines MoCov2 [29] and ReSSL [28] on
images on the same architecture.

• We show that our proposed SCE is competitive with the
state of the art on the ImageNet linear evaluation protocol
and generalizes to several image downstream tasks.

• We show that our proposed SCE reaches state-of-the-art
results for video representation learning by pretraining on
the Kinetics400 dataset as we beat or match previous top-
1 accuracy for finetuning on HMDB51 and UCF101 for
ResNet3D-18 and ResNet3D-50. We also demonstrate it
generalizes to several video downstream tasks.

2 Related work

2.1 Image self-supervised learning

Early self-supervised learning In early works, different pre-
text tasks to perform Self-Supervised Learning have been
proposed to learn a good data representation. They consist in

transforming the input data or part of it to perform supervi-
sion such as: instance discrimination [30], patch localization
[31], colorization [32], jigsaw puzzle [33], counting [34],
angle rotation prediction [35].

Contrastive learning Contrastive learning is a learning
paradigm [1, 2, 7, 8, 11, 16, 17, 21, 22, 36–39] that outper-
formed previously mentioned pretext tasks. Most successful
methods rely on instance discrimination with a positive pair
of views from the same image contrasted with all other
instances called negatives. Retrieving lots of negatives is nec-
essary for contrastive learning [16], and various strategies
have been proposed. MoCo(v2) [7, 29] uses a small batch
size and keeps a high number of negatives by maintaining a
memory buffer of representations via a momentum encoder.
Alternatively, SimCLR [8, 40] and MoCov3 [41] use a large
batch size without a memory buffer, and without a momen-
tum encoder for SimCLR.

Sampler for contrastive learning All negatives are not
equal [23], and hard negatives, negatives that are difficult to
distinguish with positives, are the most important to sample
to improve contrastive learning. However, they are poten-
tially harmful to the training because of the “class collision”
problem [23–25]. Several samplers have been proposed to
alleviate this problem such as debiasing negatives sampling
[25] further improved by selecting hard negatives [19], or
using the nearest neighbor as positive for NNCLR [22].
Truncated-triplet [39] optimizes a triplet loss using the k-th
similar element as negative that showed significant improve-
ment. It is also possible to generate views by adversarial
learning as AdCo [21] showed. Some other works [42, 43]
proposed a denoised contrastive loss that reduces or reverses
the gradient for medium and highly similar negatives. They
use hard margins between different categories of negatives.
Instead, we propose a soft contrastive loss that seeks to esti-
mate relations between instances and consider all negatives
equally.

Contrastive learningwithout negativesVarious siamese
frameworks perform contrastive learning without the use of
negatives to avoid the class collision problem. BYOL [2]
trains an online encoder to predict the output of a momen-
tum updated target encoder. SwAV [1] enforces consistency
between online cluster assignments from learned prototypes.
DINO [3] proposes a self-distillation paradigm to match
distribution on pseudo class from an online encoder to a
momentum target encoder. Barlow-Twins [44] aligns the
cross-correlation matrix between two paired outputs to the
identity matrix that VICReg [45] stabilizes by adding an
intra-batch decorrelation loss function.

Regularized contrastive learning Several works regular-
ize contrastive learning by optimizing a contrastive objective
along with an objective that considers the similarities among
instances. CO2 [24] adds a consistency regularization term
that matches the distribution of similarity for a query and
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its positive. PCL [46] andWCL [47] combines unsupervised
clusteringwith contrastive learning to tighten representations
of similar instances.

Relational learning and knowledge distillation Con-
trastive learning implicitly learns the relations, also called
semantic similarity, between instances based on the mean-
ing or semantics they convey by optimizing alignment and
matching a prior distribution [48, 49]. ReSSL [28] intro-
duces an explicit relational learning objective bymaintaining
consistency of pairwise similarities between strong and
weak augmented views. The pairs of views are not directly
aligned which harms the discriminative performance. Other
approaches relied on self-supervised knowledge distillation
[50–52] for which a student model seeks to predict the distri-
bution of similarities among instances computed by a larger
pretrained teacher. As such, in opposition with contrastive
and relational learning and therefore our approach, knowl-
edge distillation is not an end-to-end approach and requires
a former pretraining.

Masked modeling Masked modeling [53, 54] has shown
impressive results in Natural Language Processing tasks
using the transformer architecture [55]. More recently, it
has been successfully applied to the vision domain thanks
to advances on vision transformers [56, 57] which use atten-
tions on tokens made by projecting patches of images in a
token space. Specifically designed pretext tasks relying on
mask modeling for images have been proposed [58–60]. The
general idea of mask modeling is masking a part of the input
and predicting the masked parts either at token level or at
pixel level. It has shown competitive performance on trans-
former architectures with contrastive learning.

In our work, we optimize a contrastive learning objective
using negatives that alleviate class collision by pulling related
instances. We do not use a regularization term but directly
optimize a soft contrastive learning objective that leverages
the contrastive and relational aspects. As we performed a
study using convolutional networks, we did not perform a
comparative study with Mask Modeling approaches which
rely on transformers that require supplementary computa-
tional resources.

2.2 Video self-supervised learning

Video Self-Supervised Learning follows the advances of
Image Self-Supervised Learning and often picked ideas from
the image modality with adjustment and improvement to
make it relevant for videos and make best use of it.

Pretext tasks As for images, in early works several pre-
text tasks have been proposed on videos. Some were directly
picked from images such as rotation [61], solving Jigsaw
puzzles [62], but others have been designed specifically
for videos. These specific pretext-tasks include predicting
motion and appearance [63], the shuffling of frame [64, 65] or

clip [66, 67] order, predicting the speed of the video [68, 69].
These methods have been replaced over time by more per-
forming approaches that are less limited by a specific pretext
task to learn a good representation. Recently, TransRank [5]
introduced a new paradigm to perform temporal and spatial
pretext tasks prediction on a clip relatively to other transfor-
mations to the same clip and showed promising results.

Contrastive learning Video Contrastive Learning [4, 9,
10, 12–15, 70–72] has beenwidely studied in the recent years
as it gained interest after its better performance than standard
pretext tasks in images. Several works studied how to form
positive views from different clips [4, 10, 12, 13] to directly
apply contrastivemethods from images.CVRL[12] extended
SimCLR to videos and propose a temporal sampler for cre-
ating temporally overlapped but not identical positive views
which can avoid spatial redundancy. Also, [4] extended Sim-
CLR, MoCo, SwaV and BYOL to videos and studied the
effect of using random sampled clips from a video to form
views. They pushed further the study to sample several pos-
itives to generalize the Multi-crop procedure introduced for
images by [1]. Someworks focused on combining contrastive
learning and predicting a pretext task [73–77, 82]. To help
better represent the time dimension, several approaches were
designed to use different temporal context width [13–15] for
the different views.

Multi-modal learning To improve self-supervised repre-
sentation learning, several approaches made use of several
modalities to better capture the spatio-temporal information
provided by a video. It can be from text [78, 79], audio [14,
73, 80], and optical flow [10, 14, 26, 70, 73, 81, 82].

Masked modeling Transformers have been extended
from images to videos for learning spatio-temporal represen-
tations [83, 84]. Approaches on videos forMaskedModeling
[85–87] essentially converted pretext tasks from images to
videos by considering spatio-temporal masking of tokens
instead of simply spatial tokens.

In our work, we propose a soft contrastive learning objec-
tive using only RGB frames that directly generalizes our
approach from image with changes related to data process-
ing and architectures. To the best of our knowledge, we are
the first to introduce the concept of soft contrastive learn-
ing using relations for video self-supervised representation
learning. As for images, we did not perform a thorough com-
parative study with MaskModeling as these methods rely on
transformers and we worked with convolutional networks.

3 Methodology

In this section, we will introduce our baselines: MoCov2
[29] for the contrastive aspect and ReSSL [28] for the rela-
tional aspect. We will then present our self-supervised soft
contrastive learning approach called Similarity Contrastive
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(a) Siamese pipeline (b) SCE objective function

Fig. 1 SCE follows a siamese pipeline illustrated in a. A batch x
of images is augmented with two different data augmentation dis-
tributions T 1 and T 2 to form x1 = t1(x) and x2 = t2(x) with
t1 ∼ T 1 and t2 ∼ T 2. The representation z1 is computed through
an online encoder fs , projector gs and optionally a predictor hs such as
z1 = hs(gs( fs(x1))). Aparallel target branch updated by an exponential
moving average of the online branch, or ema, computes z2 = gt ( ft (x2))
with ft and gt the target encoder and projector. In the objective func-
tion of SCE illustrated in b, z2 is used to compute the inter-instance

target distribution by applying a sharp softmax to the cosine similarities
between z2 and a memory buffer of representations from the momen-
tum branch. This distribution is mixed via a 1−λ factor with a one-hot
label factor λ to form the target distribution. Similarities between z1 and
the memory buffer plus its positive in z2 are also computed. The online
distribution is computed via softmax applied to the online similarities.
The objective function is the cross entropy between the target and the
online distributions

Estimation (SCE). All these methods share the same archi-
tecture illustrated in Fig. 1a. We provide the pseudo-code of
our algorithm in Appendix B.

3.1 Contrastive and relational learning

Consider x = {xk}k∈{1,...,N } a batch of N images. Siamese
momentum methods based on Contrastive and Relational
learning, such as MoCo [7] and ReSSL [28], respectively,
produce two views of x, x1 = t1(x) and x2 = t2(x), from
two data augmentation distributions T 1 and T 2 with t1 ∼ T 1

and t2 ∼ T 2. For ReSSL, T 2 is a weak data augmenta-
tion distribution compared to T 1 to maintain relations. x1

passes through an online network fs followed by a pro-
jector gs to compute z1 = gs( fs(x1)). A parallel target
branch containing a projector gt and an encoder ft computes
z2 = gt ( ft (x2)). z1 and z2 are both l2-normalized.

The online branch parameters θs are updated by gradi-
ent (∇) descent to minimize a loss function L. The target
branch parameters θt are updated at each iteration by expo-
nential moving average of the online branch parameters with
the momentum value m, also called keep rate, to control the
update such as:

θs ← optimizer(θs,∇θsL), (1)

θt ← mθt + (1 − m)θs . (2)

MoCo uses the InfoNCE loss, a similarity-based func-
tion scaled by the temperature τ that maximizes agreement
between the positive pair and push negatives away:

L In f oNCE = − 1

N

N∑

i=1

log

(
exp(z1i · z2i /τ)

∑N
j=1 exp(z

1
i · z2j /τ)

)
. (3)

ReSSL computes a target similarity distribution s2 that
represents the relations between weak augmented instances,
and the distribution of similarity s1 between the strongly
augmented instances with the weak augmented ones. Tem-
perature parameters are applied to each distribution: τ for
s1 and τm for s2 with τ > τm to eliminate noisy rela-
tions. Indeed, as the temperature decreases, it exponentially
increases softmax values for highly similar instances and
decreases exponentially values for low similar instances
which makes them negligible in the target distribution. The
loss function is the cross-entropy between s2 and s1:

s1ik = 1i �=k · exp(z1i · z2k/τ)
∑N

j=1 1i �= j · exp(z1i · z2j /τ)
, (4)
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s2ik = 1i �=k · exp(z2i · z2k/τm)
∑N

j=1 1i �= j · exp(z2i · z2j /τm)
, (5)

LReSSL = − 1

N

N∑

i=1

N∑

k=1
k �=i

s2ik log
(
s1ik

)
. (6)

A memory buffer of size M >> N filled by z2 is main-
tained for both methods.

3.2 Similarity contrastive estimation

Contrastive Learning methods damage relations among
instances which Relational Learning correctly build. How-
ever, Relational Learning lacks the discriminating features
that contrastive methods can learn. If we take the example of
a dataset composed of cats and dogs, we want our model to
be able to understand that two different cats share the same
appearance, butwealsowant ourmodel to learn to distinguish
details specific to each cat. Based on these requirements, we
propose our approach called Similarity Contrastive Estima-
tion (SCE).

We argue that there exists a true distribution of similarity
w∗
i between a query qi and the instances in a batch of N

images x = {xk}k∈{1,...,N }, with xi a positive view of qi. If
we had access tow∗

i , our training framework would estimate
the similarity distribution pi between qi and all instances in
x, and minimize the cross-entropy between w∗

i and pi which
is a soft contrastive learning objective:

LSCE∗ = − 1

N

N∑

i=1

N∑

k=1

w∗
ik log (pik) . (7)

LSCE∗ is a soft contrastive approach that generalizes
InfoNCE and ReSSL objectives. InfoNCE is a hard con-
trastive loss that estimatesw∗

i with a one-hot label andReSSL
estimates w∗

i without the contrastive component.
We propose an estimation of w∗

i based on contrastive and
relational learning. We consider x1 = t1(x) and x2 = t2(x)
generated from x using two data augmentations t1 ∼ T 1 and
t2 ∼ T 2. Both augmentation distributions should be differ-
ent to estimate different relations for each view as shown
in Sect. 4.1.1. We compute z1 = hs(gs( fs(x1))) from the
online encoder fs , projector gs and optionally a predictor hs
[2, 41]). We also compute z2 = gt ( ft (x2)) from the target
encoder ft and projector gt . z1 and z2 are both l2-normalized.

The similarity distribution s2i that defines relations between
the query and other instances is computed via Eq. (5). The
temperature τm sharpens the distribution to only keep rele-
vant relations. A weighted positive one-hot label is added to
s2i to build the target similarity distribution w2

i :

w2
ik = λ · 1i=k + (1 − λ) · s2ik . (8)

The online similarity distribution p1i between z1i and z2,
including the target positive representation in oppositionwith
ReSSL, is computed and scaled by the temperature τ with
τ > τm to build a sharper target distribution:

p1ik = exp(z1i · z2k/τ)
∑N

j=1 exp(z
1
i · z2j /τ)

. (9)

The objective function illustrated in Fig. 1b is the cross-
entropy between each w2 and p1:

LSCE = − 1

N

N∑

i=1

N∑

k=1

w2
ik log

(
p1ik

)
. (10)

The loss can be symmetrized by passing x1 and x2 through
the momentum and online encoders and averaging the two
losses computed.

A memory buffer of size M >> N filled by z2 is main-
tained to better approximate the similarity distributions.

The following proposition explicitly shows that SCE opti-
mizes a contrastive learning objective while maintaining
inter-instance relations:

Proposition 1 LSCE defined in Eq. (10) can be written as:

LSCE = λ · L In f oNCE + μ · LReSSL + η · LCeil , (11)

with μ = η = 1 − λ and

LCeil = − 1

N

N∑

i=1

log

(∑N
j=1 1i �= j · exp(z1i · z2j /τ)
∑N

j=1 exp(z
1
i · z2j /τ)

)
.

The proof separates the positive term and negatives. It can
be found inAppendixC. LCeil leverages how similar the pos-
itives should be with hard negatives. Because our approach
is a soft contrastive learning objective, we optimize the for-
mulation in Eq. (10) and have the constraint μ = η = 1−λ.
It frees our implementation from having three losses to opti-
mize with two hyperparameters μ and η to tune. Still, we
performed a small study of the objective defined in Eq. (11)
without this constraint to check if LCeil improves results in
Sect. 4.1.1.

4 Empirical study

In this section, we will empirically prove the relevance
of our proposed Similarity Contrastive Estimation (SCE)
self-supervised learning approach to learn a good data repre-
sentation for both images and videos representation learning.
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4.1 Image study

In this section,wefirstmake an ablative studyof our approach
SCE to find the best hyperparameters on images. Secondly,
we compare SCEwith its baselinesMoCov2 [29] and ReSSL
[28] for the same architecture. Finally, we evaluate SCE on
the ImageNet Linear evaluation protocol and assess its gen-
eralization capacity on various tasks.

4.1.1 Ablation study

To make the ablation study, we conducted experiments on
ImageNet100 that has a close distribution to ImageNet, stud-
ied in Sect. 4.1.3, with the advantage to require less resources
to train.We keep implementation details close to ReSSL [28]
and MoCov2 [29] to ensure fair comparison.

Dataset ImageNet [88] is a large dataset with 1k classes,
almost 1.3M images in the training set and 50K images in the
validation set. ImageNet100 is a selection of 100 classes from
ImageNet whose classes have been selected randomly. We
took the selected classes from [37] referenced in Appendix
A.

Implementation details for pretraining We use the
ResNet-50 [89] encoder and pretrain for 200 epochs. We
apply by default strong andweak data augmentations defined
in Table 1. We do not use a predictor, and we do not symme-
try the loss by default. Specific hyper-parameter details can
be found in Appendix D.1.

Evaluation protocol To evaluate our pretrained encoders,
we train a linear classifier following Chen et al. [29] and

Zheng et al. [28] that is detailed in Appendix D.1. Lever-
aging contrastive and relational learning SCE defined in
Eq. (8) leverages contrastive and relational learning via the
λ coefficient. We studied the effect of varying the λ coef-
ficient on ImageNet100. Temperature parameters are set to
τ = 0.1 and τm = 0.05. We report the results in Table 2.
Performance increases with λ from 0 to 0.5 after which it
starts decreasing. The best λ is inside [0.4, 0.5], confirming
that balancing the contrastive and relational aspects provides
better representation. In next experiments, we keep λ = 0.5.

We performed a small study of the optimization of Eq.
(11) by removing Lceil (η = 0) to validate the relevance
of our approach for τ = 0.1 and τm ∈ {0.05, 0.07}. The
results are reported in Table 3. Adding the term Lceil con-
sistently improves performance, empirically proving that our
approach is better than simply adding L In f oNCE and LReSSL .
This performance boost varies with temperature parameters,
and our best setting improves by +0.9 percentage points
(p.p.) in comparison with adding the two losses.

Asymmetric data augmentations to build the similar-
ity distributionsContrastive learning approaches use strong
data augmentations [8] to learn view invariant features and
prevent the model to collapse. However, these strong data
augmentations shift the distribution of similarities among
instances that SCE uses to approximate w∗

i in Eq. (8). We
need to carefully tune the data augmentations to estimate a
relevant target similarity distribution. We listed different dis-
tributions of data augmentations in Table 1. The weak and
strong augmentations are the same as described by ReSSL

Table 1 Different distributions
of data augmentations applied to
SCE

Parameter Weak Strong Strong-α Strong-β Strong-γ

Random crop probability 1 1 1 1 1

Flip probability 0.5 0.5 0.5 0.5 0.5

Color jittering probability 0 0.8 0.8 0.8 0.8

Brightness adjustment max intensity – 0.4 0.4 0.4 0.4

Contrast adjustment max intensity – 0.4 0.4 0.4 0.4

Saturation adjustment max intensity – 0.4 0.2 0.2 0.2

Hue adjustment max intensity – 0.1 0.1 0.1 0.1

Color dropping probability 0 0.2 0.2 0.2 0.2

Gaussian blurring probability 0 0.5 1 0.1 0.5

Solarization probability 0 0 0 0.2 0.2

Theweak distribution is the same as ReSSL [28], and strong is the standard contrastive data augmentation [8].
The strong-α and strong-β are two distributions introduced by BYOL [2]. Finally, strong-γ is a mix between
strong-α and strong-β

Table 2 Effect of varying λ on
the Top-1 accuracy on
ImageNet100

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Top-1 81.5 81.8 82.5 82.8 82.9 82.9 82.2 81.6 81.8 81.8 81.1

The optimal λ is in [0.4, 0.5], confirming that learning to discriminate and maintaining relations is best.
Results style: best, second best
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Table 3 Effect of loss coefficients in Eq. (11) on the Top-1 accuracy
on ImageNet100

Method Loss coefficients Top-1
λ μ η τm = 0.05 τm = 0.07

InfoNCE 1 0 0 81.1 81.1

0.5 0.5 0 82.8 82.5

SCE 0.5 0.5 0.5 82.9 83.4

ReSSL 0 1 0 80.8 78.4

0 1 1 81.5 79.6

LCeil consistently improves performance that varies given the temper-
ature parameters. Results style: best, second best

Table 4 Effect of using different distributions of data augmentations
for the two views and of the loss symmetrization on the Top-1 accuracy
on ImageNet100

Online Aug Teacher Aug Sym Top-1

Strong Weak No 82.9

Strong-γ Weak No 83.0

Weak Strong No 73.4

Strong Strong No 80.5

Strong-α Strong-β No 80.7

Strong Weak Yes 83.7

Strong Strong Yes 83.0

Strong-α Strong-β yes 84.2

Using a weak view for the teacher without symmetry is necessary to
obtain good relations. With loss symmetry, asymmetric data augmen-
tations improve the results, with the best obtained using strong-α and
strong-β. Results style: best, second best

[28]. strong-α and strong-β have been proposed by BYOL
[2]. strong-γ combines strong-α and strong-β.

We performed a study in Table 4 on which data augmen-
tations are needed to build a proper target distribution for
the non-symmetric and symmetric settings. We report the
Top-1 accuracy on Imagenet100 when varying the data aug-
mentations applied on the online and target branches of our
pipeline. For the non-symmetric setting, SCE requires the
target distribution to be built from a weak augmentation dis-
tribution that maintains consistency across instances.

Once the loss is symmetrized, asymmetry with strong data
augmentations has better performance. Indeed, using strong-
α and strong-β augmentations is better than using weak and
strong augmentations, and same strong augmentations have
lower performance. We argue symmetrized SCE requires
asymmetric data augmentations to produce different relations
for each view tomake themodel learnmore information. The
effect of using stronger augmentations is balanced by averag-
ing the results on both views. Symmetrizing the loss boosts
the performance as for [2, 27].

Sharpening the similarity distributions The temper-
ature parameters sharpen the distributions of similarity

Table 5 Effect of varying the
temperature parameters τm and
τ on the Top-1 accuracy on
ImageNet100

τ = 0.1 τ = 0.2

τm Top-1 τm Top-1

0.03 82.3 0.03 81.3

0.04 82.5 0.04 81.2

0.05 82.9 0.05 81.2

0.06 82.5 0.06 81.2

0.07 83.4 0.07 81.1

0.08 82.7 0.08 80.9

0.09 82.5 0.09 81.2

0.10 82.1 0.10 81.2

τm is lower than τ to produce a
sharper target distribution with-
out noisy relations. SCE does not
collapse when τm → τ . Results
style: best, second best

exponentially. SCE uses the temperatures τm and τ for the
target and online similarity distributions with τm < τ to
guide the online encoder with a sharper target distribution.
We made a temperature search on ImageNet100 by varying
τ in {0.1, 0.2} and τm in {0.03, ..., 0.10}. The results are in
Table 5. We found the best values τm = 0.07 and τ = 0.1
proving SCE needs a sharper target distribution. In Appendix
E, this parameter search is done for other datasets used in
comparison with our baselines. Unlike ReSSL [28], SCE
does not collapse when τm → τ thanks to the contrastive
aspect. Hence, it is less sensitive to the temperature choice.

4.1.2 Comparison with our baselines

We compared on 6 datasets how SCE performs against its
baselines. We keep similar implementation details to ReSSL
[28] and MoCov2 [29] for fair comparison.

Small datasetsCifar10 and Cifar100 [90] have 50K train-
ing images, 10K test images, 32× 32 resolution and 10–100
classes, respectively.

Mediumdatasets STL10 [91] has a 96×96 resolution, 10
classes, 100K unlabeled data, 5k labeled training images and
8K test images. Tiny-Imagenet [92] is a subset of ImageNet
with 64 × 64 resolution, 200 classes, 100k training images
and 10K validation images.

Implementation details Architecture implementation
details can be found in Appendix D.1. For MoCov2, we use
τ = 0.2 and for ReSSL their best τ and τm reported [28]. For
SCE,we use the best temperature parameters fromSect. 4.1.1
for ImageNet and ImageNet100 and fromAppendix E for the
other datasets. The same architecture for all methods is used
except for MoCov2 on ImageNet that kept the ImageNet100
projector to improve results.

Results are reported in Table 6. Our baselines reproduc-
tion is validated as results are better than those reported by
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Table 6 Comparison of SCE
with its baselines MoCov2 [29]
and ReSSL [28] on the Top-1
Accuracy on various datasets

Method ImageNet ImageNet100 Cifar10 Cifar100 STL10 Tiny-IN

MoCov2 [29] 67.5 – – – – –

MoCov2 [*] 68.8 80.5 87.6 61.0 86.5 45.9

ReSSL [28] 69.9 – 90.2 63.8 88.3 46.6

ReSSL* 70.2 81.6 90.2 64.0 89.1 49.5

SCE (Ours) 70.5 83.4 90.3 65.5 89.9 51.9

SCE outperforms on all benchmarks its baselines. Results style: best, second best
*Denotes our reproduction

the authors. SCE outperforms its baselines on all datasets,
proving that our method is more efficient to learn discrimi-
nating features on the pretrained dataset. We observe that our
approach outperforms more significantly ReSSL on smaller
datasets than ImageNet, suggesting that it is more important
to learn to discriminate among instances for these datasets.
SCE has promising applications to domains with few data
such as in medical applications.

4.1.3 ImageNet linear evaluation

We compare SCE on the widely used ImageNet linear evalu-
ation protocol with the state of the art. We scaled our method
using a larger batch size and a predictor to match state-of-
the-art results [2, 41].

Implementation details We use the ResNet-50 [89]
encoder, apply strong-α and strong-β augmentations defined
in Table 1. We follow the same training hyperparameters
used by [41] and detailed in Appendix D.2. The loss is
symmetrized and we keep the best hyperparameters from
Sect. 4.1.1: λ = 0.5, τ = 0.1 and τm = 0.07.

Multi-crop setting We follow [21] setting and sample 6
different views detailed in Appendix D.2.

Evaluation protocol We follow the protocol defined by
Chen et al. [41] and detailed in Appendix D.2.

We evaluated SCE at epochs 100, 200, 300 and 1000 on
the Top-1 accuracy on ImageNet to study the efficiency of
our approach and compare it with the state of the art in Table
7. At 100 epochs, SCE reaches 72.1% up to 74.1% at 1000
epochs. Hence, SCE has a fast convergence and few epochs
of training already provides a good representation. SCE is
the Top-1 method at 100 epochs and Top-2 for 200 and 300
epochs proving the good quality of its representation for few
epochs of pretraining.

At 1000 epochs, SCE is below several state-of-the-art
results. We argue that SCE suffers from maintaining a λ

coefficient to 0.5 and that relational or contrastive aspects
do not have the same impact at the beginning and at the end
of pretraining. A potential improvement would be using a
scheduler on λ that varies over time.

We added multi-crop to SCE for 200 epochs of pretrain-
ing. It enhances the results, but it is costly in terms of time

Table 7 State-of-the-art results on the Top-1 Accuracy on ImageNet
under the linear evaluation protocol at different pretraining epochs: 100,
200, 300, 800+

Method 100 200 300 800–1000

SimCLR [8] 66.5 68.3 – 70.4

MoCov2 [27] 67.4 69.9 – 72.2

SwaV [1] 66.5 69.1 – 71.8

BYOL [2] 66.5 70.6 72.5 74.3

Barlow-Twins [44] – – 71.4 73.2

AdCo [21] – 68.6 – 72.8

ReSSL [28] – 71.4 – –

WCL [47] 68.1 70.3 – 72.2

VICReg [45] – – – 73.2

UniGrad [93] 70.3 – – –

MoCov3 [41] 68.9 – 72.8 74.6

NNCLR [22] 69.4 70.7 – 75.4

Triplet [39] – 73.8 – 75.9

SCE (ours) 72.1 72.7 73.3 74.1

SCE is Top-1 at 100 epochs and Top-2 for 200 and 300 epochs. For
800+ epochs, SCE has lower performance than several state-of the-art
methods. Results style: best, second best

and memory. It improves the results from 72.7% to our best
result 75.4% (+2.7p.p.). Therefore, SCE learns from hav-
ing local views and they should maintain relations to learn
better representations. We compared SCE with state-of-the-
art methods using multi-crop in Table 8. SCE is competitive
with top state-of-the-artmethods that trained for 800+ epochs
by having slightly lower accuracy than the best method using
multi-crop (−0.3p.p) andwithoutmulti-crop (−0.5p.p). SCE
is more efficient than other methods, as it reaches state-of-
the-art results for fewer pretraining epochs.

4.1.4 Transfer learning

We study the generalization of our proposed SCE on several
tasks: linear transfer learning (Table 9), low-shot (Table 10),
and object detection and instance segmentation (Table 11).
We use our multi-crop checkpoint pretrained for 200 epochs
on ImageNet.
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Table 8 State-of-the-art results on the Top-1 Accuracy on ImageNet
under the linear evaluation protocol with multi-crop

Method Epochs Top-1

200 epochs

SwaV [1] 200 72.7

AdCo [21] 200 73.2

WCL [47] 200 73.3

Triplet [39] 200 74.1

ReSSL [28] 200 74.7

SCE (ours) 200 75.4

800+ epochs

WCL [47] 800 74.7

SwaV [1] 800 75.3

DINO [3] 800 75.3

UniGrad [93] 800 75.5

NNCLR [22] 1000 75.6

AdCo [21] 800 75.7

SCE is competitive with the best state-of-the-art methods by pretraining
for only 200 epochs instead of 800+. Results style: best, second best

Low-shot evaluation Low-shot transferability of our
backbone is evaluated on Pascal VOC2007. We followed the
protocol proposed by Zheng et al. [28]. We select 16, 32,
64 or all images per class to train the classifier. Our results
are compared with other state-of-the-art methods pretrained
for 200 epochs in Table 10. SCE is Top-1 for 32, 64 and all
images per class and Top-2 for 16 images per class, proving
the generalization of our approach to few-shot learning.

Linear classifier for many-shot recognition datasets
We follow the same protocol as Grill et al. [2] and Ericsson
et al. [96] to study many-shot recognition in transfer learn-
ing on the datasets FGVC Aircraft [97], Caltech-101 [98],
Standford Cars [99], CIFAR-10 [90], CIFAR-100 [90], DTD
[100], Oxford 102 Flowers [101], Food-101 [102], Oxford-
IIIT Pets [103], SUN397 [104] and Pascal VOC2007 [105].
These datasets cover a large variety of number of training
images (2–75k) and number of classes (10–397). We report
theTop-1 classification accuracy except forAircraft,Caltech-

Table 10 Transfer learning on low-shot image classification on Pascal
VOC2007

Method K = 16 K = 32 K = 64 full

MoCov2 [29] 76.1 79.2 81.5 84.6

PCLv2 [46] 78.3 80.7 82.7 85.4

ReSSL [28] 79.2 82.0 83.8 86.3

SwAV [1] 78.4 81.9 84.4 87.5

WCL [47] 80.2 83.0 85.0 87.8

SCE (ours) 79.5 83.1 85.5 88.2

All methods have been pretrained for 200 epochs. SCE is Top-1 when
using 32–64-all images per class and Top-2 for 16 images. Results style:
best, second best

101, Pets and Flowers for whichwe report themean per-class
accuracy and the 11-point MAP for VOC2007.

We report the performance of SCE in comparison with
state-of-the-art methods in Table 9. SCE outperforms on 7
datasets all approaches. In average, SCE is above all state-of-
the-art methods as well as the supervised baseline, meaning
SCE is able to generalize to a wide range of datasets.

Object detection and instance segmentation We per-
formed object detection and instance segmentation on the
COCO dataset [94]. We used the pretrained network to ini-
tialize a Mask R-CNN [95] up to the C4 layer. We follow the
protocol of [39] and report the Average Precision for detec-
tion APBox and instance segmentation APMask .

We report our results in Table 11 and observe that SCE
is the second best method after Truncated-Triplet [39] on
both metrics, by being slightly below their reported results
and above the supervised setting. Therefore, our proposed
SCE is able to generalize to object detection and instance
segmentation task beyond what the supervised pretraining
can (+1.6p.p. of APBox and +1.3p.p. of APMask).

4.2 Video study

In this section, we first make an ablation study of our
approach SCE to find the best hyperparameters on videos.
Then, we compare SCE to the state of the art after pretraining
on Kinetics400 and assess generalization on various tasks.

Table 9 Linear classifier trained on popular many-shot recognition datasets in comparison with SimCLR [8], supervised training, BYOL [2] and
NNCLR [22]

Method Food CIFAR10 CIFAR100 SUN Cars Air VOC DTD Pets Caltech Flow Avg

SimCLR 72.8 90.5 74.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6 74.6

Supervised 72.3 93.6 78.3 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7 79.3

BYOL 75.3 91.3 78.4 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1 79.5

NNCLR 76.7 93.7 79.0 62.5 67.1 64.1 83.0 75.5 91.8 91.3 95.1 80.0

SCE (ours) 77.7 94.8 80.4 65.3 65.7 59.6 84.0 77.1 90.9 92.7 96.1 80.4

SCE is Top-1 on 7 datasets and in average. Results style: best, second best
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4.2.1 Ablation study

Pretraining dataset To make the ablation study, we per-
form pretraining experiments on Mini-Kinetics200 [106],
later called Kinetics200 for simplicity. It is a subset of Kinet-
ics400 [107] meaning they have a close distribution with
less resources required on Kinetics200 to train. Kinetics400
is composed of 216k videos for training and 18k for vali-
dation for 400 action classes. However, it has been created
from Youtube and some videos have been deleted. We use
the dataset hosted1 by the CVD foundation.

EvaluationdatasetsTo study the quality of our pretrained
representation, we perform linear evaluation classification on
the Kinetics200 dataset. Also, we finetune on the first split
of the UCF101 [108] and HMDB51 [109] datasets. UCF101
is an action classification dataset that contains 13k3 different
videos for 101 classes and has 3 different training and valida-
tion splits. HMDB51 is also an action classification dataset
that contains 6k7 different videos from 51 classes with 3
different splits.

Pretraining implementation details We used the
ResNet3D-18 network [110] following the Slow path of
Feichtenhofer et al. [111]. We kept hyperparameters close
to the ones used for ImageNet in Sect. 4.1.3. More details
can be found in Appendix D.3. We pretrain for 200 epochs
with a batch size of 512. The loss is symmetrized. To form
two different views from a video, we follow Feichtenhofer
et al. [4] and randomly sample two clips from the video that
lasts 2.56 seconds and keep only 8 frames.

Linear evaluation and finetuning evaluation protocols
We follow Feichtenhofer et al. [4] and details can be found
in Appendix D.3. For finetuning on UCF101 and HMDB51,
we only use the first split in ablation study.

Baseline and supervised learning We define an SCE
baseline which uses the hyperparameters λ = 0.5, τ = 0.1,
τm = 0.07. We provide performance of our SCE baseline
as well as supervised training in Table 12. We observe that
our baseline has lower results than supervised learning with
−8.1p.p for Kinetics200, −1.2p.p for UCF101 and −3.1p.p
for HMDB51which shows that our representation has a large
margin for improvement.

Leveraging contrastive and relational learning As for
the image study, we varied λ from Eq. (8) in the set
{0, 0.125, ..., 0.875, 1} to observe the effect of leveraging the
relational and contrastive aspects and report results in Table
13. Using relations during pretraining improves the results
rather than only optimizing a contrastive learning objective.
The performance on Kinetics200, UCF101 and HMDB51
consistently increases by decreasing λ from 1 to 0.25. The
best λ obtained is 0.125. Moreover, λ = 0 performs better

1 Link to theKinetics400dataset hostedby theCVDfoundation: https://
github.com/cvdfoundation/kinetics-dataset.

Table 11 Object detection and Instance Segmentation on COCO [94]
training a Mask R-CNN [95]

Method APBox APMask

Random 35.6 31.4

Supervised 40.0 34.7

Rel-Loc [31] 40.0 35.0

Rot-Pred [35] 40.0 34.9

NPID [17] 39.4 34.5

MoCo [7] 40.9 35.5

MoCov2 [29] 40.9 35.5

SimCLR [8] 39.6 34.6

BYOL [2] 40.3 35.1

SCE (ours) 41.6 36.0

Triplet [39] 41.7 36.2

SCE is Top-2 on both tasks, slightly below Truncated-Triplet [39] and
better than supervised training. Results style: best, second best

Table 12 Comparison of our baseline and supervised training on the
Kinetics200, UCF101 and HMDB51 Top-1 accuracy

Method K200 UCF101 HMDB51

SCE baseline 63.9 86.3 57.0

Supervised 72.0 87.5 60.1

Supervised training is consistently better

than λ = 1. These results suggest that for video pretrain-
ing with standard image contrastive learning augmentations,
relational learning performs better than contrastive learning
and leveraging both further improve the quality of the repre-
sentation.

Target temperature variation We studied the effect of
varying the target temperature with values in the set τm ∈
{0.03, 0.04, ..., 0.08} while maintaining the online tempera-
ture τ = 0.1. We report results in Table 14. We observe that

Table 13 Effect of varying λ on the Kinetics200, UCF101 and
HMDB51 Top-1 accuracy

λ K200 UCF101 HMDB51

0.000 64.2 86.2 57.5

0.125 64.8 86.9 58.2

0.250 64.3 86.7 58.2

0.375 64.7 86.3 56.8

0.500 63.9 86.3 57.0

0.625 63.4 86.2 55.7

0.750 63.1 85.8 56.2

0.875 62.1 85.7 55.3

1.000 61.9 85.0 55.4

Thebestλ is 0.125meaning contrastive and relational leverage increases
performance. Results style: best, second best
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Table 14 Effect of varying τm on the Top-1 accuracy on Kinetics200,
UCF101 and HMDB51 while maintaining τ = 0.1

τm K200 UCF101 HMDB51

0.03 63.4 86.1 56.9

0.04 63.8 86.6 56.6

0.05 64.3 86.4 57.1

0.06 64.1 86.2 56.4

0.07 63.9 86.3 57.0

0.08 63.8 85.9 55.8

The best τm is 0.05meaning that a sharper target distribution is required.
Results style: best, second best

Table 15 Effect of strength for color jittering for strong-α and strong-
β augmentations on the Kinetics200, UCF101 and HMDB51 Top-1
accuracy

strength K200 UCF101 HMDB51

0.50 63.9 86.3 57.0

0.75 64.6 86.8 57.8

1.00 64.8 87.0 58.1

Strong color jittering improves performance. Results style: best,
second best

the best temperature is τm = 0.05, indicating that a sharper
target distribution is required for video pretraining. We also
observe that varying τm has a lower impact on performance
than varying λ.

Spatial and temporal augmentationsWe tested varying
and adding some data augmentations that generates the pairs
of views. As we are dealing with videos, these augmenta-
tions can be either spatial or temporal. We define the jitter
augmentation that jitters by a factor the duration of a clip,
reverse that randomly reverses the order of frames and diff
that randomly applies RGB difference on the frames. RGB
difference consists in converting the frames to grayscale and
subtracting them over time to approximate the magnitude of
optical flow. In this work, we consider RGB difference as a
data augmentation that is randomly applied during pretrain-
ing. In the literature, it is often used as a modality to provide
better representation quality than RGB frames [5, 61, 70].
Here, we only apply it during pretraining as a random aug-
mentation. Evaluation only sees RGB frames.

We tested to increase the color jittering strength in Table
15. Using a strength of 1.0 improved our performance on all
the benchmarks, suggesting that video pretraining requires
harder spatial augmentations than images.

We tested our defined temporal augmentations with jitter
of factor 0.2, meaning sampling clips between 0.80 × 2.56
and1.20×2.56 seconds, randomly applying reversewith0.2
probability and randomly applying diff with 0.2 or 0.5 proba-

Table 16 Effect of using the temporal augmentations by applying clip
duration jittering jitter, randomly reversing the order of frames reverse
or randomly using RGB difference diff on the Kinetics200, UCF101
and HMDB51 Top-1 accuracy

Jitter Reverse Diff K200 UCF101 HMDB51

0.0 0.0 0.0 63.9 86.3 57.0

0.2 0.0 0.0 64.2 86.4 56.9

0.0 0.2 0.0 64.0 85.7 55.4

0.0 0.0 0.2 65.4 88.3 61.4

0.0 0.0 0.5 64.1 87.7 60.8

Supervised 72.0 87.5 60.1

The diff augmentation consistently improves results on the three bench-
marks andoutperforms supervisedpretraining.Theother augmentations
unchange or decrease performance in average. Results style: best,
second best

bility.We report results in Table 16. Varying the clip duration
had no noticeable impact on our benchmarks, but reversing
the order of frames decreased the performance on UCF101
and HMDB51. This can be explained by the fact that this
augmentation can prevent the model to correctly represent
the arrow of time. Finally, applying diff with 0.2 probability
considerably improved our performance over our baseline
with +1.5p.p. on Kinetics200, +2.0p.p. on UCF101 and
+4.4p.p. on HMDB51. It outperforms supervised learning
for generalization with +0.8p.p. on UCF101 and +1.3p.p.
on HMDB51. Applying more often diff decreases perfor-
mance. These results show that SCE benefits from using
views that are more biased towards motion than appearance.
We believe that it is particularly efficient to model relations
based on motion.

Bringing all together We studied varying one hyperpa-
rameter from our baseline and how it affects performance.
In this final study, we combined our baseline with the dif-
ferent best hyperparameters found which are λ = 0.125,
τm = 0.05, color strength = 1.0 and applying diff with 0.2
probability. We report results in Table 17 and found out that
using harder augmentations increased the optimal λ value as
using λ = 0.5 performs better than λ = 0.125. This indi-
cates that relational learning by itself cannot learn a better
representation through positive views that share less mutual
information. The contrastive aspect of our approach is proven
efficient for such harder positives. We take as best configura-
tionλ = 0.5, τm = 0.05,diff appliedwith probability 0.2 and
color strength= 1.0 as it provides best or second best results
for all our benchmarks. It improves our baseline by+2.1p.p.
on Kinetics200 and UCF101, and +5.0p.p. on HMDB51. It
outperformsour supervisedbaseline by+0.9p.p.onUCF101
and +1.9p.p. on HMDB51.
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Table 17 Effect of combining best hyper-parameters found in the abla-
tion study which are λ = 0.125, τm = 0.05, color strength= 1.0
and adding randomly time difference on the Kinetics200, UCF101 and
HMDB51 Top-1 accuracy

λ τm Diff Strength K200 UCF101 HMDB51

0.125 0.05 0.2 1.0 65.0 87.4 61.1

0.125 0.07 0.2 1.0 64.7 88.2 60.6

0.500 0.05 0.2 1.0 66.0 88.4 62.0

0.500 0.07 0.2 1.0 65.4 88.6 61.0

SCE Baseline 63.9 86.3 57.0

Supervised 72.0 87.5 60.1

Using time difference and stronger color jittering increases the optimal
λ value which indicates contrastive learning is efficient to deal with
harder views and helps relational learning. The best value τm = 0.05
performs favorably for Kinetics200 and HMDB51. Results style: best,
second best

4.2.2 Comparison with the state of the art

Pretraining dataset To compare SCE with the state of the
art, we perform pretraining on Kinetics400 [107] introduced
in Sect. 4.2.1.

Evaluation datasets UCF101 [108] and HMDB51 [109]
have been introduced in Sect. 4.2.1.

AVA (v2.2) [112] is a dataset used for spatiotemporal
localization of humans actions composed of 211k training
videos and 57k validation videos for 60 different classes.
Bounding box annotations are used as targets, and we report
the mean Average Precision (mAP) for evaluation.

Something-Something V2 (SSv2) [113] is a dataset com-
posed of human-object interactions for 174 different classes.
It contains 169k training and 25k validation videos.

Pretraining implementation details We use the
ResNet3D-18 and ResNet3D-50 network [110] and more
specifically the slow path of Feichtenhofer et al. [111]. We
kept the best hyperparameters from Sect. 4.2.1 which are
λ = 0.5, τm = 0.05, RGB difference with probability of
0.2, and color strength = 1.0 on top of the strong − α

and strong−β augmentations. From the randomly sampled
clips, we specify if we keep 8 or 16 frames.

Action recognition We compare SCE on the linear eval-
uation protocol on Kinetics400 and finetuning on UCF101
andHMDB51.Wekept the same implementation details as in
Sect. 4.2.1.We compare our results with the state of the art in
Table 18 on various architectures. To propose a fair compar-
ison, we indicate for each approach the pretraining dataset,
the number of frames and resolution used during pre-training
as well as during evaluation. For the unknown parameters,
we leave the cell empty.We compared with some approaches
that used the other visual modalities Optical Flow and RGB
difference and the different convolutional backbones S3D
[116] and R(2+1)D-18 [117].

On ResNet3D-18 even when comparing with methods
using several modalities, by using 8×2242 frames we obtain
state-of-the-art results on the three benchmarks with 59.8%
accuracy on Kinetics400, 90.9% on UCF101, 65.7% on
HMDB51. Using 16×1122 frames, which is commonly used
with this network, improved by +0.9p.p on HMDB51 and
decreased by −3.2p.p on kinetics400 and −1.8 on UCF101
and keep state-of-the-art results on all benchmarks, except on
UCF101 with −0.5p.p compared with Duan et al. [5] using
RGB and RGB difference modalities.

On ResNet3D-50, we obtain state-of-the-art results using
16 × 2242 frames on HMDB51 with 74.7% accuracy even
when comparing with methods using several modalities.
On UCF101, with 95.3% SCE is on par with the state
of the art, −0.2p.p. than Feichtenhofer et al. [4], but on
Kinetics400 −1.9p.p for 69.6%. We have the same com-
putational budget as they use 4 views for pretraining. Using
8 frames decreased performance by −2.0p.p., −1.2p.p. and
−4.2p.p onKinetics400,UCF101 andHMDB51. Itmaintains
results that outperform on the three benchmarks ρMoCo and
ρBYOL with 2 views. It suggests that SCE is more efficient
with fewer resources than these methods. By comparing our
best with approaches on the S3D backbone that better fit
smaller datasets, SCE has slightly lower performance than
the state of the art: −1.0p.p. on UCF101 and −0.3p.p. on
HMDB51.

Video retrievalWe performed video retrieval on our pre-
trained backbones on the first split ofUCF101 andHMDB51.
To perform this task, we extract from the training and test-
ing splits the features using the 30-crops procedure as for
action recognition, detailed in Appendix D.3. We query
for each video in the testing split the N nearest neighbors
(N ∈ {1, 5, 10}) in the training split using cosine similari-
ties. We report the recall R@N for the different N in Table
19.

We compare our results with the state of the art on
ResNet3D-18. Our proposed SCE with 16 × 1122 frames
is Top-1 on UCF101 with 74.5%, 85.6% and 90.5% for
R@1, R@5 and R@10. Using 8 × 2242 frames slightly
decreases results that are still state of the art. On HMDB51,
SCE with 8 × 2242 frames outperforms the state of the art
with 40.1%, 63.3% and 75.4% for R@1, R@5 and R@10.
Using 16 × 1122 frames decreased results that are compet-
itive with the previous state-of-the-art approach [114] for
−2.3p.p., +1.5p.p. and −1.4p.p. on R@1, R@5 and R@10.

Weprovide results using the larger architectureResNet3d-
50which increases our performance on both benchmarks and
outperforms the state of the art on all metrics to reach 83.9%,
92.2% and 94.9% for R@1, R@5 and R@10 on UCF101 as
well as 45.9%, 69.9% and 80.5% for R@1, R@5 and R@10
on HMDB51. Our soft contrastive learning approach makes
our representation learn features that cluster similar instances
even for generalization.
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Table 18 Performance of SCE for the linear evaluation protocol on Kinetics400 and finetuning on the three splits of UCF101 and HMDB51 (color
figure online)

Resp , Rese means the resolution for pretraining and evaluation. T p , Te means the number of frames used for pretraining and evaluation. For
Modality, “R” means RGB, “F” means Optical Flow, “RD” means RGB difference. Best viewed in color, gray rows highlight multi-modal trainings
and green rows our results. SCE obtains state-of-the-art results on ResNet3D-18 and on the finetuning protocol for ResNet3D-50. Results style:
best,second best
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Table 19 Performance of SCE for video retrieval on the first split of UCF101 and HMDB51 (color figure online)

Resp , Rese means the resolution for pretraining and evaluation. Tp, Te means the number of frames used for pretraining and evaluation. We report the recall R@1,
R@5, R@10. We obtain state-of-the-art results for ResNet3D-18 on both benchmarks and further improve our results using the larger network ResNet3D-50. Results
style: best, second best

Table 20 Performance of SCE in comparison with Feichtenhofer et al. [4] for linear evaluation on Kinetics400 and finetuning on the first split of
UCF101, AVA and SSv2 (color figure online)

SCE is on par with ρMoCo for fewer views. Increasing the number of frames outperforms ρBYOL on Kinetics400, UCF101 and SSv2. Results
style: best, second best

Generalization to downstream tasks.We follow the pro-
tocol introduced by Feichtenhofer et al. [4] to compare the
generalization of ourResNet3d-50backbone onKinetics400,
UCF101, AVA and SSv2 with ρSimCLR, ρSwAV, ρBYOL,
ρMoCo and supervised learning in Table 20. To ensure a fair
comparison, we provide the number of views used by each
method and the number of frames per view for pretraining
and evaluation.

For 2 views and 8 frames, SCE is on par with ρMoCo
with 3 views on Kinetics400, AVA and SSv2 but is worst
than ρBYOL especially on AVA. For UCF101, results are
better than ρMoCo and on par with ρBYOL. These results
indicate that our approach proves more effective than con-
trastive learning as it reaches similar results than ρMoCo
using one less view. Using 16 frames, SCE outperforms all
approaches, including supervised training, on UCF101 and
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SSv2 but performs worse on AVA than ρByol and supervised
training. This study shows that SCE can generalize to various
video downstream tasks which is a criteria of a good learned
representation.

5 Conclusion

In this paper, we introduced a self-supervised soft contrastive
learning approach called Similarity Contrastive Estimation
(SCE). It contrasts pairs of asymmetrical augmented views
with other instances while maintaining relations among
instances. SCE leverages contrastive learning and relational
learning and improves the performance over optimizing only
one aspect. We showed that it is competitive with the state
of the art on the linear evaluation protocol on ImageNet, on
video representation learning and to generalize to several
image and video downstream tasks. We proposed a simple
but effective initial estimation of the true distribution of sim-
ilarity among instances. An interesting perspective would be
to propose a finer estimation of this distribution.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00138-023-01444-
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