
HAL Id: hal-04465076
https://hal.science/hal-04465076v1

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reaching Out Towards Fully Verified Autonomous
Systems

Sriram Sankaranarayanan, Souradeep Dutta, Sergio Mover

To cite this version:
Sriram Sankaranarayanan, Souradeep Dutta, Sergio Mover. Reaching Out Towards Fully Verified
Autonomous Systems. Reachability Problems, Sep 2019, Brussels (Belgium), France. pp.22-32,
�10.1007/978-3-030-30806-3_3�. �hal-04465076�

https://hal.science/hal-04465076v1
https://hal.archives-ouvertes.fr


Reaching
Out Towards Fully Verified Autonomous Systems.

Sriram Sankaranarayanan1[0000−0001−7315−4340],
Souradeep Dutta1[0000−0003−2706−2095] and Sergio Mover2[0000−0003−1029−9547]

1 University of Colorado, Boulder, USA
srirams,souradeep.dutta@colorado.edu

2 Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
smover@lix.polytechnique.fr

Abstract. Autonomous systems such as “self-driving” vehicles and closed-
loop medical devices increasingly rely on learning-enabled components such as
neural networks to perform safety critical perception and control tasks. As a
result, the problem of verifying that these systems operate correctly is of the ut-
most importance. We will briefly examine the role of neural networks in the de-
sign and implementation of autonomous systems, and how various verification
approaches can contribute towards engineering verified autonomous systems.
In doing so, we examine promising initial solutions that have been proposed
over the past three years and the big challenges that remain to be tackled.

Keywords: Formal Verification·Autonomous Systems·Constraint Solvers.

1 Introduction

This paper presents a brief overview of recent progress towards the verification of
autonomous systems. A system is defined as autonomous if it can operate in a reliable
manner without requiring “frequent” human intervention. As such, the definition
encompasses a wide variety of autonomous systems that are characterized by varying
levels of human involvement, including teleoperated surgical robotic systems that
translate the surgeon’s actions from a remote terminal into precise movements of the
surgical instruments placed inside the body of the patient [46]; closed loop medical
devices such as pacemakers and artificial insulin delivery systems; autonomous “self-
driving” cars, and unmanned aerial vehicles (UAVs). The examples mentioned above
clearly demonstrate that autonomous systems are safety critical: even as we expect
these systems to operate with limited human intervention, we also expect them to
perform in a provably safe manner despite uncertainties about the environment and
the numerous limitations on the system’s ability to sense, compute and actuate.

Over the past decade, machine learning approaches have become default “go-to”
approaches for building autonomous systems. These approaches use a variety of
mathematical and computational models that are trained during design time using
input-output examples in a supervised manner, or continuously learn and adapt from
“past mistakes” using ideas such as reinforcement learning. In both cases, the use
of neural network models has become quite popular due to the ability of neural



2 Sankaranarayanan et al.

networks to approximate complex nonlinear functions and the availability of powerful
optimization tools that can infer these models from the given data. Neural network
models have been widely applied in a variety of tasks. For instance, feedforward neural
network models are widely used to build perception stacks for autonomous vehicles that
can be used to process large amounts of sensor data from cameras, Lidars and other
sensors to recognize other vehicles, pedestrians, road signs and traffic lights [22,30].
Current “end-to-end” driving pipelines seek to go from raw sensor data directly to
steering and throttle commands that can help drive the vehicle, skipping the need for a
human designed controller [6]. In applications such as robotic surgery, neural networks
can be potentially applied to enable decision support by monitoring pre-operative,
intra-operative and post-operative data to minimize the overall risk at each stage of
patient care [24]. Neural networks have also been used to predict future blood glucose
levels to help make real-time treatment decisions for patients with type-1 diabetes [18].

The key challenge in all of these applications lies in building systems with neural
network components that are also guaranteed to satisfy key safety and liveness
properties, even in the presence of significant uncertainties in the environment. This
challenge is significant, since autonomous systems are often too large and complex to
reason about manually. Furthermore, besides the system, the operating environment
can also be complex and uncertain. Finally, it is challenging to arrive at well-defined
specifications for such systems. For instance, it is highly challenging to specify a
deep neural-network based object detection component for a self driving car. Such
a specification must describe a stream of images from a road scene and the output
of the object detector for these scenes: a task that has not proven easy, to date.

Despite these challenges, the broad area of verified autonomous systems has
rapidly gained prominence in the formal verification community. We will briefly ex-
amine existing approaches, their advantages and drawbacks. Despite these promising
steps, a lot more work needs to be carried out to move this area forward.

2 Preliminaries: Neural Networks

In this section, we will briefly explain background on feedforward neural networks,
their role in learning-enabled autonomous systems. Our presentation will be brief
and at a high level. We refer the reader to standard textbooks for further details [23].

2.1 Neural Networks

Neural networks belong to a class of connectionist models that are loosely inspired
by the way neurons are connected to each other in human and animal brains. There
are many types of neural networks, some including units that can store information.
We classify neural networks broadly into two types: (a) feedforward networks: that
do not have internal states; and (b) recurrent networks: that include units that can
store information internally to the network. The difference between feedforward and
recurrent networks is (roughly speaking) analogous to that between combinatorial
boolean circuits and sequential circuits in digital logic. Most of our discussions in this
paper will be centered around feedforward neural networks.



Reaching Out Towards Fully Verified Autonomous Systems. 3

x1 ··· xn

···
...

. . .
...

···
···

...
. . .

...
···
y

x

σ(x)

-9 -6 -3 0 3 6 9

-1

1
tanh(z)

sigmoid(z)

ReLU(z)

Fig. 1. (Left) A schematic diagram of a feedforward neural network with n inputs x1,...,xn
and a single output y. Intermediate nodes are shown as unfilled circles. (Right) Commonly
used activation functions.

A feedforward network can be seen as a directed acyclic graph that represents
the output as a function of the input. The nodes of this graph can be input nodes,
output nodes or intermediate nodes. Each edge of the network is a directed edge
from some node i to another node j with an associated real-valued weight wi,j. The
inputs to the network are fed to the input nodes, which do not have incoming edges.
Likewise, the outputs are available at output nodes, which do not have any outgoing
edges. Figure 1 shows a schematic diagram of a feedforward neural network.

Each intermediate node j of a feedforward network is associated with an activation
function σj computed as follows:
1. Let (i1,j),...,(ik,j) be the incoming edges at node j, with associated weights
w1,...,wk respectively.

2. Let y1,...,yk be the values computed at nodes i1,...,ik, respectively.
3. The output at node j is given by σj(

∑k
i=1wiyi+bj), wherein bj is a constant

called the bias at node j.
The activation functions associated with nodes are typically nonlinear functions.
Popularly used functions are depicted in Figure 1.
1. ReLU: The ReLU unit is defined by the activation function σ(z): max(z,0).
2. Sigmoid: The sigmoid unit is defined by the activation function σ(z): 1

1+e−z .
3. Tanh: The activation function for this unit is σ(z):tanh(z).
Note also that besides intermediate nodes with such activation functions, neural net-
works (especially networks used in image classification) employ specialized nodes such
as max-pooling and softmax nodes that are not discussed here. They are explained
in detail elsewhere [23]. A neural network computes a function of its inputs as follows:
(a) the value of the input nodes are set according to the inputs to the network; (b)
each intermediate node is enabled as soon as values are available at the target nodes
for its incoming edges; and (c) once enabled, a node computes its output by applying
its activation function. The computation terminates as soon as all output nodes are
evaluated. Note that since the network is a DAG, a topological ordering of the nodes
can be used to identify an evaluation order of the nodes in the network.



4 Sankaranarayanan et al.

Neural networks have many desirable properties as universal function approx-
imators: they can uniformly approximate any given continuous function f over a
compact domain C to any desired accuracy [13]. Neural networks are used primarily
for two important tasks: (a) classify an input into one of many discrete categories: for
instance, categorize an image of a road sign as being a stop sign, a speed limit sign
or a pedestrian crossing sign; and (b) represent a function from inputs to outputs
learned from data through regression. Neural networks are applied in other ways
besides just classification. For instance, networks can be used to identify a bounding
box around objects of interest in a given image. Since the networks are too complex
to design by hand, they are constructed by machine learning techniques that learn the
weights and biases of the network given the topology of the network that includes the
nodes, edges, the activation functions at each node; the input/output data in terms
of training examples and a loss function that penalizes discrepancies between the
output predicted by the neural network and the actual output in the training data.

There are many algorithms for “learning” the network weights and biases from
given training data [23]. The most popular algorithms use variants of a strategy called
stochastic gradient descent that updates the weights by calculating the gradient over
a randomly chosen batch from the training data in order to achieve a local minimum
for the loss function. Often, activation functions such as the ReLU function discussed
above are smoothed in order to make it differentiable. There are many popular tools
that automate the training process, notably TensorFlow and PyTorch [1,36]. These
tools allow the user to create a neural network topology with unknown weights and bi-
ases, specify a loss function and perform the stochastic gradient descent. The networks
are then evaluated on a “held-back” test data set that is not part of the data over which
it was trained to evaluate its ability to generalize. The recent advent of GPUs that
can perform rapid vector and matrix calculations along with the availability of large
amounts of data has led to deep neural networks with hundreds of thousands of nodes.

3 Verification of Neural Networks

Even though deep neural networks, are essentially acyclic computation graphs formed
by composing simple activation functions, the overall behavior of the network can
be exceedingly complex and highly non-linear. In this section, we present a brief
overview of the existing verification tools and techniques for neural networks and
systems that incorporate neural networks in them.

In general, neural networks are used as components inside a closed loop au-
tonomous system. As a result, verification problems have involved component-wise
specification involving just the neural network or an end-to-end approach that studies
the network in composition with other parts of the system. We distinguish different
but closely related verification problems over neural networks: (a) BNNs have been
shown to be quite effective for regression and classification tasks. The unit weights
also yield computational savings and are amenable to implementation as digital
circuits. One of the first attempts at verifying BNN’s was proposed by Narodytska et
al [34]. Another recent approach proposed by Shih et al [3] learns an Ordered Binary
Decision Diagram (OBDD) locally to abstract parts of the neural networks. Cheng



Reaching Out Towards Fully Verified Autonomous Systems. 5

et al [10] reduce the problem of BNN verification to hardware verification problem,
and have reported speed ups in performance.

3.1 Abstract Interpretation for Neural Networks

Abstract interpretation originally formalized by Cousot and Cousot was developed
to systematically propagate sets of reachable states of a program through individual
program statements in order to establish properties of a program as a whole [12].
Such techniques rely on abstract domains to represent the reachable set of states [35].
This idea can be applied to neural networks which represent loop free computations
involving the application of nonlinear activation functions.

Vechev et al use zonotopes as an abstract domain to perform image computation
across a neural network [21]. In particular, zonotopes are used to over-approximation
the non-convex set of possible outputs for each layer of the network. This allows for
a layer-by-layer analysis to compute sound over-approximations for the output of the
neural network.

Xiang et al. that computes the output ranges as a union of convex polytopes [53].
This approach does not use SMT or MILP solvers unlike other approaches and
thus can lead to highly accurate estimates of the output range. However, judging
from preliminary evaluation reported, the cost of manipulating polyhedra is quite
expensive, and thus, the approach is currently restricted to smaller networks when
compared to SMT/MILP-based approaches.

Range computations using symbolic intervals were attempted in Reluval[49], which
essentially relied on affine arithmetic techniques to reduce the over-approximation
errors, and handle the case splitting imposed by ReLU units. Likewise, Cheng et
al [9] propose a heuristic approach to compute tight ranges for individual neurons.

3.2 Training with Robustness

Verification approaches have been incorporated to improve the process of learning
networks from data [48,51]. For instance Jana et al use the output set estimates
computed by verification tools in order to incorporate robustness in the training
phase wherein the network is rendered somewhat immune to small perturbations
of the input. This has been proposed as a means to defend against any adversarial
perturbations of the input. However, the computational cost can be orders magnitude
more expensive than standard approaches to adversarially robust training that do
not involve expensive verification tools in the loop.

3.3 Closed Loop Verification

Until this point we have been interested in verifying properties of a single neural
network in isolation. However, as mentioned previously, autonomous systems employ
neural networks as components in a closed loop that controls a physical process. Such
physical processes can often be described by ordinary differential equations (ODEs).
The simplest such situation involves a neural network that applies a feedback control to



6 Sankaranarayanan et al.

a physical process modeled as an ODE. This setup has been studied recently in order
to perform reachability analysis of the resulting closed loop behaviors [52,15,27,45].

Dutta et al [15], propose a technique to compute Taylor models (polynomial +
error) as approximations of the behavior of the neural network in a compact domain.
This was then used in conjunctions with standard reachability tools like Flow* [7]
to compute reachable set of states of the closed loop involving an ODE and a neural
network. A followup approach [26] approximates the neural network controller with
Bernstein polynomials to deal with activation functions that are more general than
ReLU. Radoslav et al [27] propose a technique whereby activation functions such
as sigmoid and tanh are modeled using differential equations evolving over time
to encode a network as an ODE itself. This allows the transformation of a single
layer of the neural network into a hybrid system. Which could then be used in
standard reachability analysis tools for such systems. Another recent work by Xiang
et al. considers the combination of neural networks in feedback with piecewise linear
dynamical systems [54] using the techniques presented in [53].

Barrier certificates serve as an important approach to establish safety properties
of dynamical systems [37]. Tuncali et al [45] present an approach to synthesize barrier
certificates using an SMT solver to prove properties of ODEs with neural networks
as feedback.

However, neural networks are also employed in autonomous systems to classify
a large volume of sensor data from cameras and LIDAR sensors. It is an enormous
challenge to specify the behavior of these sensors with respect to changes in the
environment and the vehicle. Shoukry et al present a recent step towards verifying
robotic systems that employ LIDAR sensors by means of simplifying the LIDAR
system to consider a finite set of angles along with the system finds ranges [42]. The
approach also “hard codes” a fixed environment with obstacles having fixed positions
and geometries. The authors use a SMT based approach to construct a finite state
abstraction of the closed loop system using fixed set of predicates to partition the
state-space. This abstraction is then used to check reachability properties.

3.4 Falsification and Testing

We have focused our attention entirely on the use of formal verification approaches to
prove properties of autonomous systems with neural network components. The prob-
lems of “best-effort” falsification to find counterexamples and that of systematic testing
have also received a lot of attention. We mention a few representative approaches that
relate closely to the verification approaches mentioned above without claiming to be a
comprehensive survey on falsification/testing approaches for autonomous systems. An
important line of work (e.g., [55,44,14]) focuses on the falsification problem for systems
containing neural network components, as autonomous vehicles. The falsification
problem consist of finding an execution of the system that violates a requirement, and
the falsification algorithms for cyber-physical systems (e.g., S-TaLiRo [4]) implement
efficient heuristics to search for a system’s input that can falsify a requirement.

One challenge addressed in [55] is to find adversarial examples, a perturbation
of the input that falsifies a temporal logic formula, for a closed loop control system
formed by a neural network controller and a dynamical system. The proposed solution



Reaching Out Towards Fully Verified Autonomous Systems. 7

tries to find an adversarial example minimizing the robustness function of the Signal
Temporal Logic (STL) formula via gradient descent.

Recent approaches also address the falsification of autonomous vehicles where
neural networks are used in the perception stack. Dreossi et al [14] propose an ap-
proach that falsifies STL formulas compositionally, first falsifying an abstraction of the
neural network component and the cyber-physical system, and then confirming the
counterexample in the neural network component. An alternative approach proposed
by Fainekos et al [44] focuses on perturbing driving scenarios for autonomous vehicles
that can result in reaching undesired state (e.g., a crash). The scenarios are expressed
in STL, and the approach generates input test cases from different combinations of
discrete parameters of the system.

4 Challenges

We conclude our discussion by briefly mentioning some of the important challenges
that remain to be tackled in this rapidly emerging area.

Specification: Despite initial approaches to verifying properties of neural networks
in isolation, or as part of larger closed loops, the problem of formally specifying the
behavior of these systems remains largely open for perception systems that classify
sensor data including images and LIDAR data. The key challenge here lies in spec-
ifying what a valid image is in a logical formalism that is compatible with existing
verification tools. This in turn requires a specification of the environment, and the
imaging/sensing processes. To make matters more complicated, small changes to the
orientation/pose of the vehicle can drastically alter the image generated. Current
approaches sidestep functional specifications in favor of requiring the classifier to
be “robust” to perturbations around some selected training examples. Alternatively,
one may simplify the sensor’s capabilities to make modeling easier. Another popular
alternative uses generative models that specify inputs at a high level. Fremont et al
propose an approach that uses generative models for creating road scenes correspond-
ing to simple programmatic specifications for the purposes of testing [20]. Extending
such formalisms to verification problems remains an important challenge.

Scalability: Scalability of verification approaches remains yet another challenge. Sim-
ply put, the current state-of-the art networks are 100x or 1000x larger than the most
efficient verification tools available. This gap needs to be considerably narrowed before
verification approaches can be used on realistic systems. This challenge may requires
to improve the existing verification techniques, for example improving the underlying
constraint solvers by specializing them to handle neural networks. Alternative ap-
proaches such as using abstractions that are sufficient precise to show the correctness
of the neural network can also be useful. The challenge lies in the definition of these
abstractions and how they can be obtained for large networks without resorting to
expensive verification tools in the first place.



8 Sankaranarayanan et al.

Recurrent Networks: Another important challenge lies in tackling recurrent networks
that involve units such as long short term memory (LSTM) with internal state. These
networks are widely used in applications such as data-driven modeling and natural
language processing. Verification of such networks is highly challenging for existing
tools and techniques.

Runtime Verification: Runtime verification provides an important alternative to
everything mentioned here that focuses on static/pre-deployment verification. The use
of real-time monitors to predict and act against imminent property violations form the
basis for runtime assurance using L1-Simplex architectures that switch between a lower
performance but formally validated control when an impending failure is predicted [41].
However, the key issue lies in how impending failures are to be predicted. An alternative
approach to verification to guarantee safety is shielding [57,2] that uses a supervisor
(or so-called shield) to monitor the execution of the autonomous system and intervene
to enforce temporal logic properties if a violation is imminent. Chen et al present a
different approach based on monitoring viability rather than safety in order to sidestep
the need to reason about the controller [8]. Instead, their approach can perform
lightweight reasoning just over the behavior of the plant model. A recent application
of their approach involves monitoring geofences for unmanned aerial vehicle [56].

5 Conclusion

In conclusion, we have attempted to classify the rapidly emerging area of verifying
autonomous systems involving neural networks. Our presentation has focused on
some of the current successes and future challenges in this area.
Acknowledgments: This work was supported in part by the Air Force Research
Laboratory (AFRL) and by the US NSF under Award # 1646556.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-scale machine learning
on heterogeneous systems (2015), https://www.tensorflow.org/, software available
from tensorflow.org

2. Alshiekh, M., Bloem, R., Ehlers, R., Knighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding (2018), https://aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/17211

3. Andy Shih and Adnan Darwiche and Arthur Choi: Verifying binarized neural networks
by local automaton learning. http://reasoning.cs.ucla.edu/fetch.php?id=193&

type=pdf (2019)

4. Annpureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-taliro:
A tool for temporal logic falsification for hybrid systems. In: TACAS.
pp. 254–257 (2011). https://doi.org/10.1007/978-3-642-19835-9 21, https:

//doi.org/10.1007/978-3-642-19835-9_21

5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
Handbook of satisfiability 185, 825–885 (2009)

https://www.tensorflow.org/
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
http://reasoning.cs.ucla.edu/fetch.php?id=193&type=pdf
http://reasoning.cs.ucla.edu/fetch.php?id=193&type=pdf
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-642-19835-9_21


Reaching Out Towards Fully Verified Autonomous Systems. 9

6. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D.,
Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for
self-driving cars. CoRR abs/1604.07316 (2016), http://arxiv.org/abs/1604.07316

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. of CAV’13. LNCS, vol. 8044, pp. 258–263. Springer (2013)

8. Chen, X., Sankaranarayanan, S.: Model-predictive real-time monitoring of linear systems.
In: IEEE Real-Time Systems Symposium (RTSS). pp. 297–306. IEEE Press (2017)

9. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks.
CoRR abs/1705.01040 (2017), http://arxiv.org/abs/1705.01040

10. Cheng, C., Nührenberg, G., Ruess, H.: Verification of binarized neural networks. CoRR
abs/1710.03107 (2017), http://arxiv.org/abs/1710.03107

11. Courbariaux, M., Bengio, Y.: Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR abs/1602.02830 (2016),
http://arxiv.org/abs/1602.02830

12. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM Principles
of Programming Languages. pp. 238–252 (1977)

13. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics
of Signals and Systems 2, 303–314 (1989)

14. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: NASA Formal Methods (NFM). pp.
357–372 (2017)

15. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback sys-
tems using regressive polynomial rule inference. In: Proc. Hybrid Systems: Computation
and Control (HSCC). pp. 157–168. HSCC ’19, ACM, New York, NY, USA (2019)

16. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Verified inference of feedback
control systems using feedforward neural networks, draft (2017), Available upon request

17. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep
feedforward neural networks. In: NASA Formal Methods Symposium. pp. 121–138.
Springer (2018)

18. Dutta, S., Kushner, T., Sankaranarayanan, S.: Robust data-driven control of artificial
pancreas systems using neural networks. In: Computational Methods in Systems Biology.
Lecture Notes In Computer Science, vol. 11095, pp. 183–202. Springer-Verlag (2018)

19. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
ATVA. Lecture Notes in Computer Science, vol. 10482, pp. 269–286. Springer (2017)

20. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia,
S.A.: Scenic: a language for scenario specification and scene generation. In: Proc. ACM
Programming Language Design and Implementation (PLDI). pp. 63–78 (2019)

21. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.:
Ai2: Safety and robustness certification of neural networks with abstract interpretation.
In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3–18 (May 2018)

22. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3354–3361 (June 2012)

23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

24. Hashimoto, Daniel, A., Rosman, G., Rus, D., Meireles, O.: Artificial intelligence in
surgery: Promises and perils. Annals of Surgery 268, 70–76 (July 2018)

25. Huan Zhang, Pengchuan Zhang, Cho-Jui Hsieh: Recurjac: An efficient recursive
algorithm for bounding jacobian matrix of neural networks and its applications.
https://arxiv.org/abs/1810.11783 (2019)

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1705.01040
http://arxiv.org/abs/1710.03107
http://arxiv.org/abs/1602.02830
http://www.deeplearningbook.org
https://arxiv.org/abs/1810.11783


10 Sankaranarayanan et al.

26. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: Reachability anal-
ysis of neural-network controlled systems. CoRR abs/1906.10654 (2019),
http://arxiv.org/abs/1906.10654

27. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: Verifying safety properties
of hybrid systems with neural network controllers. In: Proc. Hybrid Systems: Computa-
tion and Control (HSCC). pp. 169–178. HSCC ’19, ACM, New York, NY, USA (2019)

28. Julian, K., Kochenderfer, M.J.: Neural network guidance for UAVs. In: AIAA Guidance
Navigation and Control Conference (GNC) (2017)

29. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks, pp. 97–117. Springer International
Publishing, Cham (2017)

30. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in
vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
pp. 253–256 (May 2010). https://doi.org/10.1109/ISCAS.2010.5537907

31. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward relu
neural networks. CoRR abs/1706.07351 (2017), http://arxiv.org/abs/1706.07351

32. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward relu
neural networks. CoRR abs/1706.07351 (2017), http://arxiv.org/abs/1706.07351

33. Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization problems.
Handbook of Applied Optimization p. 6577 (2002)

34. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. CoRR abs/1709.06662 (2017),
http://arxiv.org/abs/1709.06662

35. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag
(1999)

36. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS Workshop on
Automatic Differentiation (2017), cf. https://openreview.net/forum?id=BJJsrmfCZ

37. Prajna, S., Jadbabaie, A.: Safety verification using barrier certificates. In: Proc.
HSCC’04. vol. 2993, pp. 477–492 (2004)

38. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial
neural networks. In: Computer Aided Verification. pp. 243–257. Springer (2010)

39. Pulina, L., Tacchella, A.: Challenging smt solvers to verify neural networks. AI Commun.
25(2), 117–135 (2012)

40. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neu-
ral networks with provable guarantees. CoRR abs/1805.02242 (2018),
http://arxiv.org/abs/1805.02242

41. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)

42. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proc. Hybrid Systems: Computation and Control (HSCC).
pp. 147–156. HSCC ’19, ACM, New York, NY, USA (2019)

43. Tjeng, V., Tedrake, R.: Verifying neural networks with mixed integer programming.
CoRR abs/1711.07356 (2017), http://arxiv.org/abs/1711.07356

44. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In: 2018 IEEE
Intelligent Vehicles Symposium. pp. 1555–1562 (2018)

45. Tuncali, C.E., Kapinski, J., Ito, H., Deshmukh, J.V.: Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In: Proc. Design
Automation Conference, DAC 2018. pp. 30:1–30:6 (2018)

http://arxiv.org/abs/1906.10654
https://doi.org/10.1109/ISCAS.2010.5537907
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
https://openreview.net/forum?id=BJJsrmfCZ
http://arxiv.org/abs/1805.02242
http://arxiv.org/abs/1711.07356


Reaching Out Towards Fully Verified Autonomous Systems. 11

46. U.S Food and Drug Administration: Computer-assisted surgical sys-
tems (2019), https://www.fda.gov/medical-devices/surgery-devices/

computer-assisted-surgical-systems, accessed July 2019
47. Vanderbei, R.J.: Linear Programming: Foundations & Extensions (Second Edition).

Springer (2001), cf. http://www.princeton.edu/˜rvdb/LPbook/
48. Wang, S., Chen, Y., Abdou, A., Jana, S.: Mixtrain: Scalable training of formally robust

neural networks. CoRR abs/1811.02625 (2018), http://arxiv.org/abs/1811.02625
49. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis

of neural networks using symbolic intervals. CoRR abs/1804.10829 (2018),
http://arxiv.org/abs/1804.10829

50. Weng, T.W., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Boning, D., Dhillon, I.S.,
Daniel, L.: Towards Fast Computation of Certified Robustness for ReLU Networks.
arXiv e-prints arXiv:1804.09699 (Apr 2018)

51. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: Proc. International Conference on Machine Learning,
ICML. pp. 5283–5292 (2018), http://proceedings.mlr.press/v80/wong18a.html

52. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety verifi-
cation for neural networks with relu activations. CoRR abs/1712.08163 (2017),
http://arxiv.org/abs/1712.08163

53. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and
safety verification for neural networks with relu activations (2107), cf.
https://arxiv.org/pdf/1712.08163.pdf, posted on ArXIV Dec. 2017

54. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation and
verification for a class of piecewise linear systems with neural network controllers (2018),
to Appear in the American Control Conference (ACC), invited session on Formal
Methods in Controller Synthesis

55. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control systems with
machine learning components. In: Proceedings of Hybrid Systems: Computation and
Control. pp. 179–184 (2019)

56. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime
monitoring for linear stochastic systems and applications to geofence enforcement for
uavs (2019), proc. Runtime Verification 2019 (to appear October 2019)

57. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: ACM Programming Language Design and
Implementation (PLDI). pp. 686–701 (2019)

https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-surgical-systems
https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-surgical-systems
http://www.princeton.edu/~rvdb/LPbook/
http://arxiv.org/abs/1811.02625
http://arxiv.org/abs/1804.10829
http://proceedings.mlr.press/v80/wong18a.html
http://arxiv.org/abs/1712.08163
https://arxiv.org/pdf/1712.08163.pdf

	Reaching Out Towards Fully Verified Autonomous Systems.

