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Abstract. Asynchronous programming is widely adopted for building
responsive and efficient software, and modern languages such as C# pro-
vide async/await primitives to simplify the use of asynchrony. In this
paper, we propose an approach for refactoring a sequential program into
an asynchronous program that uses async/await, called asynchroniza-
tion. The refactoring process is parametrized by a set of methods to
replace with asynchronous versions, and it is constrained to avoid intro-
ducing data races. We investigate the delay complexity of enumerating
all data race free asynchronizations, which quantifies the delay between
outputting two consecutive solutions. We show that this is polynomial
time modulo an oracle for solving reachability in sequential programs.
We also describe a pragmatic approach based on an interprocedural data-
flow analysis with polynomial-time delay complexity. The latter approach
has been implemented and evaluated on a number of non-trivial C# pro-
grams extracted from open-source repositories.

1 Introduction

Asynchronous programming is widely adopted for building responsive and effi-
cient software. As an alternative to explicitly registering callbacks with asyn-
chronous calls, C# 5.0 [3] introduced the async/await primitives. These prim-
itives allow the programmer to write code in a familiar sequential style without
explicit callbacks. An asynchronous procedure, marked with async, returns a
task object that the caller uses to “await” it. Awaiting may suspend the exe-
cution of the caller, but does not block the thread it is running on. The code
after await is the continuation called back when the callee result is ready. This
paradigm has become popular across many languages, C++, JavaScript, Python.

The async/await primitives introduce concurrency which is notoriously com-
plex. The code in between a call and a matching await (referring to the same
task) may execute before some part of the awaited task or after the awaited
task finished. For instance, on the middle of Fig. 1, the assignment y=1 at line 4
can execute before or after RdFile finishes. The await for ReadToEndAsync in
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1 void Main(string f) {
2 x = 0;
3 int val = RdFile(f);
4 y = 1;

6 int r = x;
7 Debug.Assert(r == val); }

9 int RdFile(string f) {
10 var rd=new StreamReader(f);
11 string s = rd.ReadToEnd();
12 int r1 = x;

14 x = r1 + s.Length;
15 return s.Length; }

1 async Task Main(string f) {
2 x = 0;
3 Task<int> t1 = RdFile(f);
4 y = 1;
5 int val = await t1;
6 int r = x;
7 Debug.Assert(r == val); }

9 async Task<int> RdFile(string f) {
10 var rd = new StreamReader(f);
11 Task<string> t=rd.ReadToEndAsync();
12 int r1 = x;
13 string s = await t;
14 x = r1 + s.Length;
15 return s.Length; }

  14

  15                     }   

RdFile(string f) { 
  10

  11

  12                  

  13

Main() {
  2 

  3 

  4

  5
         
  6   

  7        }

Fig. 1: Synchronous and asynchronous C# programs (x, y are static variables).

RdFile (line 13) may suspend RdFile’s execution because ReadToEndAsync did
not finish, and pass the control to Main which executes y=1. If ReadToEndAsync
finishes before this await executes, then the latter has no effect and y=1 gets
executed after RdFile finishes. The resemblance with sequential code can be es-
pecially deceitful since this non-determinism is opaque. It is common that awaits
are placed immediately after the corresponding call which limits the benefits that
can be obtained from executing steps in the caller and callee concurrently [24].

In this paper, we address the problem of writing efficient asynchronous code
that uses async/await. We propose a procedure for automated synthesis of
asynchronous programs equivalent to a given synchronous (sequential) program
𝑃 . This can be seen as a way of refactoring synchronous code to asynchronous
code. Solving this problem in its full generality would require checking equiv-
alence between arbitrary programs, which is known to be hard. Therefore, we
consider a restricted space of asynchronous program candidates defined by sub-
stituting synchronous methods in 𝑃 with asynchronous versions (assumed to
be behaviorally equivalent). The substituted methods are assumed to be leaves
of the call-tree (they do not call any method in 𝑃 ). Such programs are called
asynchronizations of 𝑃 . A practical instantiation is replacing IO synchronous
calls for reading/writing files or managing http connections with asynchronous
versions.

For instance, the sequential C# program on the left of Fig. 1 contains a Main

that invokes a method RdFile that returns the length of the text in a file. The
file name input to RdFile is an input to Main. The program uses a variable x to
aggregate the lengths of all files accessed by RdFile; this would be more useful
when Main calls RdFile multiple times which we omit for simplicity. Note that
this program passes the assertion at line 7. The time consuming method Read-

ToEnd for reading a file is an obvious choice for being replaced with an equivalent
asynchronous version whose name is suffixed with Async. Performing such tasks
asynchronously can lead to significant performance boosts. The program on the
middle of Fig. 1 is an example of an asynchronization defined by this substitu-
tion. The syntax of async/await imposes that every method that transitively
calls one of the substituted methods, i.e., Main and RdFile, must also be de-
clared as asynchronous. Then, every asynchronous call must be followed by an
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await that specifies the control location where that task should have completed.
For instance, the await for ReadToEndAsync is placed at line 13 since the next
instruction (at line 14) uses the computed value. Therefore, synthesizing such
refactoring reduces to finding a correct placement of awaits (that implies equiv-
alence) for every call of a method that transitively calls a substituted method
(we do not consider “deeper” refactoring like rewriting conditionals or loops).

We consider an equivalence relation between a synchronous program and an
asynchronization that corresponds to absence of data races in the asynchroniza-
tion. Data race free asynchronizations are called sound. Relying on absence of
data races avoids reasoning about equality of sets of reachable states which is
harder in general, and an established compromise in reasoning about concur-
rency. For instance, the asynchronization in Fig. 1 is sound because the call to
RdFile accessing x finishes before the read of x in Main (line 6). Therefore,
accesses to x are performed in the same order as in the synchronous program.

The asynchronization on the right of Fig. 1 is not the only sound (data-race
free) asynchronization of the program on the left. The await at line 13 can be
moved one statement up (before the read of x) and the resulting program re-
mains equivalent to the sequential one. In this paper, we investigate the problem
of enumerating all sound asynchronizations of a sequential program 𝑃 w.r.t. sub-
stituting a set of methods with asynchronous versions. This makes it possible to
deal separately with the problem of choosing the best asynchronization in terms
of performance based on some metric (e.g., performance tests).

Identifying the most efficient asynchronization is difficult and can not be done
syntactically. It is tempting to consider that increasing the distance between calls
and matching awaits so that more of the caller code is executed while waiting for
an asynchronous task to finish increases performance. However, this is not true
in general. We use the programs in Fig. 2 to show that the best await placement
w.r.t. performance depends on execution times of code blocks in between calls
and awaits in a non-trivial manner. Note that estimating these execution times,
especially for IO operations like http connections, can not be done statically.

The programs in Fig. 2 use Thread.Sleep(n) to abstract sequential code
executing in 𝑛 milliseconds and Task.Delay(n) to abstract an asynchronous call
executing in 𝑛 milliseconds on a different thread. The functions named Foo differ
only in the position of await t. We show that modifying this position worsens
execution time in each case. For the left program, best performance corresponds
to maximal distance between await t in Foo and the corresponding call. This
allows the IO call to execute in parallel with the caller, as depicted on the bottom-
left of Fig. 2. The executions corresponding to the other two positions of await
t are given just above. For the middle program, placing await t in between the
two code blocks in Foo optimizes performance (note the extra IO call in Main):
the IO call in Foo executes in parallel with the first code block in Foo and the
IO call in Main executes in parallel with the second one. This is depicted on the
bottom-middle of Fig. 2. The execution above shows that placing await t as on
the left (after the two code blocks) leads to worse execution time (placing await

t immediately after the call is also worse). Finally, for the right program, placing
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1 async Task Main() {
2 var t1 = Foo();

4 await t1;
5 }

7 async Task Foo() {
8 var t = IO();

10 Thread.Sleep(200);

12 Thread.Sleep(200);
13 await t; }

15 async Task IO() {
16 var t0 = Task.Delay(300);

18 await t0; }

1 async Task Main() {
2 var t1 = Foo();
3 var t2 = IO();
4 await t1;
5 await t2; }

7 async Task Foo() {
8 var t = IO();

10 Thread.Sleep(200);
11 await t;
12 Thread.Sleep(200);
13 }

15 async Task IO() {
16 var t0 = Task.Delay(300);

18 await t0; }

1 async Task Main() {
2 var t1 = Foo();
3 var t2 = IO();
4 await t1;
5 await t2; }

7 async Task Foo() {
8 var t = IO();
9 await t;

10 Thread.Sleep(200);

12 Thread.Sleep(200);
13 }

15 async Task IO() {
16 var t0 = Task.Delay(300);
17 Thread.Sleep(150);
18 await t0; }
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Fig. 2: Asynchronous C# programs and executions. On the bottom, time dura-
tions of executing code blocks from the same method are aligned horizontally,
and time goes from left to right. Vertical single-line arrows represent method call
steps, dashed arrows represent awaits passing control to the caller, and double-
line arrows represent a call return. Total execution time is marked time=....

await t immediately after the call is best (note that IO executes another code
block before await). The IO call in Main executes in parallel with Foo as shown
on the bottom-right of Fig. 2. The execution above shows the case where await

t is placed in the middle (the await has no effect because IO already finished,
and Foo continues to execute). This leads to worse execution time (placing await

t after the two code blocks is also worse). These differences in execution times
have been confirmed by running the programs on a real machine.

As demonstrated by the examples in Fig. 2, the performance of an asynchro-
nization depends on the execution environment, e.g., the overhead of IO opera-
tions like http connections and disk access (in Fig. 2, we use Thread.Sleep(n)

or Task.Delay(n) to model such overheads). Since modeling the behavior of
an execution environment w.r.t. performance is difficult in general, selecting the
most performant asynchronization using static reasoning is also difficult. As a
way of sidestepping this difficulty, we focus on enumerating all sound asynchro-
nizations that allows to evaluate performance separately in a dynamic manner
using performance tests for instance (for each sound asynchronization).
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In the worst-case, the number of (sound) asynchronizations is exponential
in the number of method calls in the program. Therefore, we focus on the de-
lay complexity of the problem of enumerating sound asynchronizations, i.e., the
complexity of the delay between outputting two consecutive (distinct) solutions,
and show that this is polynomial time modulo an oracle for solving reachabil-
ity (assertion checking) in sequential programs. Note that a trivial enumeration
of all asynchronizations and checking equivalence for each one of them has an
exponential delay complexity modulo an oracle for checking equivalence.

As an intermediate step, we consider the problem of computing maximal
sound asynchronizations that maximize the distance between every call and its
matching await. We show that rather surprisingly, there exists a unique max-
imal sound asynchronization. This is not trivial since asynchronizations can be
incomparable w.r.t. distances between calls and awaits (i.e., better for one await
and worse for another, and vice-versa). This holds even if maximality is relative
to a given asynchronization 𝑃𝑎 imposing an upper bound on the distance be-
tween awaits and calls. In principle, avoiding data races could reduce to a choice
between moving one await or another closer to the matching call. We show that
this is not necessary because the maximal asynchronization is required to be
equivalent to a sequential program, which executes statements in a fixed order.

As a more pragmatic approach, we define a procedure for computing sound
asynchronizations which relies on a bottom-up interprocedural data-flow anal-
ysis. The placement of awaits is computed by traversing the call graph bottom
up and using a data-flow analysis that computes read or write accesses made
in the callees. We show that this procedure computes maximal sound asynchro-
nizations of abstracted programs where every Boolean condition is replaced with
a non-deterministic choice. These asynchronizations are sound for the concrete
programs as well. This procedure enables a polynomial-time delay enumeration
of sound asynchronizations of abstracted programs.

We implemented the asynchronization enumeration based on data-flow anal-
ysis in a prototype tool for C# programs. We evaluated this implementation
on a number of non-trivial programs extracted from open source repositories to
show that our techniques have the potential to become the basis of refactoring
tools that allow programmers to improve their usage of async/await primitives.

In summary, this paper makes the following contributions:

– Define the problem of data race-free (sound) asynchronization synthesis for
refactoring sequential code to equivalent asynchronous code (Section 3).

– Show that the problem of computing a sound asynchronization that maxi-
mizes the distance between calls and awaits has a unique solution (Section 4).

– The delay complexity of sound asynchronization synthesis (Sections 5–6).

– A pragmatic algorithm for computing sound asynchronizations based on a
data-flow analysis (Section 7).

– A prototype implementation of this algorithm and an evaluation of this
prototype on a benchmark of non-trivial C# programs (Section 8).

Additional formalization and proofs are included in the appendix.
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⟨prog⟩ ::= program ⟨md⟩
⟨md⟩ ::= method ⟨m⟩ { ⟨inst⟩ } | async method ⟨m⟩ { ⟨inst⟩ } | ⟨md⟩ ⟨md⟩
⟨inst⟩ ::= ⟨x ⟩ := ⟨le⟩ | ⟨r⟩ := ⟨x ⟩ | ⟨r⟩ := call ⟨m⟩ | return | await ⟨r⟩

| await * | if ⟨le⟩ {⟨inst⟩} else {⟨inst⟩} | while ⟨le⟩ {⟨inst⟩} |
⟨inst⟩ ; ⟨inst⟩

Fig. 3: Syntax. ⟨𝑚⟩, ⟨𝑥⟩, and ⟨𝑟⟩ represent method names, program and local
variables, resp. ⟨𝑙𝑒⟩ is an expression over local variables, or * which is non-
deterministic choice.

2 Asynchronous Programs

We consider a simple programming language to formalize our approach, shown
in Fig. 3. A program is a set of methods, including a distinguished main, which
are classified as synchronous or asynchronous. Synchronous methods run contin-
uously until completion when they are invoked. Asynchronous methods, marked
using the keyword async, can run only partially and be interrupted when exe-
cuting an await. Only asynchronous methods can use await, and all methods
using await must be defined as asynchronous. We assume that methods are not
(mutually) recursive. A program is called synchronous if it is a set of synchronous
methods.

A method is defined by a name from a set M and a list of statements over a set
PV of program variables, which can be accessed from different methods (ranged
over using 𝑥, 𝑦, 𝑧,. . .), and a set LV of method local variables (ranged over using
𝑟, 𝑟1, 𝑟2,. . .). Input/return parameters are modeled using program variables.
Each method call returns a unique task identifier from a set T, used to record
control dependencies imposed by awaits (for uniformity, synchronous methods
return a task identifier as well). Our language includes assignments, awaits,
returns, loops, and conditionals. Assignments to a local variable 𝑟 := 𝑥, where
𝑥 is a program variable, are called reads of 𝑥, and assignments to a program
variable 𝑥 := 𝑙𝑒 (𝑙𝑒 is an expression over local variables) are called writes to 𝑥.
A base method is a method whose body does not contain method calls.

async method ReadToEndAsync() {
await *;
ind = Stream.index;
len = Stream.content.Length;
if (ind >= len)
retVal = ""; return

Stream.index = len;
retVal = Stream.content(ind,len);
return }

Fig. 4: An IO method.

Asynchronous methods. Asynchronous meth-
ods can use awaits to wait for the completion of
a task (invocation) while the control is passed to
their caller. The parameter 𝑟 of the await spec-
ifies the id of the awaited task. As a sound ab-
straction of awaiting the completion of an IO op-
eration (reading or writing a file, an http request,
etc.), which we do not model explicitly, we use a
variation await *. This has a non-deterministic
effect of either continuing to the next statement in the same method (as if the
IO operation already completed), or passing the control to the caller (as if the
IO operation is still pending).

Fig. 4 lists our modeling of the IO method ReadToEndAsync used in Fig. 1.
We use program variables to represent system resources such as the file system.
The await for the completion of accesses to such resources is modeled by await
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*. This enables capturing racing accesses to system resources in asynchronous
executions. Parameters or return values are modeled using program variables.
ReadToEndAsync is modeled using reads/writes of the index/content of the input
stream, and await * models the await for their completion.

We assume that the body of every asynchronous method 𝑚 satisfies several
well-formedness syntactic constraints, defined on its control-flow graph (CFG).
We recall that each node of the CFG represents a basic block of code (a maximal-
length sequence of branch-free code), and nodes are connected by directed edges
which represent a possible transfer of control between blocks. Thus,

1. every call 𝑟 := call 𝑚′ uses a distinct variable 𝑟 (to store task identifiers),
2. every CFG block containing an await 𝑟 is dominated by the CFG block

containing the call 𝑟 := call . . . (i.e., every CFG path from the entry to the
await has to pass through the call),

3. every CFG path starting from a block containing a call 𝑟 := call . . . to the
exit has to pass through an await 𝑟 statement.

The first condition simplifies the technical exposition, while the last two ensure
that 𝑟 stores a valid task identifier when executing an await 𝑟, and that every
asynchronous invocation is awaited before the caller finishes. Languages like
C# or Javascript do not enforce the latter constraint, but it is considered bad
practice due to possible exceptions that may arise in the invoked task and are
not caught. We forbid passing task identifiers as method parameters (which is
possible in C#). A statement await 𝑟 is said to match a statement 𝑟 := call 𝑚′.

async method m {
while *

r = call m1;

await r;
}

async method m {
r = call m1;

if *
await r;

}

async method m {
r = call m1;
while *

r’ = call m1;
await r’;

await r;
}

Fig. 5: Examples of programs

In Fig. 5, we give three
examples of programs to ex-
plain in more details the
well-formedness syntactic con-
straints. The program on the
left of Fig. 5 does not sat-
isfy the second condition since
await r can be reached without entering the loop. The program in the center
of Fig. 5 does not satisfy the third condition since we can reach the end of the
method without entering the if branch and thus, without executing await r.
The program on the right of Fig. 5 satisfies both conditions.

Semantics. A program configuration is a tuple (g, stack, pend, cmpl, c-by,w-for)
where g is composed of the valuation of the program variables excluding the
program counter, stack is the call stack, pend is the set of asynchronous tasks,
e.g., continuations predicated on the completion of some method call, cmpl is
the set of completed tasks, c-by represents the relation between a method call
and its caller, and w-for represents the control dependencies imposed by await

statements. The activation frames in the call stack and the asynchronous tasks
are represented using triples (𝑖,𝑚, ℓ) where 𝑖 ∈ T is a task identifier, 𝑚 ∈ M
is a method name, and ℓ is a valuation of local variables, including as usual
a dedicated program counter. The set of completed tasks is represented as a
function cmpl : T → {⊤,⊥} such that cmpl(𝑖) = ⊤ when 𝑖 is completed and
cmpl(𝑖) =⊥, otherwise. We define c-by and w-for as partial functions T ⇀ T with
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the meaning that c-by(𝑖) = 𝑗, resp., w-for(𝑖) = 𝑗, iff 𝑖 is called by 𝑗, resp., 𝑖 is
waiting for 𝑗. We set w-for(𝑖) = * if the task 𝑖 was interrupted because of an
await * statement.

The semantics of a program 𝑃 is defined as a labeled transition system (LTS)
[𝑃 ] = (C,Act, ps0,→) where C is the set of program configurations, Act is a
set of transition labels called actions, ps0 is the initial configuration, and →⊆
C × Act × C is the transition relation. Each program statement is interpreted
as a transition in [𝑃 ]. The set of actions is defined by (Aid is a set of action
identifiers):

Act ={(aid , 𝑖, ev) : aid ∈ Aid, 𝑖 ∈ T, ev ∈ {rd(𝑥),wr(𝑥), call(𝑗), await(𝑘), return,

cont : 𝑗 ∈ T, 𝑘 ∈ T ∪ {*}, 𝑥 ∈ PV}}

The transition relation → is defined in Fig. 6. Transition labels are written
on top of →.

Transitions labeled by (aid , 𝑖, rd(𝑥)) and (aid , 𝑖,wr(𝑥)) represent a read and
a write accesses to the program variable 𝑥, respectively, executed by the task
(method call) with identifier 𝑖. A transition labeled by (aid , 𝑖, call(𝑗)) corresponds
to the fact that task 𝑖 executes a method call that results in creating a task 𝑗.
Task 𝑗 is added on the top of the stack of currently executing tasks, declared
pending (setting cmpl(𝑗) to ⊥), and c-by is updated to track its caller (c-by(𝑗) =
𝑖). A transition (aid , 𝑖, return) represents the return from task 𝑖. Task 𝑖 is removed
from the stack of currently executing tasks, and cmpl(𝑖) is set to ⊤ to record the
fact that task 𝑖 is finished.

A transition (aid , 𝑖, await(𝑗)) relates to task 𝑖 waiting asynchronously for
task 𝑗. Its effect depends on whether task 𝑗 is already completed. If this is
the case (i.e., cmpl[𝑗] = ⊤), task 𝑖 continues and executes the next statement.
Otherwise, task 𝑖 executing the await is removed from the stack and added to
the set of pending tasks, and w-for is updated to track the waiting-for rela-
tionship (w-for(𝑖) = 𝑗). Similarly, a transition (aid , 𝑖, await(*)) corresponds to
task 𝑖 waiting asynchronously for the completion of an unspecified task. Non-
deterministically, task 𝑖 continues to the next statement, or task 𝑖 is interrupted
and transferred to the set of pending tasks (w-for(𝑖) is set to *).

A transition (aid , 𝑖, cont) represents the scheduling of the continuation of
task 𝑖. There are two cases depending on whether 𝑖 waited for the completion
of another task 𝑗 modeled explicitly in the language (i.e., w-for(𝑖) = 𝑗), or an
unspecified task (i.e., w-for(𝑖) = *). In the first case, the transition is enabled
only when the call stack is empty and 𝑗 is completed. In the second case, the
transition is always enabled. The latter models the fact that methods implement-
ing IO operations (waiting for unspecified tasks in our language) are executed
in background threads and can interleave with the main thread (that executes
the Main method). Although this may seem restricted because we do not allow
arbitrary interleavings between IO methods and Main, this is actually sound
when focusing on the existence of data races as in our approach. As shown later
in Table 1, any two instructions that follow an await * are not happens-before
related and form a race.
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r := x ∈ inst(ℓ(pc)) aid ∈ Aid fresh ℓ′ = ℓ[𝑟 ↦→ g(𝑥), pc ↦→ next(ℓ(pc))]

(g, (𝑖,𝑚, ℓ) ∘ stack, , , , )
(aid, 𝑖, rd(𝑥))−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ∘ stack, , , , )

x := le ∈ inst(ℓ(pc)) aid ∈ Aid fresh ℓ′ = ℓ[pc ↦→ next(ℓ(pc))] g′ = g[𝑥 ↦→ ℓ(le)]

(g, (𝑖,𝑚, ℓ) ∘ stack, , , , )
(aid, 𝑖, wr(𝑥))−−−−−−−−−→ (g′, (𝑖,𝑚, ℓ′) ∘ stack, , , , )

𝑟 := call 𝑚 ∈ inst(ℓ(pc)) aid ∈ Aid fresh ℓ0 = init(g,𝑚) 𝑗 ∈ T fresh

ℓ′ = ℓ[𝑟 ↦→ 𝑗, pc ↦→ next(ℓ(pc))] cmpl′ = cmpl[𝑗 ↦→⊥] c-by′ = c-by[𝑗 ↦→ 𝑖]

(g, (𝑖,𝑚′, ℓ) ∘ stack, , cmpl, c-by, )
(aid, 𝑖, call(𝑗))−−−−−−−−−→ (g, (𝑗,𝑚, ℓ0) ∘ (𝑖,𝑚′, ℓ′) ∘ stack, , cmpl′, c-by′, )

return ∈ inst(ℓ(pc)) aid ∈ Aid fresh cmpl′ = cmpl[𝑖 ↦→ ⊤]

(g, (𝑖,𝑚, ℓ) ∘ stack, , cmpl, , )
(aid, 𝑖, return)−−−−−−−−→ (g, stack, , cmpl′, , )

await r ∈ inst(ℓ(pc)) aid ∈ Aid fresh cmpl(ℓ(𝑟)) = ⊤ ℓ′ = ℓ[pc ↦→ next(ℓ(pc))]

(g, (𝑖,𝑚, ℓ) ∘ stack, , cmpl, , )
(aid, 𝑖, await(ℓ(𝑟)))−−−−−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ∘ stack, , cmpl, , )

await r ∈ inst(ℓ(pc)) aid ∈ Aid fresh cmpl(ℓ(𝑟)) =⊥ w-for′ = w-for[𝑖 ↦→ ℓ(𝑟)]

ℓ′ = ℓ[pc ↦→ next(ℓ(pc))]

(g, (𝑖,𝑚, ℓ) ∘ stack, pend, cmpl, ,w-for)
(aid, 𝑖, await(ℓ(𝑟)))−−−−−−−−−−−−→ (g, stack, {(𝑖,𝑚, ℓ′)} ⊎ pend, cmpl, ,w-for′)

await * ∈ inst(ℓ(pc)) aid ∈ Aid fresh ℓ′ = ℓ[pc ↦→ next(ℓ(pc))]

(g, (𝑖,𝑚, ℓ) ∘ stack, , , , )
(aid, 𝑖, await(*))−−−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ∘ stack, , , , )

await * ∈ inst(ℓ(pc)) aid ∈ Aid fresh w-for′ = w-for[𝑖 ↦→ *] ℓ′ = ℓ[pc ↦→ next(ℓ(pc))]

(g, (𝑖,𝑚, ℓ) ∘ stack, pend, , ,w-for)
(aid, 𝑖, await(*))−−−−−−−−−−→ (g, stack, {(𝑖,𝑚, ℓ′)} ⊎ pend, , ,w-for′)

aid ∈ Aid fresh w-for(𝑖) = 𝑗 cmpl(𝑗) = ⊤

(g, 𝜖, {(𝑖,𝑚, ℓ)} ⊎ pend, cmpl, ,w-for)
(aid, 𝑖, cont)−−−−−−−−→ (g, (𝑖,𝑚, ℓ), pend, cmpl, ,w-for)

aid ∈ Aid fresh w-for(𝑖) = *

(g, stack, {(𝑖,𝑚, ℓ)} ⊎ pend, , ,w-for)
(aid, 𝑖, cont)−−−−−−−−→ (g, (𝑖,𝑚, ℓ) ∘ stack, pend, , ,w-for)

Fig. 6: Program semantics. For a function 𝑓 , we use 𝑓 [𝑎 ↦→ 𝑏] to denote a function
𝑔 such that 𝑔(𝑐) = 𝑓(𝑐) for all 𝑐 ̸= 𝑎 and 𝑔(𝑎) = 𝑏. The function inst returns the
instruction at some given control location while next gives the next instruction
to execute. We use ∘ to denote sequence concatenation and init to denote the
initial state of a method call.

By the definition of →, every action a ∈ Act ∖ {( , , cont)} corresponds to
executing some statement in the program, which is denoted by S(𝑎).

An execution of 𝑃 is a sequence 𝜌 = ps0
a1−→ ps1

a2−→ . . . of transitions starting
in the initial configuration ps0 and leading to a configuration ps where the call
stack and the set of pending tasks are empty. C[𝑃 ] denotes the set of all program
variable valuations included in configurations that are reached in executions of 𝑃 .
Since we are only interested in reasoning about the sequence of actions a1 ·a2 · . . .
labeling the transitions of an execution, we will call the latter an execution as
well. The set of executions of a program 𝑃 is denoted by Ex(𝑃 ).

Traces. The trace of execution 𝜌 ∈ Ex(𝑃 ) is a tuple tr(𝜌) = (𝜌,MO,CO,SO,HB)
of strict partial orders between the actions in 𝜌 defined in Table 1. The method
invocation order MO records the order between actions in the same invocation,
and the call order CO is an extension of MO that additionally orders actions be-
fore an invocation with respect to those inside that invocation. The synchronous
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happens-before order SO orders the actions in an execution as if all the invoca-
tions were synchronous (even if the execution may contain asynchronous ones).
It is an extension of CO where additionally, every action inside a callee is or-
dered before the actions following its invocation in the caller. The (asynchronous)
happens-before order HB contains typical control-flow constraints: it is an exten-
sion of CO where every action 𝑎 inside an asynchronous invocation is ordered
before the corresponding await in the caller, and before the actions following its
invocation in the caller if 𝑎 precedes the first5 await in MO (an invocation can
be interrupted only when executing an await) or if the callee does not contain
an await (it is synchronous). Tr(𝑃 ) is the set of traces of 𝑃 .

Table 1: Strict partial orders included in a trace. CO, SO, and HB are the smallest
satisfying relations.

a1 <𝜌 a2 a1 occurs before a2 in 𝜌 and a1 ̸= a2

a1 ∼ a2 a1 = ( , 𝑖, ) and a2 = ( , 𝑖, )

(a1, a2) ∈ MO a1 ∼ a2 ∧ a1 <𝜌 a2
(a1, a2) ∈ CO (a1, a2) ∈ MO ∨ (a1 = ( , 𝑖, call(𝑗)) ∧ a2 = ( , 𝑗, ))

∨ (∃ a3. (a1, a3) ∈ CO ∧ (a3, a2) ∈ CO)

(a1, a2) ∈ SO (a1, a2) ∈ CO ∨ (∃ a3. (a1, a3) ∈ SO ∧ (a3, a2) ∈ SO)
∨ (a1 = ( , 𝑗, ) ∧ a2 = ( , 𝑖, ) ∧ ∃ a3 = ( , 𝑖, call(𝑗)). a3 <𝜌 a2)

(a1, a2) ∈ HB (a1, a2) ∈ CO ∨ (∃ a3. (a1, a3) ∈ HB ∧ (a3, a2) ∈ HB)
∨ ( a1 = ( , 𝑗, ) ∧ a2 = ( , 𝑖, ) ∧ ∃ a3 = ( , 𝑖, await(𝑗)). a3 <𝜌 a2 )

∨ ( a1 = ( , 𝑗, await(𝑖′)) is the first await in 𝑗 ∧
a2 = ( , 𝑖, ) ∧ ∃ a3 = ( , 𝑖, call(𝑗)). a3 <𝜌 a2 )
∨ ( a1 = ( , 𝑗, ) ∧ ̸ ∃ ( , 𝑗, await( )) ∈ 𝜌 ∧

a2 = ( , 𝑖, ) ∧ ∃ a3 = ( , 𝑖, call(𝑗)). a3 <𝜌 a2 )

On the right of Fig. 1, we show a trace where two statements (represented
by the corresponding lines numbers) are linked by a dotted arrow if the corre-
sponding actions are related by MO, a dashed arrow if the corresponding actions
are related by CO but not by MO, and a solid arrow if the corresponding actions
are related by the HB but not by CO.

3 Synthesizing Asynchronous Programs

Given a synchronous program 𝑃 and a subset of base methods 𝐿 ⊆ 𝑃 , our goal
is to synthesize all asynchronous programs 𝑃𝑎 that are equivalent to 𝑃 and that
are obtained by substituting every method in 𝐿 with an equivalent asynchronous
version. The base methods are considered to be models of standard library calls
(e.g., IO operations) and asynchronous versions are defined by inserting await

* statements in their body. We use 𝑃 [𝐿] to emphasize a subset of base methods
𝐿 in a program 𝑃 . Also, we call 𝐿 a library. A library is called (a)synchronous
when all methods are (a)synchronous.

5 Code in between two awaits can execute before or after the control is returned to
the caller, depending on whether the first awaited task finished or not.
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Asynchronizations of a synchronous program. Let 𝑃 [𝐿] be a synchronous
program, and 𝐿𝑎 a set of asynchronous methods obtained from those in 𝐿 by
inserting at least one await * statement in their body (and adding the key-
word async). Each method in 𝐿𝑎 corresponds to a method in 𝐿 with the same
name, and vice-versa. 𝑃𝑎[𝐿𝑎] is called an asynchronization of 𝑃 [𝐿] with re-
spect to 𝐿𝑎 if it is a syntactically correct program obtained by replacing the
methods in 𝐿 with those in 𝐿𝑎 and adding await statements as necessary.

method m {
r1 = call m1;

r2 = x;
}

method m1 {

retVal = x;
x = input;
return; }

async method m {
r1 = call m1;
await r1;
r2 = x;

}
async method m1 {

await *
retVal = x;
x = input;
return; }

async method m {
r1 = call m1;

r2 = x;
await r1; }

async method m1 {
await *
retVal = x;
x = input;
return; }

Fig. 7: A program and its asynchronizations.

More precisely, let 𝐿* ⊆ 𝑃
be the set of all methods of
𝑃 that transitively call meth-
ods of 𝐿. Formally, 𝐿* is the
smallest set of methods that
includes 𝐿 and satisfies the
following: if a method 𝑚 calls
𝑚′ ∈ 𝐿*, then 𝑚 ∈ 𝐿*. Then,
𝑃𝑎[𝐿𝑎] is an asynchronization
of 𝑃 [𝐿] w.r.t. 𝐿𝑎 if it is ob-
tained from 𝑃 as follows:

– Each method in 𝐿 is replaced with the corresponding method from 𝐿𝑎.
– All methods in 𝐿* ∖𝐿 are declared as asynchronous (because every call to an

asynchronous method is followed by an await and any method using await

must be asynchronous).
– For each invocation 𝑟 := call 𝑚 of 𝑚 ∈ 𝐿*, add await statements await 𝑟

satisfying the well-formedness syntactic constraints described in Section 2.

Fig. 7 lists a synchronous program and its two asynchronizations, where 𝐿 =
{𝑚1} and 𝐿* = {𝑚,𝑚1}. Asynchronizations differ only in the await placement.

Asy[𝑃,𝐿, 𝐿𝑎] is the set of all asynchronizations of 𝑃 [𝐿] w.r.t. 𝐿𝑎. The strong
asynchronization strongAsy[𝑃,𝐿, 𝐿𝑎] is an asynchronization where every await

immediately follows the matching call. It reaches exactly the same set of program
variable valuations as 𝑃 .

Problem definition. We investigate the problem of enumerating all asynchro-
nizations of a given program w.r.t. a given asynchronous library, which are sound,
in the sense that they do not admit data races. Two actions a1 and a2 in a trace
𝜏 = (𝜌,MO,CO,SO,HB) are concurrent if (a1, a2) ̸∈ HB and (a2, a1) ̸∈ HB.

An ansynchronous program 𝑃𝑎 admits a data race (a1, a2), where (a1, a2) ∈
SO, if a1 and a2 are two concurrent actions of a trace 𝜏 ∈ Tr(𝑃𝑎), and a1 and
a2 are read or write accesses to the same program variable 𝑥, and at least one
of them is a write. We write data races as ordered pairs w.r.t. SO to simplify
the definition of the algorithms in the next sections. Also, note that traces of
synchronous programs can not contain concurrent actions, and therefore they
do not admit data races. strongAsy[𝑃,𝐿, 𝐿𝑎] does not admit data races as well.

𝑃𝑎[𝐿𝑎] is called sound when it does not admit data races. The absence of
data races implies equivalence to the original program, in the sense of reaching
the same set of configurations (program variable valuations).
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Definition 1. For a synchronous program 𝑃 [𝐿] and asynchronous library 𝐿𝑎,
the asychronization synthesis problem asks to enumerate all sound asynchro-
nizations in Asy[𝑃,𝐿, 𝐿𝑎].

4 Enumerating Sound Asynchronizations

We present an algorithm for solving asynchronization synthesis, which relies on
a partial order between asynchronizations that guides the enumeration of pos-
sible solutions. The partial order takes into account the distance between calls
and corresponding awaits. Fig. 8 pictures the partial order for asynchroniza-
tions of the program on the left of Fig. 1. Each asynchronization is written as

(2, 1)

(1, 1)(2, 0)

(1, 0) (0, 1)

(0, 0)

Fig. 8

a vector of distances, the first (second) element is the number
of statements between await t1 (await t) and the matching
call (we count only statements that appear in the sequential
program). The edges connect comparable elements, smaller ele-
ments being below bigger elements. The asynchronization on the
middle of Fig. 1 corresponds to the vector (1, 1). The highlighted
elements constitute the set of all sound asynchronizations. The
strong asynchronization corresponds to the vector (0, 0).

Formally, an await statement s𝑤 in a method 𝑚 of an asyn-
chronization 𝑃𝑎[𝐿𝑎] ∈ Asy[𝑃,𝐿, 𝐿𝑎] covers a read/write statement s in 𝑃 if
there exists a path in the CFG of 𝑚 from the call statement matching s𝑤 to
s𝑤 that contains s. The set of statements covered by an await s𝑤 is denoted by
Cover(s𝑤). We compare asynchronizations in terms of sets of statements covered
by awaits that match the same call from the synchronous program 𝑃 [𝐿]. Since
asynchronizations are obtained by adding awaits, every call in asynchroniza-
tion 𝑃𝑎[𝐿𝑎] ∈ Asy[𝑃,𝐿, 𝐿𝑎] corresponds to a fixed call in 𝑃 [𝐿]. Therefore, for
two asynchronizations 𝑃𝑎, 𝑃

′
𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎], 𝑃𝑎 is smaller than 𝑃 ′

𝑎, denoted
by 𝑃𝑎 ≤ 𝑃 ′

𝑎, iff for every await s𝑤 in 𝑃𝑎, there exists an await s ′𝑤 in 𝑃 ′
𝑎 that

matches the same call as s𝑤, such that Cover(s𝑤) ⊆ Cover(s ′𝑤). For example, the
two asynchronous programs in Fig. 7 are ordered by ≤ since Cover(await 𝑟1) = {}
in the first and Cover(await 𝑟1) = {r2 = x} in the second. Note that the strong
asynchronization is smaller than every other asynchronization. Also, note that
≤ has a unique maximal element that is called the weakest asynchronization and
denoted by wkAsy[𝑃,𝐿, 𝐿𝑎]. In Fig. 8, the weakest asynchronization corresponds
to the vector (2, 1).

In the following, we say moving an await down (resp., up) when moving the
await further away from (resp. closer to) the matching call while preserving well-
formedness conditions in Section 2. Further away or closer to means increasing
or decreasing the set of statements that are covered by the await. For instance,
if an await s𝑤 in a program 𝑃𝑎 is preceded by a while loop, then moving it up
means moving it before the whole loop and not inside the loop body. Otherwise,
the third well-formedness condition would be violated.
Relative Maximality. A crucial property of this partial order is that for every
asynchronization 𝑃𝑎, there exists a unique maximal asynchronization that is
smaller than 𝑃𝑎 and that is sound. Formally, an asynchronization 𝑃 ′

𝑎 is called a
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Algorithm 1 An algorithm for enumerating all sound asynchronizations (these
asynchronizations are obtained as a result of the output instruction). MaxRel
returns the maximal asynchronization of 𝑃 relative to 𝑃𝑎

1: procedure AsySyn(𝑃𝑎, s𝑤)
2: 𝑃 ′

𝑎 ←MaxRel(𝑃𝑎);
3: output 𝑃 ′

𝑎;
4: 𝒫 ← ImPred(𝑃 ′

𝑎, s𝑤);
5: for each (𝑃 ′′

𝑎 , s
′′
𝑤) ∈ 𝒫

6: AsySyn(𝑃 ′′
𝑎 , s

′′
𝑤);

maximal asynchronization of 𝑃 relative to 𝑃𝑎 if (1) 𝑃 ′
𝑎 ≤ 𝑃𝑎, 𝑃 ′

𝑎 is sound, and
(2) ∀ 𝑃 ′′

𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎]. 𝑃 ′′
𝑎 is sound and 𝑃 ′′

𝑎 ≤ 𝑃𝑎 ⇒ 𝑃 ′′
𝑎 ≤ 𝑃 ′

𝑎.

Lemma 1. Given an asynchronization 𝑃𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎], there exists a unique
program 𝑃 ′

𝑎 that is a maximal asynchronization of 𝑃 relative to 𝑃𝑎.

The asynchronization 𝑃 ′
𝑎 exists because the bottom element of ≤ is sound.

To prove uniqueness, assume by contradiction that there exist two incomparable
maximal asynchronizations 𝑃 1

𝑎 and 𝑃 2
𝑎 and select the first await s1𝑤 w.r.t. the

control-flow of the sequential program that is placed in different positions in the
two programs. Assume that s1𝑤 is closer to its matching call in 𝑃 1

𝑎 . Then, we
move s1𝑤 in 𝑃 1

𝑎 further away from its matching call to the same position as in
𝑃 2
𝑎 . This modification does not introduce data races since 𝑃 2

𝑎 is data race free.
Thus, the resulting program is data race free, bigger than 𝑃 1

𝑎 , and smaller than
𝑃𝑎 w.r.t. ≤ contradicting the fact that 𝑃 1

𝑎 is a maximal asynchronization.

4.1 Enumeration Algorithm

Our algorithm for enumerating all sound asynchronizations is given in Algo-
rithm 1 as a recursive procedure AsySyn that we describe in two phases.

First, ignore the second argument of AsySyn (in blue), which represents an
await statement. For an asynchronization 𝑃𝑎, AsySyn outputs all sound asyn-
chronizations that are smaller than 𝑃𝑎. It uses MaxRel to compute the maximal
asynchronization 𝑃 ′

𝑎 of 𝑃 relative to 𝑃𝑎, and then, calls itself recursively for all
immediate predecessors of 𝑃 ′

𝑎. AsySyn outputs all sound asynchronizations of
𝑃 when given as input the weakest asynchronization of 𝑃 .

async method m {
r1 = call m1;
r2 = x;
await r1; }

async method m1 {
r3 = call m2;
x = x + 1;
await r3; }

async method m2 {
await *
retVal = input;
return; }

async method m {
r1 = call m1;
r2 = x;
await r1; }

async method m1 {
r3 = call m2;
await r3;
x = x + 1; }

async method m2 {
await *
retVal = input;
return; }

Fig. 9: Asynchronizations.

Recursive calls on immediate pre-
decessors are necessary because the
set of sound asynchronizations is not
downward-closed w.r.t. ≤. For instance,
the asynchronization on the right of
Fig. 9 is an immediate predecessor of the
sound asynchronization on the left but it
has a data race on 𝑥.

The delay complexity of this algo-
rithm remains exponential in general,
since a sound asynchronization may be
outputted multiple times. Asynchronizations are only partially ordered by ≤ and
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different chains of recursive calls starting in different immediate predecessors
may end up outputting the same solution. For instance, for the asynchroniza-
tions in Fig. 8, the asynchronization (0, 0) will be outputted twice because it is
an immediate predecessor of both (1, 0) and (0, 1).

To avoid this redundancy, we use a refinement of the above that restricts
the set of immediate predecessors available for a (recursive) call of AsySyn.
This is based on a strict total order ≺𝑤 between awaits in a program 𝑃𝑎 that
follows a topological ordering of its inter-procedural CFG, i.e., if s𝑤 occurs before
s ′𝑤 in the body of a method 𝑚, then s𝑤 ≺𝑤 s ′𝑤, and if s𝑤 occurs in a method
𝑚 and s ′𝑤 occurs in a method 𝑚′ s.t. 𝑚 (indirectly) calls 𝑚′, then s𝑤 ≺𝑤 s ′𝑤.
Therefore, AsySyn takes an await statement s𝑤 as a second parameter, which
is initially the maximal element w.r.t. ≺𝑤, and it calls itself only on immediate
predecessors of a solution obtained by moving up an await s ′′𝑤 smaller than or
equal to s𝑤 w.r.t. ≺𝑤. The recursive call on that predecessor will receive as input
s ′′𝑤. Formally, this relies on a function ImPred that returns pairs of immediate
predecessors and await statements defined as follows:

ImPred(𝑃 ′
𝑎, s𝑤) = {(𝑃 ′′

𝑎 , s
′′
𝑤) : 𝑃

′′
𝑎 < 𝑃 ′

𝑎 and ∀𝑃 ′′′
𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎].𝑃

′′′
𝑎 < 𝑃 ′

𝑎 ⇒ 𝑃 ′′′
𝑎 ≤ 𝑃 ′′

𝑎

and s ′′𝑤 ⪯𝑤 s𝑤 and 𝑃 ′′
𝑎 ∈ 𝑃 ′

𝑎 ↑ s ′′𝑤 }

(𝑃 ′
𝑎 ↑ s ′′𝑤 is the set of asynchronizations obtained from 𝑃 ′

𝑎 by changing only the
position of s ′′𝑤, moving it up w.r.t. the position in 𝑃 ′

𝑎). For instance, looking
at immediate predecessors of (1, 1) in Fig. 8, (0, 1) is obtained by moving the
first await in ≺𝑤. Therefore, the recursive call on (0, 1) computes the maximal
asynchronization relative to (0, 1), which is (0, 1), and stops (ImPred returns ∅
because the input s𝑤 is the minimal element of ≺𝑤, and already immediately
after the call). Its immediate predecessor is explored when recursing on (1, 0).

Algorithm 1 outputs all sound asynchronizations because after having com-
puted a maximal asynchronization 𝑃 ′

𝑎 in a recursive call with parameter s𝑤, any
smaller sound asynchronization is smaller than a predecessor in ImPred(𝑃 ′

𝑎, s𝑤).
Also, it can not output the same asynchonization twice. Let 𝑃 1

𝑎 and 𝑃 2
𝑎 be two

predecessors in ImPred(𝑃 ′
𝑎, s𝑤) obtained by moving up the awaits s1𝑤 and s2𝑤,

respectively, and assume that s1𝑤≺𝑤s
2
𝑤. Then, all solutions computed in the re-

cursive call on 𝑃 1
𝑎 will have s2𝑤 placed as in 𝑃 ′

𝑎 while all the solutions computed
in the recursive call on 𝑃 2

𝑎 will have s2𝑤 closer to the matching call. Therefore,
the sets of solutions computed in these two recursion branches are distinct.

Theorem 1. AsySyn(wkAsy[𝑃,𝐿, 𝐿𝑎], s𝑤) where s𝑤 is the maximal await in
wkAsy[𝑃,𝐿, 𝐿𝑎] w.r.t. ≺𝑤 outputs all sound asynchronizations of 𝑃 [𝐿] w.r.t. 𝐿𝑎.

The delay complexity of Algorithm 1 is polynomial time modulo an oracle
that returns a maximal asynchronization relative to a given one. In the next
section, we show that the latter problem can be reduced in polynomial time to
the reachability problem in sequential programs.
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5 Computing Maximal Asynchronizations

In this section, we present an implementation of the procedure MaxRel that
relies on a reachability oracle. In particular, we first describe an approach for
computing the maximal asynchronization relative to a given asynchronization
𝑃𝑎, which can be seen as a way of repairing 𝑃𝑎 so that it becomes data-race
free. Intuitively, we repeatedly eliminate data races in 𝑃𝑎 by moving certain
await statements closer to the matching calls. The data races in 𝑃𝑎 (if any) are
enumerated in a certain order that prioritizes data races between actions that
occur first in executions of the original synchronous program. This order allows
to avoid superfluous repair steps.

5.1 Data Race Ordering

An action a representing a read/write access in a trace 𝜏 of an asynchronization
𝑃𝑎 of 𝑃 is synchronously reachable if there is an action a ′ in a trace 𝜏 ′ of 𝑃
that represents the same statement, i.e., S(a) = S(a ′). It can be proved that
any trace of an asynchronization contains a data race if it contains a data race
between two synchronously reachable actions (see Appendix C). In the following,
we focus on data races between actions that are synchronously reachable.

We define an order between such data races based on the order between
actions in executions of the original synchronous program 𝑃 . This order relates
data races in possibly different executions or asynchronizations of 𝑃 , which is
possible because each action in a data race corresponds to a statement in 𝑃 .

For two read/write statements s and s ′, s ≺ s ′ denotes the fact that there
is an execution of 𝑃 in which the first time s is executed occurs before the
first time s ′ is executed. For two actions a and a ′ in an execution/trace of an
asynchronization, generated by two read/write statements s = S(𝑎) and s ′ =
S(𝑎′), a ≺SO a ′ holds if s ≺ s ′ and either s ′ ̸≺ s or s ′ is reachable from s in the
interprocedural6 control-flow graph of 𝑃 without taking any back edge7. For a
deterministic synchronous program (admitting a single execution), a ≺SO a ′ iff
S(𝑎) ≺ S(𝑎′). For non-deterministic programs, when S(𝑎) and S(𝑎′) are contained
in a loop body, it is possible that S(𝑎) ≺ S(𝑎′) and S(𝑎′) ≺ S(𝑎). In this case, we
use the control-flow order to break the tie between a and a ′.

The order between data races corresponds to the colexicographic order in-
duced by ≺SO. This is a partial order since actions may originate from different
control-flow paths and are incomparable w.r.t. ≺SO.

Definition 2 (Data Race Order). Given two races (a1, a2) and (a3, a4) ad-
mitted by (possibly different) asynchronizations of a synchronous program 𝑃 , we
have that (a1, a2) ≺SO (a3, a4) iff a2 ≺SO a4, or a2 = a4 and a1 ≺SO a3.

6 The interprocedural graph is the union of the control-flow graphs of each method
along with edges from call sites to entry nodes, and from exit nodes to return sites.

7 A back edge points to a block that has already been met during a depth-first traversal
of the control-flow graph, and corresponds to loops.
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Repairing a minimal data race (a1, a2) w.r.t. ≺SO removes any other data race
(a1, a4) with (a2, a4) ∈ HB (note that we cannot have (a4, a2) ̸∈ HB since a2 ≺SO

a4). The repair will enforce that (a1, a2) ∈ HB which implies that (a1, a4) ∈ HB.

5.2 Repairing Data Races

Repairing a data race (a1, a2) reduces to modifying the position of a certain
await. We consider only repairs where awaits are moved up (closer to the match-
ing call). The “completeness” of this set of repairs follows from the particular
order in which we enumerate data races.

async method m2 { 
  
  s2: … ;

}

async method m1 { 
  
  s1: … ;

}

async method m {
 
 sc: r1 = call m1;
  
 s: r2 = call m2; 

 sw: await r1;

}

Fig. 10: A data race repair.

Let s1 and s2 be the statements generating a1
and a2. In general, there exists a method 𝑚 that
(transitively) calls another asynchronous method
𝑚1 that contains s1 and before awaiting for 𝑚1
it (transitively) calls a method 𝑚2 that executes
s2. This is pictured in Fig. 10. It is also possible
that 𝑚 itself contains s2 (see the program on the
right of Fig. 7). The repair consists in moving the
await for 𝑚1 before the call to 𝑚2 since this im-
plies that s1 will always execute before s2 (and the
corresponding actions are related by happens-before).

Formally, any two racing actions have a common ancestor in the call order
CO which is a call action. The least common ancestor of a1 and a2 in CO among
call actions is denoted by LCACO(a1, a2). In Fig. 10, it corresponds to the call
statement s𝑐. More precisely, LCACO(a1, a2) is a call action a𝑐 = ( , 𝑖, call(𝑗)) s.t.
(a𝑐, a1) ∈ CO, (a𝑐, a2) ∈ CO, and for each other call action a ′

𝑐, if (a𝑐, a
′
𝑐) ∈ CO

then (a ′
𝑐, a1) ̸∈ CO. This call action represents an asynchronous call for which

the matching await s𝑤 must move to repair the data race. The await should
be moved before the last statement in the same method generating an action
which precedes a2 in the reflexive closure of call order (statement s in Fig. 10).
This way every statement that follows s𝑐 in call order will be executed before s
and before any statement which succeeds s in call order, including s2. Note that
moving the await s𝑤 anywhere after s will not affect the concurrency between
a1 and a2.

The pair (s𝑐, s) is called the root cause of the data race (𝑎1, 𝑎2). We denote
by RDR(𝑃𝑎, s𝑐, s) the maximal asynchronization 𝑃 ′

𝑎 smaller than 𝑃𝑎 w.r.t. ≤, s.t.
no await statement matching s𝑐 occurs after s on a CFG path.

5.3 A Procedure for Computing Maximal Asynchronizations

Given an asynchronization 𝑃𝑎, the procedure MaxRel in Algorithm 2 computes
the maximal asynchronization relative to 𝑃𝑎 by repairing data races iteratively
until the program becomes data race free. The sub-procedure RCMinDR(𝑃 ′

𝑎)
computes the root cause of a minimal data race (a1, a2) of 𝑃 ′

𝑎 w.r.t. ≺SO such
that the two actions are synchronously reachable. If 𝑃 ′

𝑎 is data race free, then
RCMinDR(𝑃 ′

𝑎) returns ⊥. The following theorem states the correctness of
MaxRel.



Automated Synthesis of Asynchronizations 17

Algorithm 2 The procedure MaxRel to find the maximal asynchronization of
𝑃 relative to 𝑃𝑎.

1: procedure MaxRel(𝑃𝑎)
2: 𝑃 ′

𝑎 ← 𝑃𝑎

3: root ← RCMinDR(𝑃 ′
𝑎)

4: while root ̸= ⊥
5: 𝑃 ′

𝑎 ← RDR(𝑃 ′
𝑎, root)

6: root ← RCMinDR(𝑃 ′
𝑎)

7: return 𝑃 ′
𝑎

Theorem 2. Given an asynchronization 𝑃𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎], MaxRel(𝑃𝑎) re-
turns the maximal asynchronization of 𝑃 relative to 𝑃𝑎.

MaxRel(𝑃𝑎) repairs a number of data races which is linear in the size of
the input. Indeed, each repair results in moving an await closer to the matching
call and before at least one more statement from the original program 𝑃 .

The problem of computing root causes of minimal data races is reducible to
reachability (assertion checking) in sequential programs. This reduction builds
on a program instrumentation for checking if there exists a data race that in-
volves two given statements (s1, s2) that are reachable in an executions of 𝑃 .This
instrumentation is used in an iterative process where pairs of statements are
enumerated according to the colexicographic order induced by ≺. For lack of
space, we present only the main ideas of the instrumentation (see Appendix D).
The instrumentation simulates executions of an asynchronization 𝑃𝑎 using non-
deterministic synchronous code where methods may be only partially executed
(modeling await interruptions). Immediately after executing s1, the current in-
vocation 𝑡1 is interrupted (by executing a return added by the instrumentation).
The active invocations that transitively called 𝑡1 are also interrupted when reach-
ing an await for an invocation in this call chain (the other invocations are ex-
ecuted until completion as in the synchronous semantics). When reaching s2, if
s1 has already been executed and at least one invocation has been interrupted,
which means that s1 is concurrent with s2, then the instrumentation stops with
an assertion violation. The instrumentation also computes the root cause of the
data race using additional variables for tracking call dependencies.

6 Asymptotic Complexity of Asynchronization Synthesis

We state the complexity of the asynchronization synthesis problem. Algorithm 1
shows that the delay complexity of this problem is polynomial-time in the num-
ber of statements in input program modulo the complexity of computing a
maximal asynchronization, which Algorithm 2 shows to be polynomial-time re-
ducible to reachability in sequential programs. Since the reachability problem is
PSPACE-complete for finite-state sequential programs [15], we get the following:

Theorem 3. The output complexity8 and delay complexity of the asynchroniza-
tion synthesis problem is polynomial time modulo an oracle for reachability in
sequential programs, and PSPACE for finite-state programs.

8 Note that all asynchronizations can be enumerated with polynomial space.
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This result is optimal, i.e., checking whether there exists a sound asynchro-
nization which is different from the trivial strong synchronization is PSPACE-
hard (follows from a reduction from the reachability problem). See Appendices D
and E for the detailed formal proofs.

7 Asynchronization Synthesis Using Data-Flow Analysis

In this section, we present a refinement of Algorithm 2 that relies on a bottom-
up inter-procedural data flow analysis. The analysis is used to compute maximal
asynchronizations for abstractions of programs where every Boolean condition
(in if-then-else or while statements) is replaced with the non-deterministic choice
*, and used as an implementation of MaxRel in Algorithm 1.

For a program 𝑃 , we define an abstraction 𝑃# where every conditional if
⟨𝑙𝑒⟩ {𝑆1} else {𝑆2} is rewritten to if * {𝑆1} else {𝑆2}, and every while ⟨𝑙𝑒⟩
{𝑆} is rewritten to if * {𝑆}. Besides adding the non-deterministic choice *,
loops are unrolled exactly once. Every asynchronization 𝑃𝑎 of 𝑃 corresponds to
an abstraction 𝑃#

𝑎 obtained by applying exactly the same rewriting. 𝑃# is a
sound abstraction of 𝑃 in terms of sound asynchronizations it admits. Unrolling
loops once is sound because every asynchronous call in a loop iteration should
be awaited for in the same iteration (see the syntactic constraints in Section 2).

Theorem 4. If 𝑃#
𝑎 is a sound asynchronization of 𝑃# w.r.t. 𝐿𝑎, then 𝑃𝑎 is a

sound asynchronization of 𝑃 w.r.t. 𝐿𝑎.

The procedure for computing maximal asynchronizations of 𝑃# relative to
a given asynchronization 𝑃#

𝑎 traverses methods of 𝑃#
𝑎 in a bottom-up fashion,

detects data races using summaries of read/write accesses computed using a
straightforward data-flow analysis, and repairs data races using the schema pre-
sented in Section 5.2. Applying this procedure to a real programming language
requires an alias analysis to detect statements that may access the same memory
location (this is trivial in our language which is used to simplify the exposition).

We consider an enumeration of methods called bottom-up order, which is the
reverse of a topological ordering of the call graph9. For each method 𝑚, let ℛ(𝑚)
be the set of program variables that 𝑚 can read, which is defined as the union
of ℛ(𝑚′) for every method 𝑚′ called by 𝑚 and the set of program variables
read in statements in the body of 𝑚. The set of variables 𝒲(𝑚) that 𝑚 can
write is defined in a similar manner. We define RW-var(𝑚) = (ℛ(𝑚),𝒲(𝑚)).
We extend the notation RW-var to statements as follows: RW-var(⟨𝑟⟩ := ⟨𝑥⟩) =
({𝑥}, ∅), RW-var(⟨𝑥⟩ := ⟨𝑙𝑒⟩) = (∅, {𝑥}), RW-var(𝑟 := call 𝑚) = RW-var(𝑚),
and RW-var(s) = (∅, ∅), for any other type of statement 𝑠. Also, let CRW-var(𝑚)
be the set of read or write accesses that 𝑚 can do and that can be concurrent
with accesses that a caller of 𝑚 can do after calling 𝑚. These correspond to
read/write statements that follow an await in 𝑚, or to accesses in CRW-var(𝑚′)
for a method 𝑚′ called by 𝑚. These sets of accesses can be computed using the

9 The nodes of the call graph are methods and there is an edge from a method 𝑚1 to
a method 𝑚2 if 𝑚1 contains a call statement that calls 𝑚2.
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following data-flow analysis: for all methods 𝑚 ∈ 𝑃#
𝑎 in bottom-up order, and

for each statement s in the body of 𝑚 from begin to end,

– if s is a call to 𝑚′ and s is not reachable from an await in the CFG of 𝑚

∙ CRW-var(𝑚)← CRW-var(𝑚) ∪ CRW-var(𝑚′)

– if s is reachable from an await statement in the CFG of 𝑚

∙ CRW-var(𝑚)← CRW-var(𝑚) ∪ RW-var(s)

We use (ℛ1,𝒲1) ◁▷ (ℛ2,𝒲2) to denote the fact that 𝒲1 ∩ (ℛ2 ∪ 𝒲2) ̸= ∅ or
𝒲2 ∩ (ℛ1 ∪𝒲1) ̸= ∅ (i.e., a conflict between read/write accesses). We define the
procedure MaxRel# that given an asynchronization 𝑃#

𝑎 works as follows:

– for all methods 𝑚 ∈ 𝑃#
𝑎 in bottom-up order, and for each statement s in

the body of 𝑚 from begin to end,
∙ if s occurs between 𝑟 := call 𝑚′ and await 𝑟 (for some 𝑚′), and
RW-var(s) ◁▷ CRW-var(𝑚′), then 𝑃#

𝑎 ← RDR(𝑃#
𝑎 , 𝑟 := call 𝑚′, 𝑠)

– return 𝑃#
𝑎

Theorem 5. The procedure MaxRel#(𝑃#
𝑎 ) returns a maximal asynchroniza-

tion relative to 𝑃#
𝑎 .

Since MaxRel# is based on a single bottom-up traversal of the call graph
of the input asynchronization 𝑃#

𝑎 we get the following result.

Theorem 6. The delay complexity of the asynchronization synthesis problem
restricted to abstracted programs 𝑃# is polynomial time.

8 Experimental Evaluation

We present an empirical evaluation of our asynchronization synthesis approach,
where maximal asynchronizations are computed using the data-flow analysis in
Section 7. Our benchmark consists mostly of asynchronous C# programs from
open-source GitHub projects. We evaluate the effectiveness in reproducing the
original program as an asynchronization of a program where asynchronous calls
are reverted to synchronous calls, along with other sound asynchronizations.
Implementation. We developed a prototype tool that uses the Roslyn .NET
compiler platform [26] to construct CFGs for methods in a C# program. This
prototype supports C# programs written in static single assignment (SSA) form
that include basic conditional/looping constructs and async/await as concur-
rency primitives. Note that object fields are interpreted as program variables in
the terminology of §2 (data races concern accesses to object fields). It assumes
that alias information is provided apriori; these constraints can be removed in
the future with more engineering effort. In general, our synthesis procedure is
compatible with any sound alias analysis. The precision of this analysis impacts
only the set (number) of asynchronizations outputted by the procedure (a more
precise analysis may lead to more sound asynchronizations).

The tool takes as input a possibly asynchronous program, and a mapping
between synchronous and asynchronous variations of base methods in this pro-
gram. It reverts every asynchronous call to a synchronous call, and it enumerates
sound asynchronizations of the obtained program (using Algorithm 1).
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Table 2: Empirical results. Syntactic characteristics of input programs: lines
of code (loc), number of methods (m), number of method calls (c), number of
asynchronous calls (ac), number of awaits that could be placed at least one state-
ment away from the matching call (await#). Data concerning the enumeration
of asynchronizations: number of awaits that were placed at least one statement
away from the matching call (await), number of races discovered and repaired
(races), number of statements that the awaits in the maximal asynchronization
are covering more than in the input program (cover), number of computed asyn-
chronizations (async), and running time (t).

Program loc m c ac await# await races cover async t(s)

SyntheticBenchmark-1 77 3 6 5 4 4 5 0 9 1.4
SyntheticBenchmark-2 115 4 12 10 6 3 3 0 8 1.4
SyntheticBenchmark-3 168 6 16 13 9 7 4 0 128 1.5
SyntheticBenchmark-4 171 6 17 14 10 8 5 0 256 1.9
SyntheticBenchmark-5 170 6 17 14 10 8 9 0 272 2
Azure-Remote 520 10 14 5 0 0 0 0 1 2.2
Azure-Webjobs 190 6 14 6 1 1 0 1 3 1.6
FritzDectCore 141 7 11 8 1 1 0 1 2 1.6
MultiPlatform 53 2 6 4 2 2 0 2 4 1.1
NetRpc 887 13 18 11 4 1 3 0 3 2
TestAZureBoards 43 3 3 3 0 0 0 0 1 1.5
VBForums-Viewer 275 7 10 7 3 2 1 1 6 1.8
Voat 178 3 5 5 2 1 1 1 3 1.2
WordpressRESTClient 133 3 10 8 4 2 1 0 4 1.7
ReadFile-Stackoverflow 47 2 3 3 1 0 1 0 1 1.5
UI-Stackoverflow 50 3 4 4 3 3 3 0 12 1.5

Benchmark. Our evaluation uses a benchmark listed in Table 2, which con-
tains 5 synthetic examples (variations of the program in Fig. 1), 9 programs
extracted from open-source C# GitHub projects (their name is a prefix of the
repository name), and 2 programs inspired by questions on stackoverflow.com

about async/await in C# (their name ends in Stackoverflow). Overall, there
are 13 base methods involved in computing asynchronizations of these pro-
grams (having both synchronous and asynchronous versions), coming from 5 C#
libraries (System.IO, System.Net, Windows.Storage, Microsoft.WindowsAzure.-
Storage, and Microsoft.Azure.Devices). They are modeled as described in § 2.

Evaluation. The last five columns of Table 2 list data concerning the application
of our tool. The column async lists the number of outputted sound asynchro-
nizations. In general, the number of asynchronizations depends on the number
of invocations (column ac) and the size of the code blocks between an invocation
and the instruction using its return value (column await# gives the number of
non-empty blocks). The number of sound asynchronizations depends roughly, on
how many of these code blocks are racing with the method body. These asyn-
chronizations contain awaits that are at a non-zero distance from the matching
call (non-zero values in column await) and for many Github programs, this dis-
tance is bigger than in the original program (non-zero values in column cover).
This shows that we are able to increase the distances between awaits and their
matching calls for those programs. The distance between awaits and matching
calls in maximal asynchronizations of non synthetic benchmarks is 1.27 state-
ments on average. A statement representing a method call is counted as one
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independently of the method’s body size. With a single level of inlining, the
number of statements becomes 2.82 on average. However, these statements are
again, mostly IO calls (access to network or disk) or library calls (string/bytes
formatting methods) whose execution time is not negligible. The running times
for the last three synthetic benchmarks show that our procedure is scalable when
programs have a large number of sound asynchronizations.

With few exceptions, each program admits multiple sound asynchronizations
(values in column async bigger than one), which makes the focus on the delay
complexity relevant. This leaves the possibility of making a choice based on
other criteria, e.g., performance metrics. As shown by the examples in Fig. 2,
their performance can be derived only dynamically (by executing them). These
results show that our techniques have the potential of becoming the basis of a
refactoring tool allowing programmers to improve their usage of the async/await
primitives. The artifacts are available in a GitHub repository [2].

9 Related Work

There are many works on synthesizing or repairing concurrent programs in the
standard multi-threading model, e.g., automatic parallelization in compilers [1,
6, 18], or synchronization synthesis [10, 11, 23, 30, 29, 5, 9, 17]. We focus on the
use of async/await which poses specific challenges not covered in these works.

Our semantics without await * instructions is equivalent to the semantics
defined in [3, 27]. But, to simplify the exposition, we consider a more restricted
programming language. For the modeling of asynchronous IO operations, we
follow [3] with the restriction that the code following an await * is executed
atomically. This is sound when focusing on data-race freedom because even if
executed atomically, any two instructions from different asynchronous IO oper-
ations (following await *) are not happens-before related.

Program Refactoring. Program refactoring tools have been proposed for con-
verting C# programs using explicit callbacks into async/await programs [24] or
Android programs using AsyncTask into programs that use IntentService [21].
The C# tool [24], which is the closest to our work, makes it possible to repair
misusage of async/await that might result in deadlocks. This tool cannot mod-
ify procedure calls to be asynchronous as in our work. A static analysis based
technique for refactoring JavaScript programs is proposed in [16]. As opposed
to our work, this refactoring technique is unsound in general. It requires that
programmers review the refactoring for correctness, which is error-prone. Also,
in comparison to [16], we carry a formal study of the more general problem of
finding all sound asynchronizations and investigate its complexity.

Data Race Detection. Many works study dynamic data race detection using
happens-before and lock-set analysis, or timing-based detection [20, 19, 28, 25,
13]. They could be used to approximate our reduction from data race check-
ing to reachability in sequential programs. Some works [4, 22, 12] propose static
analyses for finding data races. [4] designs a compositional data race detector for
multi-threaded Java programs, based on an inter-procedural analysis assuming
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that any two public methods can execute in parallel. Similar to [27], they precom-
pute method summaries to extract potential racy accesses. These approaches are
similar to the analysis in § 7, but they concern a different programming model.
Analyzing Asynchronous Programs. Several works propose program anal-
yses for various classes of asynchronous programs. [7, 14] give complexity results
for the reachability problem, and [27] proposes a static analysis for deadlock de-
tection in C# programs that use both asynchronous and synchronous wait prim-
itives. [8] investigates the problem of checking whether Java UI asynchronous
programs have the same set of behaviors as sequential programs where roughly,
asynchronous tasks are executed synchronously.

10 Conclusion

We proposed a framework for refactoring sequential programs to equivalent asyn-
chronous programs based on async/await. We determined precise complexity
bounds for the problem of computing all sound asynchronizations. This problem
makes it possible to compute a sound asynchronization that maximizes perfor-
mance by separating concerns – enumerate sound asynchronizations and evaluate
performance separately. On the practical side, we have introduced an approxi-
mated synthesis procedure based on data-flow analysis that we implemented and
evaluated on a benchmark of non-trivial C# programs.

The asynchronous programs rely exclusively on async/await and are deadlock-
free by definition. Deadlocks can occur in a mix of async/await with “explicit”
multi-threading that includes blocking wait primitives. Extending our approach
for such programs is an interesting direction for future work.
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A Formalization and Proofs of Section 3

The following lemma shows that the absence of data races implies equivalence
to the original program, in the sense of reaching the same set of configurations
(program variable valuations).

Lemma 2. 𝑃𝑎[𝐿𝑎] is sound implies C[𝑃 [𝐿]] = C[𝑃𝑎[𝐿𝑎]], for every 𝑃𝑎[𝐿𝑎] ∈
Asy[𝑃,𝐿, 𝐿𝑎]

Proof (Proof of Lemma 2). Let 𝜌 be an execution of 𝑃𝑎 that reaches a config-
uration ps ∈ C[𝑃𝑎]. We show that actions in 𝜌 can be reordered such that any
action that occurs in 𝜌 between ( , 𝑖, call(𝑗)) and ( , 𝑗, return) is not of the form
( , 𝑖, ) (i.e., the task 𝑗 is executed synchronously). If an action ( , 𝑖, ) occurs
in 𝜌 between ( , 𝑖, call(𝑗)) and ( , 𝑗, return), then it must be concurrent with
(𝑗, return). Since 𝑃𝑎 does not admit data races, an execution 𝜌′ resulting from 𝜌
by reordering any two concurrent actions reaches the same configuration ps as
𝜌. Therefore, there exists an execution 𝜌′′ where the actions that occur between
any ( , 𝑖, call(𝑗)) and ( , 𝑗, return) are not of the form ( , 𝑖, ). This is also an
execution of 𝑃 (modulo removing the awaits which have no effect), which implies
ps ∈ C[𝑃 ].

B Formalization and Proofs of Section 4

The following lemma shows that for a given 𝑃𝑎 there exists a unique 𝑃 ′
𝑎 that is

a maximal asynchronization of 𝑃 relative to 𝑃𝑎. The existence is implied by the
fact that strongAsy[𝑃,𝐿, 𝐿𝑎] is the bottom element of ≤. To prove uniqueness,
we assume by contradiction that there exist two incomparable maximal asyn-
chronizations 𝑃 1

𝑎 and 𝑃 2
𝑎 and select the first await statement s1𝑤, according to

the control-flow of the sequential program, that is placed in different positions
in the two programs. Assume that s1𝑤 is closer to its matching call in 𝑃 1

𝑎 . Then,
we move s1𝑤 in 𝑃 1

𝑎 further away from its matching call to the same position as in
𝑃 2
𝑎 . This modification does not introduce data races since 𝑃 2

𝑎 is data race free.
Thus, the resulting program is data race free, bigger than 𝑃 1

𝑎 , and smaller than
𝑃𝑎 w.r.t. ≤ contradicting the fact that 𝑃 1

𝑎 is a maximal asynchronization.

Lemma 3. Given an asynchronization 𝑃𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎], there exists a unique
program 𝑃 ′

𝑎 that is a maximal asynchronization of 𝑃 relative to 𝑃𝑎.

Proof (Proof of Lemma 3). Since strongAsy[𝑃,𝐿, 𝐿𝑎] is the bottom element of
≤, then there always exists a sound asynchronization smaller than 𝑃𝑎. Assume
by contradiction that there exist two distinct programs 𝑃 1

𝑎 and 𝑃 2
𝑎 that are

both maximal asynchronizations of 𝑃 relative to 𝑃𝑎. Let 𝜌1 (resp., 𝜌2) be an
execution of 𝑃 1

𝑎 (resp., 𝑃 2
𝑎 ) where every await * does not suspend the execution

of the current task, i.e., 𝜌1 and 𝜌2 simulate the synchronous execution of 𝑃 . Let
s1𝑤 be the statement corresponding to the first await action in 𝜌1 such that (1)
there exists an await action in 𝜌2 with the corresponding await statement s2𝑤,
such that s1𝑤 and s2𝑤 match the same call in 𝑃 , and Cover(s1𝑤) ⊂ Cover(s2𝑤) (this
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holds because 𝑃 1
𝑎 and 𝑃 2

𝑎 are distinct asynchronizations of the same synchronous
program, thus Cover(s1𝑤) and Cover(s2𝑤) must be comparable), and (2) for every
other await statement s3𝑤 in 𝑃 1

𝑎 that generates an await action which occurs
before the await action of s1𝑤 in 𝜌1, there exists an await statement s4𝑤 in 𝑃 2

𝑎

matching the same call in 𝑃 , such that Cover(s3𝑤) = Cover(s4𝑤).
Let 𝑃 3

𝑎 be the program obtained from 𝑃 1
𝑎 by moving the await s1𝑤 down

(further away from the matching call) such that Cover(s1𝑤) = Cover(s2𝑤). Moving
an await down can only create data races between actions that occur after the
execution of the matching call. Then, 𝑃 3

𝑎 contains a data race iff there exists
an execution 𝜌 of 𝑃 3

𝑎 and two concurrent actions a1 and a2 that occur between
the action ( , 𝑖, await(𝑗)) generated by s1𝑤 and the action ( , 𝑖, call(𝑗)) of the call
matching s1𝑤, such that:

(( , 𝑖, call(𝑗)), a1) ∈ CO, (a1, a𝑤) ̸∈ HB, (( , 𝑖, call(𝑗)), a2) ∈ CO and (a2, ( , 𝑖, await(𝑗))) ∈ HB

where the action a𝑤 corresponds to the first await action in the task 𝑗. Let
s𝑤 be the statement corresponding to the action a𝑤. Since the only difference
between 𝑃 3

𝑎 and 𝑃 2
𝑎 is the placement of awaits then (( , 𝑖, call(𝑗)), a1) ∈ CO and

(( , 𝑖, call(𝑗)), a2) ∈ CO hold in any execution 𝜌′ of 𝑃 2
𝑎 that contains the actions

a1 and a2. Also, note that since a𝑤 occurs in the task 𝑗 that the action of s1𝑤
is waiting for. This implies that in 𝜌1 the action of s𝑤 occurs before the action
of s1𝑤 in 𝜌1. Therefore, by the definition of s1𝑤 we have that s𝑤 in 𝑃 1

𝑎 covers the
same set of statements as the corresponding s ′𝑤 in 𝑃 2

𝑎 that matches the same
call as s𝑤. Consequently, (a1, a

′
𝑤) ̸∈ HB and (a2, ( , 𝑖, await(𝑗))) ∈ HB hold in

any execution 𝜌′ of 𝑃 2
𝑎 that contains the actions a1 and a2 (a ′

𝑤 is the action of
s ′𝑤). Thus, there exists an execution 𝜌′ of 𝑃 2

𝑎 such that the actions a1 and a2 are
concurrent. This implies that if 𝑃 3

𝑎 admits a data race, then 𝑃 2
𝑎 admits a data

race between actions generated by the same statements. As 𝑃 2
𝑎 is data race free,

we get that 𝑃 3
𝑎 is data race free as well. Since 𝑃 1

𝑎 < 𝑃 3
𝑎 , we get that 𝑃 1

𝑎 is not
maximal, which contradicts the hypothesis.

The complexity analysis also relies on a property of the maximal asynchro-
nization relative to an immediate predecessor: if the predecessor is defined by
moving an await s ′′𝑤, then the maximal asynchronization is obtained by moving
only awaits smaller than s ′′𝑤 w.r.t. ≺𝑤.

Lemma 4. If 𝑃 ′′
𝑎 is an immediate predecessor of a sound asynchronization 𝑃 ′

𝑎,
which is defined by moving an await s ′′𝑤 in 𝑃 ′

𝑎 up, then the maximal sound asyn-
chronization relative to 𝑃 ′′

𝑎 is obtained by moving only awaits smaller than s ′′𝑤
w.r.t. ≺𝑤.

Proof (Proof of Lemma 4). Moving an await up in 𝑃 ′
𝑎 can only create data

races between actions that occur after the execution of this await (because the
invocation is suspended earlier). The only possible repairs of these data races
consists in either moving s ′′𝑤 down which results in 𝑃 ′

𝑎 or moving up some other
awaits that occur in methods that (indirectly) call the method in which s ′′𝑤
occurs. The first case is not applicable because it gives a program that is not
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smaller than 𝑃 ′′
𝑎 . In the second case, every await s ′𝑤 that is moved up occurs in

a method that (indirectly) calls the method in which s ′′𝑤 occurs, and therefore,
s ′𝑤 is smaller than s ′′𝑤 w.r.t. ≺𝑤.

Before giving the proof of Theorem 1, we note that the total order relation ≺𝑤

between awaits is fixed throughout the recursion of AsySyn and it corresponds to
the order of the awaits in the weakest asynchronization of 𝑃 , i.e., wkAsy[𝑃,𝐿, 𝐿𝑎].
This is because the order between awaits in the same method might change from
one asynchronization to another in Asy[𝑃,𝐿, 𝐿𝑎]. If the control-flow graph of a
method contains branches, it is possible to replace all await statements matching
s𝑐 that are reachable in the CFG from s with a single await statement s𝑤, in
this case s𝑤 is ordered before any other await that one of the awaits that s𝑤
replaces is ordered before and is ordered after any await that all the awaits
that s𝑤 replaces are ordered before. Also, it is possible to add additional awaits
statements in branches, in this case derive a total order between these awaits
and order the awaits before or after any other await that the original await was
ordered before or after, respectively.

Proof (Proof of Theorem 1). Let 𝑃𝑎 be the weakest asynchronization of 𝑃 , then
the set of all sound asynchronizations of 𝑃 is 𝒜 = {𝑃 ′′

𝑎 : C[𝑃 ′′
𝑎 ] = C[𝑃 ] and 𝑃 ′′

𝑎 ≤
𝑃 ′
𝑎}, where 𝑃 ′

𝑎 is the maximal asynchronization of 𝑃 relative to 𝑃𝑎. It is clear
that every asynchronization outputted by AsySyn(𝑃𝑎, s

0
𝑤) is in the set 𝒜.

Let 𝑃 0
𝑎 be a sound asynchronization of 𝑃 [𝐿] w.r.t. 𝐿𝑎, i.e., 𝑃 0

𝑎 ∈ 𝒜. We will
show that AsySyn outputs 𝑃 0

𝑎 . We have that either 𝑃 0
𝑎 = 𝑃 ′

𝑎 or 𝑃 0
𝑎 < 𝑃 ′

𝑎. The
first case implies that 𝑃 0

𝑎 is in AsySyn(𝑃𝑎, s𝑤). For the second case: let s1𝑤 be

the maximum element in 𝑃 ′
𝑎 w.r.t. ≺𝑤 that matches the same call as s1

′

𝑤 in 𝑃 0
𝑎

s.t. Cover(s1
′

𝑤 ) ⊂ Cover(s1𝑤). Then, let (𝑃 1
𝑎 , s

1
𝑤) ∈ ImPred(𝑃 ′

𝑎, s𝑤). We obtain that
either 𝑃 0

𝑎 = 𝑃 1
𝑎 or 𝑃 0

𝑎 < 𝑃 1
𝑎 . The fist case implies that 𝑃 0

𝑎 is in AsySyn(𝑃𝑎, s𝑤).

For the second case: let 𝑃 1′

𝑎 = MaxRel(𝑃 1
𝑎 ) then either 𝑃 0

𝑎 = 𝑃 1′

𝑎 or 𝑃 0
𝑎 < 𝑃 1′

𝑎 .
The fist case implies that 𝑃 0

𝑎 is in AsySyn(𝑃𝑎, s𝑤). For the second case: let s2𝑤 be

the maximum element in 𝑃 1′

𝑎 w.r.t. ≺𝑤 that matches the same call as s2
′

𝑤 in 𝑃 0
𝑎

s.t. Cover(s2
′

𝑤 ) ⊂ Cover(s2𝑤). Since 𝑃 1
𝑎 is an immediate successor of 𝑃 ′

𝑎 by moving

the await s1𝑤, then Lemma 4 implies 𝑃 1′

𝑎 is obtained by moving only awaits
smaller than s1𝑤 w.r.t. ≺𝑤. Then, we either have s2𝑤 = s1𝑤 or s2𝑤 ≺𝑤 s1𝑤. Thus,

(𝑃 2
𝑎 , s

2
𝑤) ∈ ImPred(𝑃 1′

𝑎 , s1𝑤). We then obtain that either 𝑃 0
𝑎 = 𝑃 2

𝑎 or 𝑃 0
𝑎 < 𝑃 2

𝑎 .
Then, we repeat the above proof process until we obtain 𝑃𝑛

𝑎 = 𝑃 0
𝑎 . Thus, Asy-

Syn outputs 𝑃 0
𝑎 .

Let s1𝑤 and s2𝑤 be two distinct await statements in 𝑃 ′
𝑎 s.t. s2𝑤 ≺𝑤 s1𝑤 and

(𝑃 1
𝑎 , s

1
𝑤), (𝑃 2

𝑎 , s
2
𝑤) ∈ ImPred(𝑃 ′

𝑎, s𝑤). Similar to before then we have that 𝑃 2′

𝑎 =
MaxRel(𝑃 2

𝑎 ) is obtained by moving only awaits smaller than s2𝑤 w.r.t. ≺𝑤.

Thus, in 𝑃 2′

𝑎 the await s1𝑤 is in the same position as in 𝑃 ′
𝑎. Then, 𝑃 1′

𝑎 =

MaxRel(𝑃 1
𝑎 ) is different than 𝑃 2′

𝑎 . For any two programs 𝑃 1′′

𝑎 and 𝑃 2′′

𝑎 s.t.

𝑃 1′′

𝑎 (resp., 𝑃 2′′

𝑎 ) is outputted by AsySyn(𝑃 1′

𝑎 , s1𝑤) (resp., AsySyn(𝑃 2′

𝑎 , s2𝑤)),

we have that the two programs are distinct since in 𝑃 2′′

𝑎 the await s1𝑤 is in the
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same position as in 𝑃 ′
𝑎. Thus, we get that AsySyn outputs every element of 𝒜

only once.

C Formalization and Proofs of Section 5

async method Main {
r1 = call m;
x = 1;
await r1;

}
async method m {

r2 = call m1;
r3 = call m1;
await r2;
r4 = x;
if r4 == 1

y = 2;
await r3;

}
async method m1 {

await *;
r5 = y;
return;

}

Fig. 11

The following lemma proves that for any unsound asyn-
chronization, any trace with a data race contains at least one
data race that involves two actions that are synchronously
reachable. For instance, the program in Fig. 11 has two data
races, one between 𝑥 = 1 and 𝑟4 = 𝑥 and the other be-
tween 𝑦 = 2 and 𝑟5 = 𝑦. However, the statement 𝑦 = 2
is not reachable in the corresponding synchronous program.
It is reachable in this asynchronization because of the data
race between 𝑥 = 1 and 𝑟4 = 𝑥, which are both reachable
in the synchronous program. Eliminating the latter data race
by moving the statement await 𝑟1 before 𝑥 = 1, makes 𝑦 = 2
unreachable and the data race between 𝑦 = 2 and 𝑟5 = 𝑦 is
also eliminated.

Lemma 5. An asynchronization 𝑃𝑎[𝐿𝑎] is sound iff it does
not admit data races between actions that are synchronously reachable.

Proof (Proof of Lemma 5). Assume by contradiction that 𝑃𝑎[𝐿𝑎] is sound and
it admits a data race (a1, a2) in a trace 𝜏 ∈ Tr(𝑃𝑎[𝐿𝑎]) where one of the actions,
say a1, is not synchronously reachable. We assume w.l.o.g that the data race
(a1, a2) is the first that occurs in 𝜏 with at least one synchronously unreachable
action. Then, there must exist a read access a𝑟 that enabled a1, and therefore,
a𝑟 reads a value that was not read in any synchronous execution. Thus, the read
value must the result of another data race that occurs earlier in the trace 𝜏 ,
which is a contradiction.

async method Main {
r1 = call m;
r2 = x;
x = r2 + 1;
await r1;

}
async method m {
await *;
x = 2;
return;

}

Fig. 12

In Fig. 12, we explain how the repairing data races based
on the partial order relating data races allows to avoid su-
perfluous repair steps. For instance, in Fig. 12, the first data
race to repair involves the read of x from Main and the write
to x in m, because these statements are the first to execute in
the original sequential program among the other statements
involved in data races. Repairing this data race consists in
moving await r1 before the read of x from Main, which im-
plies that m completes before the read of x. This repair is
defined from a notion of root cause of a data race, that in
this case, contains the call to m and the read of x from Main. Interestingly, this
repair step removes the write-write data race between the write to x in Main

and the write to x in m as well. If we would have repaired these data races in the
opposite order, we would have moved await t1 first before the write to x, and
then, before the read of x.
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method Main {
while *

if *
r1 = x;

r2 = y;
}

Fig. 13

In Fig. 13, we give a non-deterministic program where two
statements of the program can be executed in different orders in
different executions. In particular, the statements r1 = x and r2

= y of the program can be executed in different orders depending
on the number of loop iterations and whether the if branch is
entered during the first loop iteration.

async method Main {
r1 = call m;
if *

r2 = x;
x = r2 + 1;

else
r3 = x;

await r1;
}
async method m {

await *
retVal = x;
x = input;
return;

}

Fig. 14

For the program in Fig. 14, we have the following order
between data races: (x = input, r2 = x) ≺SO(retVal = x,
x = r2 + 1) because r2 = x is executed before the write x

= r2 + 1 in the original synchronous program (for simplic-
ity we use statements instead of actions). However, the data
races (x = input, r2 = x) and (x = input, r3 = x) are in-
comparable.

The following lemma identifies a sufficient transformation
for repairing a data race (a1, a2): moving the await s𝑤 gener-
ating the action a𝑤 just before the statement s generating a.
This is sufficient because it ensures that every statement that
follows LCACO(a1, a2)10 in call order will be executed before a
and before any statement which succeeds a in call order, including a2. Note that
moving the await a𝑤 anywhere after a will not affect the concurrency between
a1 and a2.

Lemma 6. Let (a1, a2) be a data race in a trace 𝜏 of an asynchronization 𝑃𝑎,
and a𝑐 = (𝑖, call(𝑗)) = LCACO(a1, a2). Then, 𝜏 contains a unique action a𝑤 =
(𝑖, await(𝑗)) and a unique action a such that:
– (a, a𝑤) ∈ MO, and a is the latest action in the method order MO such that

(a𝑐, a) ∈ MO and (a, a2) ∈ CO* (CO* denotes the reflexive closure of CO).

Proof (Proof of Lemma 6). Let 𝜌 be the execution of the trace 𝜏 . By definition,
𝜌 ends with a configuration where the call stack and the set of pending tasks are
empty. Therefore, 𝜌 contains an action a𝑤 = ( , 𝑖, await(𝑗)) matching 𝑎𝑐 which is
unique by the definition of the semantics. Since (a𝑐, a1) ∈ CO and (a𝑐, a2) ∈ CO
then either a𝑐 and a2 occur in the same method, or there exists a call action a ′ in
the same task as a𝑐 such that (a ′, a2) ∈ CO. Then, we define a = a2 in the first
case, and a as the latest action in the same task as a𝑐 such that (a, a2) ∈ CO in
the second case. We have that (a, a𝑤) ∈ MO because otherwise, (a𝑤, a) ∈ MO
and (a, a2) ∈ CO* implies that (a1, a2) ∈ HB (because (a1, a𝑤) ∈ HB, and MO
and CO are included in HB), and this contradicts a1 and a2 being concurrent.

When the control-flow graph of the method contains branches, the construc-
tion of RDR(𝑃𝑎, s𝑐, s) involves (1) replacing all await statements matching s𝑐
that are reachable in the CFG from s with a single await statement placed just
before s, and (2) adding additional await statements in branches that “conflict”
with the branch containing s. This is to ensure the syntactic constraints described
in Section 2. These additional await statements are at maximal distance from
the corresponding call statement because of the maximality requirement.

10 We abuse the terminology and make no distinction between statements and actions.
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async method Main {
r1 = call m;
if *

r2 = x;
else

r3 = y;

await r1;
}
async method m {

await *
retVal = x;
x = input;
return;

}

async method Main {
r1 = call m;
if *

await r1;
r2 = x;

else
r3 = y;
await r1;

}
async method m {

await *
retVal = x;
x = input;
return;

}

Fig. 15: Examples of asynchronizations.

For instance, to repair the data race
between r2 = x and x = input in the
program on the left of Fig. 15, the
statement await r1 must be moved be-
fore r2 = x in the if branch, which
implies that another await must be
added on the else branch. The result
is given on the right of Fig. 15.

The following lemma shows that
repairing a minimal data race can-
not introduce smaller data races (w.r.t.
≺SO), which ensures some form of
monotonicity when repairing minimal data races iteratively.

Lemma 7. Let 𝑃𝑎 be an asynchronization, (a1, a2) a data race in 𝑃𝑎 that is
minimal w.r.t. ≺SO, and (s𝑐, s) the root cause of (a1, a2). Then, RDR(𝑃𝑎, s𝑐, s)
does not admit a data race that is smaller than (a1, a2) w.r.t. ≺SO.

        async method m’ {
               
               r’ = call m;        
     
                                        
                                       s’’

               await r’;

           }

        async method m {
               
             sc: r = call _ ;                  s1
     

              s: ...                     s2

                                           
                                          s’

              sw: await r;

           }

CO

CO*CO*

CO*

Fig. 16: An excerpt of an asyn-
chronous program.

Proof of Lemma 7. The only
modification in the program 𝑃 ′

𝑎 =
RDR(𝑃𝑎, s𝑐, s) compared to 𝑃𝑎 is the
movement of the await s𝑤 matching the
call s𝑐 to be before the statement s in a
method 𝑚. The concurrency added in 𝑃 ′

𝑎

that was not possible in 𝑃𝑎 is between ac-
tions (a ′, a ′′) generated by statements s ′

and s ′′, respectively, as shown in Fig. 16.
W.l.o.g., we assume that (a ′, a ′′) ∈ SO.
The statements s1 and s2 are those gen-
erating a1 and a2, respectively. The state-
ment s ′ is related by CO* to some statement in 𝑚 that follows s, and s ′′ is
related by CO* to some statement that follows the call to 𝑚 in the caller of 𝑚.
Note that s ′ is ordered by ≺ after s2. Since (a1, a2) ∈ SO and (a ′, a ′′) ∈ SO
then s2 ≺ s ′′ and s1 ≺ s ′. Thus, any new data race (a ′, a ′′) in 𝑃 ′

𝑎 that was not
reachable in 𝑃𝑎 is bigger than (a1, a2). �

Theorem 7. Given an asynchronization 𝑃𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎], MaxRel(𝑃𝑎) re-
turns the optimal asynchronization of 𝑃 relative to 𝑃𝑎.

Proof (Proof of Theorem 7). Since the recursive calls RCMinDR find all data
races between synchronously reachable actions then the output 𝑃 ′

𝑎 = MaxRel(𝑃𝑎)
is sound and therefore it is equivalent to 𝑃 (Lemma 2 and Lemma 5). Now we
need to show that any successor 𝑃 1

𝑎 of 𝑃 ′
𝑎 that is also smaller than 𝑃𝑎 (w.r.t.

≤) admits data races. Let s𝑤 be the biggest await statement w.r.t. ≺𝑤 whose
position in 𝑃 1

𝑎 is changed with respect to its position in 𝑃 ′
𝑎 (moved down). Since

𝑃 1
𝑎 ≤ 𝑃𝑎, then s𝑤 was also moved up by the procedure MaxRel with respect

to its position in 𝑃𝑎 to fix some data race (a1, a2). Let 𝑚 be the method 𝑚 that
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contains s𝑤 and s𝑐 be the matching call. We will now show that (a1, a2) forms a
data race in 𝑃 1

𝑎 as well. 𝑃 1
𝑎 has an execution 𝜌 that reaches both a1 and a2 (since

Ex(𝑃 1
𝑎 ) includes the synchronous execution where all await * are interpreted as

skip which reaches a1 and a2). Since every other await s ′𝑤 in 𝑃 1
𝑎 that occurs in a

method 𝑚′ (in)directly called by 𝑚 (including the method associated with the
call s𝑐) is in the same position as in 𝑃 ′

𝑎, then the two actions a1 and a2 are not
related by HB and are concurrent. Thus, (a1, a2) forms a data race in 𝑃 1

𝑎 , which
concludes the proof.

The fact that data races are enumerated in the order defined by ≺SO guaran-
tees a bound on the number of times an await matching the same call is moved
during the execution of MaxRel(𝑃𝑎). In general, this bound is the number of
statements covered by all the awaits matching the call in the input program
𝑃𝑎. Actually, this is a rather coarse bound. A more refined analysis has to take
into account the number of branches in the CFGs. For programs without con-
ditionals or loops, every await is moved at most once during the execution of
MaxRel(𝑃𝑎). In the presence of branches, a call to an asynchronous method
may match multiple await statements (one for each CFG path starting from
the call), and the data races that these await statements may create may be
incomparable w.r.t. ≺SO. Therefore, for a call statement s𝑐, let |s𝑐| be the sum
of |Cover(s𝑤)| for every await s𝑤 matching s𝑐 in 𝑃𝑎.

Lemma 8. For any asynchronization 𝑃𝑎 ∈ Asy[𝑃,𝐿, 𝐿𝑎] and call statement s𝑐
in 𝑃𝑎, the while loop in MaxRel(𝑃𝑎) does at most |s𝑐| iterations that result in
moving an await matching s𝑐.

Proof (Proof of Lemma 8). We consider first the case without conditionals or
loops, and we show by contradiction that every await statement s𝑤 is moved
at most once during the execution of MaxRel(𝑃𝑎), i.e., there exists at most
one iteration of the while loop which changes the position of s𝑤. Suppose that
the contrary holds for an await s𝑤. Let (a1, a2), and (a3, a4) be the data races
repaired by the first and second moves of s𝑤, respectively. By Lemma 6, there
exist two actions a and a ′ such that

(a𝑐, a) ∈ MO, (a, a2) ∈ CO*, (a, a𝑤) ∈ MO and (a𝑐, a
′) ∈ MO, (a ′, a4) ∈ CO*, (a ′, a𝑤) ∈ MO

where a𝑤 = ( , 𝑖, await(𝑗)) and a𝑐 = ( , 𝑖, call(𝑗)) are the asynchronous call ac-
tion and the matching await action. Let s2 and s4 be the statements generating
the two actions a2 and a4, respectively. Then, we have either s2 ≺ s4 or s2 = s4,
and both cases imply that (a, a ′) ∈ MO*. Thus, moving the await statement gen-
erating a𝑤 before the statement generating a implies that it is also placed before
the statement generating a ′ (that occurs after a in the same method). Thus, the
first move of the await s𝑤 repaired both data races, which is contradiction.

In the presence of conditionals or loops, moving an await up in one branch
may correspond to adding multiple awaits in the other conflicting branches. Also,
one call in the program may correspond to multiple awaits on different branches.
However, every repair of a data race consists in moving one await closer to the
matching call s𝑐 and before one more statement covered by some await matching
s𝑐 in the input 𝑃𝑎.
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1 Add before s1:
2 if ( lastTaskDelayed == ⊥ && * )
3 lastTaskDelayed := myTaskId();
4 DescendantDidAwait := thisHasDoneAwait;
5 return

7 Add before s2:
8 if ( task_s𝑐 == myTaskId() )
9 s := s2;

10 assert (lastTaskDelayed == ⊥ ||
!DescendantDidAwait);

13 Replace every statement ‘‘await r’’ with:
14 if( r == lastTaskDelayed ) then
15 if ( !DescendantDidAwait )
16 DescendantDidAwait :=

thisHasDoneAwait;
17 lastTaskDelayed := myTaskId();
18 return
19 else
20 thisHasDoneAwait := true

22 Add before every statement ‘‘r := call m’’:
23 if ( task_s𝑐 == myTaskId() ) then
24 s := this statement;

26 Add after every statement ‘‘r := call m’’:
27 if ( r == lastTaskDelayed )
28 s𝑐 := this statement;
29 task_s𝑐 := myTaskId();

Fig. 17: A program instrumentation for computing the root cause of a minimal
data race between the statements s1 and s2 (if any). All variables except for
thisHasDoneAwait are program (global) variables. thisHasDoneAwait is a local
variable. The value ⊥ represents an initial value of a variable. The variables
s𝑐 and s store the (program counters of the) statements representing the root
cause. The method myTaskId returns the id of the current task.

D Computing Root Causes of Minimal Data Races

We present a reduction from the problem of computing root causes of mini-
mal data races to reachability (assertion checking) in sequential programs. This
reduction builds on a program instrumentation for checking if there exists a
minimal data race that involves two given statements (s1, s2) that are reachable
in an execution of the original synchronous program, whose correctness relies on
the assumption that another pair of statements cannot produce a smaller data
race. This instrumentation is used in an iterative process where pairs of state-
ments are enumerated according to the colexicographic order induced by ≺. This
specific enumeration ensures that the assumption made for the correctness of the
instrumentation is satisfied.

Given an asynchronization 𝑃𝑎, the instrumentation described in Fig. 17 rep-
resents a synchronous program where all await statements are replaced with
synchronous code (lines 14–20). This instrumentation simulates asynchronous
executions of 𝑃𝑎 where methods may be only partially executed, modeling await

interruptions. It reaches an error state (see the assert at line 10) when an action
generated by s1 is concurrent with an action generated by s2, which represents
a data race, provided that s1 and s2 access a common program variable (these
statements are assumed to be given as input). Also, the values of s𝑐 and s when
reaching the assertion violation represent the root-cause of this data race.

The instrumentation simulates an execution of 𝑃𝑎 to search for a data race
as follows (we discuss the identification of the root-cause afterwards):

– It executes under the synchronous semantics until an instance of s1 is non-
deterministically chosen as a candidate for the first action in the data race
(s1 can execute multiple times if it is included in a loop for instance). The
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current invocation is interrupted when it is about to execute this instance
of s1 and its task id 𝑡0 is stored into lastTaskDelayed (see lines 2–5).

– Every invocation that transitively called 𝑡0 is interrupted when an await for
an invocation in this call chain (whose task id is stored into lastTaskDelayed)
would have been executed in the asynchronization 𝑃𝑎 (see line 18).

– Every other method invocation is executed until completion as in the syn-
chronous semantics.

– When reaching s2, if s1 has already been executed (lastTaskDelayed is not
⊥) and at least one invocation has only partially been executed, which is
recorded in the boolean flag DescendantDidAwait and which means that
s1 is concurrent with s2, then the instrumentation stops with an assertion
violation.

A subtle point is that the instrumentation may execute code that follows an
await 𝑟 even if the task 𝑟 has been executed only partially, which would not
happen in an execution of the original 𝑃𝑎. Here, we rely on the assumption that
there exist no data race between that code and the rest of the task 𝑟. Such
data races would necessarily involve two statements which are before s2 w.r.t.
≺. Therefore, the instrumentation is correct only if it is applied by enumerating
pairs of statements (s1, s2) w.r.t. the colexicographic order induced by ≺.

Next, we describe the computation of the root-cause, i.e., the updates on the
variables s𝑐 and s. By definition, the statement s𝑐 in the root-cause should be a
call that makes an invocation that is in the call stack when s1 is reached. This
can be checked using the variable lastTaskDelayed that stores the id of the
last such invocation popped from the call stack (see the test at line 27). The
statement s in the root-cause can be any call statement that has been executed
in the same task as s𝑐 (see the test at line 23), or s2 itself (see line 9).

Let [[𝑃𝑎, s1, s2]] denote the instrumentation in Fig. 17. We say that the values
of s𝑐 and s when reaching the assertion violation are the root cause computed
by this instrumentation. The following theorem states its correctness.

Theorem 8. If [[𝑃𝑎, s1, s2]] reaches an assertion violation, then it computes the
root cause of a minimal data race, or there exists (s3, s4) such that [[𝑃𝑎, s3, s4]]
reaches an assertion violation and (s3, s4) is before (s1, s2) in colexicographic
order w.r.t. ≺.

Based on Theorem 8, we define an implementation of the procedure RCMinDR(𝑃𝑎)
used in computing maximal asynchronizations (Algorithm 2) as follows:

– For all pairs of read or write statements (s1, s2) in colexicographic order w.r.t.
≺ that are reachable in an execution of the original synchronous program
𝑃 .

∙ If [[𝑃𝑎, s1, s2]] reaches an assertion violation, then
∗ return the root cause computed by [[𝑃𝑎, s1, s2]]

– return ⊥

Checking whether read or write statements are reachable can be determined
using a linear number of reachability queries in the synchronous program 𝑃 . Also,
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the order ≺ between read or write statements can be computed using a quadratic
number of reachability queries in the synchronous program 𝑃 . Therefore, s ≺ s ′

iff an instrumentation of 𝑃 that sets a flag when executing s and asserts that this
flag is not set when executing s ′ reaches an assertion violation. The following
theorem states the correctness of the procedure above.

Theorem 9. RCMinDR(𝑃𝑎) returns the root cause of a minimal data race of
𝑃𝑎 w.r.t. ≺SO, or ⊥ if 𝑃 ′

𝑎 is data race free.

E Formalization and Proofs of Section 6

Theorem 10. Checking whether there exists a sound asynchronization different
from the strong asynchronization is PSPACE-complete.

Proof (Proof of Theorem 10). (1) define a new method 𝑚 that writes to a new
program variable 𝑥, and insert a call to 𝑚 followed by a write to 𝑥 at location ℓ,
and (2) insert a write to 𝑥 after every call statement that calls a method in {𝑚′}*,
where 𝑚′ is the method containing ℓ. Let 𝑚𝑎 be an asynchronous version of 𝑚
obtained by inserting an await * at the beginning. Then, ℓ is reachable in 𝑃 iff
the only sound asynchronization of 𝑃 ′ w.r.t. {𝑚𝑎} is the strong asynchronization.

F Formalization and Proofs of Section 7

The MaxRel# procedure repairs data races in an order which is ≺SO with
some exceptions that do not affect optimality, i.e., the number of times an await
matching the same call can be moved. For instance, if a method 𝑚 calls two other
methods 𝑚1 and 𝑚2 in this order, the procedure above may handle 𝑚2 before 𝑚1,
i.e., repair data races between actions that originate from 𝑚2 before data races
that originate from 𝑚1, although the former are bigger than the latter in ≺SO.
This does not affect optimality because those repairs are “independent”, i.e., any
repair in 𝑚2 cannot influence a repair in 𝑚1, and vice-versa. The crucial point
is that this procedure repairs data races between actions that originate from a
method 𝑚 before data races that involve actions in methods preceding 𝑚 in the
call graph, which are bigger in ≺SO than the former.

Note that MaxRel# procedure which is based on the bottom-up inter-
procedural data-flow analysis compromises precision to reduce the complexity of
the problem from undecidable in general or PSPACE-complete with finite data
to polynomial time. However, because of this imprecision, certain await state-
ments may be moved closer to the matching call unnecessarily. For instance, in
Fig. 11, the precise algorithm (using the procedure MaxRel in Algorithm 2)
will only repair the data race on 𝑥 because doing so, the potential data race on
𝑦 will become unreachable. On the other hand, the polynomial-time algorithm
(using the MaxRel# procedure) will also repair the data race on 𝑦, moving
another await closer to the matching call, since it cannot reason about data (one
statement of this data race is only reachable if the variable 𝑟4 is 1).


