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Abstract7

We consider a regularized Maximum Likelihood Estimation (MLE) framework to produce images8

in the context of radio interferometric measurements. Specifically, we consider the class of compound9

Gaussian distributions to model the additive noise in the presence of radiofrequency interferences. In10

most cases, direct maximization of the likelihood is not tractable. To overcome this issue, we propose11

a generic expectation-maximization (EM) algorithm in the presence of a compound Gaussian noise. In12

addition, we leverage an approximation of the forward radio interferometric operator to derive an original13

latent data space that allows the use of the FFT in the maximization step, leading to an accelerated14

extension of the proposed imaging algorithm. The proposed approaches are evaluated on simulated15

and real data and show a significant improvement in the robustness to the presence of radiofrequency16

interferences (RFI) in the measurement.17

Keywords: Image reconstruction, Expectation Maximization, RFI mitigation, Radio astronomy,18

Array signal processing19

1. Introduction20

The field of radioastronomy studies the radio frequency emissions of celestial sources to gain a new21

understanding into various scientific domains such as solar monitoring, planetology, and astrophysics.22

To do so, radioastronomers use radio telescopes to measure the electromagnetic waves emitted by23

celestial sources. Notably, radio interferometers are sensor arrays that combine the measurements from24

multiple antennas to synthesize an image of the sky. The last decade has seen the development of a25

new generation of large-scale radio interferometers, such as the LOw-Frequency ARray (LOFAR) or26

the Square Kilometer Array (SKA), improving the resolution of measurements over large bandwidths.27

They bring the promise of new scientific discoveries and new challenges in data processing. This28

new generation of radio interferometers will be composed of a large number of sensors, leading to a29

considerable amount of data to process. Also, those great improvements come at the cost of a higher30

sensitivity to Radio Frequency Interference (RFI), bringing the need for specific modelization and31

algorithms.32

Radio interferometers measure correlations, called visibilities, between multiple sensors from which33

an image synthesis is performed. Those visibilities are linked to the 2D Fourier transform of the sought34

image. Namely, the forward operator in the context of radio interferometers is a Discrete Fourier35

Transform (DFT) evaluated on a non-uniform grid that depends on the position of the sensors. Thus,36

image synthesis in the context of radio interferometers is a signal reconstruction task from incomplete37

Fourier measurements, leading to an ill-posed inverse problem [1, 2].38

Consequently, the imaging problem has been formulated as a deconvolution problem in the image39

domain and has led to numerous methods based on the CLEAN algorithm [3]. The CLEAN algorithm40

is a greedy algorithm that iteratively subtracts the contribution of the brightest point source in the41

image. The main advantage of CLEAN-based methods is their computational efficiency, but are known42

to produce a biased estimate of the sky image for non-punctual sources [2].43
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On the other hand, imaging algorithms based on the use of convex optimization have been developed1

[2, 4–7]. These methods consider priors of the sky image in the form of specific regularizers. In particular,2

a range of methods has demonstrated the good adequation of image priors that induce sparsity in a3

specific dictionary (wavelets, image) [2, 4–7], and can impose a positivity constraint on the image pixels4

that ensure physical interpretability of the solutions. The resulting algorithms are more suited to image5

extended sources but can lead to difficult implementations and high computational costs [7]. In fact,6

the computational cost of the DFT operator on a non-uniform grid is prohibitive. It is approximated7

by combining a convolution that interpolates the measurements on a uniform grid and a Fast Fourier8

Transform (FFT) [8]. Nevertheless, the computational cost of the forward operator remains high and9

is the main bottleneck in image synthesis pipelines due to the large amount of measured visibilities.10

Furthermore, image synthesis can also be formulated as a regularized maximum likelihood estimation11

problem. Notably, by considering an additive white Gaussian noise to the measurements and an explicit12

sparse prior of the sky image, the resulting optimization problem is analogous to convex optimization-13

based methods of the literature.14

However, the additive noise in radio interferometric data cannot be appropriately modeled using15

white Gaussian noise. In fact, despite the efforts to build such instruments in radio-quiet zones (in which16

radio transmissions are rare or restricted), man-made radio waves still significantly impact observations17

in radioastronomy [9]. The presence of RFI in the measurements can strongly impact the performances18

of imaging algorithms. To alleviate their impact, a wide range of RFI mitigation methods have been19

developed. Such outliers are usually flagged in the raw data. RFI detection is usually performed by a20

generalized likelihood ratio test [10, 11] or by manually inspecting the data to check for inconsistency.21

More recent approaches built on deep learning-based algorithms to detect and flag the RFI [12–14]22

Furthermore, Spatial filtering can be performed to alleviate the impact of RFI [15]. RFI mitigation23

techniques are particularly efficient when the power of the RFI is sufficiently large so that the subspace24

of the interfering signal is identifiable. However, they lose performance when the RFI’s power decreases25

[9, 16]. However, the presence of RFI still significantly impacts the measurements, making the data26

unusable for scientific purposes [9, 16–18]. Theoretical and experimental analyses have been conducted27

to demonstrate the suitability of non-Gaussian heavy-tailed distributions to model the presence of RFI28

in the radioastronomy context [19]. More generally, the class of Compound Gaussian distributions is29

well suited to model the noise environment of sensor arrays [20]. Moreover, they have shown to be well30

suited to model the presence of RFI in the measurements [21]. However, to the best of our knowledge,31

there is no radio interferometric imaging algorithm that considers compound distributions despite their32

known suitability. In general, the maximum likelihood estimation problem is intractable in close form33

and leads to costly optimization problems.34

The expectation-maximization (EM) algorithm iteratively solves the maximum likelihood estimation35

problem by defining a complete data model from which an easier maximization is performed. In this36

paper, we propose a general framework based on the EM algorithm to perform radio interferometric37

imaging in the presence of RFI. A compound Gaussian distribution models the additive noise, and the38

imaging problem is formulated as a regularized maximum likelihood estimation problem. The resulting39

EM algorithm leads to a maximization step (M-Step) that can be efficiently implemented using state-of-40

the-art imaging algorithms. To improve its computational efficiency, we derive a variant of the proposed41

EM algorithm by leveraging the use of the FFT operator in the design of the complete data specification,42

leading to an accelerated M-Step. Finally, we demonstrate the efficiency of the proposed algorithms on43

simulated data and real data.44

2. Radio interferometric data model45

Radio interferometers bring the possibility to image the sky in the radio domain with high angular46

resolution by using the spatial coherence of the electric field for all the pairs of antennas that compose47

the sensor array. For each couple of sensors and time instants, the correlation between the incoming48

electric fields called visibility, is measured. The van Cittert-Zernike theorem connects the measured49

visibilities with the spatial Fourier transform of the emitted radiations across the celestial sphere [1].50
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This reads as,1

V(u, v) =
∫
S2

A(l,m)I(l,m)e−j2π(ul+vm)dldm, (1)

where I represents the brightness distribution at cosine directions (l,m) and A is an illumination2

function that takes into account the antenna beam. The Fourier plane is called the uv plane, and3

its coordinates are expressed using the antenna positions and the observation wavelength. Given the4

positions of the pth and qth antennas, rp and rq, and an observation wavelength, λ, the associated5

uv coordinates correspond to the baseline vector between the two antennas scaled by the wavelength,6

(u, v) =
rp−rq

λ . Furthermore, the van Cittert-Zernike theorem holds for a small Field of View (FoV),7

considering non-coherent, monochromatic sources located in the far-field of the radio interferometer.8

In such cases, the visibilities are coefficients of the 2D spatial Fourier transform of the sky image at9

continuous coordinates. A discrete data model can be obtained by considering a set of discrete cosine10

directions (ln,mn)1≤n≤N and the set of baselines (uk, vk)1≤k≤K sampled by the radio interferometer.11

The visibilities can then be written as the DFT of the sky image,12

v[k] =

N∑
n=1

x[n]e−j2π(ukln+vkmn), (2)

where v[k] is the noise-free visibility for the kth baseline and x = [x[1], . . .x[N ]] represents the sky13

image vectorized in lexicographic order for the discretized sky coordinates. Subsequently, the forward14

model can be expressed using a discrete Fourier operator,15

y = Hx+ n. (3)

where y is the measured visibility vector, H contains the Fourier basis vectors spanned by the interfer-16

ometer, and n is an additive noise on the measurements. The forward operator, H, is not a complete17

Fourier matrix since the uv coverage of the interferometer is incomplete. Moreover, the spatial frequen-18

cies, which depend on the interferometer’s geometry and the observation wavelength, are not sampled19

uniformly in the uv plane. In consequence, the evaluation of the forward operator cannot be performed20

efficiently using the FFT algorithm. In response, most radio interferometric imaging algorithms consider21

a gridding step to interpolate the measured visibilities in a uniform grid from which an FFT is performed22

[2, 3]. Thus, imaging approaches based on convex optimization that consider sparse regularizers have23

been proposed. More precisely, according to the nature of celestial signals, the sky image is supposed24

to be sparse on some basis. The resulting optimization problem is solved by using proximal algorithms.25

Moreover, the resulting optimization problem can be interpreted as a regularized maximum likelihood26

estimate of the sky image given visibilities perturbed by an additive Gaussian noise. Nonetheless, a27

standard Gaussian distribution assumes a relatively homogeneous noise on the visibilities that does28

not properly represents radio interferometric data. From this perspective, we propose a more general29

statistical model for radio interferometric measurements from which we derive the associated imaging30

algorithm.31

2.1. A model for radio interferometric imaging robust to the presence of RFI32

Radio interferometers are subject to various additive perturbations that cannot be modeled ef-33

fectively by a Gaussian distribution. Notably, RFI represents man-made radio waves [22] that can34

significantly affect the observed data [9] and need a specific modelization [21].35

However, to our knowledge, such modelization has not been used in any radio interferometric imaging36

algorithm. In response, we consider the compound Gaussian family distribution [23], defined as the37

product of two independent random variables. Namely, a Gaussian component called the speckle,38

t = [t1, . . . , tK ] where K is the number of visibilities measured, and a positive random texture, τ [20],39

n[k] =
√
τktk, (4)
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where t ∼ CN (0, σ2I) and τk ∼ p(τ). In this section, we present a generic radio interferometric imaging1

algorithm while considering a compound Gaussian noise to model the presence of RFI. The forward2

model reads,3

y = Hx+Ω−1/2t (5)

where Ω = diag(τ−1
1 , . . . , τ−1

K ), t ∼ CN (0, σ2I) and ∀k ∈ [1,K] τk ∼ p(τ). We can express the log4

likelihood of the observed data as follows,5

L(x;y, σ2) =

K∑
k=1

log

(∫ ∞

0

(πσ2τ)−1 exp((σ2τ)−1δk
2)p(τ)dτ

)
, (6)

with δk = |yk − hkx|, where hk is the k-th row of H. The resulting regularized maximum likelihood6

problem for radio interferometric imaging is formulated while considering a regularization on the sky7

image vector,8

x̂, σ̂2 = argmax
x,σ2

(
L(x, σ2;y) + r(x)

)
(7)

where r(.) is a regularization function used to promote the sparsity of the sky image. Specifically, the9

ℓ1 norm taken on some basis is known to model the inherent sparsity of sky images efficiently [2].10

3. Proposed EM algorithms for radio interferometric imaging11

3.1. An EM Algorithm in the presence of a compound Gaussian noise12

The regularized maximum likelihood estimation problem, as presented below, is often intractable13

for such distributions. In such cases, the EM is an alternative that iteratively increases the likelihood14

[24] by iteratively maximizing the expectation of a complete likelihood.15

To do so, we consider as complete data space, ξ = (y, τ1, . . . , τK), from which we derive an EM16

algorithm. The parameters of interest include the sky image and the global noise variance, θ = (x, σ2).17

The expectation of the log-likelihood of the complete data given the incomplete observed data and the18

current sky image estimate is computed in an expectation step E-step. The latter is then maximized19

in an M-step to produce the new sky image estimate x(m+1). Thus, the EM algorithm iteratively20

implements an E-step followed by a M-step until convergence is reached.21

Proposition 1 The E-step for the considered complete data reads,22

Q(θ|θ(m)) = Eξ|y,θ(m) [log(p(ξ|θ))] =
K∑

k=1

log(σ2)− log(ω̂
(m)
k ) +

ω̂
(m)
k

σ2
δ2k (8)

ω̂
(m)
k = Eτ |yk,θ(m)

[
τ−1

]
=

∫
R+

1

τ
p(τ |yk,θ(m))dτ (9)

The proof is given in Appendix A. The M-step consists in solving the following optimization problem,23

θ̂
(m+1)

= argmax
θ

(
Q(θ|θ(m)) + r(θ)

)
. (10)

The resulting optimization problem can be solved alternatively to produce the new sky image estimate24

x(m+1) and the new noise variance estimate σ2(m+1),25

x(m+1) = argmin
x

(
(y −Hx)HΩ̂

(m)
(y −Hx) + r(x)

)
, (11)

σ2(m+1) =
1

K
∥y −Hx(m+1)∥2

Ω̂
(m) , (12)

where Ω̂
(m)

= diag(ω̂
(m)
1 , . . . , ω̂

(m)
K ).26
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Remark 1 The sky image obtained by solving (11) is a weighted least square problem regularized by1

r(x). For the EM algorithm to converge towards a local maxima of the likelihood, it is sufficient for2

the M-step to only increase the functional Q(x|x(m)) [24]. In consequence, the M-step can be solved3

using state of the state-of-the-art convex optimization-based imaging algorithm or any algorithm that4

gives at least an approximate solution of (11). This gives a way of improving the robustness to the5

presence of RFI in the data of most existing imaging radio interferometric algorithms with a lightweight6

implementation and known convergence properties. Specifically, the M-step of the proposed imaging7

algorithm can be implemented using CLEAN-based methods as well as proximal algorithms while giving8

a maximum likelihood estimate of the sky image robust to the presence of RFI in the data. Moreover,9

since the E-step does not depend on the chosen regularizer, the proposed methodology can easily be10

generalized to any regularization function by affecting only the M-step.11

Algorithm 1 EM Algorithm for radio interferometric imaging in the presence of RFI

input: y,H
output: x̂, σ̂2

initialize: x̂← x0, σ̂
2 ← σ2

0

1: while stop criterion not reached do

2: ω̂
(m)
k obtained from (9) for n ∈ [1,K] # E-Step

3: x̂(m+1) obtained from (11) # M-Step

4: σ̂2(m+1)

obtained from (12) # M-Step
5: end while

3.2. Leveraging the factorization of the forward model for an efficient EM algorithm12

Radio interferometric measurements are samples of the DFT of the sky image on continuous uv13

coordinates that are sampled on a non-uniform grid that depends on the baselines of the interferometer14

array. Consequently, the forward model for radio interferometric imaging is a non-uniform Fourier15

transform and cannot be computed efficiently using the FFT [1]. Furthermore, real radio interferometric16

measurements are made of a great number of visibilities, leading to high computational costs for the17

evaluation of the forward model. In response, most radio interferometric imaging algorithms consider18

a factorization of the forward model that introduces an FFT operator [8], H ≈ SF , where S ∈ RK×N
19

represents a convolution operator and F ∈ CN×N is a Fourier matrix on a uniform grid [1, 8]. In this20

section, we leverage this factorization of the radio interferometric operator to design an EM algorithm21

with a faster maximization step performed on visibilities measured in a uniform grid. We consider22

as latent variables the visibilities that would have been produced by a radio interferometer with uv23

coordinates that lie in a uniform grid, namely,24

z = Fx+ e, (13)

where e ∼ CN (0, σ2
eI) is a complex Gaussian noise. In this case, the forward model is a uniform25

Fourier transform that can be computed efficiently using the FFT. Given the texture components of26

the compound Gaussian noise that are stored in the diagonal matrix, Ω, we can express the measured27

visibilities as a function of the latent variable z by taking advantage of the factorization of the radio28

interferometric operator. To do so, we introduce a decomposition of the global noise as such,29

y|Ω = SFx+ n|Ω = Sz + b,

n|Ω = Se+ b.
(14)

The global noise n is artificially decomposed into two noise components to introduce a direct relationship30

between the measured visibilities, y and the latent variable z. The first component, Se, represents the31

contribution of the latent visibilities to the global noise, while the second, b ∼ CN (0,Σb), is a complex32

gaussian noise artificially introduced.33
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Remark 2 Note that for the resulting noise decomposition to be valid, the covariance matrix, Σb =1

σ2Ω−1 − σ2
eS

TS ∈ RK×K of the artificial noise, b, should be semi-positive definite. This leads to the2

following condition on σ2, τi and λi for the noise decomposition to be valid, ∀i ∈ [1,K], σ2
e ≤ σ2

λiτi
.3

In this case, the M-step of the EM algorithm can be performed on the latent variable z that lies in4

a uniform grid. This results in a forward model that can be efficiently computed using the FFT and5

does not depend on the dimension of the visibility vector y. The noise variance σ2 does not benefit6

from this factorization and can be estimated using the complete data space defined in the previous7

section. Consequently, we propose to estimate the unkown parameters, θ = (x, σ2), using a Space8

Alternating Generalized Expectation-Maximization (SAGE) algorithm [25]. More specifically, using9

separate complete data space, it alternates between the estimation of x and σ2. Thus, we define the10

following complete data space to estimate the sky image, ξ[1] = (y, z, τ1, . . . , τN ). The noise variance,11

σ2, is estimated by using the complete data space defined in the previous section, ξ[2] = (y, τ1, . . . , τN ).12

Proposition 2 The E-step for the considered complete data reads,13

Q1(x|x(m)) ∝ Eξ[1]|y,x(m) [log p(z|(τn)n≤N ;x)] ∝ (ẑ(m) − Fx)H(ẑ(m) − Fx) (15)

Q2(σ
2|σ2(m)

) ∝ K log(σ2) +
1

σ2
∥y −Hx∥2

Ω̂
(m) (16)

ẑ(m) = Eξ[1]|y,x(m) [z] = Fx(m) +
σ2
e

σ2
ST Ω̂

(m)
(y −Hx(m)), (17)

ω̂
(m)
k = Eτ |yk,x(m)

[
τ−1

]
=

∫
R+

1

τ
p(τ |yk,x(m))dτ (18)

where Ω̂
(m)

= diag(ω̂
(m)
1 , . . . , ω̂

(m)
N ).14

The proof is given in Appendix B. The M-Step is then expressed as,15

x̂(m+1) = argmax
x

(
∥ẑ − Fx∥22 + r(x)

)
, (19)

σ2(m+1)

=
1

K
∥y −Hx(m+1)∥2

Ω̂
(m) . (20)

Remark 3 In contrast with the EM algorithm proposed in section 3.1, the M-Step is expressed in a16

complete Fourier basis, allowing the use of FFT to reduce its computational complexity. This opens17

the possibility of using different regularizations without additional computational costs. In fact, by18

doing so, the computational complexity of an iteration lies in a multiplication by a Fourier matrix.19

It is implemented by FFT algorithms in N log(N) where N is the image dimension. The resulting20

computational cost is then independent of the number of visibilities measured. In comparison, the21

computational complexity for the evaluation of the forward operator needed in a state-of-the-art imaging22

algorithm, H, is O(KN log(N)) with K being the number of visibilities.23

Algorithm 2 SAGE algorithm for fast radio interferometric imaging in the presence of RFI

input: y,S,F , σ2
e

output: x̂
initialize: x̂← x0

1: while stop criterion not reached do

2: ω̂
(m)
n obtained from (18) for k ∈ [1,K] # SAGE step 1 - E-Step

3: ẑ(m) obtained from (17) # SAGE step 1 - E-Step

4: x̂(m+1) obtained from (19) # SAGE step 1 - M-Step

5: ω̂
(m)
n obtained from (18) for k ∈ [1,K] # SAGE step 2 - E-Step

6: σ̂2(m+1)

obtained from (20) # SAGE step 2 - M-Step

7: end while

6



4. Numerical results1

4.1. Simulation setup2

This section compares the proposed EM algorithm to state-of-the-art radio interferometric imaging3

algorithms. We simulate sky images of size 256 × 256 pixels. Specifically, we consider sky images4

composed of Gaussian ellipsoids in adequation with the expected shape of galaxies. The number of5

sources in the sky images is sampled from a Poisson distribution with a mean of 15 sources per image.6

The sources flux are sampled from a uniform distribution between 0 and 10 in Jy unit. The scales of7

the Gaussian ellipsoids are sampled from a uniform distribution between 5 and 20 pixels. The position8

angle is sampled from a uniform distribution between 0 and π.9

The visibilities are simulated from the sky images using the ducc0 python package [8]. We use the10

antenna positions of the Meerkat radio interferometer array with 64 antennas and 1 frequency channel11

at 1.4GHz for an 8-hour observation. A gaussian noise is added to the visibilities with a signal-to-noise12

ratio of 10.13

Subsequently, we simulate, for each snapshot, 1000 RFI events as additional point sources in the14

scene. The power of each RFI event is defined relative to the source power, PRFIdB = 10 log(PRFI

P0
),15

where P0 is the source power.16

We consider the case of the inverse gamma distribution for the texture of the compound Gaussian17

distribution, leading to a t-distribution for the additive noise. We chose to specify the texture distribu-18

tion p(τ) with an Inverse Gamma to characterize the proposed algorithms. In this case, the derivation19

of the E-STEP of the EM algorithms is a closed- form, τ̂
(m)
k = ν+1

ν+σ−2|yk−hkx(m)|2 . This choice leads to20

a t-distributed noise to model outliers in the data. Surprisingly, the latter was used in a calibration21

context, not in imaging frameworks [16, 19]. Moreover, in the case of a misspecified texture distribu-22

tion used instead of the exact one, it has been shown that a t-distribution will better than a standard23

gaussian model in the presence of outliers [26, 27]. Furthermore, in practical cases, no information on24

the texture distribution is available. We show in the simulation results the performance of the proposed25

t-distibuted noise model in a setup where RFI have been simulated and added to the signal.26

We choose as regularization the ℓ1 norm that promotes sparsity in the image domain in accordance27

with the nature of the sky images [2]. Furthermore, we add a positivity constraint on the image pixels28

to ensure the physical interpretability of the solution, leading to the following regularization function,29

r(x) = α∥x∥1 + ιR+(x), where λ is the regularization parameter and ιR+ is the indicator function of30

R+. The M-Step is then solved by a proximal gradient descent algorithm31

4.2. Simulation results32

We compare the proposed EM algorithms to standard imaging algorithms considering an ℓ2 norm as33

a fidelity term and a state-of-the-art CLEAN-based algorithm as proposed in [28]. All algorithms are34

initialized with the corresponding dirty image. We evaluate the performance of the different algorithms35

in terms of SNR, defined as, SNR = 10 log10

(
∥x∥2

2

∥x−x̂∥2
2

)
, where x is the original image and x̂ is the recon-36

structed image. We also consider the structural similarity index (SSIM) to evaluate the performances37

of the imaging algorithm in terms of image quality [29]. In figures 1 and 2, we show reconstructed38

images of the different algorithms for a simulated sky image with 25 sources and an RFI power of -5dB.39

The images produced while considering an additive gaussian noise show visual artifacts in the form of40

grains corresponding to the simulated RFI’s presence. Conversely, the proposed methodology shows less41

noisy reconstructed images. Furthermore, we plot in figures 3 and 4 the SNR and SSIM of the different42

algorithms as a function of the simulated RFI power and demonstrate the improved performance of the43

proposed EM algorithms compared to the standard imaging algorithms. First, we observe better metrics44

for the imager based on an ℓ1 regularizer compared to the CLEAN algorithm, confirming the growing45

tendency of radio-inteferometric imaging based on this class of regularizer [2, 4, 5, 7, 30]. Secondly,46

the contribution of the proposed modelization appears for a simulated RFI power PRFIdB ≥ −7dB. At47

very low RFI (PRFIdB
≤ −8dB) , the gaussian based imager has slightly better performances than the48

proposed algorithms. In this context, the noise is gaussian and thus expected to perform correctly. The49

slight loss in performance of the proposed methods, observed at very low RFI, can be explained by50

7



an over-parametrization of the compound gaussian to model an additive white gaussian noise. Finally,1

Algorithm 2 manifests similar behavior than Algorithm 1 at a lower computational cost2

Figure 5 highlights the computational efficiency of the accelerated EM algorithm proposed in Al-3

gorithm 2 compared to the standard EM algorithm proposed in Algorithm 1. It shows the CPU time4

required for the M-step as a function of the number of visibilities measured. It displays the improved5

computational efficiency of the accelerated EM algorithm compared to the standard EM algorithm. In6

the case of the standard EM algorithm, the computational time required for the M-step of the EM7

algorithm is linear with respect to the number of visibilities measured. Conversely, in the case of the8

proposed accelerated EM algorithm, the computational time required for the M-step is independent of9

the number of visibilities measured. It is only dependent on the size of the image to be reconstructed.10

Nevertheless, we observe that the computational time required for the M-step of the accelerated EM is11

greater than the computational time required for CLEAN.12

4.3. Results on real data13

Finally, we show in figure 6 the reconstructed image using Algorithm 2 on a real radio interferometric14

observation from the Very Large Array telescope [31]. The observation comprises 64 frequency channels15

centered at 1.5 GHz observed during 8 hours. It shows the supernovae remnant SNR G55.7+3.4 that16

reveals compact and diffused sources, resulting in a sky image with extended structures. We reconstruct17

an image of 1280× 1280 pixels with a pixel size of 8 arcseconds. This results in a field of view of 2.4718

degrees around the phase center. We perform a multi-frequency synthesis to reconstruct the image from19

all the frequency channels as described in [32].20

We use as benchmark the image produced by 100 000 iterations of multiscale CLEAN (MS-CLEAN)21

as described in [28, 31]. The image produced by Algorithm 2 is obtained after 1000 iterations of22

Algorithm 2 and 100 iterations for each M-step. We display the reconstructed images using the two23

algorithms in figure 6. We notice a good similarity between the two images that shows the effectiveness24

of the proposed algorithm. This is confirmed by the SSIM measured between the two images, which25

equals 0.93. Moreover, the proposed algorithm allows reconstructing an image with better contrast and26

interpretability than the one produced by MS-CLEAN.27

5. Conclusion28

In this paper, we developed EM-based algorithms for the reconstruction of radio interferometric im-29

ages in the presence of radiofrequency interference. The imaging problem is formulated as a regularized30

maximum likelihood estimation problem by considering a compound Gaussian additive noise to model31

the presence of interference in the measurements. Based on this modelization, we first derived an EM32

algorithm that allows easy implementation from existing imaging algorithms while adding robustness to33

the presence of interference. Subsequently, we proposed a modified EM algorithm that takes advantage34

of the factorization of the forward operator to obtain a more computationally efficient algorithm. We35

illustrated the algorithms’ performances on simulated and real datasets. We showed that the proposed36

methodology gives better results than state-of-the-art imaging algorithms in the presence of interference.37
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Appendix A. Proof of proposition 15

Proof Given the data model defined in (5), and ignoring the terms that does not depends on θ, the6

complete data likelihood is given by, Q(θ|θ(m)) ∝
∑K

k=1 Eτk|y,θ(m) [log(p(yk|τk,θ))] . The model defined7

in (5) is a compound Gaussians model, which means that the conditional distribution of yk given τk8

and θ is a Gaussian distribution with mean hkx and variance τkσ
2, where hk is the k-th row of the9

forward operator H. The expression of the conditional log-likelihood is given by log(p(yk|τk,θ)) =10

− log(πτkσ
2)− 1

τkσ2 |yk − hkx|2 and its expectation reads,11

Eτk|y,θ(m) [log(p(yk|τk,θ))] = − log(σ2)−
ω
(m)
k

σ2
|yk − hkx|2 + Cθ (A.1)

where ω
(m)
k = Eτk|y,θ(m)

[
τ−1
k

]
and Cθ is a constant term that does not depend on θ. In conclusion, we12

seek to maximize the following function with respect to θ,13

Q(θ|θ(m)) ∝
K∑

k=1

− log(σ2)−
K∑

k=1

ω
(m)
k

σ2
|yk − hkx|2 (A.2)

This ends the proof.14

Appendix B. Proof of proposition 215

Proof We consider the data model defined in (5) and the noise decomposition defined in (14). We also16

assume that the condition defined in (2) is satisfied. We seek to compute the conditional expectation of17

the complete log-likelihood given the observed data and the current estimate of the parameters θ(m). We18

can ignore the terms that do not depend on x in the computations, leading to the following expression,19

Q(θ|θ(m)) ∝ Ez,Ω|y,θ(m) [log(p(z|Ω,θ))] (B.1)

Given that z|Ω is a gaussian, the conditional expectation of the log-likelihood is written as follows,20

Ez,Ω|y,θ(m) [log(p(z|Ω,θ))] =
1

σ2
e

∥Ez,Ω|y,θ(m) [z]− Fx∥2 + Cθ (B.2)

where Cθ is a constant term that does not depend on θ. The conditional expectation of z is computed21

by using the law of total expectation, ẑ(m) = EΩ|y,θ(m)

[
Ez|y,Ω,θ(m) [z]

]
. Furthermore, zΩ and yΩ are22

jointly Gaussian, thus we can compute the conditional expectation of z given y and Ω as follows [33],23

Ez|y,Ω,θ(m) [z] = Fx(m) +
σ2
e

σ2
SHΩ(y − SFx(m)) (B.3)

This leads to the following expression for the conditional expectation of z,24

ẑ(m) = Fx(m) +
σ2
e

σ2
SHΩ̂

(m)
(y − SFx(m)) (B.4)

with, Ω̂
(m)

= EΩ|y,θ(m) [Ω] = diag(ω̂
(m)
1 , . . . , ω̂

(m)
K ). In conclusion, the surrogate function that we seek25

to compute is given by,26

Q(θ|θ(m)) ∝ ∥ẑ(m) − Fx(m)∥2 (B.5)

(B.6)

That concludes the proof.27
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(a) (b) (c) (d)

Figure 1: Examples of reconstructed images using the different algorithms for a simulated sky image with 25 sources and
an RFI power of -5dB,(a) true image (b) EM algorithm, (c) Gaussian-based imaging algorithm, (d) dirty image
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(a) (b) (c)

(d)

Figure 2: Examples of the M31 radiogalaxy reconstructed using different algorithms for an RFI power of -5dB, (a) true
image (b) EM algorithm, (c) Gaussian-based imaging algorithm, (d) dirty image.
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Figure 3: SNR of the different algorithms as a function of simulated RFI power
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Figure 4: SSIM of the different algorithms as a function of simulated RFI power
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Figure 5: Execution time of the different algorithms as a function of the number of visibilities.
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(a) (a) (b) (b)

Figure 6: Reconstructed image using algorithm 2 (a) and the CLEAN algorithm (b) on a real radio interferometric
observation from the Very Large Array telescope [31].
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