
HAL Id: hal-04465052
https://hal.science/hal-04465052v1

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Countermeasures Against Original Linear
Code Extraction Attacks on a RISC-V Core

Théophile Gousselot, Olivier Thomas, Jean-Max Dutertre, Olivier Potin,
Jean-Baptiste Rigaud

To cite this version:
Théophile Gousselot, Olivier Thomas, Jean-Max Dutertre, Olivier Potin, Jean-Baptiste Rigaud.
Lightweight Countermeasures Against Original Linear Code Extraction Attacks on a RISC-V Core.
2023 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), May 2023,
San Jose, France. pp.89-99, �10.1109/HOST55118.2023.10133316�. �hal-04465052�

https://hal.science/hal-04465052v1
https://hal.archives-ouvertes.fr

Lightweight Countermeasures Against Original
Linear Code Extraction Attacks on a RISC-V Core

Théophile Gousselot∗, Olivier Thomas†, Jean-Max Dutertre∗, Olivier Potin∗, Jean-Baptiste Rigaud∗
∗Mines Saint-Etienne, CEA, Leti, Centre CMP, F - 13541 Gardanne France

theophile.gousselot@emse.fr dutertre@emse.fr olivier.potin@emse.fr rigaud@emse.fr
†Texplained olivier@texplained.com

Abstract—Linear Code Extraction (LCE) is an invasive attack
aiming at fully extracting a code from a device’s memory for
reverse engineering purposes. The core instruction bus is iden-
tified and microprobed using Failure Analysis tools. Meanwhile,
other microprobes force internal nodes of the core to logic states
which allow a full memory linear extraction.

This paper demonstrates the first assessment of a RISC-V
core vulnerability to LCE. It evaluates the complexity to extract
the code in the right order by freezing the instruction register
or by editing the incoming instructions. This paper introduces
three original countermeasures to detect an ongoing LCE by
monitoring symptoms such as the lack of branch instruction
execution. These hardware countermeasures are lightweight and
adaptable to other core architectures. We develop an experimen-
tal setup based on a functional simulation framework and an
FPGA-based demonstration. This setup made it possible to study
and assess the LCE vulnerabilities of our RISC-V target and
to validate the effectiveness of our proposed countermeasures.
The area overhead was measured between 0.52% and 1.47%
of the cv32e40p RISC-V core. Depending on the detection
latency target, the clock cycle overhead using the Embench™
benchmarks can be null or kept below 1%.

Index Terms—linear code extraction, reverse engineering,
hardware security, countermeasure, RISC-V

I. INTRODUCTION

Embedded systems execute applications stored in their
memories. They may be the target of hardware or software
attacks which aim to extract the application code. As intro-
duced in [1, §7.1], reverse engineering the code running on an
Integrated Circuit (IC) is popular as it can lead to a profitable
business. Manufacturers designing an IC based on a competi-
tor’s design reduce their development costs. Manufacturers
may also sell low-cost devices which are compatible with a
competitor’s product. [2] discusses the fact that in the 90s,
compatible pirate smart cards to access paid TV services were
selling well. Now, peripheral devices as gamepad controllers or
ink cartridges are the main targets such as they are increasingly
widespread. Some well-funded and organized manufacturers
such as Apex Microelectronics sell compatible ink cartridges
[3].

Despite elementary countermeasures against code extrac-
tion, such as destroying the embedded memory readback logic

The ARSENE project was funded by the “France 2030” government
investment plan managed by the French National Research
Agency, under the reference “ANR-22-PECY-0004”.

This research was also funded by the European Union
under grant agreement no. 101070008.

after programming suggested in [4, 8.3], the attackers may
employ Failure Analysis (FA) tools to extract a code anyway.
The instruction bus between the core and the memory may be
microprobed as introduced in [5]. The first step is to locate the
bus, for example by imaging the IC layers with a Scanning
Electron Microscope (SEM). Then, signals from the instruc-
tion bus are routed to the top layer with Focus Ion Beam (FIB)
edits, in order to be put in contact with microprobes as carried
out in [6]. All the executed instructions are eavesdropped.
To extract all application functionalities, the code must be
extracted entirely as discussed in [7, §16.6]. Other microprobes
must be set up to force specific internal nodes of the core
(e.g., the reset of the instruction register) to logic states which
induce an execution of the instructions one after the other,
as ordered in memory (i.e., a linear execution). This type of
attack is called a Linear Code Extraction (LCE). The targeted
internal nodes constitute the attack path of the LCE. The attack
paths involve different numbers of microprobes, depending on
the targeted core and its Instruction Set Architecture (ISA). To
date, there have been no studies on the RISC-V vulnerabilities
to LCE, despite its growing use in Embedded Systems. There
is no existing infallible countermeasure against LCE. Most
efficient ones such as the Probe Attempt Detector [8] created
a significant area overhead to protect all the core nodes and
instruction bus sections. Memory encryption [6, §5] may be
circumvented by microprobing the instruction bus after it is
deciphered. Using design obfuscation [9] does not prevent the
instruction bus from being identified.

The main contributions of our research are threefold:
• To assess the vulnerabilities of a RISC-V core to LCE.

Theoretical analysis and practical experiments determine three
types of attack paths to induce a linear execution: by tam-
pering with the incoming instructions, the instruction register,
or the Program Counter (PC) circuitry. Some of them are
briefly mentioned in the state-of-the-art in [5], [6], [10]. Our
contribution is to specially study how to take advantage of
the RISC-V core considered: the cv32e40p. In particular, we
evaluated the complexity in terms of microprobe’s number and
their locations.
• To introduce three original countermeasures as a way

to protect against LCE. Focused on detecting LCE, they are
lightweight enough to be integrated into small embedded
devices without significant performance degradation. They

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

1

monitor symptoms of LCE, such as the lack of branch or
custom security instruction execution. They are implemented
and integrated into the cv32e40p core. Simulations and FPGA-
based demonstration allow us to assess and characterize the
countermeasures in practice (effectiveness, detection latency,
clock cycle overhead, maximum frequency, area overhead).

• To develop and publish an Experimental Setup including
one functional simulation framework and one FPGA-based
demonstration. It ascertains the complexity of custom LCE
attack paths when taking advantage of the vulnerabilities of a
RISC-V core. It demonstrates and characterizes the introduced
countermeasures.

This paper is structured as follows: Section II introduces
additional background on code extraction threats and motiva-
tions, the LCE methodology, and the existing countermeasures.
Section III describes the Experimental Setup. Section IV
reports on the vulnerabilities of a RISC-V core and the
experimented LCE attack paths. Section V presents the three
conceived countermeasures and their practical implementation.
Section VII provides access links to the countermeasure de-
scriptions and the Experimental Setup in order to replicate the
paper results.

II. BACKGROUND

This background section reviews the motivations and meth-
ods of LCE attacks, as well as the existing countermeasures.

A. Code extraction: threat analysis

Embedded systems are built around a core which executes
a program stored in a memory. This program, also called
firmware or code, contains instructions and data. The instruc-
tions are executed by the core to carry out an application. The
code in memory could be targeted by software or hardware
attacks. Skorobogatov introduced five reasons to attack a
device [1, §7.1]: theft of service, cloning, overbuilding, IP
piracy, and denial of service. Extracting a code stored in a
memory may lead to achieving these goals. For example,
to design a gamepad controller compatible with a video
game console, the communication and authentication protocols
must be reproduced. For that purpose, code from an original
gamepad controller memory has to be reverse-engineered.
Therefore, it has to be extracted beforehand.

1) Extraction from external memory interfaces: The ex-
traction can take place on external memory interfaces as
described in [11]. In order to extract code from memory, some
debug interface abuses, JTAG and UART exploits, and raw
flash dump can be carried out. Specific voltage glitches may
also help to get memory read access, as presented in [12].
Countermeasures against these types of attacks exist, such as
memory encryption to prevent any use of the extracted code.
Removing the external memory interfaces as suggested in [4,
§8.3] addresses these extraction approaches.

2) Extraction from the instruction bus: Another way to
extract code is to eavesdrop the instruction bus between the
memory and the core. Such an invasive attack is carried
out using FA tools as illustrated in [6]. The eavesdropping

is accomplished by getting access to the instruction bus in
order to probe it electrically with microprobes. Finding the
bus and identifying the right probing location is possible by
using a SEM and delayering tools as explained in [13]. Once
the probing locations are known, a FIB etches and deposes
silicon oxide and metal to route the instruction bus bits to
microprobes. At the time instructions are executed, they are
extracted. The extracted instructions may be reordered to
rebuild the code. Unfortunately, only the executed instructions
are extracted, which also means that application functionalities
may be missing. For example, some authentication features
may be enabled by the video game console later after com-
mercialization, when the first compatible gamepad controllers
appear as noticed in [7, §16.6].

3) Linear Code Extraction: LCE is still about eavesdrop-
ping the instruction bus, but in addition, some core nodes are
forced into logical states that allow a linear execution. All the
memory’s instructions pass through the instruction bus and are
extracted, including all application functionalities. The reverse
engineering of the code is also straightforward, as there is no
need to put the instructions back in order.

4) LCE funding: As an invasive attack, performing an LCE
is reserved for well-equipped laboratories. Some manufactur-
ers are so profitable by selling compatible products that they
finance LCE attacks on targeted devices like Datel, a compati-
ble game console peripheral maker. The market for compatible
products is driven by ink cartridges through companies like
Static Control Components or Apex Microelectronics. Despite
the lack of market data, a trend is apparent. A Market Research
Report [14] indicates that the global revenue for ink cartridges
and toners for 2021 was USD 16.96B and is forecasted to
reach USD 24.60B by 2027. Furthermore, Hamm revealed
in [15] that compatible product manufacturers sell 25% of
compatible cartridges. According to its growth, it can be
concluded that the cartridge market is attractive and profitable
(e.g., Ninestar Corp, a major actor in the design of compatible
devices and ICs, declared revenue of USD 4.3B in 2019 [16]).
Selling compatible products is legal in most countries, as
highlighted in [17] by the American legal case concerning
ink cartridges developed by Static Control Components com-
patible with the Lexmark printer authentication system. Even
though compatible device manufacturers are not authorized
to copy IPs that belong to the genuine source, proving these
infringements is a difficult task that also requires the reverse
engineering of compatible products.

Given the potential profitability, compatible product man-
ufacturers can allocate funding for significant resources —
equipment and knowledge — to carry out LCE attacks on
targeted devices on an industrial scale. According to the IBM
attacker classification [18], these manufacturers should be
labeled as attackers of class III: Funded organizations like
governments.

B. LCE: principles and methodology

An LCE aims at extracting code in a linear fashion from
a memory. Two sets of microprobes are used. One set to

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

2

MEMORY
CORE

Instruction register
Instruction

Reset

Extract
Force reset

NOP

PC

Linear Incrementation

Text
: Microprobes to eavesdrop

Text: Microprobe to induce a linear execution
: LCE attack effects
: Hardware components

Fig. 1. LCE operation on an Integrated Circuit overview.

eavesdrop the instruction bus and the other set is used to induce
a linear execution. This attack principle was introduced by
Anderson in [7], [19] and Kommerling in [5]. The principle is
illustrated in Fig. 1, there are four steps needed when carrying
out an LCE on an IC.

1) Attack path definition: Analyzing the targeted core and
its ISA highlights potential vulnerabilities. A classical attack
path involves forcing the instruction register to reset. Hence,
every instruction is turned into a No Operation (NOP) instruc-
tion before reaching the decode stage of the core. A linear read
of the memory is thus obtained (see below).

2) Hardware identification: Locations for the microprobes
according to the attack path must be found. Depackaging, then
delayering the IC with chemicals, allows the layers of interest
to be imaged with a SEM. Once a picture (as in Fig. 1) is
obtained, the memory and the core can be identified. In order
to eavesdrop, microprobes should be located on the instruction
bus leaving the memory. Following the instruction, bus leads
to the identification of the instruction register and its reset
input. The reset signal is the target of the microprobe which
induces a linear execution.

3) FIB edits to put microprobes in place: Pads like the cross
shape in Fig. 2 must be electrically connected to signals of
interest. For that purpose, a FIB must etch and depose silicon
oxide and metal. Once cross pads are added to the bits of the
instruction bus and the reset signal, microprobes can be put in
direct contact with pads.

4) Linear code extraction: During execution, incoming
instructions are extracted from the bus. When the reset signal
of the instruction register is enabled, only NOPs are decoded
and executed by the core. The execution of NOPs linearly
increments the PC which will successively point to every

memory address. The code from memory is extracted in a
linear fashion.

LCE is an invasive attack involving FA Tools like SEM
and FIB. Note that, only a limited number of microprobes can
be put in place simultaneously (for a lack of access space)
while minimizing any possible damage to the IC target. This
limits the number of instruction bus bits eavesdropped. During
one LCE, several extractions have to be performed in a row
(generally on different chips).

C. Existing countermeasures against LCE

Some countermeasures against LCE have already been
developed. None of them, though are infallible, and the most
efficient ones often cause significant overhead in terms of
either area or timing.

1) Clock signal randomization: Randomizing the IC clock
as introduced in [5] may avoid the rebuilding of the code
from bits extracted at different times. However, microprobing
the clock signal is enough to synchronize them.

2) Memory encryption: Encrypting the memory makes the
extracted code useless. Nevertheless, as noticed in [6] the
core executes only decrypted instructions, thus, there is a
deciphering component. Microprobing the instruction bus after
deciphering leads to the extraction of the deciphered code.
Recently, Skorobogatov challenged an encrypted ROM of a
core to highlight its vulnerabilities against microprobing in
[20].

3) Design obfuscation: Obfuscating the design alters the
efficacy of hardware reverse engineering, as shown in [9].
Nonetheless, the program memory stays identifiable, and fol-
lowing its instruction bus is feasible.

4) Active shield or mesh: Top metal layers may be con-
verted into an active shield (or mesh) as displayed in Fig. 2. An
alarm is triggered when opened or shorted with its neighboring
lines. However, a line may be cut and rerouted using a FIB,
as the U-shape line in Fig. 2 shows, to open a space in the
shield in order to access the inner routing. Otherwise, signals
may be microprobed from the backside of the IC as clearly
illustrated in [6, Fig. 1].

5) Probing Attempt Detector: As microprobes introduce an
additional capacity load on the target lines, a delay between
symmetric lines may reveal the microprobe. The detector area
is gradually decreasing, as proposed in [8], however, in order
to protect the line, one detector per signal is still required.
Costs may significantly increase to cover every line where
instructions are extractable.

6) Restricted PC: The PC may be split in two counters the
sum of which is the PC value, as suggested by Kommerling
in [5, §3.5]. The smaller one increments linearly. At every
jump, the other one is updated with the destination while
the smaller one is reset. This limits the size of a one-shot
linear extraction. Nonetheless, block-per-block extraction of
the entire code remains feasible. Indeed, there is always a jump
to execute before being able to extract in a linear fashion a
block of code since the smallest counter must not overflow
into a nominal mode.

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

3

Fig. 2. Example of a cross pad built by Focus Ion Beam edits.

III. EXPERIMENTAL SETUP

We develop an Experimental Setup in order to ascertain
the complexity of LCE attacks when taking advantage of
specific vulnerabilities of a RISC-V core detailed in Section
IV. This Experimental Setup also demonstrates and charac-
terizes the countermeasures presented in Section V. There is
one functional simulation framework and one FPGA-based
demonstration.

The goal is not to reproduce every step of an LCE: hardware
identification, FIB edits, and signal microprobing as [6] and
[20] did in practice, but rather to quickly assess an attack path
and to validate the countermeasures that we have developed
in our study.

A. RISC-V and cv32e40p target

As RISC-V cores are increasingly used in embedded sys-
tems, we chose to analyze the potential vulnerabilities to
LCE on a RISC-V core, since there are no existing studies
on the topic. The authors studied the cv32e40p [21], a 32-
bit, 4-stage, in-order, core provided by the OpenHW Group
as it is representative of small ISA RISC-V cores. It was
targeted for experiments, as it is also open-source (i.e., intrinsic
countermeasures can be added to its Register Transfer Level
(RTL) description).

B. Simulation framework

The functional simulation framework was developed for
simulation-based validation of either LCE attack paths or
countermeasures effectiveness. It runs fast campaigns of code
executions to perform LCE by focusing on various vulnera-
bilities.

The proposed framework is depicted in Fig. 3. It is based on
the core-v-verif framework [22] provided by OpenHW group.
Simulations are sped up by using the Verilator [23] simulator.
They are performed at the RTL level to ensure the accuracy

code.c

gcc

code.hex

verilator

verilator-executable

 cv32e40p test-bench

code-extracted.hex

Countermeasures ?

comparison

log

LCE ?
force
fdisplay

Fig. 3. Functional simulation framework.

of the observed behavior. From the cv32e40p RTL description
and an LCE attack path described in a test bench, an executable
Verilator model is built. The cv32e40p core can include a
countermeasure. The LCE is simulated by using the fdisplay
task and the force statement defined in the IEEE Standard
for SystemVerilog [24] instead of microprobes. The fdisplay
tasks eavesdrop the instruction bus and save the extracted
instructions in a separate file. The force statement induces
stuck-at faults to signals targeted by the defined attack path to
ensure a linear execution. A code compiled by a gcc toolchain
is given to the Verilator model to simulate its execution on the
cv32e40p. The executed codes were taken from the benchmark
suite Embench [25] as they are representative of embedded
system applications. Simulation outputs like the percentage
of correct extracted code, clock cycle overhead, or latency
detection are generated by the framework and are compared
to theoretical estimations in Section V.

C. FPGA-based demonstration

The FPGA-based demonstration target to quickly assess
and observe core behaviors for many LCE attack paths on
protected or not core. For that purpose, the Hardware iden-
tification and the FIB edits steps are emulated on FPGA. In
particular, the software processing to automate the digitaliza-
tion of extracted bits to rebuild the code is reproduced. The
FPGA-based demonstration leads to the same conclusion as
the simulator framework to validate the countermeasures and
reports the utilization overhead. It is depicted in Fig. 4.

A bitstream of a microcontroller core-v-mcu [26] containing
a cv32e40p core and a code in memory is downloaded to an
Artix 7 FPGA (xc7a200tsbg484-1) on a Nexys Video board.
The LCE is emulated by replacing the microprobes inducing a
linear execution by inserting multiplexers on targeted signals
(e.g., the instruction register reset in Fig. 1). These multiplex-
ers are driven by switches which select the original input or the
forced one. The microprobes eavesdropping the instruction bus
are emulated by oscilloscope probes connected to FPGA board
outputs. To imitate an attacker who has few microprobes, only
four oscilloscope probes are connected to the FPGA board
outputs. Bits of the instruction bus are routed to these outputs.
Clock and reset signals are also routed for synchronization
purposes. Thus, sixteen LCEs are run to extract all the 32 bits
of instruction bus. An Integrated Logic Analyzer component

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

4

core-v-mcu code.mem

LCE ?

FPGA design flow

core-v-mcu.bit

FPGA
BOARD

CM ?

reset-core

switches alarm led

comparison

clk

code-extracted.mem

instr. bits
2

extraction

FPGA
design flow

Extraction

Rebuild

rst

Integrated Logic Analyzer

disassembly

code-extracted.s

OSCILLOSCOPE

32instr. bits

Fig. 4. FPGA-based demonstration framework.

allows emulating these sixteen executions. The extracted wave-
forms are then digitalized and blended by software processing
to rebuild the code. This extracted code can be disassembled to
be analyzed or compared to the one in memory. Concurrently,
other switches enable and select one of the countermeasures
integrated into the cv32e40p core. These switches and the
probes connected to the oscilloscope are highlighted in the
picture of the FPGA board setup in Fig. 5.

IV. EXPLOITING RISC-V LCE VULNERABILITIES

In order to completely extract a code from a core’s mem-
ory, an LCE entails eavesdropping the instruction bus, while
forcing nodes of the core into logic states which allow a linear
execution. The microprobing to eavesdrop the instruction
bus is quite common to every ISA and core architecture:

ResetSelect CM
Select LCE attacks

Eavesdropping
emulation

Fig. 5. Setup of the board with probes connected to the oscilloscope.

microprobes have to be set on the instruction bus between the
core and its memory. Yet, the microprobing to force the linear
execution and its complexity are highly dependent on the ISA
and the core architecture vulnerabilities. For example, resetting
the instruction register of a RISC-V core as exemplified in
Fig. 1 leads to an exception because instruction 0x0000 is
illegal in RISC-V.

To the best of our knowledge, our research study is the first
to analyze the complexity of LCE attacks when taking ad-
vantage of specific vulnerabilities of a RISC-V core. Contrary
to ARM or MIPS ISA, the open-source RISC-V ISA and the
open-source cores like the cv32e40p make the identification
of vulnerabilities completely feasible.

The complexity of ensuring a linear execution may be
defined by the number of simultaneous microprobes and their
locations. Recently, Skorobogatov performed eight simultane-
ous microprobes on a chip in [20]. The more microprobes
that have to be used, the more time the attackers will spend to
identify their locations and perform FIB edits, which amounts
to an increased risk of destroying the chip.

A. Theoretical identification of vulnerabilities

Notation: going forward, the term Discontinuity Instruction
(DI) refers to every instruction able to break a sequential
execution (e.g., branches and jumps in RISC-V). The term
Continuity Instruction (CI) refers to every other instruction.

Three types of attack paths (depicted in Fig. 6) exploiting
distinct vulnerabilities are identifiable: (I) Freezing a CI in the
instruction register, (II) Editing the incoming instructions or
(III) Tampering with the PC. Some of them are either concisely
or roughly mentioned in the state of the art [5], [6], [10], our
contribution is to specially study how to take advantage of
RISC-V and cv32e40p vulnerabilities.

1) Freezing a CI (I): Freezing a CI in the instruction
register leads to increment linearly the PC. Disabling the
write enable (we) or clock inputs of the instruction register
will freeze the current instruction, using only one microprobe.
Thus the same frozen CI is executed repeatedly, while all the
memory’s instructions pass through the instruction bus. Cau-
tion must be taken not to propagate the forcing value into the
core. Finding the instruction register inputs is made possible
by following the instruction bus already found in order to set
the eavesdropping microprobes. The first instructions of codes

Core

instructions

Instruction
Register

wewe

clk

nextPC
PC+4

PC+imm

select_nextPC

PC

etc.

(II)

(I)

(III)

reset

Fig. 6. Three types of identified vulnerabilities.

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

5

are often register-initialization (i.e., CI). Thus, a trial-and-error
approach to freeze start times may lead to freeze a CI.

2) Editing incoming instructions (II): Editing specific sig-
nals of the instruction bus to turn DIs into CIs leads to
increment linearly the PC. Every incoming instruction is
transformed into a new one to remove all the DIs. The main
pitfall is not raising an exception due to invalid RISC-V fields
in the created instructions (i.e., opcode, funct3, funct7) or by
misaligning load and store. This would fail the LCE attempt.
In order to avoid these pitfalls, the simulator framework is
useful to detect if an attack path leads to exceptions. A map
of the major RISC-V opcodes, taken from documentation
[27], is given in Table I. Red cells represent DIs, for all of
them: inst[6:5] = 11. Cells with an exponent (e.g., LOAF-
FP2) show opcodes only used by RISC-V extensions. Firstly,
if these extensions are not implemented in the architecture,
then forcing bit 5 or 6 of every instruction to 0 will turn DIs
into invalid instructions. Secondly, U-type instructions [27,
§2.3] (i.e., AUIPC and LUI) are the only CIs to admit all
values for their bits from 7 to 31. As a result, at least 4
bits have to be forced to remove all DI without raising an
exception. For example, inst[6]=0, inst[4:2]=101, to transform
all instructions into AUIPC or LUI, the orange cells in Table I.
When using 16-bit compressed instructions, the same forcing
is still available once decompressed.

In comparison, for Armv8-A, bits from 26 to 28 of all
DIs (named branches in ARM) are equal to 101, according
to the documentation [28, p266]. Flipping one of these bits
ensures that no DI will be executed. Maier [29, p7], claims
that forcing only one bit is enough to ensure linear execution,
but consideration should be taken to ensure that no exception
will be raised.

Editing instructions by microprobing can be done using the
microprobes already set in place to eavesdrop the instruction
bus. Identifying the instruction bus is the only identification
task for the attackers, but the number of involved microprobes
is high.

3) Tampering with the PC (III): Tampering with the PC
circuitry may lead to increment linearly the PC. Forcing the
PC multiplexer control signal to select the linear increment
input (e.g., the input PC+4 in Fig. 6) ensures a linear execution
even if a jump instruction is executed (this attack path does not
prevent instructions from being executed). On the cv32e40p
core (without enabling the Hardware Loop extension), only
one microprobe is needed to force the id stage i.pc set o
signal of the decoder stage to 0. Finding this signal is feasible
by identifying the PC bus and then following it upstream up to
the multiplexer. Other design choices for the cv32e40p could
increase the number of multiplexer inputs to be tampered with,
which would increase the needed number of microprobes.

B. Practical validation of attack paths

The authors used the simulation framework described in
Section III to assess the previously described attack paths. All
three LCEs attack paths succeeded in extracting instructions

TABLE I
RISC-V BASE OPCODE MAP, INST[1:0]=11.

[4:2] 000 001 010 011 100 101 110

[6:5]

00 LOAD LOAD-FP2 custom-04 MISC-MEM OP-IMM AUIPC OP-IMM-323

01 STORE STORE-FP2 custom-14 AMO1 OP LUI OP-323

10 MADD2 MSUB2 NMSUB2 NMADD2 OP-FP2 reserved custom-2/rv1284

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv1284

Discontinuity instructions U-type instructions
Atomic (A)1 Floating point (F, D, Q)2 RV64/128 Base3 Custom opcodes4

and data from memory, without raising exceptions due to linear
execution.

Memory

.init

.vectors

.text

.rodata

.data

.sdata

.stack

.sbss
L
i
n
e
a
r

c
o
d
e

e
x
t
r
a
c
t
i
o
n

PC

Fig. 7. Memory segmenta-
tion.

The memory segmentation of the
Von Neumann RISC-V architecture
used is depicted in Fig. 7. The mem-
ory is segmented into several sec-
tions. Instructions are stored in .init
and .text sections, whereas the data
is stored in .rodata, .data, .sdata and
.sbss. For every code of the Embench
suite, all instructions and then all data
were successively pointed by the PC
and retrieved. A Harvard architecture,
with separate memories for instruc-
tions and data, or a limitation of PC
range will obviously avoid this data
extraction.

As noticed, enabling the reset sig-
nal of the instruction register led to
an exception because the generated
0x0000 is not a NOP but rather an in-
valid instruction. As discussed, Edit-
ing the incoming instructions (II) in
Section IV-A2, forcing bit 5 or 6 to
0 without using Floating Point exten-
sions led to an exception.

The same LCE attack paths (I) and (II) were also emulated
successfully on FPGA (as expected). Fig. 8 exemplifies the
oscilloscope waveforms of the three least significant bits of the
instruction bus for the Freezing (I) attack path. Bits 0 and 1
are at a high level, revealing the use of full 32-bit instructions.
Bit 2 follows the instruction flow of the bus. Though the
Tampering with the PC (III) succeeded by simulation, but
failed on the microcontroller due to an error in the AXI bus
(another attack path to tamper with the PC should be found).

The Experimental Setup exhibits the complete extraction of
the instructions and data from memory by the three identified
attack paths. The complexity in terms of the number of mi-
croprobes for every attack path was confirmed by simulations,
and the exceptions suspected to occur were observed.

C. Attack path complexity

Carrying out an LCE is not always done under ideal
condition. The starting address pointed by the PC could be at
the end of the .text section. In that case, an iterative approach

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

6

0

3.3
clock

0

3.3
bit0

0

3.3
bit1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

3.3
bit2

0.0 0.2 0.4 0.6 0.8 1.0
time [µs]

0.0

0.2

0.4

0.6

0.8

1.0
vo

lta
ge

 [V
]

Fig. 8. Waveforms of the clock and the three bits of the instruction bus.

is possible by progressively delaying the start of the LCE (i.e.,
when specific signals are forced) until it reaches the execution
of a DI jumping to one instruction at the beginning of the .text
section. Delaying the start of the LCE is impossible by LASER
or FIB editing of the specific signals instead, microprobes
must be used. Note that such an iterative approach could also
be used to defeat Kommerling’s countermeasure presented in
Section II-C6, based on PC partitioning [5] by retrieving the
memory content piece by piece.

Therefore, in addition to eavesdropping microprobes, micro-
probes to induce a linear execution have to be set according to
the attack path. The most common attack path in the state of
the art: Editing the incoming instructions (II) means installing
four microprobes on the instruction bus to induce a linear
execution of a RISC-V core. Freezing a CI (I) requires placing
only one microprobe on the cv32e40p which is easier to
locate compared to Tampering with the PC (III). By enabling
the cv32e40p Hardware Loop extension or improving the
multiplexer design, additional microprobes are required in
order to Tamper with the PC (III).

V. COUNTERMEASURES

Countermeasures against LCE are intended to be integrated
into relatively simple embedded systems (e.g., inside ink car-
tridges). They have to be efficient while remaining lightweight.

A. Countermeasure description

Countermeasures must be able to handle the LCE attack
paths revealed in Section IV. For the Freezing (I) and Editing
(II) attack paths, the instructions coming from the memory
are altered. As a result, a full software countermeasure is not
possible as the countermeasure instructions could be erased or
modified preventing their execution. Thus, the authors chose a
hardware-based approach. Nevertheless, from the core point of
view, during (I) or (II) LCE attacks, nothing wrong happens.
The core receives and executes legal instructions. It cannot
detect the occurrence of corrupted ones because it is not able to
recognize a corrupted instruction. However, the core can detect

some instructions are missing or have been tampered with.
This is the operating principle of our first countermeasure.

1) Security Markers Monitoring (SMM): The SMM coun-
termeasure consists of regularly inserting a custom instruction
called Security Marker (SM) into the code, and then checking
the steady presence of SMs after the instruction register. When
an LCE is performed by Freezing (I) or Editing (II), incoming
SMs are erased/edited and will be missing in the checking
logic.

An SM monitoring component located after the instruction
register is added to count the number of instructions executed
between two SMs. Beyond a certain threshold, an LCE killer
reaction is triggered. This threshold is configurable and defines
the LCE detection latency of the countermeasure, it is called
Detection Latency Target (DLT). An SM insertion component
is added at the output of the program memory before the
instruction bus. It inserts SMs on a regular basis, following
the DLT. This insertion works by replacing the incoming
instruction with an SM. In order to reread the replaced
instructions from memory, SM execution must not increase
the PC value. Incidentally, freezing an SM in the instruction
register maintains the PC value and does not induce a linear
execution. The SM insertion and monitoring components are
depicted (in red) in Fig. 9.

The RTL descriptions of RISC-V open-source cores are
editable which allows the insertion of components. The open-
source RISC-V ISA is designed to easily add custom instruc-
tions like SM. The execution of SM created a clock cycle
overhead. This overhead can decrease with the growth of DLT
as expressed in 1. The cpiSMM is the average of cycles per
instruction in the executed code, and n is the number of needed
cycles to execute an SM.

Clock cycle overhead =
1

cpiSMM ·DLT

n
− 1

(1)

2) Discontinuity Instruction Monitoring (DIM): The DIM
is an enhanced version of SMM to reduce the clock cycle
overhead by treating DI as SM. When an LCE is performed
by Freezing (I) or Editing (II), every incoming DI is erased.
Therefore, DIs are missing after the instruction register. The

Core

instructions

Instruction
Register

wewe

clk

nextPC
PC+4

PC+imm

select_nextPC

PC

etc.

(II)

(I)

(III)

reset

Linear Addressing Monitor

Security Marker Monitor

Discontinuity Instruction Monitor

Security Marker Insertion

Fig. 9. Potential locations for the monitoring component of every counter-
measure. SMs are inserted by a hardware component for SMM and DIM.

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

7

monitoring component counts the number of instructions ex-
ecuted between two SMs, two DIs or one SM and one DI.
Therefore, inserting an SM is only necessary when there are
not enough DIs (i.e., when a Basic Block (BB) is longer than
the DLT). A BB is a straight-line code sequence without DIs
until the end of the sequence.

Reducing the number of inserted SMs decreases the clock
cycle overhead as expressed in (2). The clock cycle overhead
depends only on the size |BBi| and the execution numbers ei
of every BBi. Knowing the exact path taken on the Control
Flow Graph for an execution is the only way to calculate
the clock cycle overhead. The simulator framework presented
in Section III makes it possible to measure the clock cycle
overhead for several codes. The cycori is the number of cycles
needed to execute the original code.

Clock cycle overhead =
1

cycori
· n

∑

i

⌊ |BBi|
DLT

⌋
· ei (2)

Checking that there are not too many consecutive incoming
branches is a practical way to address an attack path that aims
to freeze a branch with a false condition in the instruction
register.

3) Linear Addressing Monitoring (LAM): The LAM mon-
itors the length of linear execution sequences by analyzing
PC updates. The LAM addresses the three identified attack
paths to perform an LCE, including PC tampering (III). Only a
monitoring component, depicted in Fig. 9, counts the number
of cycles between two non-linear PC addressing (i.e., when
the next PC is different from PC, PC+2 or PC+4 in RISC-
V). Beyond a threshold, the LCE-killer reaction is triggered.
This triggering threshold must be defined, considering the
executed codes to never be exceeded in nominal execution.
This threshold defines the detection latency, which is usually
higher than the DLT of the previous countermeasures. As there
is no need to insert any instruction, there is no clock cycle
overhead. Many varieties of LAM can be designed, such as
monitoring the driving signal of the PC multiplexer instead of
the PC.

Theoretical characterizations of the three countermeasures
are summarized in Table II, and are compared to the experi-
mental ones in Section V-C. The area overhead is limited to
a bit of combinational logic (measured at approximately one
percent of cv32e40p in Section V-C) in addition to one counter
for the LAM monitoring component. For SMM and DIM, two
smaller counters are required: one for SM insertion and one for
SM/DI monitoring components. These counters are smaller, as
the DLT may be smaller than the LAM threshold.

A low DLT reduces the amount of extractable code before
the triggering of the LCE-killer reaction. Clever access mech-
anisms which successively extract a small amount of code to
rebuild the code are conceivable for high detection latency.
However, with a small DLT, these clever access mechanisms
are difficult to implement. The final instructions of the longest
BBs will never be reached before the LCE-killer is triggered.

B. Further countermeasure issues

There are secondary issues to consider in order to better the
full operability of countermeasures.

1) LCE-killer reaction: The LCE-killer reaction following
detection is not in the scope of this paper. It has to stop
the extraction. Basically, the reaction can be the same as
for mesh or Probe Attempt Detector: causing a memory or
circuit reset to avoid the access of memory-sensitive contents.
A generation of null or random instructions from the memory
is quite interesting to make attackers believe they succeed.

In order to avoid tampering with the reaction trigger signal,
the pattern of “there is no LCE detected” has to be complex.
Ideally, it should alternate between 0 and 1 in the nominal
mode and at best it should be based on a lightweight ciphering
as applied to active shield in [30]. Thus, circumventing our
countermeasures will require more microprobes, a lot of LCE
trial and error testing, and therefore more time.

2) Better to insert SMs on-the-fly than at the compilation:
Instead of inserting SMs on-the-fly using a hardware com-
ponent, the SMs could be inserted in the compilation flow.
However, the code to be stored in memory is longer due to
SMs added. Moreover, SMs must be inserted more often, as all
edges of the Control-Flow Graph have to be considered, which
ultimately increases the clock cycle overhead. On the other
hand, the regularity of the on-the-fly insertion is the lowest
one which doesn’t exceed the monitoring counter threshold.

These three lightweight and hardware countermeasures are
adaptable to every core architecture with an instruction bus
and a PC (i.e., all existing cores). Depending on the threat,
a specific use of these countermeasures is definable. For
example, by using several instances of the DIM and LAM
countermeasures to make the LCE very difficult to achieve.

C. Countermeasure practical evaluation

The Experimental Setup made it possible to assess the
effectiveness of the countermeasures we created.

1) Countermeasure implementations: The three conceived
countermeasures have been implemented in the cv32e40p
core. Access links to their RTL description is provided in
Section VII. Each CM makes use of a dedicated counter to
monitor the core activity and to detect LCE attacks. Table III
summarized when it is initialized, its initialization value, and
when it is decreased. The role of the counter is to measure
the time elapsed between two initialization events (expressed
in executed instructions or clock-rising edges. For the LAM
the initialization value was set to 105, as this is the minimal
threshold value that did not trigger the alarm in nominal mode
while testing the Embench codes. For the SMM and DIM
countermeasures, ranging DLTs were tested by initializing the
counter from 5 to 150, in order to measure the corresponding
clock cycle overhead.

Decreasing the SMM and DIM counters at every executed
instruction instead of every rising clock edge, allows disre-
garding instructions executed in several cycles. This leads to
less frequent insertion of SMs without extending the detection
latency. As the LAM is located on the PC bus, it should operate

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

8

TABLE II
THEORETICAL CHARACTERIZATION OF COUNTERMEASURES.

Countermeasures Detection latency Attack path covered Clock cycle overhead Area overhead

SMM Security Markers Monitoring configurable (DLT) (I) (II) decreasing with DLT negligible
DIM Discontinuity Instruction Monitoring configurable (DLT) (I) (II) decreasing sharply with DLT negligible
LAM Linear Addressing Monitoring higher (code depending) (I) (II) (III) null negligible

without the information that an instruction has been executed,
thus it decreases at every rising clock edge. As explained
in Section V-A1, an SM must initialize the counter and not
increment the PC. To simplify the implementation, SMs are
encoded as JAL x0, 0, since there is none in Embench codes.

TABLE III
COUNTER BEHAVIOR WITH REGARD TO THE CONSIDERED CM

Initialized
at every

Initialization
value

Decreased
at every

SMM SM DLT instr. executed
DIM SM or DI DLT instr. executed
LAM nextPC /∈ {PC, PC+4} 105 rising clock edge

2) Practical characterization: Campaigns of simulated ex-
ecutions were following the effectiveness and the character-
ization claims of the three countermeasures. The Freezing
(I) and Editing (II) attack paths were detected by the three
countermeasures, while only LAM detected the PC tampering
(III).

a) Detection Latency: The measured detection latencies
met the DLT for SMM and DIM, and 105 for the LAM. In a
nominal mode for LAM, the use of a threshold lower than 105
raised an alarm on at least one of the Embench codes. From
the FPGA-based demonstration, the oscilloscope waveform of
the reaction trigger signal raised during an LCE is plotted in
Fig. 10. The LCE begins from the first rising clock edge and
the DLT was set to 15 executed instructions. The detection
between the beginning of the LCE and the alarm trigger is
about 15 cycles, which is consistent, as instructions executed
while an LCE is performed need only one cycle.

b) Clock cycle overhead: There is no clock cycle over-
head for the LAM as it does not involve the insertion of
SMs. Fig. 11 displays the clock cycle overhead of the SMM
and DIM solutions for the Embench codes. It depends on the
specificity of each code, as expressed in (1) and (2). Only some
Embench codes are displayed for readability issues. As SMs
— encoded as JAL x0, 0 — need two cycles to be executed
(n = 2), both clock cycles overhead could be reduced by a
factor of two if the core was edited to speed up the execution
of SMs. The reduction of the clock cycle overhead using the
DIM is noteworthy. The DIM graph reveals that codes like
cubic or nbody contain BBs longer than 15 instructions which
are executed plenty of times. The DIM countermeasure with

0

3.3
clock

0

3.3
bit30

0

3.3
bit31

0.0 0.2 0.4 0.6 0.8 1.0

0

3.3
alarm

0.0 0.2 0.4 0.6 0.8 1.0
time [µs]

0.0

0.2

0.4

0.6

0.8

1.0

vo
lta

ge
 [V

]

Fig. 10. Alarm signal raised during an LCE.

a reasonable DLT makes the clock cycle overhead negligible
(e.g., less than 1% for a DLT of 25 instructions executed).

The effect of DLT on the average clock cycle overhead is
drawn in Fig. 12. The cpiSMM is approximated to 1. The clock
cycle overhead is basically decreasing for a growing DLT.
The SMM average overhead matches the theoretical estimation
from (1).

cr
c3

2
cu

bi
c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-i
nt

m
d5

su
m

m
in

ve
r

m
on

t6
4

nb
od

y
ns

ic
hn

eu
ta

rf
in

d
w

ik
iso

rt
AV

ER
AG

E
TH

EO
RY

0

5

10

15

C
lo

ck
 c

yc
le

 o
ve

rh
ea

d
(%

) Security Marker Monitoring (SMM)

DLT=60 DLT=30 DLT=15

cr
c3

2
cu

bi
c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-i
nt

m
d5

su
m

m
in

ve
r

m
on

t6
4

nb
od

y
ns

ic
hn

eu
ta

rf
in

d
w

ik
iso

rt
AV

ER
AG

E

0

5

10

15

C
lo

ck
 c

yc
le

 o
ve

rh
ea

d
(%

) Discontinuity Instruction Monitoring (DIM)

DLT=60 DLT=30 DLT=15

Fig. 11. Clock cycles overhead depending on the DLT for Embench codes.

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

9

5101520253035
Detection Latency Target (in executed instructions)

0

20

40

60

80
C

lo
ck

 c
yc

le
 o

ve
rh

ea
ds

 (%
)

Average (SMM)
Theoritical estimation (SMM)
Average (DIM)

Fig. 12. Clock cycles overhead depending on the DLT.

Additional component logic increases the core logic prop-
agation delays, which may decrease the maximum clock
frequency. In the FPGA design flow, after implementation, the
Worst Negative Slack was reduced by 2.07% compared to the
unprotected microcontroller (from 30.812 ns to 30.173 ns).
Countermeasures may therefore slightly limit the maximum
frequency of the clock.

c) Area overhead: The area overhead is lightweight but
depends on the DLT. The slice LUTs and Registers utilization
measured for two DLT values in the FPGA design flow, after
implementation, are given in Table IV. The LAM includes
only a monitoring component with a DLT of 105 (equivalent
to 127), which creates a 0.52% LUT overhead. It is lighter
than SMM and DIM. Indeed, those include monitoring and
hardware insertion components. Their DLT may be as small
as 15, which created a 1.47% LUT overhead. Nonetheless, the
increased area overhead for any of the three countermeasures is
very low. As a guide, the core-v-mcu microcontroller contains
around 48,900 LUTs.

3) Discussions: The authors did not report on the effect of
RISC-V extension on the countermeasures design. They did
not identify any predictable incompatibility (though it could
be ascertained with the proposed simulation framework).

Only the compressed extension challenges the hardware
insertion of SMs. The insertion requires replacing the 32
incoming bits with an SM. The risk is to partially replace
two incoming unaligned instructions, by an aligned SM, which
leads to the creation of two undesired instructions. Information
about PC alignment from the core or the memory is needed
to address this issue.

The SMM and DIM countermeasures could be enhanced to
address the Tampering with the PC (III) attack path,

TABLE IV
COUNTERMEASURE COMPONENTS UTILIZATION OVERHEAD COMPARED

TO THE UNPROTECTED CV32E40P.

Slice Unprotected
cv32e40p

DLT=15 DLT=127

Hardware
insertion

Monitor
component

Hardware
insertion

Monitor
component

LUTs 4439 46 1.04% 19 0.43% 55 1.24% 23 0.52%
Registers 2132 5 0.23% 10 0.47% 8 0.38% 13 0.61%

by implementing an original jump or kill mechanism. It
would require adding in the code successively: an instruction
that jumps over the following instruction and a custom kill
instruction which initiates the LCE-killer process if executed.
If the jump instruction is not properly executed due to Tamper-
ing with the PC (III), then the kill instruction is executed and
it triggers the LCE-killer reaction. Implementation and tests
could be viable and interesting avenues for future studies.

VI. CONCLUSION

LCE is an invasive attack aiming at fully extracting a code
from a device’s memory for reverse engineering purposes.
The threat is real and routinely exploited by manufactur-
ers of compatible products (e.g., ink cartridges or gamepad
controllers) who can fund the required expensive FA tools.
The first contribution of this work is to reveal types of LCE
attack paths to induce a linear read of the memory of a
targeted RISC-V core. Three attack paths were introduced,
notably two of which are linked to vulnerabilities of the
instruction register and the PC circuitry. The vulnerability
based on instruction editing appears more as a theoretical
threat than a practical one because it requires tampering with
and forcing at least four bits of the instruction bus. The
increase in the number of microprobe-required renders this
attack path impractical. These vulnerabilities were assessed
through simulations or FPGA-based demonstration thanks
to our proposed Experimental Setup (both frameworks we
developed are made available on an open-access basis).

To address LCE threats on embedded devices, lightweight
countermeasures were introduced. The original approach of
monitoring the LCE symptoms leads to an area overhead
around 1% of the unprotected cv32e40p core. A widespread
deployment on many embedded devices is therefore conceiv-
able. Thanks to the configurable DLT, countermeasures can
be adapted to every use case. For example, by decreasing the
clock cycle overhead to less than 1% with a DLT lower than
25 instructions executed for DIM. The clock cycle overhead is
null for LAM. All these countermeasures were implemented,
successfully validated, and characterized by the Experimental
Setup, in simulations and FPGA-based demonstration.

VII. AVAILABILITY

The RTL description of the three countermeasures inte-
grated in the cv32e40p core and the Experimental Setup are
available (https://github.com/theophile-gousselot/linear code
extraction). Additional documentation and step-by-step tutorial
help to better understand the Experimental Setup and to
reproduce the results of this paper. Moreover, original attack
paths and countermeasure variants can be tested.

REFERENCES

[1] S. Skorobogatov, “Physical attacks and tamper resistance,” in Introduc-
tion to Hardware Security and Trust. Springer, 2012, pp. 143–173.

[2] C. Loebbecke and M. Fischer, “Pay TV piracy and its effects on Pay TV
provision,” Journal of Media Business Studies, vol. 2, no. 2, pp. 17–34,
2005.

[3] Apex Microelectronics, “Compatible ink cartridges selling by Apex
Microelectronics ,” 2022.

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

10

[4] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware
security analysis.” University of Cambridge, 2005.

[5] O. Kömmerling and M. G. Kuhn, “Design Principles for Tamper-
Resistant Smartcard Processors.” Smartcard, vol. 99, pp. 9–20, 1999.

[6] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and
J.-P. Seifert, “Breaking and entering through the silicon,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 733–744.

[7] R. Anderson, “Security engineering: a guide to building dependable
distributed systems,” John Wiley & Sons, 2020.

[8] M. Weiner, S. Manich, R. Rodrı́guez-Montañés, and G. Sigl, “The low
area probing detector as a countermeasure against invasive attacks,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 2, pp. 392–403, 2017.

[9] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu,
“Physical design obfuscation of hardware: A comprehensive investi-
gation of device and logic-level techniques,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 1, pp. 64–77, 2016.

[10] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, “Cryptographic
processors-a survey,” Proceedings of the IEEE, vol. 94, no. 2, pp. 357–
369, 2006.

[11] S. Vasile, D. Oswald, and T. Chothia, “Breaking all the things - A
systematic survey of firmware extraction techniques for IoT devices,”
in International Conference on Smart Card Research and Advanced
Applications. Springer, 2018, pp. 171–185.

[12] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the Glitch: Opti-
mizing Voltage Fault Injection Attacks,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, vol. 2019, no. 2, pp. 199–
224, Feb. 2019.

[13] H. H. Yap and Z. J. Lau, “Delayering techniques: dry/wet etch depro-
cessing and mechanical top-down polishing.” Microelectronics Fialure
Analysis Desk Reference, p. 379, 2019.

[14] “Ink-cartridge Market Research Report by Type, Application, Region -
Global Forecast to 2027,” 2022.

[15] S. Hamm, “Rivals say HP is using hardball tactics,” Business Week, pp.
48–49, 2007.

[16] I. Distribution, “G&G & Ninestar Corporation,” 2019.
[17] B. C. Mank, “Prudential Standing Doctrine Abolished or Waiting for a

Comeback: Lexmark International, Inc. v. Static Control Components,
Inc.” U. Pa. J. Const. L., vol. 18, p. 213, 2015.

[18] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens,
“Transaction security system,” IBM systems journal, vol. 30, no. 2, pp.
206–229, 1991.

[19] R. Anderson and M. Kuhn, “Tamper resistance-a cautionary note,” in
Proceedings of the second Usenix workshop on electronic commerce,
vol. 2, 1996, pp. 1–11.

[20] S. Skorobogatov, “How microprobing can attack encrypted memory,” in
2017 Euromicro Conference on Digital System Design (DSD). IEEE,
2017, pp. 244–251.

[21] OpenHW Group, “CV32E40P RISC-V IP,” 2022.
[22] OpenHW Group, “CORE-V-VERIF: Functional verification project,”

2022.
[23] Veripool, “Fast and open-source Verilog/SystemVerilog simulator,”

2022.
[24] IEEE, “IEEE Standard for SystemVerilog–Unified Hardware Design,

Specification, and Verification Language,” IEEE Std 1800-2017 (Revi-
sion of IEEE Std 1800-2012), pp. 1–1315, 2018.

[25] Embench, “Embench: Open Benchmarks for Embedded Platforms,”
2022.

[26] OpenHW Group, “CORE-V-MCU: microcontroller,” 2022.
[27] A. Waterman and K. Asanović, “The RISC-V Instruction Set Manual,

Volume I: User-Level ISA, Document Version 20191213,” RISC-V
Foundation, December 2019.

[28] ARM, “Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile,” 2019.

[29] K. N. P. Maier, “Low-cost chip microprobing,” 2012, 29th Chaos
Communica- tion Congress (29C3).

[30] X. T. Ngo, J.-L. Danger, S. Guilley, T. Graba, Y. Mathieu, Z. Najm, and
S. Bhasin, “Cryptographically secure shield for security IPs protection,”
IEEE Transactions on Computers, vol. 66, no. 2, pp. 354–360, 2016.

Author’s version HOST May 2023 DOI: 10.1109/HOST55118.2023.10133316

11

