
HAL Id: hal-04465050
https://hal.science/hal-04465050v1

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification Modulo Theories
Alessandro Cimatti, Alberto Griggio, Sergio Mover, Marco Roveri, Stefano

Tonetta

To cite this version:
Alessandro Cimatti, Alberto Griggio, Sergio Mover, Marco Roveri, Stefano Tonetta. Verification
Modulo Theories. Formal Methods in System Design, inPress, 60 (3), pp.452-481. �10.1007/S10703-
023-00434-X�. �hal-04465050�

https://hal.science/hal-04465050v1
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

Verification Modulo Theories

Alessandro Cimatti1, Alberto Griggio1, Sergio
Mover2, Marco Roveri3 and Stefano Tonetta1

1Fondazione Bruno Kessler, Trento, Italy.
2LIX, CNRS, École Polytechnique, Institut Polytechnique de

Paris, Palaiseau, France.
3Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 9, Povo-Trento, 38123, Italy.

Contributing authors: cimatti@fbk.eu; griggio@fbk.eu;
sergio.mover@lix.polytechnique.fr; marco.roveri@unitn.it;

tonettas@fbk.eu;

Abstract

In this paper, we consider the problem of model checking fair transi-
tion systems expressed symbolically in the framework of Satisfiability
Modulo Theories. This problem, referred to as Verification Modulo
Theories, is tackled by combining two key elements from the legacy
of Ed Clarke: SAT-based verification and abstraction refinement. We
show how fundamental SAT-based algorithms have been lifted to deal
with the extended expressiveness with a tight integration of abstrac-
tion within a CEGAR loop. In turn, the case of nonlinear theories
is based on a CEGAR loop over the linear case. These two elements
have also deeply impacted the development of the NuSMV model
checker, born from a joint project between FBK and CMU, and its
successor nuXmv, whose core integrates SMT-based techniques for VMT.

Keywords: Infinite-State Transition Systems, Formal Verification, Model
Checking, Satisfiability Modulo Theories, Implicit Predicate Abstraction

1

Springer Nature 2021 LATEX template

2 Verification Modulo Theories

1 Introduction

In the early 80’s, Edmund Clarke coauthored one of the papers that gave
birth to the field of Model Checking [1, 2], for which he received the 2007
ACM Turing Award [3]. Substantial breakthrough came from Clarke’s work
on Bounded Model Checking [4], with two key insights. The first was to con-
sider the problem of debugging, giving up completeness and focusing on the
analysis of bounded traces. The second was to understand the potential for
SAT-based techniques as a possible replacement of BDDs in symbolic model
checking. This paved the way to the development of SAT-based verification
techniques of increasing power, from K-induction [5], to interpolation [6] and
IC3 [7]. Later, Clarke and his colleagues introduced the fundamental concept
of Counter-Example Guided Abstraction Refinement (CEGAR) [8]. CEGAR
is an automated approach that combines the idea of reasoning in an abstract
space, thus eliminating hopefully irrelevant details, with the idea of selectively
introducing additional information based on spurious counterexamples.

These works heavily influenced the field of formal verification, and our
own research in the last two decades. In this paper, we give an overview of
our work on Verification Modulo Theories (VMT). VMT is the problem of
model checking fair transition systems expressed symbolically in the framework
of Satisfiability Modulo Theories (SMT). The framework is very appealing,
because it is generic: similarly to the case of SMT, the expressiveness of the
transition system depends on the background theory. This gives the ability
to easily represent various kinds of infinite-state transition systems, and to
express temporal properties with a background theory, in particular Linear-
time Temporal Logic modulo Theory (LTL(T)). In a nutshell, this research
can be seen as generalizing SAT-based verification to the case of infinite-state
transition systems, leveraging the enormous progress of the field of SMT, by
tightly integrating the computation of effective abstractions.

We first consider the problem of invariant checking, by generalizing to the
infinite-state case two SAT-based algorithms, K-induction and IC3, by means
of predicate abstraction. In particular, we rely on the idea of implicit predicate
abstraction [9] to avoid the bottleneck resulting from the eager computation
of the abstract space. This enables a tighter integration of the abstraction
within a CEGAR loop, as the refinement can be achieved incrementally. The
resulting algorithms are able to deal with huge numbers of predicates, which
are completely out of reach in the eager case [10].

Then, we consider invariant checking in the presence of nonlinear theories.
This case can not be easily dealt with by a simple adaptation of the tech-
niques above, since the SMT solvers are, in the case of nonlinear theories,
currently unable to fulfill the requirements (interpolation, quantifier elimi-
nation) imposed by the algorithms. Hence, we adopt a CEGAR loop where
nonlinear operators (e.g. multiplication, transcendental functions) are modeled
as uninterpreted functions, and whose interpretation is progressively restricted
by means of piecewise-linear constraints [11].

Springer Nature 2021 LATEX template

Verification Modulo Theories 3

The algorithms for invariant verification lay the foundations to deal with
the case of temporal properties. Based on the idea of invariant checking, tem-
poral logic model checking is tackled by considering specialized algorithms
for the two complementary cases of proving and disproving LTL(T) proper-
ties. The first one is based on generalizations of the liveness-to-safety and
K-liveness algorithms, with extensions specific to deal with infinite-state tran-
sition systems. In [12], implicit predicate abstraction is used to integrate
liveness-to-safety and well-founded relations to prove LTL(T) properties. Spu-
rious abstract lasso-shaped counterexamples that are not covered by the
well-founded relations are used to find new predicates or new relations in a
generalized CEGAR. In [13], K-liveness is extended for timed systems to avoid
spurious counterexamples based on Zeno behaviors. When counting the num-
ber of occurrences of a live signal to prove an LTL(T) property, the minimal
time between two occurrences is bounded by a symbolic expression derived
from the model. The second dual case of finding violations to an LTL(T) prop-
erty is hindered by the fact that, differently from the finite-state case, false
temporal properties may not admit lasso-shaped counterexamples. The idea is
hence to provide an underapproximation of the model that only contains coun-
terexample traces. The underapproximation is obtained by a search algorithm
that segments the execution trace into a sequence of regions, whose states are
eventually “funneled” into the following one, so that progress towards a fair
region condition is ensured [14, 15].

All the above algorithms have been implemented in the nuXmv model
checker [16], a successor of the NuSMV model checker [17], born from a joint
project between FBK and CMU. nuXmv integrates at its core the Math-
SAT [18] SMT solver to support a number of SMT-based techniques for VMT,
and supports the standardized VMT language [19]. In turn, nuXmv is at the
core of the HyCOMP [20] model checker for hybrid automata, the xSAP [21]
tool for safety assessment, and of the OCRA [22] tool for contract-based
design. The techniques described in this paper have been applied in several
industrial settings: nuclear [23], biological [24], railways [25, 26], avionics [27],
space [28, 29], software engineering [30, 31], and multi-core design [32].

This paper is structured as follows. In Section 2, we overview Satisfiability
Modulo Theories. In Section 3, we define the problem of Verification Modulo
Theories. In Section 4, we discuss implicit predicate abstraction and refine-
ment. In Section 5, we overview the abstraction-based algorithms for invariant
checking, and, in Section 6, we discuss the extension to the nonlinear case by
way of incremental linearization. In Section 7, we present the algorithms for
LTL(T) model checking. In Section 8, we overview the NuSMV and nuXmv
verification engines. In Section 9 we draw some conclusions.

Springer Nature 2021 LATEX template

4 Verification Modulo Theories

2 From SAT to SMT

2.1 First-order notation

We work in the setting of standard first order logic. We assume to be given
a signature Σ of function and predicate symbols. A 0-ary function symbol is
called a constant. A Σ-term is a first-order term built out of function sym-
bols and variables. If t1, . . . , tn are Σ-terms and p is a predicate symbol, then
p(t1, . . . , tn) is a Σ-atom. A Σ-formula ϕ is built in the usual way out of the
universal and existential quantifiers, Boolean connectives, and Σ-atoms. When
Σ is implicit, we omit it and just talk about terms, atoms, and formulas. A
literal is either an atom or its negation. We call a formula quantifier-free if it
does not contain quantifiers, and ground if it does not contain free variables.

A clause is a disjunction of literals. A formula is said to be in conjunctive
normal form (CNF) if it is a conjunction of clauses. For every non-CNF formula
φ, an equisatisfiable CNF formula ψ can be generated in polynomial time [33].

We also assume the usual first-order notions of interpretation, satisfiability,
validity, logical consequence, and theory, as given, e.g., in [34]. We write Γ |= ϕ
to denote that the formula ϕ is a logical consequence of the (possibly infinite)
set Γ of formulas. A first-order theory, T , is a set of first-order sentences. A
structure A is a model of a theory T if A satisfies every sentence in T . A
formula is satisfiable in T (or T -satisfiable) if it is satisfiable in a model of T .

In what follows, with a little abuse of notation, we might denote conjunc-
tions of literals l1∧. . .∧ln as sets {l1, . . . , ln} and vice versa. If η ≡ {l1, . . . , ln},
we might write ¬η to mean ¬l1∨ . . .∨¬ln. Moreover, following the terminology
of the SAT and SMT communities, we shall refer to predicates of arity zero
as propositional variables, and to uninterpreted constants as theory variables.
Finally, if a formula φ is satisfiable, we shall call a model of φ any assignment
µ to (possibly a subset of) the variables of φ and interpretation of symbols
which make the formula true, and we denote this with µ |= φ. If µ is a model
and x is a variable, we write µ[x] for the value of x in µ.

Note that we use the symbol |= with different denotations. If ϕ and ψ are
state formulas, ϕ |= ψ denotes that ψ is a logical consequence of ϕ. If µ is an
interpretation, µ |= ψ denotes that µ is a model of ψ. Later, we will introduce
transition systems, paths, invariant properties and LTL properties. If S is a
transition system and ψ an invariant property, S |= ψ denotes that ψ is an
invariant of S. If instead ψ is a LTL(T) formula and σ an infinite-path of the
transition system S, we use σ |= ψ to denote that the path σ satisfies the
LTL(T) formula ψ and S |= ψ to denote that all the infinite paths of S satisfy
ψ. Different usages of |= will be clear from the context.

2.2 SAT and SMT solvers

A SAT solver is a procedure that can decide the satisfiability of a proposi-
tional formula φ (typically assumed to be in CNF), i.e. it returns true iff φ
has at least one model. Modern SAT solver implementations typically follow

Springer Nature 2021 LATEX template

Verification Modulo Theories 5

the CDCL (Conflict-Driven-Clause-Learning) architecture [35]. Given a first-
order theory T , an SMT solver for T – SMT (T)– is a procedure that is able to
decide the satisfiability of Boolean combinations of (quantifier-free) proposi-
tional atoms and theory atoms in T . 1 Examples of useful theories are equality
and uninterpreted functions, difference logic and linear arithmetic, either over
the rationals or the integers, the theory of arrays, that of bit vectors, and their
combinations.

The currently most popular approach for solving the SMT (T) problem
is the so-called “lazy” approach [36, 37], also frequently called DPLL(T) or
CDCL(T) [38]. The lazy approach works by combining a propositional SAT
solver based on the CDCL algorithm with a theory solver for T (T -solver),
which is a procedure that can decide the satisfiability in T of sets/conjunctions
of ground atomic formulas and their negations. Essentially, CDCL is used as an
enumerator of truth assignments µi of the atoms of φ that propositionally sat-
isfy the input formula, and the T -solver is used for checking the T -satisfiability
of the enumerated assignments: if the current µi is T -satisfiable, then φ is
T -satisfiable. Otherwise, if µi is T -unsatisfiable, the T -solver generates an
unsatisfiable core ηi, i.e. a subset of µi which is still T -unsatisfiable; the nega-
tion of ηi, which is a clause that is valid in T (and therefore called a theory
lemma or T -lemma), is then added to the input formula, and the CDCL solver
is called again on the updated formula. The procedure continues until either
a T -satisfiable µi is found, or the problem becomes propositionally unsatisfi-
able (and therefore also T -unsatisfiable). In practice, several optimizations and
heuristics are applied to make this basic description of the lazy SMT approach
competitive. We refer the interested reader to [36, 37] for more details.

3 Verification Modulo Theories

3.1 Symbolic Fair Transition Systems

We represent infinite-state systems over a background theory T with signa-
ture Σ. A transition system S is a tuple ⟨X, I, T ⟩ where X is a set of (state)
variables, I(X) is a Σ-formula representing the initial states, and T (X,X ′) is
a Σ-formula representing the transitions (X ′ := {x′ | x ∈ X} is the set of
variables representing the next state of the transition system).

A state s of a transition system S is an interpretation ⟨M, µs⟩ to the sym-
bols in the signature Σ and the variables X, where M and µs are respectively
the domain and the assignment of the interpretation. The satisfaction relation
s |= ϕ for a Σ-formula is defined as usual. We write s′ for the state s where
the assignments to the variables x ∈ X from s are substituted with assign-
ments to the variables x′ ∈ X ′ (i.e., for all x ∈ X, s(x) = s′(x′)). A finite path
(of length k) of S is a finite sequence π := s0, s1, . . . , sk of states with the
same domain and interpretation of the symbols in Σ (e.g., for a term t ∈ Σ,
µsi [t] = µsj [t], for any index i, j) such that s0 |= I, and for all i, 0 ≤ i < k,

1Here we are implicitly assuming that the ground satisfiability problem for T is decidable.We
shall relax this assumption in Section 6.

Springer Nature 2021 LATEX template

6 Verification Modulo Theories

si, s
′
i+1 |= T . Notice that the interpretation of the symbols in the signature Σ

is rigid, meaning that the interpretation to uninterpreted functions and predi-
cates does not change across the states in a path (while the assignments to the
variables X can change). We say that a state s is reachable in S if and only if
there exists a path of S ending in s. The set of reachable states of a transition
system represented with formulas interpreted over theories can be infinite. We
denote the set of all states (not necessarily reachable) of a system with state
variables X as SX .

Example 1 S = ⟨{c, d}, c = 0 ∧ d = 0, c′ = c + d ∧ d′ = d + 1⟩ is an infinite-state
transition system, where {c, d} are integer variables. The initial state s0 of the system
has an assignment µs0 where µs0 [c] = 0 and µs0 [d] = 0. At every transition, the
system S increases d by one and increases c by d. A path π := s0, s1, s2 of the
system S is such that µs0 |= c = 0∧ d = 0, µs1 |= c = 0∧ d = 1 µs2 |= c = 1∧ d = 2.

A fair transition system S := ⟨X, I, T, F ⟩ is a transition system with
an additional fairness condition F . An infinite path σ := s0, s1, . . . of a fair
transition system S is such that all the states have the same domain and
interpretation of symbols in Σ, s0 |= I and for all i > 0 si−1, s

′
i |= T . An

infinite path is a fair path if for each i ≥ 0 there exists j > i such that sj |= F
(i.e., the path visits the fairness condition F infinitely often).

Example 2 Consider the fair transition system S = ⟨{c, d}, c = 0 ∧ d = 0, (c′ =
0 ∧ d′ = 0) ∨ (c′ = c+ d ∧ d′ = d+ 1), c > d⟩, which has a similar transition relation
to the transition system in example 1. The infinite path that keeps incrementing the
value of the c and d variables is a fair path (e.g., the path with the assignments
{c = 0, d = 0}, {c = 0, d = 1}, {c = 1, d = 2}, {c = 3, d = 3}, . . .), while there are
some infinite paths that are not fair (e.g., the path where c and d never change value
{c = 0, d = 0}, {c = 0, d = 0}, {c = 0, d = 0}, . . .), since they don’t reach a state that
satisfies c < d infinitely often.

Given two (fair) transition systems S1 := ⟨X1, I1, T1, F1⟩
and S2 := ⟨X2, I2, T2, F2⟩, their synchronous product is
S1 × S2 := ⟨X1 ∪X2, I1 ∧ I2, T1 ∧ T2, F1 ∧ F2⟩.

In the following, we implicitly assume to represent the transition systems
over a theory T with a signature Σ.

3.2 LTL(T): Linear Temporal Logic Modulo Theory

Linear-time Temporal Logic (LTL) [39] is a modal logic to express sets of
infinite traces of a transition system. We consider LTL(T) formulas [40],2an
extension of LTL where atomic propositions are first-order predicates over the

2The work in [40] further introduces event freezing operators “at next” and “at last”, which we
do not consider here for simplicity.

Springer Nature 2021 LATEX template

Verification Modulo Theories 7

theory T and with variables X and X ′. Formally, a LTL(T) formula ϕ is:

ϕ := p(t1, . . . , tk) | ϕ1 ∧ ϕ2 | ¬ϕ1 | Xϕ1 | ϕ1Uϕ2,

where p is a predicate, ϕ1 and ϕ2 are LTL(T) formulas, and t1, . . . , tk are
terms. A term t is:

t := f(t1, . . . , tk) | a | x | x′,
where f is a function symbol, t1, . . . , tk are terms, a is a constant, x ∈ X is
a variable (in a set of variables X), and x′ ∈ X ′ is a variable in the set of
variables representing the next state. A predicate of LTL(T) also contains the
next state variables X ′ as terms. In such way, a LTL(T) formula can predicate
about the next value of a variable, instead of just relating formulas in the
current state and next state of the path with the LTL temporal operator X.
We will use the standard abbreviations Fϕ := ⊤Uϕ and Gϕ := ¬F¬ϕ to
denote the “finally” F and “globally” G operator.

In the following we consider infinite paths where all the states have the same
domain and interpretation of symbols in Σ, while the assignments to the set
of variables X in the states can change. Given an infinite path σ := s0, s1, . . .
we write σ[i] for the i-th element of σ (i.e., si) and we write σi for the suffix of
σ starting from state i-th (i.e., σi := si, si+1, . . .). We define when an infinite
path σ satisfies the LTL(T) formula ϕ (i.e., σ |= ϕ) by induction:

• σ |= p(t, . . . , t) iff σ[0], σ[1]′ |= p(t, . . . , t);
• σ |= ¬p(t, . . . , t) iff σ[0] ̸|= p(t, . . . , t);
• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2;
• σ |= Xϕ iff σ1 |= ϕ;
• σ |= ϕ1Uϕ2 iff for some j ≥ 0, σj |= ϕ2 and for all 0 ≤ k < j, σk |= ϕ1.

Example 3 Consider for example the LTL formula FG c < d and the path σ = {c =
0, d = 0}, {c = 0, d = 1}ω. The path satisfies the formula because it assigns initially
both c and d to 0, and then c to 0 and d to 1 forever.

3.3 Problem definition

3.3.1 Invariant checking

Given a transition system S = ⟨X, I, T ⟩ and formula P (X) over the variables
X, the invariant verification problem for S and P is the problem to check if all
the reachable states of S satisfy the formula P . In that case, we say that the
transition system S satisfies the formula P , written as S |= P . The formula
P (X) represents a set of “safe” states of the system, while any state in the
complement ¬P is an “unsafe” state. The dual formulation of the invariant
verification problem is the reachability problem, which asks if there exists a
reachable state s such that s |= ¬P .

A challenge when checking invariant properties for infinite-state systems
is to compute a possibly infinite set of reachable states. Instead, a central
notion to solve the invariant verification problem for infinite-state systems are

Springer Nature 2021 LATEX template

8 Verification Modulo Theories

inductive invariants: a formula ψ is an inductive invariant for a transition
system S if I(X) |= ψ(X) and ψ(X) ∧ T (X,X ′) |= ψ(X ′). We can solve the
invariant verification problem by finding an inductive invariant ψ such that
ψ |= P (i.e., if ψ is an inductive invariant and ψ |= P , then S |= P). Note
that the set of reachable states R(X) is the strongest inductive invariant (i.e.,
R(X) is an inductive invariant and for any other inductive invariant ψ(X) we
have that R(X) |= ψ(X)).

3.3.2 LTL(T) model checking

The LTL(T) model checking problem is the problem of checking if all the
infinite paths σ of a fair transition system S := ⟨X, I, T ⟩ satisfy an LTL(T)
formula ϕ (i.e., for all infinite paths σ of S, σ |= ϕ). We denote the LTL(T)
verification problem as S |= ϕ.

In the following, we consider standard reductions [41–43] of the LTL model
checking problem S |= ϕ to the model checking problem S × S¬ϕ |= FG¬f¬ϕ

(i.e., S |= ϕ if and only if S×S¬ϕ |= FG¬f¬ϕ), where S¬ϕ is a transition system
with a fairness condition f¬ϕ. Such reduction allows us to prove that S ̸|= ϕ by
finding a counterexample in the form of a fair path, i.e., a path that visits the
fairness condition f¬ϕ of S × S¬ϕ infinitely many times. In the following, we
assume that the above transformation has been applied to the LTL(T) model
checking problem, and consider a problem in the form S |= FG¬f¬ϕ, where
ϕ is a formula whose atoms are either propositional variables or predicates.
When clear from the context, we also drop the subscript ·¬ϕ, and simply use
FG¬f .

3.4 Algorithms for Model Checking Modulo Theories

Symbolic transition systems represented with propositional logic formulas can
model finite-state systems such as hardware design. Several successful sym-
bolic model checking algorithms [4–7] for finite-state systems are based on SAT
solvers. Furthermore, as we highlighted in Section 2, in the last two decades
there has been an important progress in deciding the satisfiability of formu-
las in first-order logic modulo theory. Such improvements enable a seamless
transition of the verification algorithms for finite-state systems based on SAT
solvers to algorithms that verify infinite-state systems, represented with SMT
formulas, based on SMT solvers. In the following, we survey how the main
verification algorithms that have been proposed in the SAT-based setting can
be näıvely applied to infinite-state systems by simply replacing the underlying
decision procedure (i.e., from a SAT to an SMT solver).

3.4.1 Invariant Checking

Bounded Model Checking (BMC)

BMC [4] is a symbolic reachability analysis algorithm that explores paths of a
transition system that can be reached in a bounded number of steps k. BMC
was first introduced to find violations to LTL properties for finite-state systems

Springer Nature 2021 LATEX template

Verification Modulo Theories 9

and was subsequently extended to infinite-state systems [44], substituting the
underlying SAT solver with a SMT solver. BMC encodes the problem of finding
a violation to an invariant property P with a path of length k as follows:

BMCk := I(X0) ∧
∧

0≤i<k

T (Xi, Xi+1) ∧ ¬P (Xk), (1)

where Xi := {xi | x ∈ X} is a set of copies of the set of variables X indexed
with i ∈ N. The formula BMCk is satisfiable if and only if there exists a finite
path π of the transition system S that reaches a state sk in k steps and sk ̸|= P .
To find a violation, we encode the condition BMCk for an increasing value
of k, and check each time the satisfiability of the formula BMCk. Note that
different encodings of the BMC problems are possible (e.g., one may encode
the problem of finding violations in any of the i-steps from 0 to k).

K-Induction

While BMC could, in principle, prove that S |= P by exploring a sufficiently
large bound k, such an upper bound is generally very large for finite-state
systems and does not exist, in general, for infinite-state systems. Thus, in
practice BMC is effective only in finding violations to an invariant verification
problem. K-induction [5] builds on top of BMC and generalizes the induction
principle to multiple steps of the system with the goal of proving an invariant
property. The k-induction proof consists of a base and an inductive step. The
base step proves that an invariant property P holds for all the states reachable
in k−1 steps. We prove this step showing that a BMC query similar to Eq. (1),
but where the violation of the property is checked at every time step (i.e.,∨k

i=0 ¬P (Xi), is unsatisfiable. The inductive step proves either that: any path
of length k cannot reach a state that was not visited with a path of length
k−1 (Eq. (2)); or any safe path of length k−1 cannot be extended to a path of
length k that violates P (Eq. (3)). The formulas that formalize the inductive
steps are:

KINDFWk := I(X0) ∧ SIMPLEk, (2)

KINDBWk := SIMPLEk ∧ ¬P (Xk), (3)

where:

SIMPLEk :=
∧

0≤i<k

T (Xi, Xi+1) ∧
∧

0≤i<k

P (Xi) ∧
∧

0≤i<j≤k

Xi ̸= Xj , (4)

and Xi ̸= Xj :=
∨

x∈X xi ̸= xj . The simple path formula SIMPLEk restrict
the search to simple paths, paths containing all different states (i.e., paths that
never visit a state more than once). The formula KINDFWk encodes the set
of simple paths of length k starting from an initial state of S. If such formula
is unsatisfiable, then there is no path π of length k that contains an unseen

Springer Nature 2021 LATEX template

10 Verification Modulo Theories

state in a path of length k− 1. Thus, if the base case holds (i.e., all the states
visited in the system up to length k−1 satisfy P) and the formula KINDFWk

is unsatisfiable, we can conclude that S |= P since we visited all the states of
S. The formula KINDBWk provides another sufficient condition to prove that
S |= P and encodes that an (uninitialized) path of length k − 1 that is safe
can be extended to a path of length k that can violate P . Also in this case,
the simple path formula SIMPLEk encodes the uniqueness of the states in the
suffix. If the base case holds and the formula KINDBWk is unsatisfiable we
can conclude that S |= P .

IC3

IC3 [7] is an efficient SAT-based algorithm for the verification of finite-state
systems, with Boolean state variables and propositional logic formulas. The
IC3 algorithm tries to prove that S |= P by finding a suitable inductive invari-
ant F(X) such that F(X) |= P (X). In order to construct F , IC3 maintains
a sequence of formulas (called trace) F0(X), . . . ,Fk(X) such that: (i) F0 = I;
(ii) Fi |= Fi+1; (iii) Fi(X) ∧ T (X,X ′) |= Fi+1(X

′); (iv) for all i < k, Fi |= P .
Therefore, each element of the trace Fi+1, called a frame, is inductive rel-
ative to the previous one, Fi. IC3 strengthens the frames by finding new
relative inductive clauses. A clause c is inductive relative to the frame F , i.e.
F ∧ c ∧ T |= c′, iff the formula

RelInd(F , T, c) := F ∧ c ∧ T ∧ ¬c′ (5)

is unsatisfiable, so that a check of relative inductiveness can be directly tackled
by a SAT solver.

At a high level, IC3 proceeds incrementally by alternating two phases: a
blocking phase, and a propagation phase. In the blocking phase, the trace is
analyzed to prove that no intersection between Fk and ¬P (X) is possible.
During this phase, the trace is enriched with additional formulas, which can
be seen as strengthening the approximation of the reachable state space. At
the end of the blocking phase, either Fk |= P is proved or a counterexample
is generated.

In the propagation phase, IC3 tries to extend the trace with a new formula
Fk+1, moving forward the clauses from preceding Fi’s. If, during this process,
two consecutive frames become identical (i.e. Fi = Fi+1), then a fixpoint is
reached, and IC3 terminates with Fi being an inductive invariant proving the
property.

In the blocking phase IC3 maintains a set of pairs (s, i), where s is a set
of states that can lead to a bad state, and i > 0 is a position in the current
trace. New formulas (in the form of clauses) to be added to the current trace
are derived by (recursively) proving that a cube s of a pair (s, i) is unreachable
starting from the formula Fi−1. This is done by checking the satisfiability of
the formula RelInd(Fi−1, T,¬s). If the formula is unsatisfiable, then ¬s is
inductive relative to Fi−1, and the bad state s can be blocked at i. This is done

Springer Nature 2021 LATEX template

Verification Modulo Theories 11

by generalizing ¬s to a stronger clause ¬g that is still inductive relative to
Fi−1, and adding ¬g to Fi. Inductive generalization is a central step of IC3,
that is crucial for the performance of the algorithm. Adding ¬g to Fi blocks
not only the bad cube s, but possibly also many others, thus allowing for a
faster convergence of the algorithm.

If, instead, (5) is satisfiable, then the overapproximation Fi−1 is not strong
enough to show that s is unreachable. In this case, let p be a subset of the states
in Fi−1 ∧¬s such that all the states in p lead to a state in s′ in one transition
step. Then, IC3 continues by trying to show that p is not reachable in one
step from Fi−2 (that is, it tries to block the pair (p, i − 1)). This procedure
continues recursively, possibly generating other pairs to block at earlier points
in the trace, until either IC3 generates a pair (q, 0), meaning that the system
does not satisfy the property, or the trace is eventually strengthened so that
the original pair (s, i) can be blocked.

3.4.2 Liveness Checking

Encoding lasso-shaped paths

The liveness verification problem S |= FG¬f amounts to show that no infinite
path in S visits f infinitely often. We can modify the BMC encoding to find
lasso-shaped paths. A path π := s0, si, . . . sk is lasso-shaped if there exists
j < k such that sk, sj |= T (Xk, Xj) (i.e., the state sk can “loop-back” to
the state sj). The path is formed by a finite path s0, . . . , sj−1 and a suffix
sj , . . . , sk, which represents a loop. A lasso-shaped path represents the infinite
path of the system where the suffix can be repeated for an infinite number of
times. The BMC encoding (1) can be modified to find fair lasso-shaped paths
as follows:

BMCk
f := I(X0) ∧

∧

0≤i<k

T (Xi, Xi+1) ∧
∨

0≤j<k

(∧

x∈X

xk = xj ∧
∨

j≤z<k

fz
)
.

(6)

The formula BMCk
f is satisfiable if there exists a lasso-shaped path where at

least one of the states in the loop satisfies f .

Liveness to safety reduction

The liveness to safety reduction (L2S) [45] encodes the liveness model check-
ing problem as an invariant model checking problem. The L2S encoding
transforms the transition system S to the new transition system SL2S =
⟨X ∪XL2S, IL2S, TL2S⟩, where the set of variables XL2S contains a copy of the
system variables and the additional variables {seen, triggered, loop}. The new
transition relation TL2S guesses non-deterministically a state of the system
where a loop of a fair path starts and stores such state in the variables XL2S.
When doing so, it also sets the Boolean variable seen to true for recording that

Springer Nature 2021 LATEX template

12 Verification Modulo Theories

a loop started. The transition relation further records (with the triggered vari-
able) if the fairness condition f has been seen since the start of the loop, and
records if a fair lasso-shaped path for the fairness condition f exists with the
loop variable. In the case S is a finite-state system, the reduction is such that
S |= FG¬f if and only if SL2S |= ¬loop. In the infinite-state case, instead, the
L2S reduction can only find some of the violations to the liveness properties
for the system S, i.e., if SL2S ̸|= ¬loop then S ̸|= FG¬f , but the converse does
not hold.

K-Liveness

K-Liveness [46] is an algorithm that reduces the liveness verification problem
S |= FG¬f to a sequence of safety verification problems. The main observation
of the K-Liveness algorithm is that each path σ of the system S satisfies f a
finite number of times iff S |= FG¬f . The K-Liveness algorithm finds a non-
negative upper boundK on the number of times a path of S visits a state s that
satisfy f . Let the formula #(f) ≥ K be true for a finite path π of S, written
as π |= #(f) ≥ K, if the number of times a state satisfying f in the path π is
not greater than K (i.e., #(f) denotes the size of the set {i | π[i] |= f}). We
express that all the paths of the system S do not reach f more than K times
with S |= #(f) ≤ K. We have that:

if ∃K ∈ N.S |= #(f) ≤ K then S |= FG¬f. (7)

The K-Liveness algorithm iteratively finds such K by solving a sequence of
verification problems for an increasing value of K (i.e., the algorithm checks
S |= #(f) ≤ 0, S |= #(f) ≤ 1, . . .).

We can easily reduce each verification problem S |= #(f) ≤ n, for a natural
number n ∈ N, to an invariant verification problem. We first augment the
transition system S with an additional variable c counting the number of times
a state satisfies f (i.e., the variable c starts from 0 and increments its value by 1
whenever the system visits a state satisfying f). Then, we verify that S |= c ≤ n
with an invariant model checking algorithm. In the original paper proposing
K-Liveness [46] the authors propose an efficient implementation that uses the
IC3 algorithm to solve each safety verification problem. Such implementation
exploits the incremental nature of IC3 to reuse all the frames IC3 learned
when solving the problem S |= c ≤ n to solve the next verification problem
S |= c ≤ n+ 1. This optimization is sound since the transition system S does
not change and the property c ≤ n implies c ≤ n + 1, and both conditions
ensure that the invariants on the frames learned when verifying S |= c ≤ n
also hold when verifying S |= c ≤ n+ 1.

3.5 Challenges when verifying infinite-state systems

The algorithms we present above are sound when we apply them to a sym-
bolic fair transition system and we use SMT to decide satisfiability. However,
since both the invariant and liveness verification problems are undecidable for

Springer Nature 2021 LATEX template

Verification Modulo Theories 13

infinite-state transition systems, the procedures may not terminate. Further-
more, the procedures above may also not terminate on decidable subclasses of
the verification problem (e.g., safety verification timed automata [47]) or on
specific problem instances that may have a solution (e.g., k-induction and IC3
may be not be able to find an inductive invariant even if one exists). Here,
we focus our attention on the second problem, and we redirect the reader to
several of the ad-hoc extensions of the above techniques that target decidable
cases for a description of solutions to the first one (e.g. [48, 49]).

Invariant Checking

In the infinite-state setting, Bounded Model Checking, k-induction, and IC3
will eventually find a violation to a safety property, if such a violation exists.
However, in an infinite-state system there is no maximum depth k that guar-
antees to visit all the reachable states (the least number of steps to reach
all the reachable states of in an infinite state system, the diameter, can be
unbounded).

Both the k-induction and IC3 algorithms may fail to prove that a property
holds. In k-induction, the inductive check with k steps may not be sufficient
to prove the system is safe, and the simple path condition SIMPLEk can be
satisfiable for any k, preventing both formulas KINDFWk and KINDBWk from
ever being unsatisfiable. A näıve extension of the IC3 algorithm to SMT is not
effective because of the blocking phase. When the algorithm cannot block a
pair (s, i), it finds a predecessor state (p, i− 1) to block from an assignment µ
satisfying the relative induction formula (5) (i.e., RelInd(Fi−1, T,¬s)). Such
strategies would block a single state from an infinite set of states, and thus is
ineffective. In Section 5 we present modifications to the k-induction and IC3
algorithms that efficiently verify a sequence of finite-state abstractions of the
system using counterexample-guided abstraction refinement (CEGAR) [50].

Example 4 Both k-induction and IC3 will fail to verify that the transition system
S = ⟨{c, d}, c = 0 ∧ d = 0, (c′ = c + d ∧ d′ = d + 1)⟩ from the Example 1 satisfies
the property d ≤ 3 ∨ c > d. Observe that such property holds, since when d = 4 the
variable c is 4, and then we have that c > d in the following states of the path.

Applying k-induction would fail: (i) The base step for any k ≥ 0 succeeds (cleary,
BMC cannot find a counterexample); (ii) the KINDFWk formula (2) is always sat-
isfiable, since every path of length k − 1 can be extended to a k-long path with an
“unseen” state (e.g., incrementing d by one will obtain a state with a new value of d
for the path); (iii) similarly, the KINDBWk formula (3) is also satisfiable following
a similary reasoning. Applying a näıve version of IC3 would also be ineffective: the
algorithm would keep enumerating states that do not satisfy d ≤ 3 ∨ c > d in the
blocking phase. While each one of such states can be blocked by the previous frame
via the the relative inductive check (5), their number is still infinite, so the algorithm
would not terminate.

Springer Nature 2021 LATEX template

14 Verification Modulo Theories

Liveness Checking

One of the main challenges when verifying liveness properties for infinite-state
systems is that a violated property is not guaranteed to have a lasso-shaped
counterexample (e.g., all counterexamples may be paths where the value of
variables diverge).

The BMC encoding shown in (6) only finds lasso-shaped paths, so the
algorithm is not guaranteed to find a counterexample, even when one exists.
The algorithm in Section 7.3 addresses this issue using the notion of recurrence
sets.

Example 5 Consider the fair transition system S = ⟨{c, d}, c ≥ 0, c′ = c + d ∧ d′ =
d+ 1,⊤⟩ and the LTL(T) property G c ≤ d. Clearly, S ̸|= G c ≤ d. However, BMC
would fail since the transition system has only fair paths that are not lasso-shaped.

The existence of non lasso-shaped paths does not allow to apply the same
liveness to safety [45] reduction for finite-state systems for proving a liveness
property. The reduction works by recoding the occurrence of a lasso-shaped
path violating the fairness condition, so such reduction does not take into
account non lasso-shaped paths. In Section 7.1 we describe an algorithm
that circumvents such issues using abstraction techniques and well-founded
relations.

Example 6 Consider the fair transition system S = ⟨{c, d}, c ≥ 0, c′ = c + d ∧ d′ =
d + 1,⊤⟩ and the LTL(T) property FG c < d. We have that S ̸|= FG c < d since,
independently from the initial value of d, d will eventually be positive and c will
eventually become greater than d. The transition system has only fair paths that are
not lasso-shaped. Such paths are ignored by the L2S reduction that, when applied
näıvely, results in a transition system where the loop variable is never true (i.e., there
are no fair paths in the L2S reduction). In this case, verifying the L2S reduction
would wrongly conclude that S |= FG c < d.

The existence of paths that are not lasso-shaped further affects k-liveness.
K-liveness proves fairness by showing that there exists a bound on the num-
ber of times a fairness property is falsified. Even if a fairness property holds,
such bound may not be an integer number, but a value that depends on a,
possibly infinite-valued, variable of the transition system (e.g., an uninitial-
ized parameter). In Section 7.2 we present an algorithm that tackles such
issues in transition systems where the value of a variable diverges along all the
computation paths.

Example 7 Consider the fair transition system from Example 6 and the property
FG ¬(c < d). K-liveness would reduce the check of S |= FG ¬(c < d) to find a
bound K on the number of times S visits a state where c < d. Since the initial value
of the variable d is unknown in the initial state, there is no upper bound on the value

Springer Nature 2021 LATEX template

Verification Modulo Theories 15

of K: after we fix a K, we can always pick a new path, choosing a smaller initial
value for d, where the system visits a state where c < d for K + 1 times.

4 CEGAR and Predicate Abstraction

Abstraction [51] is a technique used to reduce the search space while preserving
the satisfaction of some properties. In symbolic model checking, the abstraction
yields a simpler transition system Ŝ, possibly described by a different set of
variables (denoted here by X̂). The abstraction is usually obtained by means of
a surjective function α : SX → SX̂ , called abstraction function, that maps the

states of a symbolic fair transition system S into states of Ŝ. The concretization
function γ : SX̂ → 2SX is defined as γ(ŝ) = {s ∈ SX | α(s) = ŝ}. The

abstraction function α is symbolically represented by a formula Hα(X, X̂) such
that s, ŝ |= Hα iff α(s) = ŝ.

The Counterexample Guided Abstraction Refinement (CEGAR) framework
[50] leverages abstraction to create a simplified version of the input transition
system, which is amenable for finite state model checking. The abstraction is
typically constructed to be conservative, that is, every trace in the concrete
space has a counterpart in the abstract space. If there are no property viola-
tions in the abstract space, then there are no violations in the original system.
However, if an abstract counterexample exists, there may not be a correspond-
ing counterexample for the concrete system. Such an abstract counterexample
is then called a spurious counterexample. Then, abstraction-refinement tries
to discover a new abstract model, which contains more detail in order to rule
out spurious counterexamples. This is done by extracting information from
counterexamples generated by the model checker. The process is iterated until
the property is either proved or disproved. In Figure 1 we give a pictorial
representation of the approach.

Compute the
abstraction
Ŝ = α(S)

S, P, α Model Check
Ŝ |= P̂?

Ŝ
S |= P

Yes

Simulate
Is π̂ spurious?

No, π̂

S 6|= P
NoRefinement

Find a new
abstraction α

Yes

Fig. 1 The CEGAR loop for the transition system S, initial abstraction α, and property P .

In the rest of this Section and in the following one, we focus on the instantia-
tion of the CEGAR framework to Predicate Abstraction [52], while in Section 6
we focus on the instantiation of CEGAR to incremental linearization [11].

Springer Nature 2021 LATEX template

16 Verification Modulo Theories

4.1 Computing the Predicate Abstraction

Predicate Abstraction [52] abstracts a transition system S with a transition
system having as states the (finite) set of truth assignments to a set of pred-
icates P = {p1(X), . . . , pm(X)}. A transition between two abstract states ŝi
and ŝj in the abstraction is possible iff there exist two concrete states si and
sj such that the evaluation of the predicates in si is ŝi, the evaluation in sj is
ŝj , and si, s

′
j |= T .

Predicate abstraction can be symbolically represented by associating to
each predicate p a corresponding Boolean variable xp. We define the abstraction
function for predicate abstraction as:

HP(X,XP) :=
∧

p∈P
p(X) ↔ xp (8)

The abstract initial states, the abstract transition relation, and the abstract
fairness condition of the abstract transition system Ŝ = ⟨XP, Î, T̂ , F̂ ⟩ obtained
by applying predicate abstraction to the concrete system are symbolically rep-
resented by the Boolean formulas Î(XP), T̂ (XP, X

′
P), and F̂ (XP). The formulas

are equivalent to the following definitions:

Î(XP) := ∃X.(I(X) ∧HP(X,XP)), (9)

T̂ (XP, X
′
P) := ∃X,X ′.(T (X,X ′) ∧HP(X,XP) ∧HP(X

′, X ′
P)), (10)

F̂ (XP) := ∃X.(F (X) ∧HP(X,XP)). (11)

The abstract fair transition system thus obtained is purely Boolean, and
can be subjected to finite-state model checking to verify the abstraction of the
properties of interest.

The computation of the abstraction (eqns. (9), (10) and (11)) is a key
operation, and in the literature it has been addressed with several approaches.
A first simple approach is based on encoding the problem in the quantified
fragment of the theory T , and on leveraging an SMT solver to perform the
quantified elimination of the concrete variablesX andX ′ to obtain the abstract
counterpart. This has been done either by using specialized algorithms such
as [53–55] or by leveraging general quantifier elimination procedures, e.g. [56–
59]. All these approaches are subject to the model explosion problem. Indeed,
they all end-up enumerating enough implicants to cover the abstraction, and
this boils down to going through the construction of the corresponding DNF.

The works in [60, 61] tackle the problem of computing the abstraction by
integrating BDD-based quantification techniques with SMT-based constraint
solving. These approaches try to overcome the limitations of the previous
approaches by exploiting the fact that BDDs are a DAG representation of the
space that a SAT-based enumerator treats as a tree. In [61] the abstraction
problem is no longer seen as a monolithic quantifier elimination problem, but a
conjunctively-partitioned representation of the formula to quantify is leveraged
to reduce the computation burden.

Springer Nature 2021 LATEX template

Verification Modulo Theories 17

Finally, in [62] the idea of partitioning the computation, initially out-
lined in [61] was further expanded by providing a structure-aware abstraction
algorithm. The proposed approach first exploits the high-level structure of
the system, and partitions the abstraction problem into the combination of
several smaller abstraction problems, still represented as a formula with quan-
tifiers. Then, the low-level structure of the formula (e.g. the occurrence of
variables within the quantifiers, the application of low-level rewriting rules like
De-Morgan and quantifier push) is leveraged to further reduce the scope of
quantifiers. The resulting formulas (still with quantifiers) is then given in input
to existing state-of-the-art quantifier elimination approaches like the ones in
[56–61] to obtain a finite-state abstract model.

4.2 Refining the Predicate Abstraction from
Counterexamples

Let us now consider a sequence of abstract states ŝ0, · · · , ŝk (where each
abstract state ŝi is a valuation to the variables XP). If the abstract property
does not hold in the abstract model, we generate an abstract counterexample
that must be checked for spuriousness, i.e. we check whether it can be refined
in the concrete space. This can be done with a setting similar to bounded
model checking, where each state of both the concrete and abstract machine
are replicated at different time steps, from 0 to k. Checking the spuriousness
of a counterexample for an invariant property corresponds to checking if the
following formula is unsatisfiable:

I(X0) ∧
∧

0≤h<k

T (Xh, Xk+1) ∧
∧

0≤h≤k

(
HP(X

h, Xh
P) ∧ ŝh(Xh

P)
)

(12)

Similar considerations also hold in the case the property is a liveness one:
if Ŝ does not have an initial fair path, then the same can also be concluded
for S. In this case, the check for the spuriousness of the counterexample shall
also consider the fairness conditions F and encode a loop enforcing the fairness
conditions to hold within the loop.

The main idea behind the refinement phase is to learn more information
from the spurious counterexamples produced and use the information to refine
the abstraction in such a way that it rules out the spurious counterexample.
Spurious transitions are those abstract transitions that do not have any corre-
sponding concrete transitions. If the most precise abstraction with respect to
the given set of predicates is computed, the spuriousness of the counterexam-
ple would be because of an insufficient number of predicates, i.e. the absence
of information rich enough to capture all the relevant behaviors of the concrete
system, even for the most precise abstraction. Several approaches have been
proposed in the literature to extract new predicates in the refinement. Most of
them are based on the analysis of the unsatisfiable cores or the computation
of Craig interpolants of the spuriousness check formula (12) (e.g., [63, 64]).

Springer Nature 2021 LATEX template

18 Verification Modulo Theories

5 Invariant Checking with Implicit Predicate
Abstraction

5.1 Implicit Predicate Abstraction

As also defined in [51, 65], the abstraction induces an equivalence relation
among the concrete states:

s1 ∼ s2 ⇔ α(s1) = α(s2)

which in the case of predicate abstraction is characterized by the following
formula:

EQP(X,X) :=
∧

p∈P
p(X) ↔ p(X). (13)

E
Q

T

E
Q

E
Q

E
Q

T

T

Fig. 2 Abstract path.

The formula EQP asserts that
two concrete states have a consis-
tent evaluation of predicates. It can
be exploited to embed the abstrac-
tion into formulas over the concrete
variables, thus reasoning about
abstract states without explicitly
computing them. This idea, first
proposed [9] and later expanded in [10], takes the name of Implicit Abstraction
(IA).

The clear advantage of IA is that it avoids the computation of the abstract
transitions that must be done upfront in the explicit predicate abstraction
and which results typically in a bottleneck. In fact, in the explicit abstraction
case, the model checking algorithm on the abstract transition system cannot
start before computing abstract transition (this is partly alleviated in Lazy
Abstraction [66] where the abstraction is localized and computed on the fly
based on an explicit-state control graph). On the other side, IA reasons over
the concrete variables and thus, in some cases, cannot exploit simplification
available only in the propositional case.

More in detail, IA embeds the definition of the predicate abstraction

in the encoding of a path. The formula PathkP :=
∧

1≤h<k(T (X
h−1

, Xh) ∧
EQP(X

h, X
h
))∧T (Xk−1

, Xk) is satisfiable iff there exists a path of k steps in
the abstract state space. Intuitively, instead of having a contiguous sequence
of transitions, the encoding represents a sequence of disconnected transitions
where every gap between two transitions is forced to lay in the same abstract
state (see Fig. 2).

We can therefore extend PathkP to solve an abstract bounded model checking
problem. Suppose we want to verify that a property P (X) holds in the abstract
state space in all abstract states reachable in k abstract steps. We can encode
the dual problem into a formula BMCk

P that uses PathkP to assert that there
exists an abstract path, the first state is initial, and the last state satisfies

Springer Nature 2021 LATEX template

Verification Modulo Theories 19

the abstraction of ¬P . We use again EQP to build this encoding just using
concrete variables as follows:

BMCk
P = I(X0) ∧ EQP(X

0, X
0
) ∧ PathkP ∧ EQP(X

k, X
k
) ∧ ¬P (Xk

).

5.2 K-induction with Implicit Predicate Abstraction

Similarly to the encoding of bounded model checking, we can define the
abstract version of the k-induction conditions with IA:

KINDFWk
P := I(X0) ∧ EQP(X0, X0) ∧ SIMPLEk

P (14)

KINDBWk
P := SIMPLEk

P ∧ EQP(Xk, Xk) ∧ ¬P (Xk) (15)

where

SIMPLEk
P := PathkP ∧

∧

0≤i<j≤k

¬EQP(Xi, Xj) (16)

Therefore, if BMCk
P is unsat and, either KINDFWk

P or KINDBWk
P is unsat,

then we can conclude that the invariant is not reachable in the abstract state
space (and thus either in the concrete system).

Notice that we do not use the stronger version of KINDFWk
P and

KINDBWk
P defined in [5], because they require to express the negation of

the abstraction of P , which involves an existential quantification, and their
negation cannot be handled by the satisfiability solver.

5.3 IC3ia: IC3 with Implicit Abstraction

Implicit Abstraction provides a simple, yet very effective, way of generalis-
ing IC3 from SAT to SMT. The main idea is that of making IC3 work on
the abstract state space defined by a set of predicates P, and use implicit
abstraction to avoid the explicit computation of the abstract transition rela-
tion. In the modified algorithm, which we call IC3ia, clauses, frames and
cubes are formulas over the set XP of abstract variables. When working in
the abstract space, the critical step for IC3ia is repeatedly checking whether
a clause c is inductive relative to the frame F (where c and F are both for-

mulas over XP). This check, if encoded as RelInd(F , T̂ , c), would require the

explicit construction of T̂ . The key insight underlying IC3ia is to use implicit
abstraction to perform the check without actually constructing the abstract
transition relation T̂ . This is done by checking the quantifier-free formula:

AbsRelInd(F , T, c,P) := F(XP) ∧ c(XP) ∧HP(X,XP) ∧HP(X
′, X ′

P)∧
EQP(X,X) ∧ T (X,X ′

) ∧ EQP(X
′
, X ′) ∧ ¬c(X ′

P) (17)

It can be shown (see [67]) that working with AbsRelInd is equivalent to

working with RelInd on the abstract transition relation T̂ , in the sense that

Springer Nature 2021 LATEX template

20 Verification Modulo Theories

every model µ for AbsRelInd(F , T, c,P) is also a model for RelInd(F , T̂ , c)
(when appropriately projected to XP∪XP′). The consequence of this is that we
can obtain an SMT-aware version of IC3 operating on a predicate abstraction
of the original system by simply replacing the underlying SAT solver with an
SMT solver, and using AbsRelInd instead of RelInd for performing the rela-
tive induction checks. Thanks to implicit predicate abstraction, we therefore
obtain an algorithm that is simple, flexible (automatically supporting all the-
ories that are handled by the underlying SMT solver), and very competitive
in practice [67].

Example 8 Take the transition system and property from Example 4 and the set of
predicates P = {(c = 0), (d = 0), (d ≤ 3), (c ≤ d)}. The algorithm eventually checks
that AbsRelInd(F0, T, c0,P), where F0 := {xc=0, xd=0}, c0 := xc=0 ∧ ¬xd=0 ∧
¬xd≤3 ∧ xc≤d, and xp ∈ XP denotes the abstract variable for the predicate p ∈ P
(e.g., xd=0 is the abstract variable of the predicate d = 0):

AbsRelInd(F0, T, c0,P0) :=

xc=0 ∧ xd=0∧ [F0(XP)]

xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d∧ [c0(XP)]

xd=0 ↔ (d = 0) ∧ xc=0 ↔ (c = 0)∧ [HP(X,XP)]

xd≤3 ↔ (d ≤ 3) ∧ xc≤d ↔ (c ≤ d)∧

x′d=0 ↔ (d′ = 0) ∧ x′c=0 ↔ (c′ = 0)∧ [HP(X
′, X ′

P)]

x′d≤3 ↔ (d′ ≤ 3) ∧ x′c≤d ↔ (c′ ≤ d′)∧

(d = 0) ↔ (d = 0) ∧ (c = 0) ↔ (c = 0)∧ [EQP(X,X)]

(d ≤ 3) ↔ (d ≤ 3) ∧ (c ≤ d) ↔ (c ≤ d)∧

(c′ = c+ d) ∧ (d′ = d+ 1)∧ [T (X,X
′
)]

(d′ = 0) ↔ (d′ = 0) ∧ (c′ = 0) ↔ (c′ = 0)∧

(d′ ≤ 3) ↔ (d′ ≤ 3) ∧ (c′ ≤ d′) ↔ (c′ ≤ d′)∧ [EQP(X
′
, X ′)]

¬(x′c=0 ∧ ¬x′d=0 ∧ ¬x′d≤3 ∧ x′c≤d) [¬c0(X ′
P)]

Since AbsRelInd(F0, T, c0,P) |= ⊥, it’s also the case case that RelInd(F0, T̂ , c) |= ⊥
in the abstract system (see [67] for a full example of a run of IC3ia).

5.4 Refining Implicit Predicate Abstractions

Like all techniques based on predicate abstraction, when IC3ia finds an
abstract counterexample π̂ := ŝ0, ŝ1, . . . , ŝk (in the form of an interpretation

of
⋃k

i=0X
i
P), it must check whether it can be concretized, i.e. whether there

exists a corresponding counterexample in S. This is done by simulating the
abstract counterexample π̂ in the concrete system S, by encoding all the paths
of S up to k steps restricted to π̂:

∧

0≤i<k

T (Xi, Xi+1) ∧
∧

0<i≤k

ŝi(X
i
P)[P(Xi)/Xi

P] (18)

Springer Nature 2021 LATEX template

Verification Modulo Theories 21

where ŝi(X
i
P)[P(Xi)/Xi

P] is the formula obtained from ŝi(X
i
P), seen as a

conjunctions of literals, by replacing each Boolean variable in Xi
P by the

corresponding predicate over Xi.
If (18) is satisfiable, then the interpretation of the concrete variables

X0, . . . , Xk yields a concrete counterexample s0, s1, . . . , sk witnessing the vio-
lation of P . Otherwise, π̂ is spurious, and the abstraction must be refined by
adding new predicates. The refinement procedure is somewhat orthogonal to
IC3ia, and can be done in various ways [66, 68, 69]. The only requirement
is that the new set of predicates should be sufficient to remove the spurious
counterexample. A popular approach is to use SMT-based interpolation to
discover new predicates, as described in [68]. Although this technique always
returns a set of predicates that are sufficient to refute the spurious counterex-
ample, it offers no guarantee that all the discovered predicates are necessary.
In other words, predicate discovery via interpolation can produce redundant
predicates, which cause an increase in the precision of the predicate abstraction
which might be not necessary, thus potentially slowing down the convergence of
IC3ia. This drawback can however be mitigated by exploiting implicit abstrac-
tion also for detecting redundant predicates. Let Pnew be the set of predicates
produced by the refinement procedure, such that the set P ∪ Pnew is sufficient
to refute the abstract counterexample. By definition, this means that π̂ is not a
path of the abstract system Ŝ, i.e. the predicate abstraction of S, wrt. P∪Pnew.
Formulating this in terms of implicit abstraction means that the formula

∧

0<i≤k

ŝi(X
i
P)

∧

0<i<k

(
T (X

i
, X

i+1
)∧

HP(X
i, Xi

P) ∧HP(X
i+1, Xi+1

P)∧ (19)

EQP(X
i, X

i
) ∧ EQP(X

i+1
, Xi+1)∧

HPnew
(Xi, Xi

Pnew
) ∧HPnew

(Xi+1, Xi+1
Pnew

)∧

EQPnew
(Xi, X

i
) ∧ EQPnew

(X
i+1

, Xi+1)
)

is unsatisfiable. We can use this fact to check for predicate redundancy, e.g.
by heuristically replacing Pnew with one of its subsets as long as (19) is still
unsatisfiable. In practice, this can be performed efficiently by exploiting the
capability offered by modern SMT solvers of (i) solving a formula under a set
of assumptions, and (ii) producing an unsatisfiable core of the assumptions
in case the formula is not satisfiable. More in detail, for each predicate p ∈
Pnew, we can generate a fresh label variable lp. Then, we replace each formula

EQPnew
(Xi, X

i
) in (19) with

∧
p∈Pnew

lp → (p(Xi) ↔ p(X
i
)) (and similarly for

EQPnew
(X

i+1
, Xi+1)). Finally, we solve under the assumptions {lp | p ∈ Pnew} ,

and mark all the predicates p for which lp is not in the unsat core as redundant.

Springer Nature 2021 LATEX template

22 Verification Modulo Theories

Ŝ = α(S)
Abstract NT A functions

as uninterpreted
in UFLRA

S, P, α Ŝ |= P̂
Model Check in UFLRA

Ŝ
S |= P

Yes

Is π̂ spurious?
Simulate in NT A

No, π̂

S ̸|= P
No

Refine the abstraction α
Add lineariza-

tion axioms (Fig.4)

Yes

Fig. 3 The VMT(NT A) CEGAR loop via Incremental Linearization.

6 CEGAR via Incremental Linearization

Predicate abstraction is not the only approach to implement a CEGAR loop.
In fact, the techniques presented in the previous sections are not always appli-
cable, since they rely on several strong assumptions on the ability of the SMT
solver: first, the SMT solver is given a large number of satisfiable queries; sec-
ond, the SMT solver must expose an incremental interface; third, it must be
able to provide interpolation and quantifier elimination. These requirements
become hard to satisfy when dealing with nonlinear theories, that allow for
multiplications between real- or integer-valued variables, or for transcendental
functions such as exponentiation and trigonometric functions. Hence, despite
the power of theory solvers based on Cylindrical Algebraic Decomposition [70]
and effective implementations like Z3 [71], the direct integration of a nonlinear
SMT solver inside the IC3ia algorithm would not be practical.

We describe a CEGAR loop for the theory of nonlinear arithmetic with
transcendental functions (NT A). The approach, that is not based on pred-
icate abstraction, is called Incremental Linearization [11] (Fig. 3). The idea
is to abstract the VMT(NT A) problem in the combined theory of lin-
ear real arithmetic and the theory of equality with uninterpreted functions
(UFLRA). Specifically, nonlinear multiplications and transcendental functions
are abstracted as uninterpreted function symbols. For example, the formula

x ∗ x+ y ∗ y ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (x+ 3 ∗ y ≥ 1.1 ∨ 2 ∗ sin(x) ≤ −1.1)

is abstracted to

f∗(x, x)+f∗(y, y) ≤ 2∧(x ≥ 1.1∨x ≤ −1.1)∧(x+3∗y ≥ 1.1∨2∗fsin(x) ≤ −1.1)

We notice that the linear multiplications (e.g. 3 ∗ y) are not abstracted, while
the nonlinear applications of ∗ and sin are replaced by the uninterpreted func-
tions f∗(·) and fsin(·). This abstraction is clearly conservative. Hence, if the
property holds in the abstract space, then the concrete system can be deemed
to be safe. However, if a counterexample can be found in the abstract space, a
concretization step in VMT(NT A) is required. If the abstract counterexample
can be concretized, then the property does not hold. Otherwise, it is necessary

Springer Nature 2021 LATEX template

Verification Modulo Theories 23

• (abs(x1) ≤ abs(x2) ∧ abs(y1) ≤ abs(y2))
→ abs(f∗(x1, y1)) ≤ abs(f∗(x2, y2)))

• (abs(x1) < abs(x2) ∧ abs(y1) ≤ abs(y2) ∧ y2 ̸= 0)
→ abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

• (abs(x1) ≤ abs(x2) ∧ abs(y1) < abs(y2) ∧ x2 ̸= 0)
→ abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

• f∗(a, y) = a ∗ y ∧ f∗(x, b) = b ∗ x ∧
((x > a ∧ y < b) → f∗(x, y) < TanPlane∗,a,b(x, y)) ∧
((x < a ∧ y > b) → f∗(x, y) < TanPlane∗,a,b(x, y)) ∧
((x < a ∧ y < b) → f∗(x, y) > TanPlane∗,a,b(x, y)) ∧
((x > a ∧ y > b) → f∗(x, y) > TanPlane∗,a,b(x, y))
where a = µ̂[x] and b = µ̂[y]

Fig. 4 Axioms for nonlinear multiplication refinement.

to refine the abstraction by restricting the interpretation of the uninterpreted
symbols in VMT(UFLRA).

Interestingly, the approach builds upon a black-box invariant checker for
VMT(UFLRA), which could be based on a complex abstraction refinement
loop as described in the previous sections. Precise reasoning in NT A is limited
to SMT in the concretization phase, given that the reason for spuriousness is
that some uninterpreted functions may have been misinterpreted. For exam-
ple, it is possible that the interpretation of the abstraction of multiplication of
x and y, referred to as µ̂[f∗(x, y)], does not respect the semantics of multipli-
cation, i.e. µ̂[f∗(x, y)] ̸= µ̂[x] ∗ µ̂[u]. In order to rule out such spurious models,
various patterns of linear axioms are introduced (see Figure 4). These include
some basic facts (e.g. sign rules, commutativity, multiplication by zero), mono-
tonicity, and tangent plane approximation. The latter dynamically constrains
the multiplication on point (a, b), when the interpretation of f∗(x, y) is such
that µ̂[f∗(x, y)] ̸= a∗ b, with a = µ̂[x] and b = µ̂[y]. The idea is to approximate
the multiplication function, that is a hyperbolic paraboloid (Figure 5, upper
left), with a tangent plane centered around (a, b). In addition to constraining
the value on the specific point, we can see that the plane intersects the mul-
tiplication curve on straight lines expressible in the form of linear equalities
(Figure 5, lower left), and in the resulting quadrants it can be used to express
upper- and lower-bounds.

Additional attention is required to deal with approximations of nonlinear
transcendental functions. First, since irrational values are not directly repre-
sentable, one needs to make sure that the piece-wise linear functions are correct
(over- or under-) approximations, which depends on the actual concavity of
the curve. Second, trigonometric functions are dealt with by leveraging peri-
odicity, reducing reasoning to the base period between −π and π and ensuring
that all the lemmas can be applied to the other periods. We refer to [11] for
the details.

Springer Nature 2021 LATEX template

24 Verification Modulo Theories

Fig. 5 A graphical view of tangent plane approximation.

Despite its simplicity, incremental linearization leads to significant results
for VMT(NT A), both in terms of expressiveness as well as in terms of effective-
ness. The approach is motivated by the fact that many practical applications
are “mostly linear”, in the sense that only a small percentage of the constraints
are nonlinear. Hence, the idea is to look for a piece-wise linear invariant that
is strong enough to prove the property, so that expensive nonlinear reasoning
is replaced – as much as possible – by cheaper linear reasoning.

Finally, we note that the idea of incremental linearization not only applies
to VMT but also to SMT(NT A). In fact, incremental linearization is akin
to a lemmas-on-demand approach, where the interpretation of nonlinear mul-
tiplications and transcendental functions is progressively restricted by the
introduction of lemmas that will rule out spurious abstract models (in the case
of SMT) or counterexamples (in VMT).

7 LTL(T) Model Checking

7.1 Liveness to Safety via Implicit Abstraction and
Well-Founded Relations

As described in the previous sections, various approaches to LTL Model Check-
ing reduce the problem to the verification of an invariant. Such reductions may

Springer Nature 2021 LATEX template

Verification Modulo Theories 25

be neither complete nor correct in the case of infinite-state systems. Some of
the issues are that, on one hand, if there exists a counterexample, it is not
guaranteed that there exists a lasso-shaped one; on the other hand, if there is
no counterexample visiting a live signal infinitely many times, there may be
no bound on the number of such visits.

In order to cope with these issues, in [12], we proposed an approach inte-
grating liveness-to-safety with implicit abstraction and well-founded relations.
By applying implicit abstraction to the liveness-to-safety encoding, we can
effectively prove the absence of abstract fair loops without explicitly construct-
ing the abstract state space. The approach is extended by using termination
techniques based on well-founded relations derived from ranking functions: the
idea is to prove that any existing abstract fair loop is covered by a given set
of well-founded relations. Within this framework, k-liveness is integrated as
a generic ranking function. The algorithm iterates by attempting to remove
spurious abstract fair loops: either it finds new predicates, to avoid spurious
abstract prefixes, or it introduces new well-founded relations, based on the
analysis of the abstract lasso. The implementation fully leverages the efficiency
and incrementality of the underlying safety checker IC3ia.

More specifically, after encoding the LTL model checking problem into
a liveness problem in the form FG¬f on a transition system S, we pro-
duce a sequence of invariant checking problems S0 |=inv ϕ0, S1 |=inv ϕ1,
. . .. For each j, Sj and ϕj are the result of an encoding operation dependent
on given sets of state predicates P and well-founded relations W : Sj , ϕj :=
encode(S, f, P,W). encode is a variant of the liveness-to-safety transfor-
mation that includes both implicit predicate abstraction and well-founded
relations: if Sj |=inv ϕj either there is no abstract fair loop or every such
loop is covered by the given set of well-founded relations. Thus, it ensures
that if Sj |=inv ϕj , then S |= FG¬f , in which case the iteration terminates.
If Sj ̸|=inv ϕj , we analyze a (finite) counterexample trace π in Sj to deter-
mine whether it corresponds to an (infinite) counterexample for FG¬f in S.
If so, then we conclude that the property doesn’t hold. Otherwise, if we can
conclude that π doesn’t correspond to any real counterexample in S, we try
to extract new predicates P ′ and/or well-founded relations W ′ to produce a
refined encoding: Sj+1, ϕj+1 := encode(S, f, P∪P ′,W∪W ′), where P ′,W ′ :=
refine(Sj , π, P,W). If we can neither confirm nor refute the existence of real
counterexamples, we abort the execution, returning “unknown”.3

Example 9 Consider the transition system S = ⟨{c, d}, c = 0 ∧ d ≥ 0, c′ = c +
1 ∧ d′ = d,⊤⟩, the LTL(T) property FG c > d, and the initial set of predicates
P := {c ≤ d, c = 0, 0 ≤ d}. The algorithm will first find an abstract lasso-shaped
counter-example with prefix {xc≤d, xc=0, x0≤d} and a self loop on the abstract state
{xc≤d,¬xc=0, x0≤d}. The algorithm cannot determine that such abstract counter-
example is spurious using bounded model checking, since there is no corresponding
lasso-shaped path in S. Instead, the algorithm synthesizes a ranking function d− c,

3We might also diverge and/or exhaust resources in various intermediate steps (e.g. in checking
Sj |= ϕj or during refinement).

Springer Nature 2021 LATEX template

26 Verification Modulo Theories

with lower bound −1 ≤ d−c, proving the the abstract loop terminates. The algorithm
uses the ranking function to get a well-founded relation. We refer to [12] for the
details of the encoding of the ranking function in the liveness-to-safety reduction:
intuitively, the encoding relaxes the loop condition used in L2S (see Section 3.4.2),
so that abstract loops that satisfy at least a well founded relation are not considered
as violation for the LTL property.

7.2 The K-Zeno Algorithm

The K-liveness algorithm is sound and complete for finite-state systems (i.e.,
the implication in (7) holds also in the other direction) although, in prac-
tice, the algorithm is effective only for proving liveness, rather than finding a
violation. The K-liveness algorithm is sound, however not complete, to prove
liveness properties for infinite-state systems. In an infinite-state system the
bound K may not be a specific natural number but instead may depend on
the system variables (the bound K is a function of the state variables of the
transition system S). For example, consider an infinite-state system S with
an integer parameter p ≥ 0 where the condition f can be visited at most p
times. In such system the property S |= FG¬f holds, but K-liveness would
never prove that since for all K ∈ N, there exists a value of p ≥ 0 such that
S |= p > K. In practice, once we fix the value of K to an natural number to
check S |= #(f) ≤ K, the path where p = K + 1 is sufficient to show that
S ̸|= #(f) ≤ K.

The above limitation of K-liveness also affects the analysis of infinite-state
systems with paths where the value of a variable diverges. We obtain infinite-
state transition systems with such diverging paths when we encode timed
automata [47] and hybrid automata [72],4 two formalisms that model respec-
tively real-time systems and control systems. Both formalisms do not exclude
fair Zeno paths, infinite paths of the system where the real time does not
diverge. We call non-Zeno paths all the infinite paths where time diverges.
However, the fairness verification problem for timed and hybrid automata does
not consider such Zeno paths, since they unrealistically assume that an infi-
nite number of computation steps can happen in a finite amount of time [72].
K-liveness would not prove liveness properties when näıvely applied to the
transition system S encoding of a timed or hybrid automaton that contains
Zeno paths where the fairness condition f holds. In fact, for every possible
value of K, the transition system would have an infinite path where the real
time variable does not diverge and where the the condition f holds. This means
that, for any choice of K, we would have that S ̸|= #(f) ≤ K.

The K-Zeno [13] algorithm applies a transformation to the transition sys-
tem S to consider only occurrences of the fairness condition f on paths where
time diverges. In such transformation the algorithm uses a new transition
system Sβ that introduces a bound β on the real time elapsed between two
consecutive occurrences of the fairness condition f . In this way, the system

4See [73–76] for details about possible encoding of timed and hybrid systems as infinite-state
transition systems.

Springer Nature 2021 LATEX template

Verification Modulo Theories 27

only considers occurrences of the condition f that happen on a non-Zeno path.
The liveness verification problem that considers only non-Zeno paths where f
may hold is then:

∃K.S × Sβ |= #(f) ≤ K (20)

The specific construction of the transition system Sβ depends on the kind of
system to verify. For example, if the system is a timed automaton (without
parameters), the bound β can be just a constant (the maximum constant in the
model or 1). The transition system Sβ may have to capture a symbolic bound
β(X) that is a function of the state variables X, instead of being just a con-
stant, when analyzing more general classes of systems (e.g., hybrid automata).
The work in [13] shows that there exists a monitor Sβ(X) that guarantees a
complete reduction in the case of initialized with bounded non-determinism
parametric hybrid automata (i.e., if S |= FG¬f then ∃K.S×Sβ(X) |= #(f) ≤
K).

7.3 Beyond lasso-shaped counterexamples

In finite-state systems, if an LTL property is false, there is always a coun-
terexample path (i.e. a witness) for it which is ultimately periodic (i.e. in a
lasso-shaped form). When dealing with the infinite-state case, this is no longer
the case, as in general in an infinite-state system a false LTL property might
admit no lasso-shaped witness. Therefore, in order to effectively find coun-
terexamples for LTL properties in infinite-state systems, it is necessary to look
for ways to encode a more general class of infinite traces.

This problem has been investigated extensively in the context of software
(non)termination. In that setting, closed recurrence sets [77] are used to rep-
resent a witness for the nontermination of some software program. A closed
recurrence set consists of a reachable set of states that is disjoint from the
end states and inductive with respect to a left-total transition relation that
underapproximates the transition relation of the program. The set represents
at least one infinite execution for the program: (i) its reachability ensures that
there is some finite execution of the program ending in some state within the
set; (ii) since the set is also inductive, we know that no transition starting from
within the set can reach a state outside of it and (iii) the left-total transition
relation ensures that there always exists at least one successor state satisfying
also the transition relation of the program.

However, in the more general context of counterexamples for full LTL
properties, recurrent sets are not sufficient, as a counterexample trace has
the additional requirement of being fair, i.e. it needs to visit some fair state
infinitely often. Unless the set underapproximates the fair states, without addi-
tional information, we cannot conclude that the infinite executions described
by the closed recurrence set are fair.

In order to solve this problem, we have recently generalised the notion of
recurrence set to take fairness conditions into proper account [78].We split the

Springer Nature 2021 LATEX template

28 Verification Modulo Theories

closed recurrence set into two components S and D, such that D is a sub-
set of the fair states. The union of S and D must satisfy the same conditions
described above for closed recurrence sets and, in addition, the left-total tran-
sition relation must not allow for infinite sequences of S states: every state in
S must reach a state in D in a finite number of steps. Moreover, in order to
aid the automatic discovery of such generalised recurrence sets, we split the
monolithic problem described above into two orthogonal directions: by seg-
menting the infinite paths into finite paths and decomposing the system with
respect to some partitioning of the symbols.

More precisely, we segment the fair paths into a concatenation of finite
paths: we split S into multiple regions such that each region represents a set
of finite paths that must eventually reach the following region. Notice that,
while each path in a region must be finite, there might be no upper bound
to their length: a region can represent an infinite number of finite paths with
increasing lengths. We call each segment funnel and their concatenation rep-
resenting the fair paths funnel-loop. In addition, we decompose the system by
partitioning its symbols. Each component, called E-component (for existential
component), describes the behavior of a subset of the symbols while assuming
some properties about the others. These properties represent the conditions
that are necessary for this behavior to be enabled and we need to prove that
such conditions are ensured by some other component.

With this partitioned representation, which we have proven to be both
sound and relatively complete, we have then developed a search procedure,
based on a combination of invariant checking with abstraction, bounded model
checking and SMT-based synthesis via quantified reasoning, that is capable
of identifying funnel-loops in an automatic manner [78], with an implemen-
tation that significantly outperforms the state of the art on a wide class of
benchmarks.

Example 10 Consider the fair transition system:

⟨{c, n, o},⊤, (n > o)∧((c < n∧c′ = c+1∧n′ = n∧o′ = o)∨(c ≤ n∧o′ = n)), c = 0⟩.
The system admits fair paths that are not lasso-shaped. For example, one such path
is the following (where the states show the values for the variables c, n, o, and k is
an integer constant):

{0, 1, 0}, {1, 1, 0}, {0, 2, 1}, {1, 2, 1}, . . . , {k − 1, k, k − 1}, {k, k, k − 1}, {0, k + 1, k}, . . .
We can represent the paths above using a funnel as defined in [78], which intuitively
defines an underapproximation of the original system that contains only fair paths.
The funnel is defined as having a source region S := (o > 0∧n > o) (which is a subset
of the initial states of the system), a destination region D := (o > 0∧ o < n∧ c = 0)
(which is a subset of S consisting of fair states), connected by a transition relation
T := (c < n ∧ c′ = c+ 1 ∧ n′ = n ∧ o′ = o) ∨ (c ≥ n ∧ o′ = n ∧ c′ = 0 ∧ n′ = n+ 1),
which is an underapproximation of the transition relation of the system ensuring
that eventually D must be reached when starting from S.5

5The details are omitted for simplicity. We refer to [78] for a full definition of funnels and their
properties.

Springer Nature 2021 LATEX template

Verification Modulo Theories 29

8 The nuXmv Model Checker

All the techniques and algorithms described in the previous sections have been
implemented in nuXmv [16], a state-of-the-art symbolic model checker for
both finite- and infinite-state synchronous fair transition systems. nuXmv is
the successor of NuSMV [17], the popular symbolic model checker for finite-
state systems which was conceived in 1999 within a joint cooperation of the
CMU group of Ed Clarke and FBK.6 In some sense, therefore, nuXmv carries
on the legacy of Ed Clarke and his message of combining theoretical results
with strong practical applications.

From a technical standpoint, nuXmv integrates, extends and complements
the functionalities of NuSMV with multiple functionalities to facilitate its
deployment in several operational industrial and research settings. For finite-
state systems, it complements the basic verification techniques available in
NuSMV with a family of new state-of-the-art SAT-based techniques, including
interpolation and IC3. For infinite-state systems, nuXmv extends the NuSMV
language with new data types, namely integers, reals and unbounded arrays.
Figure 6 shows the nuXmv specification for the transition system and property
from Example 4. The example shows how the nuXmv language can express
infinite state transition systems, specifying the variables (VAR declarations),
the initial condition (INIT declaration), and the transition relation (TRANS)
declaration. Notice that the nuXmv input language is way richer, allowing to
specify, for example, modules, fairness constraints, and timed transition sys-
tems [79]. nuXmv provides advanced SMT-based model checking techniques
and implements all the abstraction-based approaches discussed in the previ-
ous sections (including several explicit computation techniques, e.g., [60–62]).
Moreover, it complements these algorithms with other functionalities whose
description is out of scope of this paper. The interested reader can refer to [16]
for detailed discussion of all the functionalities provided by nuXmv.

nuXmv has been used in a wide range of applications, both at academic
and at industrial level, in different application domains including avionics,
railways, automotive, space, and biological (e.g. [24, 31, 32, 80–84].) Finally,
nuXmv is also the back-end of several other tools, including the Kratos [85]
software model checker, the RATSY [86] tool for temporal logic synthesis,
the OCRA [22] platform for contract-based verification, the xSAP [87] for
model-based safety assessment, and the HyCOMP [20] model checker for the
verification of hybrid systems.

9 Conclusions

In this paper we presented a retrospective on the verification of infinite-state
transition systems expressed symbolically in SMT. This line of work was
substantially influenced by the work of Ed Clarke, based on the ideas on SAT-
based model checking and abstraction refinement. At the methodological level,

6At that time Istituto Trentino di Cultura.

Springer Nature 2021 LATEX template

30 Verification Modulo Theories

MODULE main

INVARSPEC (d <= 3) | (! (c <= d)) ;

LTLSPEC F G c >= d ;

VAR
c : integer ;
d : integer ;

INIT
c = 0 & d = 0 ;

TRANS
next(c) = c + d & next(d) = d + 1 ;

Fig. 6 nuXmv listing for the transition system of Example 4.

Clarke always underlined the importance of developing strong tools and apply-
ing them in practical case studies, being enthusiastic about the work on the
NuSMV model checker. This paved the way to the development of the nuXmv
model checker, and its applications to practical industrial case studies.

Challenges for future research include devising effective verification and
falsification algorithms and tools for more expressive classes of VMT problems:
parameterized systems expressed in the quantified theory of arrays [88], timed
and hybrid systems [40], sequential and concurrent software, recurrent neural
networks, and the closed-loop combination of physical systems and control
software.

Availability of data and materials

The manuscript has no associated data.

References

[1] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In: Kozen, D. (ed.)
Logics of Programs, Workshop, Yorktown Heights, New York, USA,
May 1981. Lecture Notes in Computer Science, vol. 131, pp. 52–71.
Springer, (1981). https://doi.org/10.1007/BFb0025774. https://doi.org/
10.1007/BFb0025774

[2] Queille, J., Sifakis, J.: Specification and verification of concurrent systems
in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International
Symposium on Programming, 5th Colloquium, Torino, Italy, April 6-8,

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

Springer Nature 2021 LATEX template

Verification Modulo Theories 31

1982, Proceedings. Lecture Notes in Computer Science, vol. 137, pp. 337–
351. Springer, (1982). https://doi.org/10.1007/3-540-11494-7 22. https:
//doi.org/10.1007/3-540-11494-7 22

[3] Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic
verification and debugging. Commun. ACM 52(11), 74–84 (2009). https:
//doi.org/10.1145/1592761.1592781

[4] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
model checking. Adv. Comput. 58, 117–148 (2003)

[5] Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using
induction and a sat-solver. In: FMCAD. Lecture Notes in Computer
Science, vol. 1954, pp. 108–125. Springer, (2000)

[6] McMillan, K.L.: Interpolation and sat-based model checking. In: CAV.
Lecture Notes in Computer Science, vol. 2725, pp. 1–13. Springer, (2003)

[7] Bradley, A.R.: SAT-Based Model Checking without Unrolling. In:
VMCAI. LNCS, vol. 6538, pp. 70–87. Springer, (2011)

[8] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM
50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643

[9] Tonetta, S.: Abstract model checking without computing the abstrac-
tion. In: FM. Lecture Notes in Computer Science, vol. 5850, pp. 89–105.
Springer, (2009)

[10] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant
checking with IC3 and predicate abstraction, vol. 49, pp. 190–218 (2016)

[11] Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental
linearization for satisfiability and verification modulo nonlinear arithmetic
and transcendental functions. ACM Trans. Comput. Log. 19(3), 19–11952
(2018). https://doi.org/10.1145/3230639

[12] Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state
liveness-to-safety via implicit abstraction and well-founded relations. In:
CAV (1). Lecture Notes in Computer Science, vol. 9779, pp. 271–291.
Springer, (2016)

[13] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL Properties
of Hybrid Systems with K-Liveness. In: CAV. Lecture Notes in Computer
Science, vol. 8559, pp. 424–440. Springer, (2014)

[14] Cimatti, A., Griggio, A., Magnago, E.: Proving the existence of fair paths

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/3230639

Springer Nature 2021 LATEX template

32 Verification Modulo Theories

in infinite-state systems. In: VMCAI. Lecture Notes in Computer Science,
vol. 12597, pp. 104–126. Springer, (2021)

[15] Cimatti, A., Griggio, A., Magnago, E.: Automatic discovery of fair paths
in infinite-state transition systems. In: ATVA. Lecture Notes in Computer
Science, vol. 12971, pp. 32–47. Springer, (2021)

[16] Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli,
A., Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model
checker. In: CAV. Lecture Notes in Computer Science, vol. 8559, pp.
334–342. Springer, (2014)

[17] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M.,
Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for
symbolic model checking. In: CAV. Lecture Notes in Computer Science,
vol. 2404, pp. 359–364. Springer, (2002)

[18] Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5
SMT Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS. LNCS, vol.
7795, pp. 93–107. Springer, (2013)

[19] Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools.
CoRR abs/2109.12821 (2021) https://arxiv.org/abs/2109.12821

[20] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Hycomp: An smt-based
model checker for hybrid systems. In: TACAS. Lecture Notes in Computer
Science, vol. 9035, pp. 52–67. Springer, (2015)

[21] Bozzano, M., Cimatti, A., Gario, M., Jones, D., Mattarei, C.: Model-
based safety assessment of a triple modular generator with xsap. Formal
Aspects Comput. 33(2), 251–295 (2021)

[22] Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the
refinement of temporal contracts. In: ASE, pp. 702–705. IEEE, (2013)

[23] Pakonen, A.: Model-checking infinite-state nuclear safety i&c systems
with nuxmv. In: INDIN, pp. 1–6. IEEE, (2021)

[24] Aluf-Medina, M., Korten, T., Raviv, A., Jr., D.V.N., Kugler, H.: Formal
semantics and verification of network-based biocomputation circuits. In:
VMCAI. Lecture Notes in Computer Science, vol. 12597, pp. 464–485.
Springer, (2021)

[25] Amendola, A., Becchi, A., Cavada, R., Cimatti, A., Griggio, A., Scaglione,
G., Susi, A., Tacchella, A., Tessi, M.: A model-based approach to the
design, verification and deployment of railway interlocking system. In:
ISoLA (3). Lecture Notes in Computer Science, vol. 12478, pp. 240–254.

{2109.12821}

Springer Nature 2021 LATEX template

Verification Modulo Theories 33

Springer, (2020)

[26] Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway
interlocking - compositional approach with OCRA. In: RSSRail. Lecture
Notes in Computer Science, vol. 9707, pp. 134–149. Springer, (2016)

[27] Bozzano, M., Cimatti, A., Pires, A.F., Jones, D., Kimberly, G., Petri, T.,
Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110
wheel brake system. In: CAV (1). Lecture Notes in Computer Science,
vol. 9206, pp. 518–535. Springer, (2015)

[28] Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model
checking at scale: Automated air traffic control design space exploration.
In: CAV (2). Lecture Notes in Computer Science, vol. 9780, pp. 3–22.
Springer, (2016)

[29] Alaña, E., Naranjo, H., Yushtein, Y., Bozzano, M., Cimatti, A., Gario, M.,
de Ferluc, E., Garcia, G.: Automated generation of FDIR for the compass
integrated toolset (AUTOGEF). DASIA 2012 (2012)

[30] Sahu, S., Schorr, R., Medina-Bulo, I., Wagner, M.F.: Model translation
from papyrus-rt into the nuxmv model checker. In: SEFM. Lecture Notes
in Computer Science, vol. 12524, pp. 3–20. Springer, (2020)

[31] Gidey, H.K., Collins, A., Marmsoler, D.: Modeling and verifying dynamic
architectures with factum studio. In: FACS. Lecture Notes in Computer
Science, vol. 12018, pp. 243–251. Springer, (2019)

[32] Bukhari, S.A.A., Khalid, F., Hasan, O., Shafique, M., Henkel, J.: Toward
model checking-driven fair comparison of dynamic thermal management
techniques under multithreaded workloads. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 39(8), 1725–1738 (2020)

[33] Tseitin, G.S.: On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, Part 2,
115–125 (1968)

[34] Enderton, H.B.: ”A Mathematical Introduction to Logic”, 2nd edn.
Academic Press, (2001)

[35] Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning sat
solvers. Handbook of satisfiability 185 (2009)

[36] Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satis-
fiability, Boolean Modeling and Computation, JSAT 3(3-4), 141–224
(2007)

Springer Nature 2021 LATEX template

34 Verification Modulo Theories

[37] Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability
Modulo Theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T.
(eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 825–885. IOS Press, (2009)

[38] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL(T). J. ACM 53(6), 937–977 (2006). https://doi.org/10.
1145/1217856.1217859

[39] Pnueli, A.: The Temporal Logic of Programs. In: FOCS, pp. 46–57 (1977)

[40] Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Smt-based
satisfiability of first-order LTL with event freezing functions and metric
operators. Inf. Comput. 272, 104502 (2020)

[41] Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal
Logic. In: Banff Higher Order Workshop, pp. 238–266 (1995)

[42] Claessen, K., Eén, N., Sterin, B.: A circuit approach to LTL model
checking. In: FMCAD, pp. 53–60. IEEE, (2013)

[43] Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model
Checking. Formal Methods in System Design 10(1), 47–71 (1997)

[44] de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded
model checking over infinite domains. In: CADE. Lecture Notes in
Computer Science, vol. 2392, pp. 438–455. Springer, (2002)

[45] Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking.
Electron. Notes Theor. Comput. Sci. 66(2), 160–177 (2002)

[46] Claessen, K., Sörensson, N.: A liveness checking algorithm that counts.
In: Cabodi, G., Singh, S. (eds.) FMCAD, pp. 52–59. IEEE, (2012)

[47] Alur, R., Dill, D.L.: The theory of timed automata. In: REX Workshop.
Lecture Notes in Computer Science, vol. 600, pp. 45–73. Springer, (1991)

[48] Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive
coverability. In: CAV. Lecture Notes in Computer Science, vol. 8044, pp.
158–173. Springer, (2013)

[49] Kindermann, R., Junttila, T.A., Niemelä, I.: Smt-based induction meth-
ods for timed systems. In: FORMATS. Lecture Notes in Computer
Science, vol. 7595, pp. 171–187. Springer, (2012)

[50] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample
Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.)

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859

Springer Nature 2021 LATEX template

Verification Modulo Theories 35

CAV. LNCS, vol. 1855, pp. 154–169. Springer, (2000)

[51] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction.
ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994). https://doi.
org/10.1145/186025.186051

[52] S. Graf, H. Saidi: Construction of Abstract State Graphs with PVS.
In: Grumberg, O. (ed.) Proc. 9th International Conference on Com-
puter Aided Verification (CAV’97). LNCS, vol. 1254, pp. 72–83. Springer,
(1997)

[53] Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predi-
cate abstraction. In: Jr., W.A.H., Somenzi, F. (eds.) Computer Aided
Verification, 15th International Conference, CAV 2003, Boulder, CO,
USA, July 8-12, 2003, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 2725, pp. 141–153. Springer, (2003). https://doi.org/10.1007/
978-3-540-45069-6 15. https://doi.org/10.1007/978-3-540-45069-6 15

[54] Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast
predicate abstraction. In: Ball, T., Jones, R.B. (eds.) Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4144, pp. 424–437. Springer, (2006). https://doi.org/10.1007/
11817963 39. https://doi.org/10.1007/11817963 39

[55] Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic deci-
sion procedures. Log. Methods Comput. Sci. 3(2) (2007). https://doi.org/
10.2168/LMCS-3(2:1)2007

[56] Schrijver, A.: Theory of Linear and Integer Programming, pp. 155–156.
J. Wiley & Sons, (1998)

[57] Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Com-
puter Journal 36(5), 450–462 (1993)

[58] Monniaux, D.: A quantifier elimination algorithm for linear real arith-
metic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning, 15th International
Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5330, pp. 243–257.
Springer, (2008). https://doi.org/10.1007/978-3-540-89439-1 18. https:
//doi.org/10.1007/978-3-540-89439-1 18

[59] Monniaux, D.: Quantifier elimination by lazy model enumeration. In:
Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19,

https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-540-45069-6_15
https://doi.org/10.1007/978-3-540-45069-6_15
https://doi.org/10.1007/978-3-540-45069-6_15
https://doi.org/10.1007/11817963_39
https://doi.org/10.1007/11817963_39
https://doi.org/10.1007/11817963_39
https://doi.org/10.2168/LMCS-3(2:1)2007
https://doi.org/10.2168/LMCS-3(2:1)2007
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18

Springer Nature 2021 LATEX template

36 Verification Modulo Theories

2010. Proceedings. Lecture Notes in Computer Science, vol. 6174, pp. 585–
599. Springer, (2010). https://doi.org/10.1007/978-3-642-14295-6 51.
https://doi.org/10.1007/978-3-642-14295-6 51

[60] Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri,
M., Shyamasundar, R.K.: Computing predicate abstractions by integrat-
ing bdds and SMT solvers. In: Formal Methods in Computer-Aided
Design, 7th International Conference, FMCAD 2007, Austin, Texas, USA,
November 11-14, 2007, Proceedings, pp. 69–76. IEEE Computer Soci-
ety, (2007). https://doi.org/10.1109/FAMCAD.2007.35. https://doi.org/
10.1109/FAMCAD.2007.35

[61] Cimatti, A., Franzén, A., Griggio, A., Kalyanasundaram, K., Roveri,
M.: Tighter integration of bdds and SMT for predicate abstraction. In:
Micheli, G.D., Al-Hashimi, B.M., Müller, W., Macii, E. (eds.) Design,
Automation and Test in Europe, DATE 2010, Dresden, Germany, March
8-12, 2010, pp. 1707–1712. IEEE Computer Society, (2010). https:
//doi.org/10.1109/DATE.2010.5457090. https://doi.org/10.1109/DATE.
2010.5457090

[62] Cimatti, A., Dubrovin, J., Junttila, T.A., Roveri, M.: Structure-aware
computation of predicate abstraction. In: Proceedings of 9th International
Conference on Formal Methods in Computer-Aided Design, FMCAD
2009, 15-18 November 2009, Austin, Texas, USA, pp. 9–16. IEEE,
(2009). https://doi.org/10.1109/FMCAD.2009.5351149. https://doi.org/
10.1109/FMCAD.2009.5351149

[63] Gupta, A., Strichman, O.: Abstraction refinement for bounded model
checking. In: CAV. Lecture Notes in Computer Science, vol. 3576, pp.
112–124. Springer, (2005)

[64] Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of craig inter-
polants in satisfiability modulo theories. ACMTrans. Comput. Log. 12(1),
7–1754 (2010)

[65] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
(2001). http://books.google.de/books?id=Nmc4wEaLXFEC

[66] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction.
In: POPL, pp. 58–70 (2002)

[67] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant
checking with IC3 and predicate abstraction. Formal Methods Syst. Des.
49(3), 190–218 (2016). https://doi.org/10.1007/s10703-016-0257-4

[68] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions
from Proofs. In: POPL, pp. 232–244 (2004)

https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1109/FAMCAD.2007.35
https://doi.org/10.1109/FAMCAD.2007.35
https://doi.org/10.1109/FAMCAD.2007.35
https://doi.org/10.1109/DATE.2010.5457090
https://doi.org/10.1109/DATE.2010.5457090
https://doi.org/10.1109/DATE.2010.5457090
https://doi.org/10.1109/DATE.2010.5457090
https://doi.org/10.1109/FMCAD.2009.5351149
https://doi.org/10.1109/FMCAD.2009.5351149
https://doi.org/10.1109/FMCAD.2009.5351149
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/s10703-016-0257-4

Springer Nature 2021 LATEX template

Verification Modulo Theories 37

[69] Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstrac-
tion refinement for software model checking. In: Katoen, J.-, Stevens, P.
(eds.) TACS. LNCS, vol. 2280, pp. 158–172. Springer, (2002)

[70] Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields
by cylindrical algebraic decomposition. In: Automata Theory and For-
mal Languages. Lecture Notes in Computer Science, vol. 33, pp. 134–183.
Springer, (1975)

[71] Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: IJCAR.
Lecture Notes in Computer Science, vol. 7364, pp. 339–354. Springer,
(2012)

[72] Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292.
IEEE Computer Society, (1996)

[73] Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded
model checking for timed systems. In: FORTE. Lecture Notes in Com-
puter Science, vol. 2529, pp. 243–259. Springer, (2002)

[74] Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.:
Verification of timed automata via satisfiability checking. In: FTRTFT.
Lecture Notes in Computer Science, vol. 2469, pp. 225–244. Springer,
(2002)

[75] Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying indus-
trial hybrid systems with mathsat. Electron. Notes Theor. Comput. Sci.
119(2), 17–32 (2005)

[76] Cimatti, A., Mover, S., Tonetta, S.: Quantifier-free encoding of invariants
for hybrid systems. Formal Methods Syst. Des. 45(2), 165–188 (2014)

[77] Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Disproving termination
with overapproximation. In: FMCAD, pp. 67–74. IEEE, (2014)

[78] Cimatti, A., Griggio, A., Magnago, E.: LTL falsification in infinite-
state systems. Inf. Comput. 289(Part), 104977 (2022). https://doi.org/
10.1016/j.ic.2022.104977

[79] Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending
nuxmv with timed transition systems and timed temporal properties. In:
CAV (1). Lecture Notes in Computer Science, vol. 11561, pp. 376–386.
Springer, (2019)

[80] Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking
takes off. Commun. ACM 53(2), 58–64 (2010). https://doi.org/10.1145/
1646353.1646372

https://doi.org/10.1016/j.ic.2022.104977
https://doi.org/10.1016/j.ic.2022.104977
https://doi.org/10.1145/1646353.1646372
https://doi.org/10.1145/1646353.1646372

Springer Nature 2021 LATEX template

38 Verification Modulo Theories

[81] Ferrante, O., Benvenuti, L., Mangeruca, L., Sofronis, C., Ferrari, A.:
Parallel NuSMV: A NuSMV Extension for the Verification of Complex
Embedded Systems. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
Workshops. LNCS, vol. 7613, pp. 409–416. Springer, (2012)

[82] Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri,
M., Sanseviero, A., Tchaltsev, A.: Formal Verification and Validation of
ERTMS Industrial Railway Train Spacing System. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV. LNCS, vol. 7358, pp. 378–393. Springer, (2012)

[83] Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri,
M., Wimmer, R.: A Model Checker for AADL. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV. LNCS, vol. 6174, pp. 562–565. Springer, (2010)

[84] Chiappini, A., Cimatti, A., Macchi, L., Rebollo, O., Roveri, M., Susi, A.,
Tonetta, S., Vittorini, B.: Formalization and validation of a subset of the
european train control system. In: Kramer, J., Bishop, J., Devanbu, P.T.,
Uchitel, S. (eds.) ICSE (2), pp. 109–118. ACM, (2010)

[85] Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos -
A Software Model Checker for SystemC. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV. LNCS, vol. 6806, pp. 310–316. Springer, (2011)

[86] Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri,
M., Schuppan, V., Seeber, R.: RATSY - A New Requirements Analysis
Tool with Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV.
LNCS, vol. 6174, pp. 425–429. Springer, (2010)

[87] Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio,
A., Mattarei, C., Micheli, A., Zampedri, G.: The xsap safety analysis
platform. In: TACAS. Lecture Notes in Computer Science, vol. 9636, pp.
533–539. Springer, (2016)

[88] Cimatti, A., Griggio, A., Redondi, G.: Universal invariant checking of
parametric systems with quantifier-free SMT reasoning. In: CADE. Lec-
ture Notes in Computer Science, vol. 12699, pp. 131–147. Springer,
(2021)

	Introduction
	From SAT to SMT
	First-order notation
	SAT and SMT solvers

	Verification Modulo Theories
	Symbolic Fair Transition Systems
	LTL(T): Linear Temporal Logic Modulo Theory
	Problem definition
	Invariant checking
	LTL(T) model checking

	Algorithms for Model Checking Modulo Theories
	Invariant Checking
	Bounded Model Checking (BMC)
	K-Induction
	IC3

	Liveness Checking
	Encoding lasso-shaped paths
	Liveness to safety reduction
	K-Liveness

	Challenges when verifying infinite-state systems
	Invariant Checking
	Liveness Checking

	CEGAR and Predicate Abstraction
	Computing the Predicate Abstraction
	Refining the Predicate Abstraction from Counterexamples

	Invariant Checking with Implicit Predicate Abstraction
	Implicit Predicate Abstraction
	K-induction with Implicit Predicate Abstraction
	IC3ia: IC3 with Implicit Abstraction
	Refining Implicit Predicate Abstractions

	CEGAR via Incremental Linearization
	LTL(T) Model Checking
	Liveness to Safety via Implicit Abstraction and Well-Founded Relations
	The K-Zeno Algorithm
	Beyond lasso-shaped counterexamples

	The nuXmv Model Checker
	Conclusions

