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Abstract

The assessment of binary classifier performance traditionally centers on
discriminative ability using metrics, such as accuracy. However, these met-
rics often disregard the model’s inherent uncertainty, especially when deal-
ing with sensitive decision-making domains, such as finance or healthcare.
Given that model-predicted scores are commonly seen as event probabil-
ities, calibration is crucial for accurate interpretation. In our study, we
analyze the sensitivity of various calibration measures to score distortions
and introduce a refined metric, the Local Calibration Score. Comparing
recalibration methods, we advocate for local regressions, emphasizing their
dual role as effective recalibration tools and facilitators of smoother visu-
alizations. We apply these findings in a real-world scenario using Random
Forest classifier and regressor to predict credit default while simultaneously
measuring calibration during performance optimization.
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1 Introduction
Binary classification tasks are prevalent in learning algorithms, as diverse scenar-
ios require binary decisions. Examples include predicting default risk or accident
occurrence in insurance or finance as well as disease likelihood in healthcare. To
improve reliability, particularly in sensitive decision-making contexts, a classifier
must possess strong discriminatory capabilities. Typically, classifiers are trained to
optimize goodness-of-fit criteria, often based on the accuracy of class predictions.
However, goodness-of-fit criteria, such as accuracy or AUC, do not consider the
varying confidence levels assigned by the algorithm to each prediction. If the sole
objective is effective class prediction, then the classifier fulfills its purpose. Never-
theless, there are instances where interest extends beyond the predicted class to the
associated likelihood. This occurs when predicting loan repayment defaults (Liu
et al., 2021) or accident incidences, as risk transfer pricing is usually tied directly
to event probabilities. In such cases, the model-predicted scores of classifiers are
often interpreted as event probabilities. Yet, in these examples, achieving accu-
rate interpretation as probabilities necessitates effective calibration of the model.
A well-calibrated model ensures precise understanding of the predicted scores as
probabilities. For instance, if a model assigns a predicted probability of 80% to
events, the observed proportion of those events occurring over the long run –
according to Dawid’s (1982) terminology– should ideally align with the predicted
value of 80%.

Simple classifiers such as Logistic Regression models typically exhibit over-
all calibration (Mildenhall, 1999) due to their design in the empirical risk mini-
mization problem, but evaluating their local calibration conditioned on predicted
score values poses challenges (Kull et al., 2017). In addition, when using more
opaque models, such as Random Forest (RF) or Neural Networks, the interpretabil-
ity of calibration becomes more nuanced, with differing views on their potential
(mis)calibration (Niculescu-Mizil and Caruana, 2005; Guo et al., 2017; Hänsch,
2020; Krishnan and Tickoo, 2020; Minderer et al., 2021). Consequently, various
metrics and post-processing recalibration methods, including Platt scaling (Platt,
1999), isotonic regression (Zadrozny and Elkan, 2002), and Beta calibration (Kull
et al., 2017), have been proposed to measure and correct poor calibration in clas-
sification models, particularly in scenarios requiring confidence scores.

Considering the comprehensive studies on the concept of calibration, deter-
mining the most appropriate metric or recalibration method for a specific dataset
and its trained algorithm is not straightforward. Various calibration metrics di-
verge significantly in their evaluation of models, and a consensus has yet to be
established, even in binary tasks. In this regard, after presenting numerical and
graphical tools to measure the calibration of a binary predictive model in Sec-
tion 2, we propose simulating a synthetic dataset for which the true distribution
of probabilities is known. By deliberately manipulating these probabilities, we
create distorted versions to emulate uncalibrated scores that might be produced
by an ML model. With access to the true distribution, we precisely measure the
miscalibration of the distorted probabilities using the Mean Squared Error (MSE).
Consequently, we can identify calibration metrics that closely resemble the MSE,
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and introduce a novel metric, the Local Calibration Score (LCS), which uses lo-
cal regression techniques. Subsequently, in Section 3, we present recalibration
approaches to address poor calibration of distorted probabilities. Despite the in-
tentional miscalibration of these scores, the traditional performance metrics have
not deteriorated.

The analysis of synthetic data yields insights favoring the novel calibration
metric LCS. Subsequently, we compute this measure in a real-world scenario dis-
cussed in Section 4, in which a Random Forest algorithm is employed to predict
the risk of default. We train both an RF classifier and regressor on the dataset,
with the latter demonstrating superior accuracy and calibration, contrasting the
results reported by Boström (2008). While selecting the RF algorithm and opti-
mizing its hyperparameters using data from Yeh (2016), we recreate a scenario in
which decision makers prioritize finely tuned goodness-of-fit metrics. During this
procedure, caution is advised to avoid compromising calibration for the sake of
discriminative capacity, particularly with the aim of using model predicted scores.

Our contributions can be summarized as follows:
• In the case of binary regression within our Data Generating Process (DGP),

enabling exact calibration calculation, the Expected Calibration Error (ECE)
does not emerge as the most robust calibration metric, as well as the Brier
score.

• Based on visualization techniques that involve local polynomial regression
for calibration curves, we introduce a novel calibration metric named LCS,
the relevance of which is validated through the assessment of ground-truth
miscalibration on synthetic data.

• When observing the progression of the novel calibration metric –LCS– for
different AUC levels during the optimization of both RF regressor and clas-
sifier algorithms, we highlight that integrating a calibration metric in the
optimization process is significant if one intends to utilize the scores pre-
dicted by the classifier.

2 Calibration
Consider a binary variable D that takes the value 1 if an event occurs and 0 oth-
erwise. In this context, the probability of the event depends on individual char-
acteristics, i.e., pi = s(xi), where, with sample size n > 0, i = 1, . . . , n represents
individuals, and xi the characteristics. The goal is to estimate this probability
using a model, such as a Generalized Linear Model (GLM) or an ML model such
as an RF. These models estimate a score ŝ(xi) ∈ [0, 1], allowing the classification
of observations based on the estimated probability of the event. By setting a prob-
ability threshold τ in [0, 1], one can predict the class of each observation: 1 if the
event occurs, and 0 otherwise. However, to interprete the score as a probability,
it is crucial that the model is well-calibrated. For a binary variable D, a model is
well-calibrated when (Schervish, 1989)

P(D = 1 | ŝ(x) = p) = p, ∀p ∈ [0, 1] , (1)
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which is equivalent to:

E[D | ŝ(x) = p] = p, ∀p ∈ [0, 1] . (2)

For example, if D represents a credit default, with D = 1 indicating default and
D = 0 indicating no default, a model predicting credit default is well-calibrated if
the values of model’s predicted probability ŝ(x) closely match the actual observed
probability of default. This means that if the model predicts a probability of 0.8
for a particular individual, the actual default rate for individuals with a predicted
probability of 0.8 should be close to 0.8.

It should be mentioned that conditioning by {ŝ(x) = p} leads to the concept
of (local) calibration; however, as discussed by Bai et al. (2021), {ŝ(x) = p} is a.s.
a null mass event. Thus, calibration should be understood in the sense that

E[D | ŝ(x) = p]
a.s.→ p when n → ∞ ,

meaning that, asymptotically, the model is well-calibrated, or locally well-
calibrated in p, for any p. From the dominated convergence theorem, it also
signifies that, “on average,” the model is well-calibrated. To account for this,
we will consider multiple replications of finite samples in the simulation study in
Section 2.2.

2.1 Measuring Calibration
To assess the calibration of a predictive model, the literature provides both met-
rics and visual approaches for evaluating ŝ. Given the continuous nature of the
score with a null mass event, various methods have been proposed to detect
(mis-)calibration. We will briefly introduce the most popular measures before
presenting a new calibration metric (refer to the LCS in Section 2.1.2).

2.1.1 Quantile based measures

Calibration curve In the binary case, based on Equation 2, constructing a
calibration curve to visualize the calibration of a model involves estimating the
function g(·) that measures miscalibration on its predicted scores ŝ(x):

g :

{
[0, 1] → [0, 1]

p 7→ g(p) := E[D | ŝ(x) = p]
. (3)

The g function for a well-calibrated model is the identity function g(p) = p. In
practice, from this real-valued setting, it is challenging to have a sufficient number
of observations in the training dataset with identical scores to effectively measure
calibration defined in Equation 1, resulting in a lack of robustness in the estimation
process of these probabilities. A common method for estimating calibration is to
group observations into B bins, defined by the empirical quantiles of predicted
values ŝ(x). The average of observed values, denoted d̄b with b ∈ {1, . . . , B},
in each bin b can then be compared with the central value of the bin. Thus, a
calibration curve can be constructed by plotting the centers of each bin on the
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x-axis and the averages of corresponding observations on the y-axis, also referred
to as reliability diagrams (Wilks, 1990). When the model is well-calibrated, all B
points lie on the bisector.

Expected Calibration Error Given a sample size n, the Expected Calibra-
tion Error (ECE) (Pakdaman Naeini et al., 2015) is determined using two metrics
within each bin b ∈ {1, . . . , B} of quantile-binned predicted scores ŝ(x): accu-
racy acc(b), which measures the average of empirical probabilities or fractions of
correctly predicted classes, and confidence conf(b), indicating the model’s average
confidence within bin b by averaging predicted scores. The ECE is then computed
as the average over the bins using:

ECE =
B∑
b=1

nb

n
| acc(b)− conf(b) |

where nb is the number of observations in bin b. Given that each bin b is associated
with set Ib containing the indices of instances within that bin,

acc(b) = 1

nb

∑
i∈Ib

1d̂i=di
and conf(b) = 1

nb

∑
i∈Ib

ŝ(xi) ,

are, respectively, the accuracy and the confidence of the model in bin b. The
predicted class d̂i for observation i is determined based on a classification threshold
τ ∈ [0, 1], where d̂i = 1 if ŝ(xi) ≥ τ and 0 otherwise.

Notably, the aforementioned ECE corresponds to the exact definition of calibra-
tion for multi-class prediction (Guo et al., 2017). For a recent study investigating
the application of this measure to geographic data with ordinal classes, we refer
to (Machado et al., 2024).

2.1.2 Local Regression based measure

We propose an alternative approach to visualize model calibration, aiming for a
smoother representation than that provided by the method based on quantiles.

Smoothed calibration curve Instead of defining bins, we estimate calibration
using a local regression. The benefit of employing local regression techniques over
bin-based visualization lies in the fact that given the number of data points, the
precision of quantile binning can be suboptimal when determining the appropriate
bin count. By contrast, with local regression, one can specify the percentage of
nearest neighbors, providing greater flexibility.

Local regression involves applying local polynomial regression techniques, with
the definition of “local” adopting various forms, including bandwidth or the count
of nearest neighbors. These characteristics are determined using different ap-
proaches, enhancing the precision and smoothness of the analysis. The degree of
the polynomial determines the construction of the polynomial regression. For this
purpose, we will use the locfit package from R (Loader, 1999). The locfit
library selects a specific set of evaluation points from the dataset to conduct the
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regression fit. By default, the evaluation structure follows a tree-based pattern:
the algorithm confines the dataset within a rectangle and divides it into two equal-
sized rectangles. Polynomial parameters from the fit at selected points are then
used to interpolate values at other locations. While this approach may have been
disregarded in high dimensions due to poor properties, it is highly efficient in
small dimensions, as in this case with only one predictive feature, ŝ(x). Moreover,
this approach is backed by a solid theoretical foundation, with well-established
statistical properties.

To obtain a calibration curve, we fit a local regression model with a degree of
0.1 We perform a regression of observed events on predicted probabilities. Then,
we employ the trained model to make predictions on a linear space with values in
[0, 1]. This approach provides a continuous calibration profile, based on uniformly
distributed points to evaluate g.

The local regression model relies on neighboring points to make predictions.
However, problems arise at the edges when the range of predicted scores ŝ(x) does
not cover the entire interval [0, 1]. In such cases, predicted values beyond this
range may deviate from the bisector, leading to a misinterpretation of calibration.
To prevent this issue, we adjust the linear space used for predictions by the local
regression model to align with the full range of observed scores ŝ(x).

Local Calibration Score Similar to how the Integrated Calibration Index is
defined using the LOESS regression method (Austin and Steyerberg, 2019), we
introduce our methodology, the Local Calibration Score (LCS), which is based on
the calibration curve constructed using locfit, as detailed in Section 2.1.2. The
calculation of the LCS relies on the disparities between this curve and the bisector,
in the range from 0 to 1, weighted by the density of the predicted scores ŝ(x). To
execute this, following the methodology outlined in Section 2.1.2, a local regression
of degree 0, denoted as ĝ, is fitted to the predicted scores ŝ(x). This fit is then
applied to a vector of linearly spaced values within the interval [0, 1]. Each of these
points is denoted by li, where i ∈ {1, . . . , N}, with N being the target number of
points on the visualization curve. The LCS is calculated by averaging the squared
differences between each predicted score ĝ(li) and its corresponding linearly spaced
value li, weighted by the density of the observed scores at li, corresponding to wi:

LCS =
n∑

i=1

wi

(
ĝ(li)− li

)2
. (4)

2.2 Impact of a Poor Calibration
In this section, we aim to explore the impact of a poorly-calibrated model.2 To
do this, we create synthetic datasets where we know the true probability of a
binary event occurrence in advance. Instead of relying on model-derived scores
ŝ(x), we apply transformations directly to the probabilities. These transformed

1The choice of degree 0 allows us to compute the local mean of observed events in the vicinity
of a predicted probability, illustrating calibration from Equation 2.

2Replication material: https://github.com/fer-agathe/calibration_binary_classifier.
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values serve as surrogate scores, representing what could be obtained from an
ML model. This approach enables us to assess the effects of poor calibration on
different calibration metrics, particularly our novel calibration measure LCS, as
well as on various calibration curves. Additionally, it allows us to investigate the
impact of poor calibration on standard goodness-of-fit metrics.

Synthetic data Following Gutman et al. (2022), we consider a binary variable
assumed to follow a Bernoulli distribution: Di ∼ B(pi), where pi is the probability
of observing Di = 1. We define pi using the sigmoid function:

pi =
1

1 + exp(−ηi)
, (5)

Here, ηi is defined by the equation:

ηi = a1x1 + a2x2 + a3x3 − a4x4 + εi , (6)

where x1, x2, x3, and x4 are randomly drawn from a uniform distribution U [0, 1],
where (a1, . . . , a4) are scalars arbitrarily set in our case to (a1, a2, a3, a4) =
(0.1, 0.05, 0.2,−0.05), and where εi ∼ N (0, 0.52). We generate n = 2, 000 ob-
servations using this DGP.

Of particular importance, with this experimental setup and a well-defined
framework, we establish in the following proposition that logistic regression is
asymptotically well-calibrated. The proof is detailed in Appendix B.1.

Proposition 2.1. Consider a dataset {(di,xi)}, where x are k features (k being
fixed), so that D|X = x ∼ B

(
s(x)

)
where

s(x) =
exp[β0 + x⊤β]

1 + exp[β0 + x⊤β]
.

Let β̂0 and β̂ denote maximum likelihood estimators. Then, for any x, the score
is defined as

ŝ(x) =
exp[β̂0 + x⊤β̂]

1 + exp[β̂0 + x⊤β̂]

is well-calibrated in the sense that

E[D | ŝ(x) = p]
a.s.→ p as n → ∞.

Proof. Proof in Appendix B.1. If k were increasing with n, Bai et al. (2021) showed
that logistic regression is over-confident. However, assuming here that k is fixed
provides a complementary perspective.

This justifies the possibility of achieving a perfectly calibrated model with this
DGP, making the proposed synthetic data appealing to study (mis-)calibration.

Next, we introduce two types of transformations to the true probabilities p
to simulate uncalibrated modeling: one directly applied to the latent probability
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and another applied to the linear predictor η. Specifically, we introduce a scaling
parameter that modifies the latent probability, altering Equation 5 to:

pui =

(
1

1 + exp(−ηi)

)α

. (7)

A second scaling parameter which modifies the linear predictor changes Equa-
tion 6 to:

ηui = γ × (−0.1)x1 + 0.05x2 + 0.2x3 − 0.05x4 + εi, (8)
The resulting values, given by pu, are considered as the scores ŝ(x) that could

be returned by a predictive model. Note that when α = γ = 1, no transformation
occurs, representing the benchmark situation of a well-calibrated model. In the
simulations, we examine variations in α and γ across the range 1/3, 1, 3, considering
each parameter individually while keeping the other fixed at 1. The effects of the
transformations on the probabilities are shown in Figure 1.3 Notably, decreasing
(increasing) α shifts values closer to 1 (to 0). Decreasing γ concentrates values
around 0.5, while increasing γ disperses probabilities around 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

p

pu

α = 0.33 α = 1 α = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

p

pu

γ = 0.33 γ = 1 γ = 3

Figure 1: Distorted Probabilities as a Function of True Probabilities, Depending
on the Value of α (left) or γ (right).

For each value of parameter α or γ, we generate 200 independent samples,
each consisting of 2, 000 observations. Within each sample, after applying pu, we
compute the various metrics previously mentioned. Since we are aware of the
true scores, we calculate the associated MSE, n−1

∑n
i=1(pi − pui )

2, representing
the ground-truth calibration and enabling us to understand the characteristics
that accurate calibration metrics should exhibit. Its equivalent when the true

3See Figure 8 in the Appendix for histograms.
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probability distribution is not known corresponds to the Brier score (Brier, 1950),
where pi is replaced by di. Figure 2 presents the results in the form of boxplots for
the calculation of the calibration measures when α varies (top) or when γ varies
(bottom). For each metric, a degradation is observed when the scores deviate
from the true probabilities, i.e., when α 6= 1 or γ 6= 1. It is noteworthy that, with
data generated from our DGP, the proposed LCS approach remarkably reflects
the true error being close to 0 when α = γ = 1. While the Brier score mirrors
the dynamics of the MSE, it registers excessively high values, surpassing 0.23, for
the true probability distribution. Conversely, the ECE appears less suitable for
assessing calibration within this binary scenario.

0.00 0.06 0.12

True MSE

α=0.33

α=1

α=3

0.25 0.35

Brier Score

α=0.33

α=1

α=3

0.10 0.25 0.40

ECE

α=0.33

α=1

α=3

0.00 0.10

LCS

α=0.33
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α=3

0.000 0.010 0.020

True MSE

γ=0.33
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γ=3
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γ=3

0.10 0.20

ECE

γ=0.33

γ=1

γ=3

0.00 0.02 0.04

LCS

γ=0.33

γ=1

γ=3

Figure 2: Calibration Metrics on 200 Simulations for each Value of α (top) or γ
(bottom).

Calibration can also be assessed using calibration curves. Figure 3 shows for
each type of score distortion the average of the calibration curve computed using
local regression with locfit, for the 200 simulations. The error band corresponds
to a 95% bootstrap confidence interval. The distribution of true probabilities
is depicted at the top of each graph.4 The curves for cases where the model is
effectively well-calibrated (α = 1 or γ = 1) are notably aligned with the bisector.
Conversely, in other scenarios, the calibration curves deviate considerably from
the alignment with the bisector. Although similar visualizations are obtained with
the calibration curves computed using bins defined by quantiles (see Figure 10 in
the Appendix), calibration curves obtained with local regression exhibit smoother
patterns.

Finally, we explore the sensitivity of standard goodness-of-fit metrics to cali-
bration. The applied transformations to probabilities for defining scores reflecting

4This is represented as a histogram obtained by averaging the number of observations in each
bin across the 200 simulations.
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Figure 3: Calibration Curve Obtained with Local Regression, on 200 simulations
for each Value of α (top) or γ (bottom). Distribution of the true probabilities are
shown in the histograms (gold for d = 1, purple for d = 0).

a poorly calibrated model show no discernible impact on standard goodness-of-fit
measures, as illustrated in Figure 4. Metrics such as accuracy, sensitivity, speci-
ficity, or AUC are not impacted by monotone transformations on the probabilities.
When the focus shifts to using predicted scores from a binary classifier rather than
merely class prediction accuracy, standard goodness-of-fit metrics may not detect
poor calibration. This section explores the benefits of the proposed DGP, high-
lighting the rationale for employing a post-hoc recalibrator to address this issue.

In the following section, we examine different recalibration approaches, drawing
from various techniques in the literature. We then delve deeper into our under-
standing of local regression methodologies for recalibration in Section 3.1.1.

3 Recalibration
When using scores generated by a model predicting the probability of a binary
event, the literature advocates recalibrating the model by applying a transforma-
tion to the scores (Platt, 1999; Zadrozny and Elkan, 2002; Kull et al., 2017).

To address overfitting during the learning of this mapping, it is recommended
to partition data into three sets (Zadrozny and Elkan, 2002; Kull et al., 2017): a
training set for classifier training, a calibration set for recalibrator training, and
a test set for computing calibration metrics. Adequate data is required for this
tripartite division.

In this section, we present the prevalent recalibration techniques found in the
literature. Then, we evaluate their impact on calibration performance using met-
rics and visualization methods from Section 2.
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Figure 4: Standard Goodness of Fit Metrics on 200 Simulations for each Value of
α (top) or γ (bottom). The probability threshold is set to τ = 0.5.

3.1 Recalibration Methods
Platt Scaling This approach was initially introduced to map SVM outputs to
well-calibrated posterior probabilities (Platt, 1999). The method consists of ap-
plying Logistic Regression to the output probabilities of a binary classifier. The
Logistic Regression parameters, a and b, are learned on a calibration dataset, held
out from a train dataset:

g
(
ŝ(x)

)
=

1

1 + exp
{
−
(
aŝ(x) + b

)} . (9)

Isotonic Regression This solution arises from a constrained optimization prob-
lem (Zadrozny and Elkan, 2002), solved using the Pool-Adjacent-Violators Algo-
rithm, ensuring that corrected predicted scores remain monotonic. In Equation
10, d(i) corresponds to the value in {d1, · · · , dn} associated with the i-th largest
predicted score {ŝ(x1), · · · , ŝ(xn)}.

min
β1,...,βn

∑n
i=1(d(i) − βi)

2

s.t. β1 ≤ . . . ≤ βn

. (10)

Isotonic regression assumes the initial model’s predicted scores ŝ(x) are well-
ordered, limiting its ability to correct non-monotonic probability distortions, as
seen in methods like Platt scaling (Equation 9).
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Beta Calibration The Beta calibration method (Kull et al., 2017) estimates
the following calibration curve using three parameters, a, b and c:

g
(
ŝ(x)

)
=

1

1 + exp {−c}
(
ŝ(x)a/(1− ŝ(x))b

) . (11)

The condition a, b ≥ 0 leads to an increasing map function. In contrast to
Platt scaling, the Beta calibration family includes the identity function, allowing
it to maintain score calibration when it is already calibrated.

3.1.1 Local Regression

Interestingly, the local regression method serves a dual role, functioning both as a
visualization tool (as discussed in Section 2.1.2) and as an approach for recalibra-
tion. Specifically, when fitting a local regression of degree 0 to the predicted scores
ŝ(x), it estimates the following quantity: Ê[D | ŝ(x) ∈ Vp], where p ∈ [0, 1]. Here,
Vp represents the neighborhood of a given p, defined using a percentage of nearest
neighbors among the set of evaluation points when using locfit (as mentioned
in Section 2.1.2). By definition of local regression of degree 0, the estimation of
the expected value approximates the function g defined in Equation 2. Neverthe-
less, to improve the smoothness of expectancy estimations, particularly in regions
with limited data points (e.g., when the predicted scores ŝ(x) are close to 0 and
1), employing locfit with polynomial degrees of 1 and 2 is an alternative worth
considering, while remaining aware of the potential occurrence of negative values.

3.2 Scores Recalibration
We apply the recalibration techniques presented in Section 3.1 to our simulated
datasets. For both calibration and test samples, we calculate calibration and
goodness-of-fit metrics after replacing the uncalibrated scores pu with their recal-
ibrated values, denoted pc. For each metric and scenario where we transformed
the true probabilities to induce poor calibration, we compute the difference be-
tween the metric obtained with the recalibrated scores pc and that obtained with
the uncalibrated scores pu. The results for MSE, AUC and LCS are presented in
Figure 5, specifically for γ = 3.5

Regardless of the method employed, recalibration leads to a decrease in MSE in
both the calibration and test samples. However, this appear to occur at the expense
of a reduction in AUC in the test sample. Meanwhile, calibration, measured with
the LCS, indeed improves after applying any of the considered techniques. The
same observation holds true for the calibration curves calculated using the method
based on local regression.6

Overall, we observe that across our 200 simulations, the use of recalibration
techniques allows for achieving improved calibration, which comes with sacrificing

5Further values for α and γ are in the Appendix, Figure 9.
6Calibration curves for all values of γ and α are provided in the Appendices, in Figures 11,

12, and 13 for curves obtained by quantile binning, and in Figures 14, 15, and 16 for curves
obtained by local regression.

12



Fernandes Machado, Charpentier, Flachaire, Gallic, Hu

−0.026 −0.022 −0.018

True MSE

−0.04 −0.02 0.00 0.02

AUC

−0.045 −0.035 −0.025 −0.015

LCS

True Prob.
Platt

Isotonic
Beta

Locfit (deg=0)
Locfit (deg=1)

Locfit (deg=2)

Figure 5: Metrics After Recalibration (for γ = 3), on the Calibration (transparent
colors) and on the Test Set (full colors).

a slight decrease of precision. However, caution must be exercised when interpret-
ing these results. The subsequent section seeks to extend the analysis by using a
real-world dataset, thereby verifying whether the observed outcomes in simulations
are generalizable and not contingent on the specifics of the DGP.

4 Experimentation : Calibration of a Random
Forest

In this section, we focus on the application of RF models to predict the occurrence
probability of a binary event D ∈ {0, 1}. First, we compare RF when considered in
the context of regression versus calibration. Then, we investigate the relationship
between seeking accurate class predictions and the calibration of models.

4.1 Classifier or Regressor
When RFs are employed to predict binary outcome variables, one can either train a
classifier or a regressor. However, the scores returned by these two types of models
are computed in very different ways. The score returned by an RF classifier cor-
responds to a majority class vote, whereas an RF regressor estimates probabilities
by averaging initial class membership probabilities.

In a classification forest comprising M trees, each tree m ∈ {1, . . . ,M} of the
forest returns, for an observation i, a majority vote d̂m,i ∈ {0, 1}. The predicted
score for this observation is the average of the majority votes within the tree,
p̂class
i =

∑M
m=1 d̂m,i. When training an RF regression on a binary target variable,

the score returned by the forest for an observation i is p̂reg
i =

∑M
m=1 p̂m,i, where

p̂m,i is calculated as the average of the observations in the terminal leaf to which
observation i belongs to the tree m.

Given the theoretical reliance of the forest regressor on probabilities, we antic-
ipate that its calibration should be superior to that of the classifier, compared to

13
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Boström (2008). Our objective is to compare the goodness-of-fit and calibration
metrics of both models, both with and without the application of recalibration
techniques on the estimated scores.

Data For our illustrations, we use data obtained from UCI (Yeh, 2016), pre-
senting research customers’ default payments in Taiwan. This dataset contains
n = 30, 000 instances and 23 numeric features. The outcome variable, correspond-
ing to the observed default payment in next month, is positive in 22.12% of cases.
Following the methodology outlined in Subasi and Cankur (2019), we employ the
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) at
a rate of 200% to rebalance the data.

To predict default payments, we apply both RF algorithms on the rebalanced
dataset.7 The training set comprises 50% of the dataset, while the remaining
portion is further divided into a calibration set used to train a recalibrator and a
test set to evaluate the goodness-of-fit and calibration of the models. Given the
size of the dataset, this approach is feasible. For smaller datasets, Park and Ho
(2020) recommend using out-of-bag samples for training the recalibration method.

Methodology We conduct a grid search to find the set of hyperparameters
that optimize a criterion: the out-of-bag MSE for the regressor, and the error
rate for the classifier. The hyperparameters we vary include the number of trees,
the number of variables considered for splitting, and the minimum number of
observations in terminal nodes.8 Once the hyperparameters are selected for both
types of forests, the forests are used to make predictions on the remaining data not
used in training. We then perform 200 simulations by splitting these predictions
into two samples: a calibration sample and a test sample. For each simulation,
we measure calibration and goodness-of-fit before and after recalibration, on both
samples. This process yields a distribution of estimation quality and calibration
metrics.

Calibration Simulation results are presented in Figure 6. Considering the ineffi-
ciency of the ECE and Brier score, observed in the previous Section (see Figure 2),
our novel metric, LCS (Section 2.1) is the only calibration metric shown in the
Figure. For the goodness-of-fit metric, we only calculate the AUC, as it is invariant
to the probability threshold.9 Also, the true MSE cannot be computed here, due
to the unavailability of true data probability distributions.

Figure 6 illustrates that prior to recalibration, the regressor exhibits slightly
higher AUC and superior calibration than the classifier, thereby confirming the
hypothesis outlined in Section 4.1. Moreover, although both algorithms appear
to be well-calibrated, all recalibration methods enhance the calibration of these
models without compromising the AUC. However, it is worth noting that isotonic

7We used the the randomForest() function from the R package randomForest.
8For further details on the grid search, refer to Section D in the appendices.
9Additional metrics are reported in the Appendix, in Figure 17 for goodness-of-fit, and in

Figure 18 for calibration.
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Figure 6: Metrics Computed on 200 Replications, for the Regression Random
Forest (top) and for the Classification Random Forest (bottom), on the Calibration
(transparent colors) and on the Test Set (full colors).

regression seems to overfit in terms of AUC on the test set, an observation also
documented by Kull et al. (2017).

4.2 Optimizing Class Predictions and Calibration
ML models are typically fine-tuned to optimize hyperparameters to maximize
goodness-of-fit in binary classification, often with less emphasis on calibration.
However, the models that achieve the highest accuracy may not necessarily ex-
hibit superior calibration. To investigate this issue, we assess the LCS across var-
ious goodness-of-fit levels, as measured by AUC, throughout the hyperparameter
optimization process.

Figure 7 illustrates that for both types of RF, the order of calibration and per-
formance metrics on the train sample is respected by the test sample. Furthermore,
this Figure demonstrates that, optimizing the performance of an RF classifier with
respect to the AUC reduces the calibration on the test sample. Thus, when using
this type of model to directly employ its predicted scores, it may be necessary to
consider both a performance metric and a calibration measure in the hyperparam-
eter optimization process to consider these scores as the probabilities of belonging
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Figure 7: Calibration vs. Performance of Random Forest Regression (left) and
Random Forest Classification (right). Each point represents an estimation obtained
from a set of hyperparameters. The gray lines help identify the estimations made
within each sample using the same model.

to the positive class. In contrast, in the case of regression, optimizing the AUC
appears to enhance calibration on the test sample. However, opting for a model
with an AUC not too close to 1 could be more advantageous for preventing over-
fitting. This involves sacrificing a small percentage of the AUC on the test sample
while preserving good calibration, as depicted by the test points falling within an
AUC range of 0.89 to 0.92.

5 Conclusion
This study aims to deepen our understanding of various calibration measures and
methods for recalibrating binary classifiers. This is achieved by analyzing a simu-
lated dataset generated from a logistic function, where the true probability distri-
bution is known. We highlight the flexibility of synthetic data, unveiling nuances
in calibration metrics, thereby identifying limitations in the Brier score and ECE
within this context. We correct these limitations by introducing a novel calibra-
tion metric: the Local Calibration Score. This underscores the importance of local
regression techniques for visualization and classifier recalibration. Experimental
results using RF classifier and regressor to predict default risk demonstrate slightly
better accuracy and calibration with the regressor. Notably, our evaluation of the
LCS across various AUC levels during hyperparameter optimization reveals that
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RF classifiers achieving the highest goodness-of-fit do not necessarily exhibit su-
perior calibration.

References
Austin, P. C. and Steyerberg, E. W. (2019). The integrated calibration index (ICI)

and related metrics for quantifying the calibration of logistic regression models.
Statistics in Medicine 38: 4051 – 4065.

Bai, Y., Mei, S., Wang, H. and Xiong, C. (2021). Don’t just blame over-
parametrization for over-confidence: Theoretical analysis of calibration in bi-
nary classification. In International Conference on Machine Learning. PMLR,
566–576.

Boström (2008). Calibrating random forests. 2008 Seventh International Confer-
ence on Machine Learning and Applications .

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability.
Monthly Weather Review 78: 1–3.

Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence re-
search 16: 321–357.

Dawid, A. P. (1982). The well-calibrated bayesian. Journal of the American Sta-
tistical Association 77: 605–610.

Guo, C., Pleiss, G., Sun, Y. and Weinberger, K. Q. (2017). On Calibration of
Modern Neural Networks. In Precup, D. and Teh, Y. W. (eds), Proceedings of
the 34th International Conference on Machine Learning, 70. PMLR, 1321–1330.

Gutman, R., Karavani, E. and Shimoni, Y. (2022). Propensity score models are
better when post-calibrated.

Hänsch, R. (2020). Stacked Random Forests: More Accurate and Better Cali-
brated. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote
Sensing Symposium, 1751–1754.

Krishnan, R. and Tickoo, O. (2020). Improving model calibration with accuracy
versus uncertainty optimization. Advances in Neural Information Processing
Systems 33: 18237–18248.

Kull, M., Filho, T. M. S. and Flach, P. (2017). Beyond sigmoids: How to ob-
tain well-calibrated probabilities from binary classifiers with beta calibration.
Electronic Journal of Statistics 11: 5052 – 5080, doi:10.1214/17-EJS1338SI.

Liu, Y., Menglong, Y., Wang, Y., Li, Y. and Xiong, T. (2021). Applying machine
learning algorithms to predict default probability in the online credit market:
Evidence from china. International Review of Financial Analysis 79: 101971,
doi:10.1016/j.irfa.2021.101971.

17



Fernandes Machado, Charpentier, Flachaire, Gallic, Hu

Loader, C. (1999). Fitting with LOCFIT . New York, NY: Springer New York,
chap. 3. 45–58.

Machado, A. F., Hu, F., Ratz, P., Gallic, E. and Charpentier, A. (2024). Geospa-
tial disparities: A case study on real estate prices in paris. arXiv preprint
arXiv:2401.16197 .

Mildenhall, S. J. (1999). A systematic relationship between minimum bias and gen-
eralized linear models. In Journal Proceedings of the Casualty Actuarial Society,
86, 393–487.

Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., Tran,
D. and Lucic, M. (2021). Revisiting the calibration of modern neural networks.
Advances in Neural Information Processing Systems 34: 15682–15694.

Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good probabilities with
supervised learning. In Proceedings of the 22nd International Conference on
Machine Learning, ICML ’05. New York, NY, USA: Association for Computing
Machinery, 625–632, doi:10.1145/1102351.1102430.

Pakdaman Naeini, M., Cooper, G. and Hauskrecht, M. (2015). Obtaining well cali-
brated probabilities using bayesian binning. Proceedings of the AAAI Conference
on Artificial Intelligence 29: 2901–2907, doi:10.1609/aaai.v29i1.9602.

Park, Y. and Ho, J. C. (2020). Califorest: Calibrated random forest for health
data. Proceedings of the ACM Conference on Health, Inference, and Learning
2020 : 40–50.

Platt, J. (1999). Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods. Advances in large margin classifiers 10:
61–74.

Schervish, M. J. (1989). A General Method for Comparing Probability Assessors.
The Annals of Statistics 17: 1856–1879, doi:10.1214/aos/1176347398.

Subasi, A. and Cankur, S. (2019). Prediction of default payment of credit card
clients using data mining techniques. Fifth International Engineering Confer-
ence on Developments in Civil & Computer Engineering Applications 2019 -
(IEC2019) - Erbil - IRAQ .

Wilks, D. S. (1990). On the combination of forecast probabilities for consecu-
tive precipitation periods. Weather and Forecasting 5: 640–650, doi:10.1175/
1520-0434(1990)005<0640:OTCOFP>2.0.CO;2.

Yeh, I.-C. (2016). Default of credit card clients. UCI Machine Learning Repository,
DOI: https://doi.org/10.24432/C55S3H.

Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate
multiclass probability estimates. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, 694–699.

18



Fernandes Machado, Charpentier, Flachaire, Gallic, Hu

From Uncertainty to Precision:
Enhancing Binary Classifier Performance

through Calibration
(Supplementary Material)

A Online Replication Book
We provide replication material on GitHub
https://github.com/fer-agathe/calibration_binary_classifier.

B Proofs
B.1 Proof of Proposition 2.1
As a starting point, suppose that there is single feature, so that x can be denoted x.
Suppose that D|X = x ∼ B

(
s(x)

)
where

s(x) =
exp[β0 + β1x]

1 + exp[β0 + β1x]

with β1 6= 0, and let β̂0 and β̂1, denote maximum likelihood estimators, so that the model
is well specified. Then, for any x, the score is

ŝ(x) =
exp[β̂0 + β̂1x]

1 + exp[β̂0 + β̂1x]
.

Here both s and ŝ are continuous and invertible. Given p ∈ (0, 1), {ŝ(x) = p} corresponds
to {x = ŝ−1(p)}, since mapping ŝ is one-to-one. Thus, D conditional on {ŝ(x) = p} is
therefore a Bernoulli variable with mean s(ŝ−1(p)). And because ŝ and s are continuous
and bijective functions{

β̂0 → β0

β̂1 → β1

as n → ∞ =⇒ ∀x, p

{
ŝ(x) → s(x)

ŝ−1(p) → s−1(p)
as n → ∞

since the model is well specified, where the convergence is in probability here. Thus

s(ŝ−1(p)) → p as n → ∞

and
E[D|ŝ(x) = y] = p(ŝ−1(p)) → p as n → ∞.

This property holds in higher (fixed) dimensions, if the model is well specified, since
functions are continuous and invertible (linear models with continuous and invertible link
functions). The case where the dimension of x increases with n is discussed in Bai et al.
(2021).
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C Calibration with Simulated Data
This appendix provides additional figures regarding the 200 simulations made using the
data generating process described in the main text.

We generated data from the data generating process described in Equations 5 and 6
and applied transformations either on the probabilities (varying α in Equation 7) or on
the linear predictor (varying γ in Equation 8).

For each value of α = {1/3, 1, 3} and γ = {1/3, 1, 3}, we generated 200 datasets. The
distribution of a single dataset for each value of α and γ is shown in Figure 8.
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Figure 8: Distribution of Distorted Probabilities pu Depending on α (top) or γ (bottom).

C.1 Metrics
Figure 9 displays different calibration metrics (True MSE in Figure 9a, the Brier Score in
Figure 9b, the Expected Calibration Error in Figure 9c, and the Local Calibration Score
in Figure 9d), for the complete set of simulations. Each graph of each panel in the Figure
shows the distribution of a metric computed over 200 replications of the simulations for
a scenario in which the scores are distorted, on the calibration set (transparent colors)
and on the test set (solid colors). In each case, the metric is computed using either the
true probabilities p which represents the ground truth, the uncalibrated scores pu, or
the recalibrated scores, pc. The recalibration techniques are the following: Platt scaling,
Isotonic regression, Beta calibration, and Local regression with varying degrees: degree
0, degree 1, and degree 2. See Table 1 for a summary. This figure complements Figure 5
from the main text. However, unlike in Figure 5, the values are not expresses here as the
difference with the value observed in the case where the scores used are the uncalibrated
scores pu.
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Table 1: Recalibration Techniques Used in the Simulations

Legend Scores Used Recalibration Technique

True Prob. Simulated true prob. No recalibration technique
No Calibration Transformed prob. No recalibration technique
Platt Scaling Transformed prob. Platt Scaling
Isotonic Transformed prob. Isotonic regression
Beta Transformed prob. Beta calibration
Locfit (deg = 0) Transformed prob. Local reg. with degree 0
Locfit (deg = 1) Transformed prob. Local reg. with degree 1
Locfit (deg = 2) Transformed prob. Local reg. with degree 2

C.2 Calibration Curves with Quantile Binning
Figure 10 illustrates, mirroring Figure 3 the overlay of 200 calibration curves computed
using bins defined by quantiles, for each type of score distortion (varying α or γ). The
distribution of true probabilities is depicted at the top of each graph of the figure.

The calibration curves computed after recalibrating the scores are calculated on the
calibration set (shown in orange), and on the test set (shown in green), for each poor
calibration scenario, where α or γ vary. When α = 1 or γ = 1, the transformed scores pu

are in fact equal to the true probabilities p. We consider different scenarios. In Figure 11a,
the scores are the true probabilities p and no recalibration technique is employed. In
Figure 11b, the scores are the uncalibrated values pu and no recalibration technique is
employed either. Then, we consider recalibration techniques on these uncalibrated values:
Platt scaling (Figure 12a), isotonic regression (Figure 12b), beta calibration (Figure 12c),
and local regression (Figure 13a for degree 0, Figure 13b for degree 1, and Figure 13c for
degree 2).

C.3 Calibration Curves with Local Regression
In addition to the calibration curves computed using the quantile binning approach, we
provide the calibration curves computed on the simulations using local regression on the
calibration set (shown in orange) and on the test set (shown in green), depending on the
scores used to obtain the calibration curves: true probabilities (Figure 14a), uncalibrated
transformed probabilities (Figure 14b), transformed probabilities recalibrated with Platt
Scaling (Figure 15a), transformed probabilities recalibrated with isotonic regression (Fig-
ure 15b), transformed probabilities recalibrated with beta calibration (Figure 15c, and
transformed probabilities recalibrated with local regression with degree 0 (Figure 16a),
with and with degree 2 (Figure 16c).
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(c) Expected Calibration Error.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

α = 0.33

0.000 0.005 0.010 0.015 0.020 0.025

α = 1

0.00 0.05 0.10 0.15

α = 3

0.000 0.005 0.010 0.015 0.020 0.025

γ = 0.33

0.000 0.005 0.010 0.015 0.020 0.025

γ = 1

0.00 0.01 0.02 0.03 0.04

γ = 3

True Prob.
No Calibration

Platt
Isotonic

Beta
Locfit (deg=0)

Locfit (deg=1)
Locfit (deg=2)

(d) Local Calibration Score.

Figure 9: Calibration Metrics on 200 Simulations for each Value of α (top) or γ (bottom),
on the Calibration (transparent colors) and on the Test Set (full colors). The metrics are
computed for different definitions of the scores: using the true probabilities, the non
calibrated scores, or the recalibrated scores.
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Figure 10: Calibration Curves Defined with Bins, on 200 Simulations for each Value of
α (top) or γ (bottom).

(a) True Probabilities. (b) Uncalibrated Scores.

Figure 11: Calibration Curves Calculated with True Probabilities (Panel a) or with
Uncalibrated Scores (Panel B) as the Scores. The curves are obtained with quantile
binning, for the calibration set (orange) and for the test set (green) for varying values
of α and γ. The curves of the 200 replications of the simulations are superimposed. The
histogram on top of each graph show the distribution of the true probabilities (Panel a)
and of the uncalibrated scores (Panel b) (in gray).
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(a) Platt Scaling. (b) Isotonic Regression.

(c) Beta Calibration.

Figure 12: Calibration Curves Calculated with Scores Recalibrated Using Platt Scal-
ing (Panel a), Isotonic Regression (Panel b), or Beta Calibration (Panel c).
The curves are obtained with quantile binning, for the calibration set (orange) and for
the test set (green) for varying values of α and γ. The curves of the 200 replications of the
simulations are superimposed. The histogram on top of each graph show the distribution
of the uncalibrated scores (gray), and that of the calibrated scores (blue).
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(a) Degree 0. (b) Degree 1.

(c) Degree 2.

Figure 13: Calibration Curves Calculated with Scores Recalibrated Using Local Re-
gression with Degree 0 (Panel a), Degree 1 (Panel b), or with Degree 2 (Panel c). The
curves are obtained with quantile binning, for the calibration set (orange) and for the
test set (green) for varying values of α and γ. The curves of the 200 replications of the
simulations are superimposed.The histogram on top of each graph show the distribution of
the uncalibrated scores, and that of the calibrated scores.
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(a) True Probabilities.
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(b) Uncalibrated Scores.

Figure 14: Calibration Curves Calculated with True Probabilities (Panel a) or with
Uncalibrated Scores (Panel B) as the Scores. The curves are obtained with a local
regression, for the calibration set (orange) and for the test set (green) for varying
values of α and γ. The curves are the average values obtained on 200 replications of the
simulations, the bands correspond to 95% bootstrap interval. The histogram on top of each
graph show the distribution of the true probabilities.
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(a) Platt Scaling.
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(b) Isotonic Regression.
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(c) Beta Calibration.

Figure 15: Calibration Curves Calculated with Scores Recalibrated Using Platt Scal-
ing (Panel a), Isotonic Regression (Panel b), or Beta Calibration (Panel c).
The curves are obtained with local regression, for the calibration set (orange) and for
the test set (green) for varying values of α and γ. The curves are the average values
obtained on 200 replications of the simulations, the bands correspond to 95% bootstrap
interval. The histogram on top of each graph show the distribution of the uncalibrated
scores, and that of the calibrated scores.
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(a) Degree 0.
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(b) Degree 1.
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(c) Degree 2.

Figure 16: Calibration Curves Calculated with Scores Recalibrated Using Local Re-
gression with Degree 0 (Panel a), Degree 1 (Panel b), or with Degree 2 (Panel c). The
curves are obtained with local regression, for the calibration set (orange) and for the
test set (green) for varying values of α and γ. The curves are the average values obtained
on 200 replications of the simulations, the bands correspond to 95% bootstrap intervals.
The histogram on top of each graph show the distribution of the uncalibrated scores, and
that of the calibrated scores.
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D Calibration of a Random Forest
We performed a grid search to select the best set of hyperparameters to train two types
of forests on a train set with 50% of the observations: regression forests, and classification
forest. For each type of forest, we varied the following hyperparameters:

• ntree, the number of trees: 100, 300, 500

• mtry, the number of variables to consider for a split: 1, 2, . . . , 12, where 12 represents
half the number of features

• nodesize, the minimum size in terminal nodes: 5, 10, 15, 20.

In total, this corresponds to training 144 regression forests and 144 classification
forests. For the regression forest, we computed the out-of-bag MSE, whereas for the
classification forest we computed the out-of-bag error rate (computed as the number of
incorrectly classified observations over the total number of observations). The best set of
hyperparameters was selected as the one which minimizes the out-of-bag criterion. For the
regression forest, the best set of hyperparameters turned out to be ntree=500, mtry=5,
and nodesize=5. For the classification forest, the best set was ntree=300, mtry=5, and
nodesize=5.

After obtaining these hyperparameters, we split the remaining 50% of observations
into a calibration and a test sets of equal size. This split was performed randomly over
200 different replications. In each replication, we trained a recalibrator in the calibration
set, using the predicted scores from the forest. As with the simulated data, we considered
the following recalibration techniques: Platt scaling, Isotonic regression, Beta calibration,
and Local regression with varying degrees: degree 0, degree 1, and degree 2. We then
computed goodness-of-fit metrics and calibration metrics on the calibration and on the
test set, for each forest and each replication, using either the uncalibrated scores ŝ(x)
(denoted as pu) or on the scores recalibrated with the different methods.

D.1 Metrics
The different metrics are shown in Figure 17 for goodness-of-fit, and in Figure 18 for
calibration. Both Figures complement Figure 6 from the main text.
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Regression
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Sensitivity
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Figure 17: Goodness-of-fit Metrics Computed on 200 Replications, for the Regression
Random Forest (top) and for the Classification Random Forest (bottom), on the Calibration
(transparent colors) and on the Test Set (full colors). A probability threshold of τ = 0.5
was used to compute the sensivity and the specificity.
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Figure 18: Calibration Metrics Computed on 200 Replications, for the Regression Ran-
dom Forest (top) and for the Classification Random Forest (bottom), on the Calibration
(transparent colors) and on the Test Set (full colors).
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Figure 19: Calibration Curves Obtained with Local Regression, for the Regression
Random Forest, for the Calibration Set and for the Test Set. The curves are the averages
values obtained on 200 different splits of the calibration and test datasets, and the color
bands are the 95% bootstrap confidence intervals. The histogram on top of each graph
show the distribution of the uncalibrated scores, and that of the calibrated scores.
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Figure 20: Calibration Curves Obtained with Local Regression, for the Classification
Random Forest, for the Calibration Set and for the Test Set. The curves are the averages
values obtained on 200 different splits of the calibration and test datasets, and the color
bands are the 95% bootstrap confidence intervals. The histogram on top of each graph
show the distribution of the uncalibrated scores, and that of the calibrated scores.
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