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A B S T R A C T

Gait abnormalities are frequent in children and can be caused by different pathologies, such as cerebral palsy,
neuromuscular disease, toe walker syndrome, etc. Analysis of the ‘‘gait pattern’’ (i.e., the way the person walks)
using 3D analysis provides highly relevant clinical information. This information is used to guide therapeutic
choices; however, it is underused in diagnostic processes, probably because of the lack of standardization of
data collection methods. Therefore, 3D gait analysis is currently used as an assessment rather than a diagnostic
tool. In this work, we aimed to determine if deep learning could be combined with 3D gait analysis data to
diagnose gait disorders in children.

We tested the diagnostic accuracy of deep learning methods combined with 3D gait analysis data from 371
children (148 with unilateral cerebral palsy, 60 with neuromuscular disease, 19 toe walkers, 60 with bilateral
cerebral palsy, 25 stroke, and 59 typically developing children), with a total of 6400 gait cycles. We evaluated
the accuracy, sensitivity, specificity, F1 score, Area Under the Curve (AUC) score, and confusion matrix of the
predictions by ResNet, LSTM, and InceptionTime deep learning architectures for time series data.

The deep learning-based models had good to excellent diagnostic accuracy (ranging from 0.77 to 0.99)
for discrimination between healthy and pathological gait, discrimination between different etiologies of
pathological gait (binary and multi-classification); and determining stroke onset time. LSTM performed best
overall.

This study revealed that the gait pattern contains specific, pathology-related information. These results
open the way for an extension of 3D gait analysis from evaluation to diagnosis. Furthermore, the method
we propose is a data-driven diagnostic model that can be trained and used without human intervention or
expert knowledge. Furthermore, the method could be used to distinguish gait-related pathologies and their
onset times beyond those studied in this research.
1. Introduction

Gait disorders are frequent in children and can result from various
pathologies. Cerebral palsy (CP) is the leading cause of gait disor-
ders [1] (3 out of 1000 births) [2]; however, many other childhood
gait disorders exist [3], caused by pathologies such as neuromuscular
diseases (Duchenne muscular dystrophy, Charcot Marie-Tooth disease,
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etc.), genetic or orthopedic diseases, toe walker syndrome, etc. At
present, the final medical diagnosis is based on the child’s development,
clinical examination, medical imaging (brain and/or muscle imaging)
and sometimes electromyography, muscle biopsy or genetic testing.
Although the clinical observation of a child’s gait is often very infor-
mative, it only serves as a guide and is rarely a primary contributor
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Table 1
Literature survey on Machine and Deep Learning methods for pathological gait analysis.

Authors Year ML/DL Population Input Performance

Eskofier et al. [20] 2013 ML 24 young & 24 elderly females 37 3D marker trajectories acc.: 95.8%
Begg & Kamruzzaman [32] 2005 ML 12 young & 12 elderly adults 24 gait features acc.: 91.7%
Wu et al. [22] 2007 ML 24 young & 24 elderly adults 36 gait features acc.: 91%
Zhou et al. [23] 2020 ML & DL 239 participants (healthy young-middle

aged, older adults and geriatric patients)
23 gait features acc.: 90%

Laroche et al. [24] 2014 ML 20 patients with hip osteoarthritis & 20
controls

12 kinematic angles acc.:88%

Aich et al. [26] 2018 ML 20 patients with parkinson’s disease &
20 older adults

12 gait features acc.: 98.54%

Rehman et al. [5] 2019 ML 119 patients with parkinson’s disease &
184 controls

16 gait features acc.: 97%

Alharti et al. [27] 2019 DL review literature
Medeiros et al. [28] 2016 ML 93 patients with parkinson’s disease &

73 controls
vertical GRF acc.: 81%

Bajpai et al. [25] 2022 DL 356 children with cerebral palsy & 41
controls

Knee joint in sagittal plane using
Automated Gait Assessment Score

acc. 98%

Alharti et al. [30] 2021 DL 93 patients with parkinson’s disease &
73 controls

vertical GRF acc.: 95.5%
to the final diagnosis. The information contained in the ‘‘gait pattern’’
(i.e., the way the individual walks) is under used in the diagnostic
process, probably because of the lack of standardization of gait anal-
ysis methods between clinicians. However, clinical gait analysis has
the potential to differentiate between bilateral CP and idiopathic toe
walking [4–7], and in certain cases, changes in the gait pattern may
lead to questioning of the initial diagnosis [4–7].

In the field of pediatrics, instrumented 3D gait analysis (3DGA)
allows a comprehensive analysis of gait data through the calculation
of biomechanical parameters from marker-based motion capture system
data [8]. In the clinical setting, 3DGA is used to calculate 2D kinematic
curves that provide quantitative information about the gait pattern.
This information is then used to guide rehabilitation [9], to assess the
effect of treatments [10–14], or to help surgical decision making [15–
19]. Despite its great potential, 3DGA is currently used as an assessment
tool rather than a diagnostic tool. In research, instrumented 3DGA has
recently been combined with machine learning (ML) or deep learning
(DL) ( Table 1) to discriminate between the gait patterns of people
of different ages [20–23], to assess gait ability [24,25], to detect
Parkinson’s disease [5,26–28], to help clinical decision making [29],
and to detect disease stage [30]. Few preliminary studies in adults
combining 3D gait data and deep learning are carried out for diagnosis
purposes.

We wished to determine if 3D gait kinematics considered as
unique representation of the gait [31] combined with to DL methods
(3DGK+DL) could provide a new diagnostic tool for gait disorders in
children. To answer this question, we set 3 aims: (1) to determine how
accurately 3DGK+DL could distinguish between pathological (children
with CP) and typical (typically developing children) gait; (2) to deter-
mine how accurately the method could distinguish between different
pathologies (CP and neuromuscular disease; and CP and toe walkers);
and (3) to determine how accurately the method could distinguish
between stroke that occurred before or after the age of 2 years to assess
the potential of dating a medical event based on the gait pattern.

To fulfill these aims, we also evaluated the performance of different
deep learning networks, which were selected to deal with the multi-
dimensional time series signals produced by gait signals. We assessed
the diagnostic accuracy for a single gait cycle of a single child and for
multiple gait cycles recorded for a single child, as is usual in clinical
practice. Our main hypothesis was that 3DGK+DL would provide suf-
ficiently accurate results for use as a new diagnostic tool for children’s
gait disorders.

2. Method

2.1. Gait dataset

The 3D gait data were collected between 2006 and 2022 in the
motion analysis laboratory of CHU Brest (Brest University Hospital),
2

France. Initially (from 2006 to 2007), 7 infrared cameras, then (from
2007 to 2016) 9 cameras and finally (from 2016 to 2022), 15 cameras
were used to track the markers. The data were filtered using a second
order, zero-lag Butterworth low-pass filter with a cut-off frequency
of 6 Hz. The markers were placed in accordance with Kadaba et al.
(1990) [8]. Lower limb kinematics were computed using the PlugIn-
Gait from Vicon Nexus according to the conventional gait model and
were time normalized to the gait cycle [33]. The input data for each
diagnostic task was a concatenated version of the kinematic signals
from both limbs. The data used were pelvic tilt, obliquity, and rota-
tion; hip flexion/extension, abduction/adduction, and internal/external
rotation; knee flexion/extension, valgus/varus, and internal/external
rotation; ankle dorsi/plantar flexion; and foot progression for both legs.

The dataset used contained lower limb kinematics from children
with gait disorders walking unassisted and from typically developing
(TD) children, all walking at their self-selected speed over a walkway
of approximately 10 m in length. The kinetics, the electromyographic
signals and the spatio-temporal parameters were not used to due to the
difficulty that children have to placing one foot on each force platform,
the choice of the normalization methods of electromyographic data and
the concatenation of time series signals and scalar values.

The cycles of both legs were concatenated to feed into the diagnostic
tool. The final gait signal was a 22 × 101 matrix (gait cycles normalized
from 0 to 100%), where the first dimension contained 11 channels for
one leg out of the 22 channels for two legs. A minimum of 20 gait cycles
per session were used for each child. Examples of data visualization
are shown in Appendix A.2. For the TD children, kinematic data from
the left and right limbs were randomly used since TD children have
symmetrical gait. For the children with gait disorders, kinematic data
for the more affected side were inputted first followed by kinematic
for the less affected. The side with a higher Gait Profile Score (GPS)
was considered as the more affected side. [34]. The order of the
concatenation is shown in Table 2.

If a child had more than one gait analysis session, only data from
the first session were included in the dataset without any criteria on
treatments (medication, rehabilitation or surgery) that the child may
have undergone.

All parents provided written informed consent on a form that had
been approved by the CHU Brest and the study was conducted accord-
ing to current French legislation [35]. The study was approved by our
local ethical committee (2018CE.31) under the number 29BRC18.0109.
Six datasets from the database were used:

• TDvsCPu included the gait kinematics of children with unilateral
CP and TD children and was used for the pathology detection
task: 148 children (64 girls, 84 boys; 69 children with left side
affected, 79 children with right side affected; mean age at first
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Table 2
Description of the six datasets used in this study.

Dataset
Number Item Pathology Concatenation order Child (n=) Cycle (n=)

TDvsCPu TD Random 59 650

CPu Affected Side,
Unaffected Side 148 2729

TDvsNM TD Random 59 650

NM More affected Side,
Less affected Side 60 1171

ToeWalkervsCPb Toe walker Left Side,
Right Side 19 328

CPb More affected Side,
Less affected Side 60 1095

StrokeBeforeAfter Before Left Side,
Right Side 20 334

After Left Side,
Right Side 5 93

NMvsCPb CPb More affected Side,
Less unaffected Side 60 1095

NM More affected Side,
Less affected Side 60 1171

TDvsNMvsCPb
TD Random 59 650

CPb More Affected Side,
Less unaffected Side 60 1095

NM More affected Side,
Less affected Side 60 1171
t
n
c
o
n
v
g
t

CGA was 7.4 years; 103 children categorized as GMFCS level I,
42 children as GMFCS level II and 3 children as GMFCS level III)
with unilateral CP mainly caused by perinatal stroke, prematurity,
perinatal hypoxia or cerebral malformation.

• TDvsNM included the gait kinematics of children with neuro-
muscular (NM) diseases and TD children and was used for the
pathology detection task: 60 children (18 girls, 42 boys; mean age
at first CGA is 8.8 years; 32 children categorized as GMFCS level
I, 27 children as GMFCS level II and 1 child as GMFCS level IV)
with NM disease mainly caused by Duchenne muscular dystrophy,
Charcot-Marie-Tooth disease and Steinert disease.

• ToeWalkervsCPb included the gait kinematics of children with
bilateral CP and toe walkers and was used to evaluate the ability
of the deep learning algorithms to discriminate between two
distinct pathologies with similar gait patterns: 19 children (11
girls, 8 boys; mean age at first CGA is 9 years; 18 children
categorized as GMFCS level I, 1 categorized as GMFCS level II)
with a toe walker syndrome; 60 children (36 girls, 24 boys; mean
age at first CGA is 8.5 years; 22 children categorized as GMFCS
level I, 20 children as GMFCS level II, 16 children as GMFCS level
III and 2 children as GMFCS level (IV)) with a bilateral CP mainly
caused by prematurity and perinatal hypoxia.

• StrokeBeforeAfter included the gait kinematics of children with
stroke with the date of the stroke and was used to detect the
onset time of the stroke: 20 children (13 girls, 7 boys; mean age
at first CGA is 5.7 years; 14 children categorized as GMFCS level I
and 6 children as GMFCS level II) with left hemiparesis caused by
stroke before the age of 2 years; 5 children (3 girls, 2 boys; mean
age at first CGA is 10.4 years; 2 children categorized as GMFCS
level I and 3 children as GMFCS level II) who experienced right
hemisphere stroke after the age of 2 years. The gait kinematics
were labeled according to two categories: stroke before or after
the age of two years.

• NMvCPb included the gait kinematics of children with bilateral
CP and NM disease and was used to assess the ability of deep
learning algorithms to detect whether the disorder was caused by
cerebral or muscular pathology.

• TDvsNMvsCPb included the gait kinematics of children with bilat-
eral CP, NM disease and TD children and was used to evaluate the
ability of the deep learning algorithms to differentiate between
multiple etiologies of pathological gait (multi-classification).
3

An overview of the children and gait kinematics included in the
database is provided in Table 2. All diagnoses were double-checked by
the medical teams and a physician dedicated to the study who reviewed
the medical histories and diagnosis records of all 371 children.

2.2. Deep learning methods proposed

We used DL time series classification (TSC) to diagnose the pathol-
ogy (or date of onset for stroke) from the 3D clinical gait signals.
After reviewing DL methods for TSC [36], we chose to test the ability
of three DL architectures for TSC : ResNet [37,38], LSTM [39] and
InceptionTime [40].

2.2.1. ResNet
The ResNet architecture is described in [37] and has previously

been used for TSC [38], as shown in Fig. 1.
The ResNet contains three building blocks. The first two building

blocks consist of three convolutional layers with a kernel size of [8, 5,
3], and each convolutional layer is followed by a batch normalization
layer and a ReLU activation. In addition, there is a residual connection
from the input to the output of the first two building blocks, with a
convolutional layer of kernel size 1, followed by a batch normalization
layer. The last building block differs from the first two in that there is
no convolutional layer or batch normalization layer in the residual con-
nection part. Finally, the output of the features from the last building
block are fed into a dense layer with softmax activation, after passing
through GlobalAveragePooling.

2.2.2. LSTM
Similarly to ResNet, the Long Short Term Memory model (LSTM)

[39] has been shown to successfully extract time series features form
a dataset [41–44]. The main component of this network is the LSTM
unit, as shown in Fig. 2.

𝑥𝑡 is the input vector with dimension 𝑑. The 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are
hree activation vectors for which the dimension and range of the
umber of hidden layers ℎ is between 0 and 1. The activation vectors
orrespond to forget gate, input gate, and output gate. The ℎ𝑡 is the
utput vector of the LSTM unit and has the same dimension as the
umber of hidden layers. The 𝑐𝑡 is referred to as the cell input activation
ector with dimension ℎ. The activation vectors correspond to forget
ate, input gate, and output gate. 𝜎𝑔 is a sigmoid function that scales
he input value between 0 and 1. 𝜎 and 𝜎 are hyperbolic tangent
𝑐 ℎ
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Fig. 1. Architecture of the ResNet for TSC [38]. The yellow blocks represent the convolutional layer, the beige blocks represent the activation function ReLU and/or batch
normalization, the orange block represents global average pooling operation, the red block represents the dense layer with two output features, the purple block represents the
softmax function, the diverging arrows represent duplication, and the converging arrows represent residual connection.
Fig. 2. LSTM unit at time t [39]. The yellow blocks represent activation functions,
the red blocks represent component-wise operations, the diverging arrows represent
duplication, and the converging arrows represent concatenation.

functions, which generate an output value between −1 and 1. The
𝑊 ∈ Rℎ×𝑑 , 𝑈 ∈ Rℎ×ℎ and 𝑏 ∈ Rℎ are trainable weight matrices and
bias vector parameters.

The LSTM unit is modeled by the following equations:

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (1)

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2)

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3)

𝑐𝑡 = 𝜎𝑐 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐 ) (4)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 (5)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜎ℎ(𝑐𝑡) (6)

In practice, we cascade 𝐶𝑡 and 𝐻𝑡 in the order of time t. The number
of LSTM units is equal to the time series length n. The LSTM network
we used in this study was inspired by [45], and is shown in Fig. 3.

The LSTM network used in this work is bidirectional. Compared to
the traditional LSTM, which only considers the forward state features
(in the same direction as the time flow), the bidirectional LSTM also
needs to feed the input signal into another sequence of LSTM units
connected in the reverse direction of the time flow to allow the network
to consider the backward state features. The architecture consists of
three bidirectional LSTM layers with a hidden state of 400 (Fig. 3). The
first two bidirectional LSTM layers output all hidden states, and the last
4

bidirectional LSTM layer outputs only the last hidden state. In addition,
the outputs of the bidirectional LSTM layers in different directions are
concatenated and passed to a dropout with a probability of 0.2, before
being fed to the next layer. After the last bidirectional LSTM layer, the
dense layer with softmax activation is used as a linear classifier to make
the prediction.

2.2.3. InceptionTime
The InceptionTime network [40] consists of six stacked connected

Inception modules, some of which are also connected by a shortcut
linear connection layer.

The architecture of the Inception network is shown in Fig. 4. The
first layer in the upper right corner is a convolutional layer applied to
all channels with a kernel of size 1 and is called the bottleneck layer.
Its function is to reduce the dimensionality of the input data to mitigate
overfitting and complexity of the model. The output of the bottleneck
layer is fed into three convolutional layers with kernels of size 10, 20,
and 40, to use different receptive fields for better feature extraction
from time series data with different lengths. The bottom part of the
Inception module is a Max pooling of size 3, followed by a bottleneck
layer. The function of this part is to make the model more robust to
small perturbations. Finally, the above four outputs are concatenated
as the output features of the Inception module.

The architecture of the Inception network is shown in Fig. 4. The
output of the Inception module set is fed into a Global Average Pooling,
then passed to a dense layer with two output values, then a softmax is
applied to obtain the prediction of the network. The InceptionTime’s
prediction is the class with the highest probability estimation in the
average probability estimation of the five Inception network model
predictions. This ensemble strategy mitigates the problem of the high
standard deviation of the results caused by randomly initialized weights
and stochastic optimization.

2.3. Experimental process

To preprocess the data, the dataset was split into three parts: train-
ing (60%), validation (10%), and test set (30%). The training set was
used to train the models and the validation set to verify the outcomes of
the training process. The test set was used to evaluate the performance
of the trained models in our experiment. The details of the data split
are shown in Appendix A.1.

All three DL models were implemented using PyTorch Lightning
[46]. They were trained by minimizing the categorical cross-entropy
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Fig. 3. Architecture of the LSTM network for TSC proposed in this paper. The green blocks represent LSTM units, the gray blocks represent the data, the yellow blocks represent
dropout operations, the red block represents the dense layer with two output features, the purple block represents the softmax function, the diverging arrows represent duplication,
and the converging arrows represent concatenation.
Fig. 4. Architecture of the Inception module (left) and the InceptionTime network (right) [40]. The yellow blocks represent the convolutional layer (left) or Inception module
(right), The white block represents the activation function ReLU and batch normalization, the orange block represents the max pooling operation (left) or global average pooling
(right), the red block represents the dense layer with two output features, the purple block represents the softmax function, the diverging arrows represent duplication, and the
converging arrows represent concatenation (left) or residual connection (right).
loss using the Adam optimizer with an initial learning rate of 0.001
and batch size of 64. The accuracy of the validation set was used as a
reference metric to control early stopping and learning rate reduction.
For the learning rate reduction, if the validation set loss did not improve
over one epoch, the learning rate was decreased by 50%. After ten
epochs with no improvement in validation set loss, or after 50 epochs,
early stopping was applied. Then the training stopped, and the model
with the best validation accuracy was saved. The final prediction
was the class with the highest probability estimation in the average
probability estimation of the prediction of the five trained models. This
was the rule for the InceptionTime, but we also applied it to ResNet and
LSTM, because we found that it reduced the standard deviation of the
results and mitigated local minima.

2.4. Statistics

We evaluated the models according to the test set predictions. We
used six parameters to evaluate the performance of the DL models:
accuracy, sensitivity/recall, specificity, F1 score, Area Under the Curve
(AUC) score, and confusion matrix.

Accuracy quantifies how close the predictions of the DL model
are to the true values. In other words, it gives the proportion of
correct predictions in the total number of predictions (formula (7)) to
determine if the prediction is balanced in each class and to provide
an assessment of the prediction performance of the model. Specificity,
equivalent to recall, and sensitivity are defined in formulas (9) and
(10). The F1 score is defined in formula (11) and precision is defined
5

Table 3
Definition of the confusion matrix.

True value

Number Prediction value
Positive Negative

Positive True positive False negative
Negative False positive True negative

in formula (8). The AUC value is the area under the ROC curve, which
plots the curve having False Positive Rate (FPR) on the 𝑥-axis and True
Positive Rate (TPR) on the 𝑦-axis. TPR is equivalent to recall, and FPR
is defined in formula (12).

The Confusion Matrix is used to visualize the performance of an
algorithm in machine learning. It consists of True Positive (TP), False
Negative (FN), False Positive (FP), and True Negative (TN). The matrix
is presented in Table 3.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(10)

𝐹1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
(11)

𝐹𝑃𝑅 = 𝐹𝑃 (12)

𝑇𝑃 + 𝐹𝑁
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Table 4
Performance of the three networks to distinguish between pathological and healthy gait using the TDvsCPu dataset.
Best performances are in bold.

Indicator

Performance Model ResNet LSTM InceptionTime

Cycles Subjects Cycles Subjects Cycles Subjects

Accuracy 0.92±0.01 0.93±0.02 0.93±0.01 0.93±0.03 0.91±0.01 0.90±0.04
Sensitivity 0.96±0.01 0.96±0.01 0.95±0.01 0.95±0.02 0.96±0.01 0.96±0.01
Specificity 0.77±0.03 0.84±0.06 0.84±0.03 0.87±0.06 0.72±0.08 0.74±0.13

F1 0.95±0.01 0.95±0.01 0.96±0.01 0.95±0.02 0.95±0.01 0.93±0.02
AUC 0.87±0.01 0.90±0.03 0.90±0.02 0.91±0.03 0.84±0.04 0.85±0.06
Table 5
Performance of the three networks to distinguish between pathological and healthy gait using the TDvsNM dataset.
Best performances are in bold.

Indicator

Performance Model ResNet LSTM InceptionTime

Cycles Subjects Cycles Subjects Cycles Subjects

Accuracy 0.82±0.02 0.77±0.03 0.85±0.01 0.84±0.02 0.83±0.01 0.78±0.03
Sensitivity 0.88±0.04 0.83±0.06 0.90±0.01 0.88±0.02 0.90±0.01 0.87±0.03
Specificity 0.71±0.05 0.71±0.07 0.76±0.03 0.79±0.03 0.70±0.03 0.69±0.04

F1 0.87±0.01 0.78±0.02 0.89±0.01 0.85±0.02 0.88±0.01 0.80±0.02
AUC 0.79±0.01 0.77±0.02 0.83±0.01 0.84±0.02 0.80±0.02 0.78±0.03
Table 6
Performance of the three networks to distinguish between pathologies using the ToeWalkervsCPb dataset. Best
performances are in bold.

Indicator

Performance Model ResNet LSTM InceptionTime

Cycles Subjects Cycles Subjects Cycles Subjects

Accuracy 0.80±0.03 0.83±0.05 0.81±0.01 0.84±0.02 0.80±0.01 0.82±0.02
Sensitivity 0.81±0.03 0.79±0.06 0.79±0.01 0.79±0.02 0.79±0.02 0.77±0.03
Specificity 0.80±0.05 0.97±0.07 0.87±0.01 1.00±0.00 0.85±0.09 0.98±0.05

F1 0.86±0.02 0.88±0.04 0.87±0.01 0.88±0.01 0.86±0.01 0.87±0.02
AUC 0.80±0.03 0.88±0.05 0.83±0.01 0.89±0.01 0.82±0.04 0.88±0.02
Table 7
Performance of the three networks to distinguish between pathologies using the NMvsCPb dataset. Best performances
are in bold.

Indicator

Performance Model ResNet LSTM InceptionTime

Cycles Subjects Cycles Subjects Cycles Subjects

Accuracy 0.79±0.01 0.77±0.03 0.83±0.02 0.83±0.02 0.82±0.01 0.82±0.02
Sensitivity 0.70±0.04 0.65±0.04 0.73±0.05 0.73±0.05 0.74±0.02 0.70±0.04
Specificity 0.87±0.04 0.89±0.04 0.90±0.02 0.93±0.02 0.89±0.02 0.93±0.03

F1 0.74±0.02 0.74±0.03 0.79±0.03 0.81±0.03 0.78±0.02 0.79±0.03
AUC 0.78±0.02 0.77±0.02 0.82±0.02 0.83±0.02 0.81±0.01 0.82±0.02
Table 8
Performance of the three networks to distinguish between pathologies using the TDvsNMvsCPb dataset. Best
performances are in bold.

Indicator

Performance Model ResNet LSTM InceptionTime

Cycles Subjects Cycles Subjects Cycles Subjects

Accuracy 0.75±0.02 0.74±0.03 0.77±0.02 0.77±0.03 0.76±0.02 0.74±0.02
f

To mitigate the effect of randomness in training, the values are
he mean and standard deviation of the results of the ten models
rained for ten different random initializations. The DL models classify
he joint angle time series cycles directly. However, predictions for
ndividual children are more useful to clinicians. Since the dataset
ontains multiple cycles for each child, we used the majority vote of the
redictions of cycles for a given child as that child’s diagnosis result.

. Results

The details of the confusion matrix and data set prediction by DL
ethods can be found in Tables 4, 5, 6, 7, 8 and, 9 and in Appendix A.3.
6

0

For readability purposes, we report here only the diagnostic accuracy
of the ‘‘cycle’’ and ‘‘subject’’ analyses for the best network architecture.
The codes for our experiments are available at https://github.com/
LANZhengyang/Gait_DeepLearning_Diagnostic_Tool

3.1. Q1 - Distinguishing between pathological and healthy gait

LSTM best distinguished between pathological and healthy gait
(TDvsCPu and TDvsNM datasets) (Tables 4 and 5). For the TDvsCPu
dataset, LSTM accuracy was 0.93 ± 0.01 and F1 score was 0.96 ± 0.01
or cycles. For subjects, accuracy was 0.93 ± 0.03 and F1 score was
.95 ± 0.02. For the TDvsNM dataset, LSTM accuracy was 0.85 ± 0.01

https://github.com/LANZhengyang/Gait_DeepLearning_Diagnostic_Tool
https://github.com/LANZhengyang/Gait_DeepLearning_Diagnostic_Tool
https://github.com/LANZhengyang/Gait_DeepLearning_Diagnostic_Tool


Computers in Biology and Medicine 171 (2024) 108095Z. Lan et al.

a
N
f

3

B
w
F

4

w
o
w
c
T
n
a
c
s
g
d

4

i
d
t
s
b
m
p
F
m
d
e
o
b
a
f

Table 9
Performance of the three networks to estimate onset time for a known pathology using the StrokeBeforeAfter dataset.
Best performances are in bold.

Indicator

Performance Model ResNet LSTM InceptionTime

Cycles Subjects Cycles Subjects Cycles Subjects

Accuracy 0.88±0.11 0.94±0.07 0.98±0.03 0.99±0.04 0.95±0.04 0.99±0.04
Sensitivity 0.75±0.32 0.70±0.46 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Specificity 0.93±0.05 0.98±0.05 0.97±0.05 0.98±0.05 0.93±0.05 0.98±0.05

F1 0.74±0.26 0.67±0.45 0.97±0.05 0.97±0.10 0.93±0.06 0.97±0.10
AUC 0.84±0.17 0.84±0.23 0.99±0.02 0.99±0.02 0.97±0.03 0.99±0.02
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and F1 score was 0.89 ± 0.01 for cycles. For subjects, accuracy was
0.84 ± 0.02 and F1 score was 0.85 ± 0.02.

3.2. Q2 - Distinguishing between pathologies

LSTM best distinguished between pathologies (ToeWalkervsCPb,
NMvsCPb, and TDvsNMvsCPb datasets) (Tables 6–8). For the Toe-
WalkervsCPb dataset, accuracy was 0.81 ± 0.01 and F1 score was
0.87 ± 0.01 for cycles. For subjects, accuracy was 0.84 ± 0.02 and
F1 score was 0.88 ± 0.01. For the NMvsCPb dataset, accuracy was
0.83 ± 0.01 and F1 score was 0.79 ± 0.03 for cycles. For subjects,
ccuracy was 0.82 ± 0.02 and F1 score was 0.81 ± 0.03. For the TDvs-
MvsCPb dataset, accuracy was 0.77 ± 0.02 for cycles and 0.77 ± 0.02

or subjects.

.3. Q3 - Estimation of onset time for a known pathology

LSTM best estimated the onset time for a known pathology (Stroke-
eforeAfter dataset) ( Table 9). Accuracy was 0.98 ± 0.03 and F1 score
as 0.97 ± 0.05 for cycles. For subjects, accuracy was 0.99 ± 0.04 and
1 score was 0.97 ± 0.10.

. Discussion

This study showed that DL combined with 3DGK data from children
ith pathological gait diagnosed the etiology of the gait disorder (or
nset time of the pathology) with a high accuracy. The level of accuracy
as similar when using only one gait cycle or the whole set of gait

ycle for one given child. The accuracy (0.93) of the LSTM for the
DvsCPu dataset was similar to the accuracy (0.98) of AbnormNet (a
eural network with convolutional and fully connected layers) [25],
tool for identifying knee abnormalities during gait in children with

erebral palsy that uses the automated, comprehensive gait assessment
core (A-GAS) [47] as input. These results provide new perspectives for
ait analysis, enabling 3DGK+DL to be used for the diagnosis of gait
isorder etiology.

.1. Clinical implications

Currently, the diagnosis of a pathology that causes a gait disorder
s based on information that is not gait related, such as the child’s
evelopmental history, brain MRI, or more invasive exams such as in-
ramuscular EMG or muscle biopsy. The results showed that 3DGK+DL
uccessfully differentiated between pathological and healthy gait, and
etween the gait patterns of different pathologies in both binary and
ultiply classification diagnosis. The capacity to diagnose different
athologies using only gait characteristics could be a ‘‘game changer’’.
irst, this means that the information contained within the gait kine-
atics (i.e., gait patterns, the ‘‘way a person walks’’), is specific to the
iagnosis, and that there is no need to consider spatiotemporal param-
ters (speed, step width, etc.) or muscle activation (EMG). Clinicians
ften formulate hypotheses about the diagnosis from the gait patterns,
ut those hypotheses are based on experience, and the observations
re not objective. The next step for research will be to identify the
7

eatures of the 3D kinematics used by the algorithm to distinguish s
etween pathologies and to compare them to the features used by
linicians. Second, given the good to excellent results of 3DGK+DL,
his tool can be used as part of the diagnostic decision tool e.g., to
elp to diagnose CP (i.e., differentiate from TD), or to differentiate
etween CP and other NM diseases in the early stages, without using
nvasive complementary exams. Our preliminary results pave the way
owards such clinical implementation, but further studies are needed at
his stage. Thirdly, being able to determine the date of stroke (before
r after 2 years of age) using only gait pattern data after the age of
wo years is a real challenge. If these results are confirmed in a larger
ataset, it would mean that the gait kinematics themselves, without
patiotemporal or muscle activation data, contain specific information
elated to the child’s age at the time of the ‘‘clinical event’’. Such
nformation can be crucial in some clinical cases in which the dating of
he stroke may help to understand a complex diagnosis that has been
ade.

.2. Deep learning - A promising approach

The results show that the three DL models designed to analyze
ime series signals successfully performed different diagnosis tasks. The
STM-based model performed better generally, with a smaller standard
eviation for the different diagnostic modes and sample sizes. The main
ifference between DL and conventional ML is that feature extraction
s performed automatically by the model in DL. Because the multiple
ayers enable the progressive extraction of higher-level features from
he raw input, there is no need for the manual selection of relevant
eatures, which may require expert knowledge. This architecture has
everal advantages for the combination of DL with 3DGA: (1) automatic
eature engineering reduces data exploration time and the need for
omain expertise, (2) DL can handle multi-dimensional and multi-
ariety data in dynamic or uncertain environments, such as real-world
linical environments, and (3) DL can solve complex problems, such
s multi-class disease classification. The high learning capacity and
ood generalization of DL means it can theoretically be used to fit
ny function or learn any features. Provided with some time series
ignals labeled with the corresponding pathology type, the DL model
an automatically extract features and learn them without any clinical
xpertise. This ability is not limited to the dataset and pathologies
valuated in this study; the method could be used to extract specific
nformation related to other pathologies from 3D gait signals, and even
on-gait time series signals, and to serve as a new diagnostic tool. An
dditional advantage of the diagnostic tool proposed in this study is
hat all inputs in the DL model are captured using an accessible marker-
ased motion capture system based on a specific standardized protocol,
hus ensuring higher accuracy and repeatability than traditional gait
nalysis measurements. In other words, the diagnostic results of our
odel are more objective than traditional semi-subjective diagnostics.

.3. Limitations

This study has four main limitations. First, the datasets were un-
alanced. The CP sample in the TDvsCPu dataset was three times
arger than the TD sample. In the StrokeBeforeAfter dataset, the Before

ample was four times larger than the After sample and the number
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of toe walkers was three times smaller than the number of children
with bilateral cerebral palsy. Because of this unbalanced distribution of
the dataset, DL methods tend to overfit to the majority classes, which
causes the model to predict the cycle to the majority class and then
drop into local minima, particularly ResNet. This leads to biased and
high variance results. However, by averaging the prediction probability
estimation over five models, the variance of the results was reduced.

Second, in the test set, some subjects were consistently misdiag-
nosed by all three models. Furthermore, the three models performed
significantly less accurately with the ToeWalkervsCPb dataset than
the other datasets. This may be related to limitations in the feature
extraction of the chosen DL models or to the fact that a larger training
set is required for the model to converge fully.

Third, although the DL models yielded excellent diagnostic results,
some interpretation is missing for use in a clinical setting and to
improve the clinician’s understanding of gait signals.

Finally, the recurrent neural network LSTM combined with 3D gait
kinematic data had good to excellent diagnostic accuracy for the 6
datasets. The analysis of DL performance is limited to existing diagnosis
types, and it cannot predict the diagnosis for a child with an unknown
diagnosis. The accuracy of a multi-classification problem generally
decreases as the number of classes increases. To validate a larger multi-
classification system a larger database would be needed, for example by
combining databases from different 3D CGA laboratories. Our encour-
aging results on single database justify the need for the development
of a larger, multicenter database and DL algorithms. Another approach
to determining the etiology of a child with unknown pathology would
be to identify similarities between gait signals, assuming that children
with the same pathology have the same gait patterns. This diagnostic
tool is an adjunct to early diagnosis, based primarily on a combination
of clinical history, a standardized neuromotor assessment and mag-
netic resonance imaging findings. DL combined with 3DGK remains a
statistical method.

4.4. Perspectives

4.4.1. Investigation of the misdiagnosed subjects
To solve the problem of consistent misdiagnosis of some subjects,

the model could be scaled to reduce the number of parameters and
facilitate convergence. Misdiagnosis may also because by the data. To
assess the impact of the data on the misdiagnosis, the characteristics
of the misdiagnosed cycle could be visualized and analyzed, and the
magnitude of the impact of the data could be understood through
discussion with clinicians. In addition, although the accuracy of all
three DL models was high, it would be pertinent to design a DL
architecture specifically for clinical gait analysis that more efficiently
extracts pathology-related features, instead of using off-the-shelf and
general DL models for TSC.

4.4.2. Interpretation of deep learning model
Further work is required so that 3DGK+DL can be used in clinical

settings and clinicians can interpret the results. For example, it is
important to understand which features are extracted by DL models
for TSC. This would both improve the credibility of the classification
results for clinical applications as well as improve understanding of the
gait signal. This could be done using Explainable Artificial Intelligence
(XAI) methods [48–51].

4.4.3. Other deep learning based approaches for diagnosis
We proposed an approach for the diagnosis of the etiology of

gait disorders using DL combined with 3DGA data; however, other
approaches could also successfully perform this task. For example,
artificial intelligence could be combined with other input sources such
as video-based gait analysis or electromyography (EMG), for a high
diagnostic accuracy. Video-based gait analysis methods are simpler to
use and lower in cost than 3DGA systems [52–54]. DL methods, such
8

as OpenPose [55] and AlphaPose [56] are already used to estimate the
human joint position features from the video. ML or DL methods could
then make a diagnosis based on the extracted features. The diagnostic
accuracy of such methods ranges from 80% to 96% depending on the
pathology [57–60]. Gait disorders caused by Parkinson’s disease have
been the most extensively studied, and the diagnostic accuracy is 96%
in a binary classification [58].

EMG records electrical signals produced by skeletal muscles. It plays
a significant role in the diagnosis of neuromuscular disorders [61].
Studies have shown that signal processing methods (such as Wavelet
Transform [62–64], Hilbert–Huang transform [65]) and machine learn-
ing techniques (such as KNN, decision trees, SVM [66,67], Etc.) can
diagnose the etiology of gait disorders with up to 99% accuracy [65,
66].

5. Conclusion

This study demonstrated that the three DL methods, ResNet, LSTM,
and InceptionTime, combined with 3DGK data can accurately perform
four types of diagnostic task: distinguishing between pathological and
normal gait, detection of pathology, diagnosis of the time of onset of
pathology and discrimination between different pathologies. The use
of our diagnostic tool requires no human intervention and no expert
knowledge. In addition, our work demonstrated that kinematic gait
data contain specific information related to the child’s etiology. In the
clinical setting, where data collection is standardized, the trained model
can easily be used to directly assist decision-making. The proposed
methods can be easily extended to other diagnoses.
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.1. Data split
See Fig. 5.
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Fig. 5. Data split strategy for the six datasets used in this study.
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Fig. 6. Joint angles throughout the gait cycle of a TD subject.
Fig. 7. Joint angles throughout the gait cycle of a CPu subject.
A.2. Data visualization

See Figs. 6 and 7.
10
A.3. Confusion matrix

See Figs. 8–19.
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Fig. 8. Confusion matrix of the prediction cycles of the three DL model for TDvsCPu.
Fig. 9. Confusion matrix of the prediction subjects of the three DL model for TDvsCPu.
Fig. 10. Confusion matrix of the prediction cycles of the three DL model for TDvsNM.
Fig. 11. Confusion matrix of the prediction subjects of the three DL model for TDvsNM.
11
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Fig. 12. Confusion matrix of the prediction cycles of the three DL model for ToeWalkervsCPb.
Fig. 13. Confusion matrix of the prediction subjects of the three DL model for ToeWalkervsCPb.
Fig. 14. Confusion matrix of the prediction cycles of the three DL model for CPbvsNM.
Fig. 15. Confusion matrix of the prediction subjects of the three DL model for CPbvsNM.
12
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Fig. 16. Confusion matrix of the prediction cycles of the three DL model for StrokeBeforeAfter.

Fig. 17. Confusion matrix of the prediction subjects of the three DL model for StrokeBeforeAfter.

Fig. 18. Confusion matrix of the prediction cycles of the three DL model for TDvsCPbvsNM.

Fig. 19. Confusion matrix of the prediction subjects of the three DL model for TDvsCPbvsNM.
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