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Abstract

Designing new industrial materials with desired properties can be very expensive
and time consuming. The main difficulty is to generate compounds that corre-
spond to realistic materials. Indeed, the description of compounds as vectors of
components’ proportions is characterized by discrete features and a severe sparsity.
Furthermore, traditional generative model validation processes as visual verifica-
tion, FID and Inception scores are tailored for images and cannot then be used as
such in this context. To tackle these issues, we develop an original Binded-VAE
model dedicated to the generation of discrete datasets with high sparsity. We vali-
date the model with novel metrics adapted to the problem of compounds generation.
We show on a real issue of rubber compound design that the proposed approach
outperforms the standard generative models which opens new perspectives for
material design optimization.

1 Introduction

The design of new drugs and materials with desired properties is an expensive and time consuming
process. It traditionally involved laborious trial-and-error procedures. Evolutionary methods such as
genetic algorithms [14, 1] accelerated the process, for instance by modifying molecules structures
to obtain molecules with desired properties. However, these methods need hand-crafted rules and
constraints to avoid unrealistic generations, which might be hard or even impossible to express
mathematically. To bypass this issue, a good alternative are deep generative methods that are able to
learn the data space distribution without the need of constraint definition.

In the past few years, deep generative models such as GANs [4] and VAEs [11] have been successfully
applied to different tasks ranging from classification to generation [9, 19] or even image translation
[20]. However, as observed in our experiments (cf Section 3), these two models do not provide
satisfactory solutions for the generation of new materials. The difficulties encountered are the severe
sparsity of the data combined with the diversity of components’ ratios from one compound to another.
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Moreover, GANs and VAEs require their generations to be differentiable and thus fail to generate
discrete compounds [5]. Their inability to directly generate discrete data appears to be an open
problem.

Furthermore, unlike when generating images, visual inspection of each generated compound is
more complex and requires an expert’s validation. Finally, the traditional metrics used to evaluate a
generative model are based on the internal features of a deep network trained on ImageNet [12] as
the Inception network [18]; therefore, they cannot be used as such for material design.

To overcome all the above-mentioned issues, several works are carried out in the field of new
compound generation [15, 6, 13, 3]. For instance when working with GANs for inorganic material
generation, the Negative Dice Loss [16] is adopted to enforce the discontinuity of the generations
by enforcing the overlap between the real and the generated data [2]. Our work is in line with this
research field and proposes the two following main contributions:

• First, to deal with the sparsity and the diversity of components’ ratios, we introduce a
Binded-VAE model (BVAE) which learns to jointly generate the raw data mask (a binary
vector encoding whether or not a component is present in the compound) and the ratio of
the components in the compound description (cf Section 2.1).

• Second, we propose three metrics tailored to the problem of compound generation. The first
one is an adaptation of the FID. The second one is the KL divergence computed between the
distributions of real compound properties and predictions of these properties for generated
compounds. The last one is a metric based on the agreement of "expert rules" (cf Section
2.2).

We show, on a real dataset of rubber compound, that the proposed BVAE provides outperforming
results compared to the ones obtained with standard VAEs and GANs (cf Section 3). Thus, the
combination of our model with an optimization algorithm can be considered as a promising tool for
industrials wishing to generate new compounds with desired properties. Furthermore, the developed
evaluation metric based on "expert rules" agreement appears to be a suitable validation process for
specific issues as industrial ones. We are convinced that this metric can easily be extended to other
industrial problems as long as expert rules can be defined on the dataset.

2 Methodology

We consider the problem of compound generation, where the learner has access to a sample of n
real compounds with p components, and denote X ∈ Rn×p

+ the corresponding design matrix. Each
compound x ∈ Rp

+ is represented by a p multidimensional vector denoted by x = (x1, ..., xp) where
xi ∈ R+ is the ratio of the ith component in the compound such that

∑n
i=1 xi = 1. In practice,

each vector is very sparse and only a few xi are not null. The goal of this work is to build a model
able to simulate a dataset of new compounds X̃ distributed in the same way than X . We denote
x̃ = (x̃1, ..., x̃p) the multidimensional vector corresponding to X̃ .

Because of the sparsity in the raw data X , we observe that a standard VAE fails to generate a
compound with a few non-zero components and adequate ratios (cf section 3.2). In order to overcome
this problem, we decide to split the learning of the binary mask and the ratios into a Binded-VAE
model (BVAE) as described in the next section.

2.1 BVAE model

The BVAE is composed of two chained Variational AutoEncoders (cf Figure 1). The first one, denoted
"Mask-VAE" (VAEM ) receives as input a binary matrix M ∈ {0, 1}n×p obtained by binarizing the
real data X such that Mij = 1 if Xij > 0 and Mij = 0 elsewhere. It generates a reconstructed binary
mask M̃ . The second VAE referred as "Ratio-VAE" (VAER) is a Conditional VAE [17] that receives
the concatenation of the real training data X and its corresponding reconstructed mask M̃ generated
by the Mask-VAE. It generates a reconstructed set of ratios R̃. The final reconstruction of X is
then obtained by multiplying the mask M̃ with the output of the Ratio-VAE such that X̃ = M̃ × R̃.
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Figure 1: BVAE architecture. The mask M̃ generated by the Mask-VAE contains the positions of the
components in the generated compound. This mask is given as a condition to the Ratio-VAE, which
then generates a vector R̃ containing the ratio of each component.

The final reconstruction X̃ is differentiable so that the involved gradient can be calculated. For the
experiments in section 3 the generated data are truncated to the 4th decimal place.

The loss of the Ratio-VAE is a classical VAE loss:

LVAER
= λR BCE(X, X̃) + KL(N (µx, σx),N (0, I)) (1)

Where BCE is the Binary Cross-entropy defined as:

BCE(X, X̃) =
1

n

n∑
i=1

x̃i × log(xi) + (1− x̃i)× log(1− xi) (2)

and KL the Kullback-Leibler divergence. µx, σx are the outputs of the VAER encoder.

For the Mask-VAE, the overlap between the generated mask M̃ and the binarized input M must be
maximized. To this purpose, inspired by measures of regions overlap in image segmentation [8],
we add to the classical VAE loss, the Negative Dice loss (NegDICE) [16] which has been recently
adopted for inverse design of inorganic materials [2]. The NegDICE loss between two vectors
a, b ∈ [0, 1]p with a = (a1, ..., ap) and b = (b1, ..., bp) is defined as follows:

NegDICE(a, b) = −2
a · b

||a||1 + ||b||1
= −2

∑p
i=1 aibi∑p

i=1 ai +
∑p

i=1 bi
(3)

Therefore, the loss of the Mask-VAE is written as follows:

LVAEM
= λM BCE(M, M̃)) + KL(N (µx, σx),N (0, I)) + γ NegDICE(M,M̃) (4)

Finally, the total loss of the BVAE is:

LBVAE = β LVAEM
+ LVAER

(5)

With λR,λM ,γ and β positive parameters selected with gridsearch.

2.2 Evaluation Metrics

As mentioned in Section 1, standard metrics used to evaluate generative models are tailored for
images and thus are not suited for compound generation. We then propose the followings metrics:

• Custom FID (FID*). The FID is the most widespread score used to evaluate the quality
of the images of a generative model [7] (cf equation 6). The FID compares the first two
moments of the real and generated distributions in an embedding given by the penultimate
layer of a pretrained deep network. The FID score is then computed as follows:

FID(R,G) = ‖µR − µG‖+ Tr(ΣR + ΣG − 2(ΣR · ΣG)
1
2 ) (6)
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With µR,µG and ΣR,ΣG the first and the second moments of two distributions R,G. The
deep network usually used to compute the FID is the Inception network [18] trained on
ImageNet [12]. This network is trained on images and is then not suited for our problem.
Consequently, we adapt the computation of the FID to our problem by using a fully-
connected neural network trained on the real compound dataset to predict properties of
interest associated to each compound. We denote this custom metric FID*.

• KL divergence. Following the same idea, we use the aforementioned predictor to predict
the properties for the generated data. We then compute the KL divergence between the
predictor outputs of the generated data and the real distribution of the material properties.

• "Expert Rules Agreement" metric (ERA). As our data represents compounds of real
materials, they must verify specific rules given by experts as for instance, bounds on the
total proportion of several components in the compound. We then define the ERA metric as
the percentage of generated data that match the expert rules.

3 Experiments

In our experiments, we compare different generative models trained on a real rubber compound
dataset. In this chapter, we start by presenting the experimental setup, then the dataset used for
training the models, and lastly we present and discuss the results obtained.

3.1 Setup

Baselines. To perform our experiments we use different generative models: a GAN, a Vanilla VAE,
our BVAE model, and an "Unbinded-VAE" model built with a "Mask-VAE" and a "Ratios-VAE"
trained successively and separately.

The models used in our experiments are composed of fully connected layers with the architectures
given in Appendix A.1. We use the Adam optimizer [10] for all trainings.

Hyper-parameters selection is performed through gridsearch. The range for each hyper-parameter
gridsearch are: [10−1, 1, 10] for λR,λM ,γ and β (cf section 2.1), [32, 64, 128, 256] for the latent
dimensions and [10−3, 10−2, 10−1] for the learning rates. The selected hyper-parameters are provided
in Appendix A.1 Table 1.

Dataset. To train the models, we use a dataset of rubber compound of size ∼ 12k. The dataset is
made of 1D vectors of components ratios, with a size of 99 and with an average sparsity of ∼ 80%.
We train all the models for 200 epochs, with a batch size of 128. The evaluation metrics presented in
Section 2.2 are computed at each epoch. The predictor used to compute the FID* and KL scores is
trained using a dataset containing the values of three properties of interest for each compound.

3.2 Results and Discussion

In this section, we discuss the experiments results. We start by comparing the heatmaps of the
generations and the real data; then, we compare the models with respect to the custom metrics
introduced in section 2.2. As mentioned in section 2.1, generations are truncated to the 4th decimal
place.

Data visualization. Contrarily to image generation, inspecting each individual generated rubber
compound would require an expert. However, the presence of patterns in the data provides a visual
means to verify the generations. We propose to visualize the whole generated datasets as a 2D heatmap
where zeros appear in dark and higher values are lightened. As we can observe in Figure 2, this
qualitative evaluation clearly shows that the BVAE generates a rubber compound dataset presenting
much more realistic patterns than the one produced by the GAN. This qualitative observation is
confirmed by quantitative metrics (cf Figure 3). By using this kind of visual verification, one can
easily discriminate between models and quickly spot poor generations. However, selecting the best
generative model needs finer evaluation metrics as the ones developed in the following. FID* and
KL scores. Figure 3 presents the evolution of FID* and KL score through epochs for the different
generative models. The two scores are computed on 10 000 generations. The KL score is computed
by averaging the KLs obtained for the three properties. In addition we plot the test scores computed
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Figure 2: Generations and real data heatmaps. The 10 000 generations and real data vectors displayed
are of size 99.

Figure 3: Evolution of FID* and KL scores by epoch. The two metrics are in coherence in terms of
models scores. The test score is computed between two subsets of the real data, and the noise score is
computed between the real data and a random Gaussian noise.

between two subsets of the real data, and the noise scores computed between the real data and a
random Gaussian noise.

We can observe that the GAN performs poorly compared to the other models and is unstable during
training, but sill has generally lower scores than the random noise. We can also observe that the two
metrics are coherent and give the same score ranking for all models. We notice that the Unbinded-
VAE model has better scores in the first epochs before being overrun by the BVAE, which is due to
the fact that for the Unbinded-VAE, the mask generation is already pretrained.

The most notable point is the improved performance of the BVAE against the Unbinded-VAE. This
fact shows that the learning of the ratios by the Ratio-VAE has a positive influence on the learning of
the mask by the Mask-VAE. Indeed, some parts of the mask might be more important than others.
For instance if a component’s ratio is always high when this component is present in the compound, a
good prediction of the mask for this component will be more valuable than a good mask prediction
for a component that always appears with small ratios.

"Expert Rules Agreement" score. Looking at the ERA score is even more instructive. We observe
that only the Unbinded-VAE and the BVAE models provide generated data that match all the rules that
a rubber compound must at least verify to be considered plausible. It means that the data produced
by the GAN and the Vanilla VAE would not be considered as valid rubber compound by experts.
This highlights one limitation of the FID* and the KL divergence. Indeed, according to these metrics
Vanilla VAE was close from the two others but as shown here, only 1% of the data generated can be
considered as realistic.
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Figure 4: Evolution of the ERA scores by epoch. The BVAE is able to get closer to the real data
score, whereas the GAN and Vanilla VAE perform very poorly with a 0% score for the GAN.

4 Conclusion

The poor performances of standard generative models like GANs or VAEs applied to industrial
material generations such as rubber compound, makes them unusable and not very popular amongst
industrial experts. This work proposes a VAE-based generative model able to overcome the difficulties
encountered by standard generative models, and to generate plausible industrial compound-like data.
We believe that this work should contribute to the popularization of deep generative methods in the
industry, and demonstrates the potential that these methods can bring to this field.
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A Appendices

A.1 Architectures and hyper-parameters

Hyper-parameter Mask-VAE Ratio-VAE Vanilla VAE GAN
Latent dimension 64 32 128 1024
Learning rate 0.001 0.01 0.001 0.001
λ 1 10 - -
γ 5 only concerns the BVAE - -
β 10 only concerns the BVAE - -

Table 1: Selected hyper-parameters. Exceptionally for the GAN’s latent dimension we went up to
1024, exceeding the gridsearch rang limit due to its poor generations quality.

Model Layer size Activation

Encoder

512 Relu
1024 Relu
256 Relu
2×latent dim Linear

Decoder

512 Relu
1024 Relu
256 Relu
99 Sigmoid

Loss function LVAE for the Vanilla VAE and LVAEM for Mask-VAE
Table 2: Vanilla VAE and Mask-VAE architecture

Model Layer size Activation

Encoder
256 Relu
256 Relu
2×latent dim Linear

Decoder 256 Relu
256 Relu
99 Sigmoid

Loss function LVAER

Table 3: Ratio-VAE architecture

Model Layer size Activation

Generator

512 LeakyReLU(α=0.2)
1024 LeakyReLU(α=0.2)
256 LeakyReLU(α=0.2)
99 Linear

Discriminator

512 LeakyReLU(α=0.2)
1024 LeakyReLU(α=0.2)
256 LeakyReLU(α=0.2)
1 Sigmoid

Loss function BCE
Table 4: GAN architecture
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