
HAL Id: hal-04464740
https://hal.science/hal-04464740v2

Preprint submitted on 20 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mass-energy Scattering Criterion For Double Power
Schrödinger Equations

Thomas Duyckaerts, Phan van Tin

To cite this version:
Thomas Duyckaerts, Phan van Tin. Mass-energy Scattering Criterion For Double Power Schrödinger
Equations. 2024. �hal-04464740v2�

https://hal.science/hal-04464740v2
https://hal.archives-ouvertes.fr


Mass-energy scattering criterion for double power Schrödinger

equations

Thomas Duyckaerts and Phan Van Tin

Abstract. We consider the nonlinear Schrödinger equation with double power nonlinearity. We
extend the scattering result in [18] for all L2-supercritical powers, specially, our results adapt
to the cases of energy-supercritical nonlinearity.
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1. Introduction and main resuls

This article concerns the nonlinear Schrödinger (NLS) equation

i∂tu+∆u = |u|p0u− |u|p1u, (1.1)

in space dimension d ⩾ 1, where 4
d < p1 < p0.

The equation (1.1) has 3 conserved quantities: the mass,

M(u(t)) =

∫
Rd

|u(t, x)|2dx,



2 Thomas Duyckaerts and Phan Van Tin

the energy

E(u(t)) =

∫
Rd

|∇u(t, x)|2dx+
2

p0 + 2

∫
Rd

|u(t, x)|p0+2dx− 2

p1 + 2

∫
Rd

|u(t, x)|p1+2dx.

and the momentum

P (u(t)) = Im
∫
Rd

∇u(t, x)u(t, x) dx.

We recall that a solution of (1.1) with initial data in a Sobolev space Hs where the equation (1.1)
is well-posed is said to scatter in Hs forward in time when it is de�ned on [0,∞), and there exists
v0 ∈ Hs such that

lim
t→∞

∥∥eit∆v0 − u(t)
∥∥
Hs = 0.

Our goal is to give su�cient conditions of scattering for solutions of (1.1).
The equation (1.1) has stationary wave solutions, of the form eiωtQω, where Qω is a solution

of the equation

−∆φ = −|φ|p0φ+ |φ|p1φ− ωφ, (1.2)

see [20, Theorem 2] and references therein. It has positive solutions for some values of ω. More
precisely, there exists an explicit ω∗ (depending only on p0 and p1) such that for 0 < ω < ω∗, the
equation (1.2) has exactly one positive solution (up to translation) Qω ∈ (H1 ∩ L∞)(Rd), and no
such solution for ω ⩾ ω∗.

Some of these solutions are related to the minimization problem:

I(m) = inf
φ ∈ H1(Rd) ∩ Lp0+2(Rd)∫

Rd |φ|2 dx = m

E(u). (1.3)

(see [20, Theorem 6]). There is a critical mass mc such that for m ⩽ mc, I(m) = 0 and for m > mc,
I(m) < 0. The minimum is not attained for m < mc. In the case p1 >

4
d that we consider here,

the minimum is attained for m ⩾ mc by a positive, radial solution of (1.2), that we will denote by
Qω. The solution Qωc

corresponding to the mass mc has minimal mass among all solutions of the
family of equations (1.2).

Obviously, the stationary wave solutions do not scatter. Other examples of nonscattering solu-
tions are travelling waves that are exactly the Galilean transforms of stationary waves. According to
the soliton resolution conjecture, these stationary and travelling waves should be the only obstruc-
tion, leading to the conjecture that solutions with mass below mc scatter in both time directions.
A weaker result was proved in [18] in the case p0 = 4, p1 = 2, d = 3, namely that scattering holds
for solutions with mass M(u) ⩽ 4

3
√
3
m̃c, and with an additional bound on the energy in the range

of mass 4
3
√
3
m̃c < M(u) < mc. The goal of this article is to show that this picture is not speci�c

to the case studied in [18], but holds for all exponents 4
d < p1 < p0. We will rely on the work [20]

on the stationary problem (1.2), and on our previous article [10], where preliminary results were
obtained for a family of nonlinear Schrödinger equations that includes (1.1).

As in [18], we will use the standard compactness/rigidity scheme (as initiated in [14] for the
energy-critical problem). One of the key ingredient of this scheme is the positivity of the functional:

Φ(u) =

∫
|∇u|2 − dp1

2(p1 + 2)
|u|p1+2 +

dp0
2(p0 + 2)

|u|p0+2,

that appears in the virial identity

d

dt
Im
∫
x · ∇uu = 2Φ(u). (1.4)

In Section 3, we prove that there is a critical value m̃c ∈ (0,mc) such that Φ(u) > 0 for every
nonzero u such that M(u) < m̃c, and that for m̃c ⩽ M(u) < mc, we have Φ(u) > 0 with an
additional condition on the energy. Namely, let:

m̃c =

(
p0
p1

) p1d−4

2(p0−p1)
(

4

dp1

) d
2

mc. (1.5)

Then:
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Theorem 1.1. Assume 4/d < p1 < p0. There exists a nonincreasing function e(m): [0,mc) → (0,∞],
with e(m) = ∞ for 0 < m < m̃c, and e(m) ∈ (0,∞) for m̃c ⩽ m < mc, such that, letting

R :=

{
φ ∈ Hs0 ∩H1, 0 <

∫
|φ|2 < mc, E(φ) < e

(∫
|φ|2

)}
, (1.6)

where s0 = d
2 − 2

p0
, one has

∀u ∈ R, Φ(u) > 0.

The function e is strictly decreasing on [m̃c,mc] if d ∈ {1, 2, 3, 4} or p0 ⩽ 4
d−2 .

We next state our scattering results. Throughout of this paper, we will make the following
additional assumption on the exponent:

Assumption A. 4
d < p1 < p0 and for all j ∈ {1, 2}, ⌈s0⌉ < pj or pj is an even integer.1

This type of assumption is classical to ensure a minimal regularity of the nonlinearity, however
we have not tried to obtain the optimal conditions. It is certainly possible to improve this condition
using techniques as in [33].

We �rst consider the case where the higher order nonlinearity is energy-subcritical or energy-
critical, that is d = 1, 2 or d ⩾ 3 and p0 ⩽ 4

d−2 . Equivalently, the critical Sobolev exponent

s0 = d
2 − 2

p0
for the usual (NLS) equation with a single power nonlinearity

i∂tu+∆u = |u|p0u (1.7)

satis�es s0 ⩽ 1. We recall that this equation (1.7) is well-posed in H1 (see [12], [5]),
One can prove in this case that the equation is well-posed in H1. It follows from conservation

laws and the standard Gagliardo-Nirenberg inequality that all solutions of (1.1) are bounded in
H1. Using the well-posedness theory when s0 < 1, and a more re�ned argument ultimately relying
on the fact that all solutions of (1.7) scatter (see [7], [29] and [33]) for s0 = 1, one can deduce from
this bound that all solutions of (1.1) are global (see [34], [32]).

Theorem 1.2. Assume d = 1, 2, or d ⩾ 3 and p0 ⩽ 4
d−2 . Suppose that Assumption A holds. Let

u0 ∈ R. Then u is global and scatters in both time directions.

Theorem 1.2 was proved in the case d = 3, p0 = 4 (thus s0 = 1), p1 = 2 in [18]. See
also [32, Theorem 1.3] where a scattering result for small mass was obtained for general double
power-nonlinearities with s0 ⩽ 1.

We note that the ground state solution eitωcQωc
provides a non-scattering solution of (1.1)

which is bounded in the space Hs0 ∩H1, with mass mc. However, as in [18], the �rst critical mass
m̃c is not given by this minimal ground state mass, but by a multiple of it (corresponding to the
mass of a rescaled solution of (1.2)). It is not clear whether this restriction is due the method,
based on the positivity of Φ(u), or if there exists nonscattering, bounded solutions of (1.1) with
m̃c <

∫
|u0|2 < mc.

In the case s0 > 1, the equations (1.1) and (1.7) are no longer well-posed in H1, but rather
in the Sobolev space Hs0 (see [10, Section 2]), at least under Assumption A. The homogeneous

equation (1.7) is also well-posed in the homogeneous Sobolev space Ḣs0 (see [5] and [10, Remark
2.20]).

Furthermore the global well-posedness is not guaranteed. Indeed Merle, Raphaël, Rodnianski
and Szeftel [23] have constructed solutions of the homogeneous equation (1.7) for some values of
p0, d (with s0 > 1), that blow up in �nite time. It is very likely that such a phenomenon persists
in the case of a double power nonlinearity.

It is known however that for many values of p0 a solution of (1.7) that remains bounded in
the critical Sobolev space are global and scatter. We thus consider the following property:

Property 1.3. Let A0 ∈ (0,∞]. For any solution u of (1.7) with initial data in Ḣs0 , if

lim sup
t→T+(u)

∥u(t)∥Ḣs0 < A0. (1.8)

Then T+(u) = +∞ and u scatters for positive times in Ḣs0 , i.e. there exists v0 ∈ Ḣs0 such that

lim
t→∞

∥∥u(t)− eit∆v0
∥∥
Ḣs0

= 0.

1⌈s⌉ denotes the smallest integer number larger or equal s.
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Property 1.3 holds for small A0 by standard small data theory. It is conjectured that it
holds for A0 = ∞. It was proved [7], [29] and [33] in the case s0 = 1 (where the bound (1.8) is
automatically given by conservation of the energy). The study of Property 1.3 for other critical
exponents was initiated in [15] where it was proved when d = 3, p0 = 2 (thus s0 = 1/2), for radial
solutions. It was later proved in many other cases: see e.g. [19], [25], [22], [8] for s0 > 1 in dimension
d ⩾ 4 (with technical restriction if d ⩾ 7).

Theorem 1.4. Assume d ⩾ 3, p0 >
4

d−2 and Assumption A holds. Let A0 > 0 such that Property

1.3 holds. Let u be a solution of (1.1) such that u0 ∈ R and u satis�es (1.8). Then u is global and
scatters forward in time.

The proofs of Theorem 1.2 and 1.4 is by contradiction. One of the tool needed for this method
is a pro�le decomposition adapted to equation (1.1), which was constructed in [10] in a more general
context. Using this pro�le decomposition, one can show that if the scattering does not hold, there
exists a nonzero global solution uc, of (1.1) such that there exists x(t) such that

K = {uc(t, ·+ x(t)), t ∈ R}

has compact closure in Hs0 ∩H1, and ∀t, uc(t) ∈ R. The second step of the argument is to prove
that 0 is the only solution uc (with mass and energy in the considered domain) such that K de�ned
above has compact closure in H1 ∩Hs0 . For this we use a general rigidity results, proved in [10],
and that extends the standard rigidity result (see [14] for radial (NLS) equation, [9] for extension
to nonradial cases, and [18] for the cubic/quintic double power nonlinearity):

Proposition 1.5. With the assumptions above, let u be a solution of (1.1) de�ned on [0,∞) such
that there exists x(t) de�ned for t ∈ [0,∞) with

K = {u(t, x+ x(t)); t ⩾ 0} (1.9)

has compact closure in Hs0 ∩H1. Then

min
t⩾0

∣∣∣∣Φ(u(t))− |P (u)|2

M(u)

∣∣∣∣ = 0. (1.10)

To conclude the proof of Theorems 1.2 and 1.4, it remains to prove that

Φ(u)− |P (u)|2

M(u)
> 0,

for u ∈ R. This follows easily from Theorem 1.1 considering all the eix·ξ0u and optimizing in ξ0.
The mathematical study of (NLS) equation with a double-power nonlinearity was initiated

in [34], in dimension 3, where the author investigated the global well-posedness, scattering and
blow-up phenomena in the case p0 = 4. This includes in particular a scattering result for small
mass, in the spirit of Theorem 1.4, but without explicit mass. Similar results were obtained in [32],
in general dimension d in the energy-critical and supercritical setting s0 ⩽ 1. As already mentioned,
Theorem 1.4 was proved in [18] in the particular case d = 3, p0 = 4, p1 = 2. The scattering was
extended to a slightly larger region in [17]. In [26], the authors showed that solutions of a speci�c
(NLS) scatter in both time directions by giving a new radial pro�le decomposition.

The problem with p1 = 4
d , p0 <

4
d−2 was considered in [6], [27], where the author investigated

scattering below or at the mass of the ground-state for the mass-critical homogeneous equation.
See also [3] which considers the case (p0, p1) = (4, 2) in space dimensions 1, 2 and 3.

We conclude this introduction with an outline of the paper. In Section 2 we recall results
from [10] in the particular case of equation (1.1). This includes a well-posedness theory, as well as a
pro�le decomposition adapted to (1.1) and a quantitative version of Property 1.3. In Section 3, we
prove Theorem 1.1 on the positivity of the virial functional. In Section 4 we prove our scattering
results Theorems 1.2 and 1.4.

Acknowledgment

The second author is supported by Post-doc fellowship from Labex MME-DII: SAIC/2022 No
10078.
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2. Preliminaries

2.1. Cauchy theory

This section is concerned with the Cauchy and stability theory for the equation (1.1). We refer to
[10] for the proofs. We start with a few notations.

For each q ⩾ 1, we let q′ be the conjugate exponent given by 1
q + 1

q′ = 1.

If m is a complex valued function on Rd, we de�ne by m(∇) the Fourier multiplier with

symbol m(ξ), i.e. m̂(∇)u = m(ξ)û(ξ), where û is the Fourier transform of u. For a multi-index

α = (α1, α2, ..., αd), denote D
α = ∂α1

x1
· · · ∂αd

xd
and |α| =

∑d
i=1 |αi|.

If X is a vector space, (u, v) ∈ X2, we will make a small abuse of notation, denoting
∥(u, v)∥X = ∥u∥X + ∥v∥X .

We will consider the following function spaces:

S0(I) =


L∞ (I, L2(Rd)

)
∩ L2

(
I, L

2d
d−2 (Rd)

)
if d ⩾ 3

L∞ (I, L2(R2)
)
∩ Lq2

(
I, Lr2(R2)

)
if d = 2

L∞ (I, L2(R)
)
∩ L4 (I, L∞(R)) if d = 1,

where when d = 2, (q2, r2) is an admissible pair with q2 > 2 close to 2, and

N0(I) =


L1
(
I, L2(Rd)

)
+ L2

(
I, L

2d
d+2 (Rd)

)
if d ⩾ 3

L1
(
I, L2(R2)

)
+ Lq′2

(
I, Lr′2(R2)

)
if d = 2

L1
(
I, L2(R)

)
+ L4/3

(
I, L1(R)

)
if d = 1,

By Strichartz estimates ([31], [11] [13]),

∥u∥S0(I) ≲ ∥u0∥L2 + ∥f∥N0(I)

for any solution C0(I,R) of i∂tu+∆u = f on I ∋ 0 with initial data u0 at t = 0.
We also de�ne the following Strichartz spaces, and dual Strichartz spaces:

W 0(I) = L
2(2+d)

d

(
I × Rd

)
Z0(I) =

(
W 0(I)

)′
= L

2(d+2)
d+4 (I × Rd),

so that we have S0(I) ⊂W 0(I) and Z0(I) ⊂ N0(I) (with continous embedding). We denote

X(I) = L
p0(d+2)/2
t,x (I × Rd) ∩ Lp1(d+2)/2

t,x (I × Rd). (2.1)

For s ⩾ 0, we denote

∥u∥Ss(I) = ∥⟨∇⟩su∥S0(I) , ∥u∥Ṡs(I) = ∥|∇|su∥S0(I)

and de�ne similarly W s(I), Ẇ s(I), Ns(I), Ṅs(I), Zs(I) and Żs(I).
By Sobolev inequalities, Ss0(I) is continuously embedded in X(I).

De�nition 2.1. Let 0 ∈ I be an interval. By de�nition, a solution u to (1.1) on I, with initial data
in Hs0 is a function u ∈ C(I,Hs0) such that for all K ⊂ I compact, u ∈ Ss0(K) and u satis�es
the following Duhamel formula

u(t) = eit∆u0 − i

∫ t

0

ei(t−τ)∆g(u)(τ) dτ, (2.2)

for all t ∈ I, where g(u) = |u|p0u− |u|p1u.

Noting that the assumption p0 >
4
d implies p0(d + 2)/2 > 2 (and p0(d + 2)/2 ⩾ 6 if d = 1),

we can choose q0 such that (p0(d + 2)/2, q0) is an admissible pair. By Sobolev inequality and the
de�nitions of s0, q0, one can check

∥u∥
L

p0(d+2)
2

x

≲ ∥|∇|s0u∥Lq0 (2.3)

and thus

∥u∥
L

p0(d+2)
2 (I×Rd)

≲ ∥|∇|s0u∥S0(I), ∥u∥X(I) ≲ ∥u∥Ss0 (I). (2.4)

The following local well-posedness statement is contained in [10, Section 2]. See in particular
Proposition 2.12, Remarks 2.13, 2.14 and 2.15 and Lemma 2.16 there:
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Theorem 2.2. Let u0 ∈ Hs0 . Let p0, p1 such that Assumption A holds. Then there exists a unique
maximal solution of u to (2.2), de�ned on an interval (T−, T+) ∋ 0, such that for any interval I
such that I ⊂ (T−, T+), one has u ∈ Ss0(I). Furthermore we have the following:

• T+ <∞ =⇒ u /∈ X([0, T+)).
• If u ∈ X([0,∞)), then u scatters as t→ ∞.

Remark 2.3. Let I be an interval such that 0 ∈ I. If
∥∥ei·∆u0∥∥X(I)

< δ is small enough, then u is

de�ned on I. By Strichartz,
∥∥ei·∆u0∥∥X(R) ≲ ∥u0∥Hs0 < ∞ which implies local well posedness of

(2.2).

We next state the existence of wave operators for equation (1.1):

Proposition 2.4. Let u0 ∈ Hs0 . Let p0, p1 such that Assumption A holds. Let v0 ∈ Hs0 and
vL(t) = eit∆v0. Then there exist a unique solution u ∈ C0((T−(u),∞), Hs0) of (1.1) such that

lim
t→∞

∥u(t)− vL(t)∥Hs0 = 0.

We recall the following long time perturbation theory:

Theorem 2.5. (see [10][Theorem 2.19]) Let A > 0. There exists constants ε(A) ∈ (0, 1], C(A) > 0
with the following properties. Let 0 ∈ I be an compact interval of R and w be a solution of the
following equation

Lw = g(w) + e,

and u0 ∈ Hs0 such that

∥w0∥Hs0 + ∥w∥X(I) ⩽ A, ∥e∥Ns0 (I) + ∥u0 − w(0)∥Hs0 = ε ⩽ ε(A).

Then the solution u of (1.1) with initial data u0 is de�ned on I and satis�es

∥u− w∥Ss0 (I) ⩽ C(A)ε, ∥u∥Ss0 (I) ⩽ C(A). (2.5)

Remark 2.6. The analog of Theorem 2.2 for the equation (1.7) where all the spaces are replaced
by homogeneous spaces hold. Precisely, in the statement of Theorem 2.2, one can replace X(I) by

L
p0(d+2)

2 (I × Rd), Hs0 by Ḣs0 , Ss0(I) by Ṡs0(I).

2.2. Pro�le decomposition

In this subsection we recall results on pro�le decomposition for the linear Schrödinger equation

i∂tuL +∆uL = 0. (2.6)

and the nonlinear Schrödinger equation (1.1). Pro�le decompositions for Schrödinger equations go
back to [24] (see also, among other works, [16], [1] and [30]). Here, we follow the theory developed in
Section 3 of our previous article [10] which is adapted to nonlinearities of the form ±|u|p0u+ l.o.t..

We start by recalling the pro�le decomposition for sequences of solutions of (2.6) such that
the corresponding of initial data is bounded in Hs0 . We denote by uL(t) = eit∆u0 the solution to
this equation, with initial data uL(0) = u0 ∈ Hs0

De�nition 2.7. A linear Hs0-pro�le, in short pro�le, is a sequence (φLn)n, of solutions of (2.6), of
the form

φLn(t, x) =
1

λ
2
p0
n

φL

(
t− tn
λ2n

,
x− xn
λn

)
, (2.7)

where φL is a �xed solution of (2.6) and Λn = (λn, tn, xn)n is a sequence in (0, 1]×R×Rd (called
sequence of transformations) such that

lim
n→∞

−tn
λ2n

= τ ∈ R ∪ {±∞}. (2.8)

De�nition 2.8. We say that two sequence of transformations Λn = (λn, tn, xn) andMn = (µn, sn, yn)
are orthogonal when they satisfy

lim
n→∞

|tn − sn|
λ2n

+
|xn − yn|

λn
+

∣∣∣∣log(λnµn

)∣∣∣∣ = ∞.

We say that two Hs0 -pro�les are orthogonal when one of the two pro�les is identically 0 or when
the corresponding sequences of transformations are orthogonal.
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Let q0 = 2d
d−2s0

= d
2p0 be the Lebesgue exponent such that the Sobolev embedding Ḣs0 ⊂ Lq0

holds. Then we have:

Proposition 2.9. For any bounded sequence (u0,n)n in Hs0 , there exists a subsequence (that we still

denote by (u0,n)n), a sequence
((
φj
Ln

)
n

)
j⩾1

of Hs0 pro�les such that

lim
J→∞

lim sup
n→∞

∥∥wJ
Ln

∥∥
X(R) +

∥∥|∇|s0wJ
Ln

∥∥
W 0(R) + ∥wJ

Ln∥L∞Lq0 = 0, (2.9)

where

wJ
Ln = uLn −

J∑
j=1

φj
Ln, (2.10)

uL,n = eit∆u0,n. Furthermore, we have the Pythagorean expansions:

∀J ⩾ 1, ∥u0,n∥2Ḣs0
=

J∑
j=1

∥∥∥φj
L(0)

∥∥∥2
Ḣs0

+
∥∥wJ

Ln(0)
∥∥2
Ḣs0

+ o(1), n→ ∞ (2.11)

∀J ⩾ 1, ∥u0,n∥2Ḣs =
∑

j∈JNC
1⩽j⩽J

∥∥∥φj
L(0)

∥∥∥2
Ḣs

+
∥∥wJ

Ln(0)
∥∥2
Ḣs + o(1), n→ ∞; 0 ⩽ s < s0. (2.12)

We say that the sequence
(
(φj

Ln)n

)
j⩾1

is a pro�le decomposition of (uLn)n

See De�nition 3.4, Proposition 3.5, Lemma 3.7 in [10], and also Remark 3.10 there for the
Pythagorean expansion (2.12). The norm X(R) does not appear in the analog of (2.9) in [10] (see
(3.5) there). The fact that this norm also goes to 0 follows from the boundedness of the sequence
(u0,n)n is bounded in Hs0 and Strichartz estimates.

We next construct a nonlinear analog, adapted to the equation (1.1), of the preceding pro�le
decomposition. With the notations of Proposition 2.9, extracting subsequences if necessary, we see
that for all j, one of the following holds:

• φj
L ≡ 0. In this case we say that (φj

Ln)n is a null pro�le, and denote j ∈ J0.

• φj
L ̸≡ 0 and limn→∞ λjn = λj ∈ (0, 1]. In this case we say that (φj

Ln)n is a non-concentrating

pro�le, and denote j ∈ JNC . We have φj
0 = φj

L(0) ∈ Hs0 . Rescaling, we see that we can
assume λj = 1. As a consequence, we can assume λjn = 1 for all n.

• φj
L ̸≡ 0 and limn→∞ λjn = 0. In this case we say that (φj

Ln)n is a concentrating pro�le, and
denote j ∈ JC .

Remark 2.10. If the sequence (u0,n)n is bounded in Hs for some s > s0, then JC = ∅.

Remark 2.11. Let 2 < q < q0 = 2d
d−2s0

, and

τ j = lim
n→∞

−tjn
(λjn)2

. (2.13)

Extracting subsequences and translating the pro�les in time, we can assume τ j ∈ {0,±∞}. Then
if τ j ∈ {±∞} or j ∈ JC

lim
n→∞

∥φj
Ln(0)∥Lq = 0. (2.14)

Furthermore, we have the following expansion:

lim
n→∞

∥u0,n∥qLq =
∑

j∈JNC

τj=0

∥φj
L(0)∥

q
Lq .

To each (linear) pro�le φj
Ln, we associate a nonlinear pro�le φj

n and a modi�ed nonlinear pro�le
φ̃j
n in the following way:

• If j ∈ J0, φ̃
j
n and φj

n are both equal to the constant null function.
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• If j ∈ JNC , the modi�ed nonlinear pro�le and the nonlinear pro�le are equal, and de�ned by

φ̃j
n(t, x) = φj

n(t, x) = φj
(
t− tjn, x− xjn

)
,

where φj is the unique solution of (1.1) such that

lim
t→τj

∥∥∥φj(t)− φj
L(t)

∥∥∥
Hs0

= 0, τ j = lim
n→∞

−tjn. (2.15)

• If j ∈ JC , the nonlinear pro�le φ
j
n is de�ned by

φj
n(t, x) =

1

(λjn)
2
p0

φj

(
t− tjn

(λjn)2
,
x− xjn

λjn

)
(2.16)

where φj is the unique solution of the homogeneous equation (1.7) such that

lim
t→τj

∥∥∥φj(t)− φj
L(t)

∥∥∥
Ḣs0

= 0, τ j = lim
n→∞

−tj,n
(λjn)2

.

To de�ne the modi�ed pro�le, we �x σj in the maximal interval of existence of φj (if τ j is
�nite, we can take σj = τ j , if τ j = ±∞, |σj | large and with the same sign than τ j). We let

sjn = (λjn)
2σj + tjn

and denote by φ̃j
n the solution of (1.7) such that

φ̃j
n(s

j
n) = χ

(
x− xjn

)
φj
n(s

j
n) = χ

(
x− xjn

) 1

(λjn)
2
p0

φj

(
σj ,

x− xjn

λjn

)
, (2.17)

where χ ∈ C∞
0 (RN ) is radially symmetric, χ(x) = 1 for |x| < 1, χ(x) = 0 for |x| > 2.

When j ∈ JC , the modi�ed pro�les φ̃j
n are close to the pro�les φj

n in Ḣs0 ,

Lemma 2.12. Let j ∈ JC . Then

lim
n→∞

∥∥φ̃j
n(0)− φj

n(0)
∥∥
Ḣs0

= 0. (2.18)

These modi�ed pro�les are also approximate solutions of (1.1) (see Lemma 3.13 in [10]).
We next give an approximation result. We let w̃J

L,n be the solution of the linear wave equation
with initial data

w̃J
L,n(0) = u0,n −

J∑
j=1

φ̃j
n(0). (2.19)

One can prove that for all s with 0 < s ⩽ s0,

lim
J→∞

lim sup
n→∞

∥∥w̃J
L,n

∥∥
X(R) +

∥∥w̃J
L,n

∥∥
Ẇ s(R) = 0.

Then we have:

Theorem 2.13 (Approximation by pro�les). Let (u0,n)n be a sequence bounded in Hs0 that admits a

pro�le decomposition
(
(φj

Ln)n

)
j
. Let φj

n, φ̃
j
n and w̃J

L,n be as above. Let In be a sequence of intervals

such that 0 ∈ In, and assume that for each j ⩾ 1, for large n, 0 ∈ In ⊂ Imax(φ
j
n),

j ∈ JC =⇒ lim sup
n→∞

∥∥|∇|s0φj
n

∥∥
S0(In)

<∞, (2.20)

j ∈ JNC =⇒ lim sup
n→∞

∥∥φj
n

∥∥
Ss0 (In)

<∞. (2.21)

Let un be the solution of (1.1) with initial data u0,n. Then for large n, In ⊂ Imax(un),

un(t) =
∑

1⩽j⩽J

φ̃j
n(t, x) + w̃J

L,n(t) + rJn(t), t ∈ In,

with

lim sup
n→∞

∥un∥Ss0 (In) <∞

and

lim
J→∞

lim sup
n→∞

∥∥rJn∥∥Ss0 (In)
= 0. (2.22)
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We will also need the fact that Pythagorean expansions of the Sobolev norms hold in the
setting of the preceding Theorem:

Lemma 2.14. With the same assumptions and notations as in Theorem 2.13, if (tn)n is a sequence
of time with tn ∈ In for all time, then for all J ⩾ 1,

∥un(tn)∥2Ḣs0
=

J∑
j=1

∥φ̃j
n(tn)∥2Ḣs0

+ ∥w̃J
n(tn)∥2Ḣs0

+ oJ,n(1),

where limJ→∞ lim supn→∞ oJ,n(1) = 0. Furthermore, for all s with 0 ⩽ s < s0,

∥un(tn)∥2Ḣs =
∑

1⩽j⩽J
j∈JNC

∥φ̃j
n(tn)∥2Ḣs + ∥w̃J

n(tn)∥2Ḣs + oJ,n(1),

2.3. A uniform bound on the scattering norm

We recall here [10, Proposition 4.1], which gives a quantitative version of Property 1.3. The proof
uses pro�le decomposition:

Proposition 2.15. Let p0 >
4
d , s0 = d

2 − 2
p0
. Assume Property 1.3. Then for all A ∈ (0, A0), there

exists F(A) > 0 such that for all interval 0 ∈ I, for all solution u ∈ C0(I, Ḣs0) of (1.7) such that

sup
t∈I

∥u(t)∥Ḣs0 ⩽ A (2.23)

we have
∥u∥Ṡs0 (I) ⩽ F(A). (2.24)

2.4. Global well posedness

Using Proposition 2.15, we obtain that if Property 1.3 holds then solutions satisfying (1.8) is global
forward in time. More precisely, we have the following result:

Theorem 2.16. (see [10, Theorem 1.2]) Let p0 >
4
d , s0 = d

2 −
2
p0
. Suppose that Assumption A holds.

Assume Property 1.3. Let u be a solution of (1.1), with initial data in Hs0 , such that (1.8) holds.
Then T+(u) = ∞.

3. Variational properties

In this section, we �x d ⩾ 1 and consider a nonlinearity g of the form

g(u) = |u|p0u− |u|p1u,

with 4
d < p1 < p0, such that d

2 − 2
p0

= s0 ⩾ 1. We also assume that p0 and p1 are even integers, or

that ⌈s0⌉ ⩽ p1.
We recall the de�nition of the energy and the virial functional:

E(u) =

∫
Rd

|∇u|2 − 2

p1 + 2
|u|p1+2 +

2

p0 + 2
|u|p0+2 dx,

Φ(u) =

∫
Rd

|∇u|2 − dp1
2(p1 + 2)

|u|p1+2 +
dp0

2(p0 + 2)
|u|p0+2 dx,

In this subsection, we prove positivity properties of E and Φ in some subsets of Hs0 , see Theorems
3.2, Corollary 3.5 and Theorem 3.3 below. These properties are obtained essentially as consequences
of [20].

3.1. Preliminaries

As in [20], we have the following Gagliardo-Nirenberg inequality

∥u∥p1+2
p1+2 ⩽p1,p0,d ∥u∥p1−θp0

L2 ∥∇u∥2(1−θ)
L2 ∥u∥θ(p0+2)

p0+2 , (3.1)

where

θ =
p1 − 4

d

p0 − 4
d

∈ [0, 1).

We note that this implies the following:
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Claim 3.1. Let u ∈ H1(Rd) ∩ Lp0+2(Rd) be such that M(u) = m > 0 and Φ(u) = 0 Then,

∥∇u∥22 ≳d,p1,p0,m 1.

Proof. Using Φ(u) = 0 and Gagliardo-Nirenberg inequality (3.1), we have

dp0
2(p0 + 2)

∥u∥p0+2
p0+2 + ∥∇u∥22 =

dp1
2(p1 + 2)

∥u∥p1+2
p1+2 ≲d,p1,p0,m ∥∇u∥2(1−θ)

2 ∥u∥θ(p0+2)
p0+2 .

Thus, ∥u∥p0+2
p0+2 ≈ ∥u∥p1+2

p1+2 ≈ ∥∇u∥22. If p1 <
4

d−2 then

∥u∥p1+2 ≲ ∥u∥
1− dp1

2(p1+2)

2 ∥∇u∥
dp1

2(p1+2)

2 .

Then,

∥∇u∥22 ≈ ∥u∥p1+2
p1+2 ≲ ∥∇u∥

dp1
2

2 .

It implies that ∥∇u∥2 ≳d,p1,p0,m 1 since p1 > 4/d.
If p1 = 4

d−2 then

∥∇u∥
2

p1+2

2 ≲ ∥u∥p1+2 ≲ ∥∇u∥2 .
It implies that ∥∇u∥2 ≳d,p1,p0,m 1.
If p1 >

4
d−2 then

∥u∥p1+2 ≲ ∥u∥θ2d
d−2

∥u∥1−θ
p0+2 ≲ ∥∇u∥θ2 ∥u∥

1−θ
p0+2 ,

where θ ∈ (0, 1) satis�es
1

p1 + 2
=

θ

2d/(d− 2)
+

1− θ

p0 + 2
.

Thus,

∥∇u∥
2

p1+2

2 ≲ ∥∇u∥θ2 ∥∇u∥
2(1−θ)
p0+2

2 .

We see that 2
p1+2 < θ + 2(1−θ)

p0+2 . Thus, ∥∇u∥2 ≳d,p1,p0,m 1. This completes the proof. □

De�ne
I(m) = inf

u ∈ H1(Rd) ∩ Lp0+2(Rd)∫
Rd |u|2 dx = m

E(u).

The following Theorem is essentially contained in [20].

Theorem 3.2. Let d ⩾ 1 and p0 > p1 >
4
d . The function m 7→ I(m) is concave non-increasing over

[0,∞). There exists mc > 0 such that it satis�es

� I(m) = 0 for all 0 ⩽ m ⩽ mc,
� m 7→ I(m) is negative and strictly decreasing on (mc,∞).

The problem I(m) admits at least one positive, radial, decreasing minimizer u for every m ⩾ mc.
Any minimizer u solves the Euler-Lagrange equation

−∆u = −up0+1 + up1+1 − ωu, (3.2)

for some ω ∈ (0, ω∗), hence must be equal to Qω, where ω∗, Qω are de�ned in the introduction. The
minimizer in the case m = mc is an optimizer for the Gagliardo-Nirenberg inequality (3.1).

The in�mum is not attained for m < mc.
For 0 < m < mc, there exists δ(m) > 0 such that for any u ∈ H1(Rd) ∩ Lp0+2(Rd) such that∫

Rd |u|2 dx = m < mc, one has E(u) ⩾ δ(m)∥∇u∥22.
For each minimizer u of the problem I(m) satis�es the Pohozaev identity: Φ(u) = 0.

Proof. In the case d ⩾ 2, this is [20, Theorem 6], except for the claim that there exists δ(m) such
that E(u) ⩾ δ(m)∥∇u∥22 if

∫
|u|2dx = m < mc. To prove this point, we let v(x) = u(βx), where

βd = m
mc

< 1. Then
∫
|v|2 = mc and E(v) = mc

m ((β2 − 1) ∥|∇u|∥22 + E(u)). Since E(v) ⩾ 0, we

obtain E(u) ⩾ (1− β2) ∥∇u∥22.
Let u be a minimizer of I(m). Then u solves the following Euler-Lagrange equation:

−∆u = −|u|p0u+ |u|p1u− λu,

for some λ ∈ R. By Claim A.1, we have Φ(u) = 0.
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It remains to consider the case d = 1. The existence and uniqueness of solution for elliptic
equation (3.2) are proved in [2], [21, Proposition 2.1], [4, Theorem 8.1.4]. Thus, we only need to
show the existence of such mc in the case d = 1. It is classical that I is non-positive and non-
increasing. We show that I is continuous on (0,∞). Indeed, as in [20, Proof of Theorem 6], we can
rewrite

I(m) = mJ(m−2),

where
J(λ) := inf

u ∈ H1(R) ∩ Lp0+2(R)∫
R |u|2 dx = 1

Hλ(u),

where

Hλ(u) :=
λ

2

∫
|∂xu|2 +

1

p0 + 2

∫
|u|p0+2 − 1

p1 + 2

∫
|u|p1+2.

It su�ces to show that J is continuous on (0,∞). Let λ ∈ (0,∞) and λn → λ as n → ∞. Let
un be such that M(un) = 1, J(λn) + 2−n ⩾ Hλn

(un). It is clear that un is uniformly bounded in
H1(R) ∩ Lp0+2(R). Thus, for n large,

J(λn) + 2−n ⩾ Hλn
(un) ⩾ Hλ(un) + o(1) ⩾ J(λ) + o(1)

which implies that
J(λ) ⩽ lim inf

n→∞
J(λn).

Thus, it su�ces to show that
J(λ) ⩾ lim sup

n→∞
J(λn).

Let ε > 0, u ∈ H1(R) ∩ Lp0+2(R) be such that M(u) = 1, J(λ) ⩾ Hλ(u)− ε. We have, for n large
enough,

J(λ) ⩾ Hλ(u)− ε = Hλn(u)− ε+ o(1) ⩾ J(λn)− ε+ o(1),

which implies the desired result, letting n→ ∞ then ε→ 0.

Next, we show that there exists mc > 0 such that I(mc) = 0. We argue by contradiction.
Assume that I(m) < 0 for all m > 0. We �x m > 0 close to 0 and consider a minimizing sequence
(un)n, with un ∈ H1(R),

∫
|un|2 = m and limnE(un) = I(m). Using Schwarz rearrangement we

can assume un nonnegative, even, and decreasing for x > 0. By the inequality up0+2+Cu2 ⩾ up1+2,
we see that (un)n is bounded in H1. Extracting subsequences, we can assume that (un)n converges
weakly to some u ∈ H1. The convergence is strong in Lp0+2 ∩ Lp1+2. Thus

E(u) ⩽ I(m), m′ =

∫
|u|2 ⩽ m

Since I is nonincreasing, we deduce that I(m′) ⩽ E(u) ⩽ I(m) ⩽ I(m′). Thus u is a minimizer for
I(m′). If m′ = 0, then the equality I(m) = I(m′) = 0 shows that I = 0 close to 0 and we are done.
If m′ > 0, u is a positive minimizer of I(m′). Let ω be the associated Lagrange multiplier. Then
ω ∈ (0, ω∗) and

∂xxu− up0+1 + up1+1 − ωu = 0.

This implies that ∫
|∂xu|2 + ω

∫
|u|2 =

∫
|u|p1+2 −

∫
|u|p0+2. (3.3)

where all integrals take over the real line. By the Gagliardo-Nirenberg type inequality (3.1) and
since m′ ⩽ m, we have ∫

|u|p1+2 ⩽ Cm
p1−θp0

2 ∥∂xu∥2(1−θ)
L2 ∥u∥θ(p0+2)

Lp0+2 .

Combining with Young's inequality aθb1−θ ⩽ θa+ (1− θ)b, we obtain∫
|u|p1+2 ⩽

1

2

∫
|u|p0+2 + Cm

p1−θp0
2(1−θ)

∫
(∂xu)

2.

With (3.3), we deduce ∫
|∂xu|2 ⩽ Cm

p1−θp0
2(1−θ)

∫
(∂xu)

2 − 1

2

∫
|u|p0+2.



12 Thomas Duyckaerts and Phan Van Tin

This gives a contradiction if m is small enough. Hence, there exists mc > 0 such that I = 0 on
(0,mc) and I(m) < 0 if m > mc. It remains to prove that I is strictly decreasing on (mc,∞).
Assume by contradiction that there exist mc < m1 < m2 such that I(m1) = I(m2).

Letm ∈ (m1,m2) and un be a minimizer sequence of I(m). We can assume that un is positive,
radial, decreasing. It is classical that un is uniformly bounded in H1(R) ∩ Lp0+2(R) and hence un
converges weakly to u in H1(R) and strongly in Lq for each q ∈ (2,∞). Thus,

E(u) ⩽ lim inf
n→∞

E(un) = I(m),

M(u) ⩽ lim inf
n→∞

M(un) = m,

and hence, u is a minimizer of the following problem

inf{E(v) : v ∈ H1(R) ∩ Lp0+2(R),M(v) ∈ (0,m2)}.

Thus, u is a critical point of E:

∂xxu− up0+1 + up1+1 = 0.

This shows that ∫
|∂xu|2 =

∫
|u|p1+2 −

∫
|u|p0+2,

−
∫

|∂xu|2 =
2

p1 + 2

∫
|u|p1+2 − 2

p0 + 2

∫
|u|p0+2.

Hence,

p1 + 4

p1 + 2

∫
|u|p1+2 =

p0 + 4

p0 + 2

∫
|u|p0+2,

2

∫
|∂xu|2 =

p1
p1 + 2

∫
|u|p1+2 − p0

p0 + 2

∫
|u|p0+2

=

∫
|u|p0+2 4p1 − 4p0

(p0 + 2)(p1 + 2)
< 0,

which gives a contradiction. Hence, I is strictly decreasing on (mc,∞) and the proof is completed.
□

Recall from (1.5) the de�nition of m̃c. In the remainder of this subsection, we will prove:

Theorem 3.3. There exists a nonincreasing function e : (0,mc) → [0,∞] such that e(m) = ∞ if
0 < m < m̃c, and, for all u ∈ H1(Rd)∩Lp0+2(Rd) such thatM(u) = m ∈ (0,mc), 0 < E(u) < e(m),
one has

Φ(u)− |P (u)|2/M(u) > 0.

Remark 3.4. If d ∈ {1, 2, 3, 4} or d ⩾ 5 and p0 ⩽ 4
d−2 , the function e is strictly decreasing on

[m̃c,mc]. The case d ⩾ 5, p0 >
4

d−2 is open.

3.2. Positivity of virial functional below critical mass

De�ne

Ĩ(m) = inf
u ∈ H1(Rd) ∩ Lp0+2(Rd)∫

Rd |u|2 dx = m

Φ(u).

Let u ∈ H1(Rd) ∩ Lp0+2(Rd) and a, b > 0. De�ne

ua,b(x) = au(bx).

We have ∫
Rd

|ua,b(x)|2 dx = a2b−d

∫
Rd

|u|2 dx, E(ua,b) = a2b2−dEa,b(u),

where

Ea,b(u) :=

∫
Rd

|∇u|2 dx− 2

p1 + 2
ap1b−2

∫
Rd

|u|p1+2 dx+
2

p0 + 2
ap0b−2

∫
Rd

|u|p0+2 dx.
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We have

I(m) = inf
u ∈ H1(Rd) ∩ Lp0+2(Rd)∫

Rd |ua,b(x)|2 dx = m

E(ua,b) = a2b2−d inf
u ∈ H1(Rd) ∩ Lp0+2(Rd)∫

Rd |u|2 dx = ma−2bd

Ea,b(u),

for all a, b > 0.
We chose a = a0, b = b0 such that

2

p1 + 2
ap1

0 b
−2
0 =

dp1
2(p1 + 2)

,
2

p0 + 2
ap0

0 b
−2
0 =

dp0
2(p0 + 2)

,

that is

a0 =

(
p0
p1

) 1
p0−p1

, b20 =
4

dp1

(
p0
p1

) p1
p0−p1

.

By the de�nition of a0, b0, Ea0,b0 ≡ Φ. By the above, we have

I
(
a20b

−d
0 m

)
= a20b

2−d
0 inf

u ∈ H1(Rd) ∩ Lp0+2(Rd)∫
Rd |u|2 dx = m

Φ(u) = a20b
2−d
0 Ĩ(m).

De�ne m̃c = (a20b
−d
0 )−1mc.

We have

m̃c < mc ⇔ a20 > bd0 ⇔
(
p0
p1

) 2
p0−p1

>

(
4

dp1

) d
2
(
p0
p1

) dp1
2(p0−p1)

⇔
(
p0
p1

) p1
p0−p1

<

(
dp1
4

) dp1
dp1−4

m̃c < mc ⇐⇒ f1

(
p0 − p1
p1

)
< f2

(
dp1
4

)
, (3.4)

where f1(x) = (1 + x)
1
x and f2(x) = x

x
x−1 . We see that f1 is strictly decreasing on (0,∞) and f2

is strictly increasing on (1,∞). Thus,

f1

(
p0 − p1
p1

)
< lim

x→0
f1(x) = e = lim

x→1
f2(x) < f2

(
dp1
4

)
Then, (3.4) holds when p0 > p1 > 4/d, and m̃c < mc.

From Theorem 3.2, we have the following result.

Corollary 3.5. Let d ⩾ 1 and p0 > p1 >
4
d . The function m 7→ Ĩ(m) is concave non-increasing over

[0,∞). It satis�es

� Ĩ(m) = 0 for all 0 ⩽ m ⩽ m̃c,

� m 7→ Ĩ(m) is negative and strictly decreasing on (m̃c,∞). The problem Ĩ(m) admits at least
one positive, radial, decreasing minimizer ũ for every m ⩾ m̃c.

For 0 < m < m̃c, there exists δ̃(m) such that for any u ∈ Lp0+2 ∩H1 with
∫
|u|2 = m,

Φ(u) ⩾ δ̃(m)∥∇u∥2L2 .

3.3. Positivity of virial functional below a critical energy, at �xed mass

As before, we assume 4
d < p1 < p0 and thus m̃c < mc. De�ne

IΦ(m) = inf
u ∈ H1(Rd) ∩ Lp0+2(Rd)
M(u) = m, Φ(u) = 0

E(u).

If there is no function u ∈ H1(Rd) ∩ Lp0+2(Rd) such that M(u) = m and Φ(u) = 0 then we let
IΦ = ∞.
De�ne

R = {(m, e) : 0 < m < mc, 0 < e < IΦ(m)}.
As in [18, Theorem 5.2], we have the following result.

Theorem 3.6. If (M(u), E(u)) ∈ R for some u ∈ H1(Rd) ∩ Lp0+2(Rd) then Φ(u) > 0.

• IΦ(m) = ∞ when 0 < m < m̃c.
• 0 < IΦ(m) <∞ when m̃c ⩽ m < mc.
• IΦ(m) = I(m) when m ⩾ mc.
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Moreover, IΦ(m) is nonincreasing as a function of m for m ⩾ m̃c.
If we further assume that d = 1, 2, 3, 4 or p0 ⩽ 4

d−2 , then the in�mum IΦ(m) achieved.

Moreover, in these cases, IΦ(m) is strictly decreasing and lower semicontinous on [m̃c,∞).

Before proving Theorem 3.6, we prove that it is equivalent to consider the minimum of E on
the set {Φ(u) = 0} and on the larger set {Φ(u) ⩽ 0}.

Lemma 3.7. Suppose u ∈ H1(Rd) ∩ Lp0+2(Rd) is not identically zero and that Φ(u) < 0 Then

there exists λ > 1 so that uλ(x) = λ
d
2 u(λx) obeys Φ(uλ) = 0 and E(uλ) < E(u). Note that

M(uλ) =M(u) and
∫
Rd |∇uλ|2 dx = λ2

∫
Rd |∇u|2 dx >

∫
Rd |∇u|2 dx.

Proof. By direct computation, we have

Φ(uλ) =
λ

2

dE(uλ)

dλ
= λ2

∫
Rd

|∇u|2 dx− dp1λ
dp1
2

2(p1 + 2)

∫
Rd

|u|p1+2 dx+
dp0λ

dp0
2

2(p0 + 2)

∫
Rd

|u|p0+2 dx. (3.5)

Suppose Φ(u) < 0. By (3.5), limλ→∞ Φ(uλ) = ∞. Thus, there exists λ > 1 such that Φ(uλ) = 0.
Let λ0 be smallest such λ. It implies that from (3.5), E(uλ) is decreasing on [1, λ0). Thus, E(uλ0) <
E(u). □

Lemma 3.8. ([18, Lemma 5.4]) Assume d = 1, 2 or d ⩾ 3 and p0 ⩽ 4
d−2 . Let m > 0 and u ∈ H1(Rd)

be such that 0 < M(u) < m, Φ(u) = 0. Then there exists v ∈ H1(Rd) satisfying: M(v) = m,
E(v) < E(u) and Φ(v) = 0.

Proof. The proof is similar as in [18][Lemma 5.4]. Remark that H1 ↪→ Lp0+2 since p0 ⩽ 4
d−2 . □

We divide the proof of Theorem 3.6 into three steps.

3.3.1. Finiteness. We argue as in [18, Proof of Theorem 5.2]. Assume u ∈ H1(Rd)∩Lp0+2(Rd) such
that (M(u), E(u)) ∈ R. If Φ(u) = 0 then by the de�nition of the function IΦ(λ), IΦ(M(u)) < E(u).
If Φ(u) < 0 then using Lemma 3.7, there exists uλ such that Φ(uλ) = 0 and E(uλ) < E(u). Thus,
IΦ(M(u)) = IΦ(M(uλ)) ⩽ E(uλ) < E(u). In all cases, this gives a contradiction with the de�nition
of R. Thus, Φ(u) > 0.

If M(u) = m < m̃c then by Theorem 3.2, Φ(u) > 0. Thus IΦ(m) = ∞.
If m̃c ⩽ m < mc. By Claim 3.1 and Theorem 3.2, IΦ(m) > 0. Let u ∈ H1(Rd)∩Lp0+2(Rd) be

such thatM(u) = m. By Corollary 3.5, there exists u0 ∈ H1(Rd)∩Lp0+2(Rd) such thatM(u0) = m

and Φ(u0) = Ĩ(m) ⩽ 0. We divide into two cases. If m = m̃c then Φ(u0) = Ĩ(m) = 0. This implies

that 0 < Iϕ(m) ⩽ E(u0) < ∞. If m̃c < m < mc then Φ(u0) = Ĩ(m) < 0. By Lemma 3.7, there

exists λ0 > 1 such that Φ(uλ0
0 ) = 0, E(uλ0

0 ) < E(u0), M(uλ0
0 ) = m. Combining all the above, we

have

0 < IΦ(m) ⩽ E(uλ0
0 ) < E(u0) <∞.

If m ⩾ mc then by Theorem 3.2, there exists u0 ∈ H1(Rd)∩Lp0+2(Rd) such thatM(u0) = m,
E(u0) = I(m) ⩽ 0. Since u0 is a minimizer of problem I(m), from Theorem 3.2, we have Φ(u0) = 0.
Thus, I(m) = IΦ(m) and IΦ(m) is achieved. Moreover, using Theorem 3.2, IΦ(m) is negative,
strictly decreasing on (mc,∞).

3.3.2. Monotonicity. We next prove that m 7→ Iϕ(m) is nonincreasing on [m̃c,mc]. Let m ∈
[m̃c,mc] and m′ > m such that m′ ⩽ mc. We will prove that for all ε > 0, there exists Uε ∈
H1 ∩ Lp0+2 such that M(Uε) = m′, Φ(Uε) ⩽ 0 and E(Uε) ⩽ Iϕ(m) + ε. Using Lemma 3.7, we see
that it would impliy Iϕ(m′) ⩽ Iϕ(m) + ε, and thus, letting ε goes to 0, Iϕ(m′) ⩽ Iϕ(m), which
yields that Iϕ is nonincreasing.

To prove the existence of Uε satisfying the desired property, we �rst consider a function
v ∈ H1 ∩ Lp0+2, given by the de�nition of Iϕ, such that

M(v) = m, Φ(v) = 0 and E(v) ⩽ Iϕ(m) +
ε

8
. (3.6)

We let vb(x) = v(bx), for some b < 1. Then∫
|vb|2 = b−d

∫
|v|2 = m+ o(1) as b→ 1. (3.7)
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Furthermore Φ(vb) = b−d
(
b2
∫
Rd |∇v|2 dx− dp1

2(p1+2)

∫
Rd |v|p1+2 dx+ dp0

2(p0+2)

∫
Rd |v|p0+2 dx

)
which

implies, using that Φ(v) = 0,

Φ(vb) = b−d(b2 − 1)

∫
|∇v|2 < 0, when b < 1. (3.8)

We also have
E(vb) = E(v) + o(1) as b→ 1. (3.9)

By (3.6), (3.7) and (3.9) one can choose b < 1 such that

M(vb) ⩽ m′, Φ(vb) < 0, E(vb) ⩽ Iϕ(m) +
ε

4
. (3.10)

If M(vb) = m′, we can take Uε = vb and we are done.
If M(vb) < m′, we �x ψ ∈ C∞

0 (Rd \ {0}) and M(ψ) = m′ −M(vb), and we let

ũλ(x) = vb(x) + λd/2ψ(λx), uλ =

√
m′

∥ũλ∥2
ũλ.

Then

lim
λ→0

∥ũλ∥22 =M(vb) +M(ψ) = m′ (3.11)

∥uλ∥22 = m′. (3.12)

Furthermore, since 4
d < p1 < p0,∑

j=0,1

lim
λ→0

∥ũλ − vb∥Lpj+2 + ∥∇(ũλ − vb)∥L2 = 0,

and thus, by (3.11) and the de�nition of uλ,∑
j=0,1

lim
λ→0

∥uλ − vb∥Lpj+2 + ∥∇(uλ − vb)∥L2 = 0,

which implies, using also (3.10),

lim
λ→0

Φ(uλ) = Φ(vb) < 0, lim
λ→0

E(uλ) = E(vb) ⩽ IΦ(m) +
ε

2
. (3.13)

By (3.13), we can choose λ large such that

Φ(uλ) ⩽ 0, E(uλ) ⩽ Iϕ(m) + ε.

Combining with (3.12) we see that Uε = uλ satis�es the desired properties.

3.3.3. Strict monotonicity. Now, we prove the last statement in Theorem 3.6. From Theorem 3.2
and IΦ(m) = I(m) for m ⩾ mc, we see that IΦ is strictly decreasing and achieved on [mc,∞).
Now, consider IΦ on [m̃c,mc]. Assume that d = 1, 2, 3, 4 or d ⩾ 5 and p0 ⩽ 4

d−2 .

We start by proving that Iϕ(m) is achieved. Note that it is already known in the casem = mc.
We thus assume m̃ ⩽ m < mc. We consider a minimizing sequence un for Iϕ(m):

Φ(un) = 0, E(un) ⩽ Iϕ(m) +
1

2n
,

∫
|un|2 = m.

Let vn be the symmetric decreasing rearrangement of un. Then

Φ(vn) ⩽ 0, E(vn) ⩽ E(un) ⩽ Iϕ(m) +
1

2n
,

∫
|vn|2 = m. (3.14)

Let

a = max
s⩾0

(
p1d

2(p1 + 2)
sp1 − p0d

2(p0 + 2)
sp0

)
∈ (0,∞).

Then

− p1d

2(p1 + 2)

∫
|vn|p1+2 +

p0d

2(p0 + 2)

∫
|vn|p0+2 + aM(vn) ⩾ 0,

and Φ(vn) ⩽ 0,
∫
|vn|2 = m imply

∫
|∇vn|2 ⩽ am. Thus vn is bounded in Ḣ1. Since Φ(vn) ⩽ 0,

using Gagliardo-Nirenberg inequality and the boundedness in L2, we deduce that vn is bounded in
H1 ∩ Lp0+2. Let v ∈ H1 ∩ Lp0+2 such that (after extraction)

vn
n→∞−−−−⇀ v weakly in H1 ∩ Lp0+2.
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Since vn is radial and a nonincreasing function of |x|, using Strauss Lemma, we obtain that the
convergence is strong in Lq, 2 < q < 2d

d−2 (for all 2 < q < ∞ if d = 1, 2). Also, since (vn)n is

bounded in Lp0+2, the convergence is strong in Lq for all 2 < q < p0 +2. In particular, it is strong
in Lp1+2. We thus obtain:

Φ(v) ⩽ lim inf
n

Φ(vn) ⩽ 0

E(v) ⩽ lim inf
n

E(vn) ⩽ Iϕ(m)

M(v) ⩽ lim inf
n

M(vn) ⩽ m.

By Lemma 3.7 and the fact that Φ(v) is nonpositive, we obtain E(v) ⩾ Iϕ(M(v)). Since by �3.3.2,
Iϕ is nonincreasing, we obtain

Iϕ(m) ⩽ Iϕ(M(v)) ⩽ E(v) ⩽ Iϕ(m),

which proves that all these quantities must be equal. Thus limnE(vn) = E(v), which shows that

vn converges strongly to v in Ḣ1 and in Lp0+2. Thus we have found v ∈ Lp0+2 ∩ H1 such that
Φ(v) ⩽ 0 and

E(v) = Iϕ(m) = Iϕ(M(v)), M(v) ⩽ m. (3.15)

Note that since m < mc, we have E(v) > 0 and thus v is not identically 0. By Lemma 3.7, we see
that we cannot have Φ(v) < 0. Thus

Φ(v) = 0 (3.16)

IfM(v) = m we are done. To conclude the proof that Iϕ(m) is attained, we will assumeM(v) < m
and obtain a contradiction.

First assume d ∈ {1, 2, 3, 4}. Denoting m′ =M(v) , we see by the above that Iϕ(m) = Iϕ(m′)
and since Iϕ is nonincreasing, we deduce

Iϕ(µ) = Iϕ(m), m′ ⩽ µ ⩽ m.

By the de�nition of Iϕ we obtain

E(v) = min
0<M(u)⩽m

Φ(u)=0

E(u). (3.17)

Since M(v) = m′ < m, we see that v is a minimum of E(u) with the sole constraint Φ(u) = 0.
Thus there exists a Lagrange multiplier α such that

−∆v − vp1+1 + vp0+1 = α

(
−∆v − dp1

4
vp1+1 +

dp0
4
vp0+1

)
. (3.18)

If α = 1, we obtain (
dp1
4

− 1

)
vp1+1 =

(
dp0
4

− 1

)
vp0+1,

which shows, since v ∈ H1, that v = 0, a contradiction.
If α ̸= 1, we see that v is a H1 solution of an equation of the form

−∆v + a1v
p1+1 + a0v

p0+1 = 0,

where (a0, a1) ∈ R2. Since we have assumed d ∈ {1, 2, 3, 4}, this proves again by Proposition A.2
that v = 0, a contradiction which concludes the proof if d ∈ {1, 2, 3, 4}.

We next assume that d ⩾ 5 and p0 ⩽ 4
d−2 . By Lemma 3.8, there exists ṽ ̸= 0 such that

M(ṽ) = m, Φ(ṽ) = 0 and E(ṽ) < E(v) = IΦ(m), this gives a contradiction to the de�nition of
IΦ(m). Thus, the achievement of IΦ(m) is proved.

Now, we prove IΦ(m) is strictly decreasing on [m̃c,mc]. Let m̃c ⩽ m1 < m2 ⩽ mc. Since
IΦ(m1) is achieved, let u ∈ H1(Rd) ∩ Lp0+2(Rd) be such that M(u) = m1, Φ(u) = 0, E(u) =
IΦ(m1). Assume that p0 ⩽ 4

d−2 . By Lemma 3.8, there exists ũ such that M(ũ) = m2, Φ(ũ) = 0,

E(ũ) < E(u) = IΦ(m1). Thus, by the de�nition of IΦ(m2), we have IΦ(m1) > IΦ(m2), which
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proves that IΦ is strictly decreasing on [m̃c,mc] in the case p0 ⩽ 4
d−2 . We next assume that

d ∈ {1, 2, 3, 4} and Iϕ(m1) = Iϕ(m2). Since I
ϕ(m) is nonincreasing on [m̃c,∞), we have

E(u) = min
0<M(v)⩽m2

Φ(v)=0

E(v).

Similarly as above, using Proposition A.2, we have u = 0, a contradiction which implies the desired
result.

Next, we prove that IΦ is lower semicontinuous on [m̃c,∞). Since, IΦ is nonincreasing, it
su�ces to show that IΦ is right continuous. We argue by contradiction, assume that there existsmn

decreasing to m with IΦ(m) > limn→∞ IΦ(mn). Let un be radial functions such thatM(un) = mn,
Φ(un) = 0, E(un) = IΦ(mn). We see that un is bounded in H1(Rd). Thus, un weakly converges
to v in H1(Rd) and strongly converges to v in Lp1+2(Rd). This implies that M(v) ⩽ m, Φ(v) ⩽ 0,
E(v) ⩽ limn→∞E(un) < IΦ(m). If Φ(v) = 0 then IΦ(m) ⩽ IΦ(M(v)) ⩽ E(v) < IΦ(m), which
gives a contradiction. If Φ(v) < 0 then by Lemma 3.7, there exists ṽ such that M(ṽ) =M(v) ⩽ m,
Φ(ṽ) = 0, E(ṽ) < E(v) < IΦ(m). Similar as the above, we gives a contradiction. This completes
the proof.

Proof of Theorem 3.3. For m ∈ (0,mc), let e(m) = IΦ(m). Theorem 3.6 implies that e(m) is
nonincreasing on (0,mc). For each u ∈ H1(Rd) ∩ Lp0+2(Rd) such that M(u) = m ∈ (0,mc) and

0 < E(u) < e(m), let ξ = P (u)
M(u) and uξ(x) = eixξu(x). We have M(uξ) = M(u) ∈ (0,mc) and

0 < E(uξ) = E(u)− |P (u)|2
M(u) ⩽ E(u) < e(m) ⩽ IΦ(m). Using Theorem 3.6, Φ(uξ) > 0. This implies

that

Φ(u)− |P (u)|2

M(u)
> 0.

This proves the desired result. □

4. Scattering

In this subsection, we conclude the proof of Theorem 1.4.

4.1. Proof of Theorem 1.4 in the energy-supercritical case

We prove here Theorem 1.4 in the case where s0 > 1.

We consider the set

R :=

{
φ ∈ Hs0 , 0 <

∫
|φ|2 < mc, E(φ) < e

(∫
|φ|2

)}
,

where mc, e are de�ned in Section 3.

We will prove Theorem 1.4 as a consequence of

Theorem 4.1. Suppose that Assumption A holds and that s0 > 1. Let A0 such that Property 1.3
holds. For η > 0, we denote

Rη =

{
φ ∈ Hs0 , 0 <

∫
|φ|2 ⩽ mc − η, E(φ) ⩽ R(φ)− η

}
,

where R(φ) = e
( ∫

|φ|2
)
. Then for all A ∈ (0, A0) there exists F(A, η) > 0 such that for any

interval I, for any solution u ∈ C0(I,Hs0) of (1.1) such that

∃t ∈ I, u(t) ∈ Rη and sup
t∈I

∥u(t)∥2
Ḣs0

+ η∥u(t)∥22 ⩽ A2, (4.1)

one has u ∈ Ss0(I) and ∥u∥Ss0 (I) ⩽ F(A, η).

Theorem 4.1 implies Theorem 1.4 by the scattering criterion of Theorem 2.2, the conservation
of the L2 norm and the fact that R = ∪η>0Rη.
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Proof of Theorem 4.1. We argue by contradiction, following the compactness/rigidity scheme as in
[14]. We �x η > 0 throughout the argument. In all the proof, we will endow Hs0 with the norm
de�ned by

∥u∥2Hs0 = ∥u∥2
Ḣs0

+ η∥u∥22. (4.2)

We will denote by P(A) the property that there exists F(A) such that for any interval I, for any
solution u ∈ C0(I,Hs0) such that (4.1) holds, one has u ∈ Ss0 and ∥u∥Ss0 (I) ⩽ F(A).

By the small data theory for (1.1), if A > 0 is small enough and ∥u(t)∥Hs0 ⩽ A for some
t ∈ Imax(u), then u is globally de�ned, scatters and ∥u∥Ss0 (R) ≲ A. This implies that P(A) holds
for small A > 0.

Thus if the conclusion of Theorem 4.1 does not hold, there exists Ac ∈ (0, A0) such that for all
A < Ac, P(A) holds, and P(Ac) does not hold, i.e. there exists a sequence of intervals ((an, bn))n,
a sequence (un)n of solutions of (1.1) on (an, bn),

un ∈ C0((an, bn), H
s0), ∃t ∈ In, un(t) ∈ Rη, lim

n→∞
sup

an<t<bn

∥un(t)∥Hs0 = Ac. (4.3)

and limn→∞ ∥un∥Ss0 ((an,bn)) = ∞. Time translating un, we can assume

an < 0 < bn, lim
n→∞

∥un∥Ss0 ((an,0)) = lim
n→∞

∥un∥Ss0 ((0,bn)) = +∞. (4.4)

We will prove

Claim 4.2. For any sequences (an)n, (bn)n with an < 0 < bn, for any sequence (un)n of solutions of
(1.1) satisfying (4.3), (4.4), there exist, after extraction of subsequences, a sequence (xn)n ∈ (Rd)N

and φ ∈ Hs0 such that

lim
n→∞

∥un(0, · − xn)− φ∥Hs0 = 0. (4.5)

We �rst assume the claim and conclude the proof of Theorem 4.1. By the claim, there exist
(after extraction of subsequences) φ ∈ Hs0 and (xn)n such that (4.5) holds. Let u be the solution
of (1.1) such that u(0) = φ. Since Rη is closed in Hs0 , we have φ ∈ Rη.

We next prove by contradiction

lim
n→∞

an = −∞, lim
n→∞

bn = +∞. (4.6)

Assume to �x ideas, and after extraction of subsequences limn→∞ bn = b ∈ [0,∞). Using that
limn ∥un∥Ss0 ([0,bn)) = ∞, we must have T+(u) < ∞ and b ⩾ T+(u). By the last assertion of (4.3),
we obtain

sup
0⩽t<T+(u)

∥u(t)∥Hs0 ⩽ Ac.

This implies by Theorem 2.16 that T+(u) = +∞, a contradiction. Hence (4.6). Next, we see that
(4.5), perturbation theory for equation (1.1) and the last assertion in (4.3) implies that for any
compact interval I ⊂ Imax(u),

sup
t∈I

∥u(t)∥Hs0 ⩽ Ac.

This implies by Theorem 2.16 that u is global and

sup
t∈R

∥u(t)∥Hs0 ⩽ Ac.

By (4.4) and stability theory for equation (1.1), one has

∥u∥Ss0 ((−∞,0)) = ∥u∥Ss0 ((0,+∞)) = +∞.

If (tn)n is any sequence of times, Claim 4.2 and the preceding properties imply that one can
extract subsequence such that u(tn, · − xn) converges in Hs0 for some sequence (xn)n ∈ (Rd)N.
This is classical that it implies that one can �nd a function x(t), t ∈ R such that K de�ned by
(1.9) has compact closure in Hs0 . We give a sketch of proof of this fact. Using the compactness
and the fact that the solution u is not identically 0, we �rst notice that there exists R0 > 0, η > 0
such that

inf
t∈R

(
sup
X∈Rd

∫
|x|<R0

|u(t, x+X)|2dx

)
⩾ η.
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Thus for all t, there exists x(t) ∈ Rd such that∫
|x|<R0

|u(t, x+ x(t))|2dx ⩾ η/2.

For this choice of x(t), one can check that K de�ned by (1.9) is compact.
By Proposition 1.5, we have

min
t⩾0

∣∣∣∣Φ(u(t))− |P (u)|2

M(u)

∣∣∣∣ = 0. (4.7)

By (4.7), there exists a sequence of times (tn)n such that

lim
tn→∞

Φ(u(tn))−
|P (u(tn))|2

M(u(tn))
= 0. (4.8)

By the claim, extracting subsequences, there exists (xn)n such that u(tn, · − xn) convergences to
φ0 in Hs0 (up to extract subsequence). By (4.8),

Φ(φ0)−
|P (φ0)|2

M(φ0)
= 0. (4.9)

Since Rη is closed in Hs0 , φ0 ∈ Rη. This implies, by Theorem 3.3, that

Φ(φ0)−
|P (φ0)|2

M(φ0)
> 0.

This contradicts to (4.9). This completes the proof.

□

We are left with proving Claim 4.2.

Proof of Claim 4.2. Step 1. Pro�le decomposition. Extracting subsequences, we can assume that
u0,n = un(0) has a pro�le decomposition as in Subsection 2.2:

u0,n =

J∑
j=1

φj
Ln(0) + wJ

n(0),

where φj
Ln = 1

λj
n
φj
L

(
t−tjn
λj
n
,
x−xj

n

λj
n

)
. We denote by φj

n the corresponding nonlinear pro�les, and φ̃j
n

the modi�ed nonlinear pro�les.
Our goal is to prove that there is a unique j0 ⩾ 1 such that φj0 is not identically zero, and

that j0 ∈ JNC . We �rst note that there is at least one j such that φj is not identically zero. If not,
by the small data local well-posedness, we would have

lim
n→∞

∥un∥Ss0 (In) = 0,

a contradiction with our assumptions.
In the remaining step, we will prove that there is at most one nonzero pro�le. Arguing by

contradiction, we assume that there is at least two nonzero pro�les, say φ1 and φ2. By the small
data theory, there exists ε0 > 0 such that

inf
t∈In

∥∥φ̃j
n

∥∥
Hs0

⩾ ε0, j ∈ {1, 2}. (4.10)

Step 2. Bound of the Hs0 norm. We prove that for all j ⩾ 1 we have In ⊂ Imax(φ̃
j
n) and, for

large n,

sup
t∈In

∥φ̃j
n(t)∥Hs0 ⩽

√
A2

c −
1

4
ε20. (4.11)

By (4.3), and the Pythagorean expansions (2.11), (2.12), we obtain the bounds, for J ⩾ 1∑
j⩾1

∥φj
L(0)∥

2
Ḣs0

⩽ A2
c ,

∑
j∈JNC

∥φj
L(0)∥

2
Hs0 ⩽ A2

c
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Fixing a small ε > 0, we obtain, by the small data theory for equations (1.1) and (1.7) and Lemma
2.12, that there exists J0 ⩾ 1 such that, for j ⩾ J0 + 1, Imax(φ

j) = R,

∀j ⩾ J0 + 1,

{
∥φj∥Ṡs0 (R) <∞ if j ∈ JC

∥φj∥Ss0 (R) <∞ if j ∈ JNC .
(4.12)

and

∀j ⩾ J0 + 1, lim sup
n→∞

sup
t∈R

∥φ̃j
n(t)∥Hs0 ⩽ ε. (4.13)

We next prove by contradiction that for j ∈ J1, J0K, In ⊂ Imax(φ̃
j
n) and (4.11) holds. If not, we

can assume (inverting time if necessary, and using Theorem 2.16) that for large n, there exists
b′n ∈ (0, bn] such that [0, b′n] ⊂

⋂
1⩽j⩽J0

Imax(φ̃
j
n) and

sup
1⩽j⩽J0

sup
0⩽t⩽b′n

∥∥φ̃j
n(t)

∥∥2
Hs0

= A2
c −

1

2
ε20. (4.14)

This implies that for large n

∀j ∈ JC ∩ J1, J0K, sup
0⩽t∈b′n

∥φj
n(t)∥Ḣs0 < Ac < A0.

Thus by Proposition 2.15, we obtain a constant C > 0 such that for large n,

sup
j∈JC∩J1,J0K

∥φj
n∥Ṡs0 ([0,b′n])

⩽ C. (4.15)

Going back to (4.14), we see also that for large n

∀j ∈ J1, J0K ∩ JNC , sup
0⩽t⩽b′n

∥φj
n(t)∥Hs0 ⩽

√
A2

c −
1

4
ε20.

Also, using the Pythagorean expansion of the mass we see that

∀j ∈ JNC , M(φj) ⩽ mc − η.

This implies that E(φj) ⩾ 0 for j ∈ JNC . By the Pythagorean expansion (2.12) of the Ḣ1 norm
and Remark 2.11, we obtain∑

j∈JNC

E(φj) ⩽ lim inf
n

E(u0,n) ⩽ lim inf
n

e

(∫
|u0,n|2

)
− η

and thus

∀j ∈ JNC , E(φj) ⩽ R(φj)− η

where we used the fact that e is nonincreasing. Thus φj
n(0) ∈ Rη. Using that P(A) holds for

A =
√
A2

c − 1
4ε

2
0 we obtain that there exists a constant C > 0 such that for large n

sup
j∈JNC∩J1,J0K

∥φj
n∥Ss0 ([0,b′n])

⩽ C. (4.16)

Combining (4.12), (4.15) and (4.16), we obtain that the assumptions of Theorem 2.13 are satis�ed
on [0, b′n]. Using the Pythagorean expansion of Lemma 2.14 together with the limit in (4.3), we
obtain

lim sup
n→∞

sup
0⩽t⩽b′n

J0∑
j=1

∥∥φ̃j
n(t)

∥∥2
Hs0

⩽ A2
c .

By (4.10), we deduce

∀j ∈ J1, J0K, lim sup
n→∞

sup
0⩽t⩽b′n

∥∥φ̃j
n(t)

∥∥2
Hs0

⩽ A2
c − ε20,

contradicting (4.14). This proves that (4.11) holds for all j ⩾ 1, for large n.

Step 3. Uniqueness of the nonzero pro�le.
In this step we still assume that φ1 and φ2 are nonzero pro�les. Using (4.3) and (4.11), and

arguing as in Step 2, we see that the assumptions of Theorem 2.13 are satis�ed on [an, bn]. This
proves that un scatters for large n, contradicting (4.4). This concludes the proof that there is only
one nonzero pro�le.
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Step 4. End of the proof.
We assume that φ1 is the only nonzero pro�le. By the same argument as before, we obtain

that for large n, In ⊂ Imax(φ̃
1
n) and

lim
n→∞

sup
t∈In

∥φ̃1
n∥Hs0 ⩽ Ac.

If 1 ∈ JC , we obtain by Proposition 2.15 that lim supn→∞ ∥φ1
n∥Ṡs0 (In)

< ∞. Thus the assump-

tions of Theorem 2.13 are satis�ed on In, a contradiction with (4.4). Thus 1 ∈ JNC . By the same
argument, we obtain lim supn→∞ supt∈In ∥w̃1

Ln(t)∥Hs0 = 0. Indeed, if not, we would have by the
conservation of the Hs0 norm for the linear Schrödinger equation (and after extraction of a subse-
quence) limn→∞ supt∈In ∥w̃1

Ln(t)∥Hs0 = ε0 > 0, and the same strategy as in Steps 2,3 would yield
that un scatters for large n, a contradiction. We have proved

un(0, x) = φ1
L(−t1,n, x− x1,n) + o(1) in Hs0 .

By (4.4), t1,n must be bounded, and we can assume t1,n = 0 for all n, i.e.

un(0, x) = φ1(0, x− x1,n) + o(1) in Hs0 , (4.17)

which concludes the proof of the claim. □

4.2. Sketch of proof of Theorem 1.2.

The proof of Theorem 1.2 in the case s0 ⩽ 1 is essentially the same Theorem 1.4, although a little
simpler than the proof in the case s0 > 1. One can prove the following analog of Theorem 4.1:

Theorem 4.3. Suppose that Assumption A holds and that 0 < s0 ⩽ 1. For η > 0, we denote

Rη =

{
φ ∈ H1, 0 <

∫
|φ|2 ⩽ mc − η, E(φ) ⩽ R(φ)− η

}
.

Then for all A > 0 there exists F(A, η) > 0 such that for any interval I, for any solution u ∈
C0(I,H1) of (1.1) such that

∃t ∈ I, u(t) ∈ Rη and sup
t∈I

∥u(t)∥2
Ḣ1 + η∥u(t)∥22 ⩽ A2, (4.18)

one has u ∈ S1(I) and ∥u∥S1(I) ⩽ F(A, η).

Note that in this case, by conservation of the energy, any solution of (1.1) is bounded in H1,
so that assumption (4.18) is always satis�ed for some A.

The proof of Theorem 4.3 goes along the same lines as the proof of Theorem 4.1. Note however
that if s0 < 1, in the Hs0 pro�le decomposition of u0,n in the proof of Claim 4.2, the set Jc is
empty since the sequence (u0,n) is bounded in H1.

Appendix A. Elliptic properties

Claim A.1 (Pohozaev identity). Let u ∈ H1 ∩ Lp0+2(Rd), 0 < p1 < p0. Assume that u is radial or
u ∈ L∞

loc(Rd) and, for some real numbers α1, α0, µ

−∆u+ α1|u|p1u+ α0|u|p0u = µu. (A.1)

Let cj =
dpj

2(pj+2) , j = 0, 1. Then∫
|∇u|2 + c1α1

∫
|u|p1+2 + c0α0

∫
|u|p0+2 = 0. (A.2)

Sketch of proof. Multiply by x ·∇u+ d
2u, take the real part and integrate by parts on Rd. It is easy

to check that the formal integration by parts are rigorous when u ∈ Lp0+2 ∩H1 with u radial or
L∞
loc. See [28] and [2, Proposition 1]. □

We next prove a uniqueness result for the elliptic equation with double power nonlinearity:

Proposition A.2. Let 4
d < p1 < p0, d ∈ {1, 2, 3, 4}, (a0, a1) ∈ R2, and u ∈ Lp0+2 ∩H1 be a radial

solution of
−∆u+ a1|u|p1u+ a0|u|p0u = 0. (A.3)

Then u ≡ 0.
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Proof. The case a0 = a1 = 0 is trivial. We thus assume without loss of generality a1 ̸= 0.
We have

∂r(r
d−1∂ru) = rd−1(a0|u|p0u+ a1|u|p1u). (A.4)

By Strauss Lemma |u(r)| ≲ r
1−d
2 ∥u∥H1 , thus u(r) is uniformly bounded for r ⩾ 1. By the equation

(A.4), using 1 < p1 < p0,

|∂r(rd−1∂ru)| ≲ |u|2rd−1.

Since
∫
|u|2rd−1dr <∞, the right-hand side of the preceding inequality is integrable, which proves

that the following limit exists:

lim
r→∞

rd−1∂ru = ℓ.

If ℓ ̸= 0, we have
∫
|∂ru|2rdr = ∞ (if d = 1, 2) or

∫
|u|2rd−1dr = ∞ (if d = 3, 4), contradicting our

assumptions. Thus ℓ = 0, i.e.

lim
r→∞

rd−1∂ru(r) = 0. (A.5)

We �rst treat the case d = 1. The equation (A.4) implies F ′(r) = 0, where

F (r) =
1

2
|u′(r)|2 − a0

p0 + 2
|u(r)|p0+2 − a1

p1 + 2
|u(r)|p1+2.

Since u ∈ H1(R), we have that
∫∞
0
F (r)dr is �nite, and thus that F (r) = 0 for all r > 0. Also,

since limr→∞ u′(r) = 0, we obtain that

lim
r→∞

a0
p0 + 2

|u(r)|p0+2 +
a1

p1 + 2
|u(r)|p1+2 = 0.

Since the zeros of the function σ 7→ a0

p0+2σ
p0+2+ a1

p1+2σ
p1+2 are isolated, u(r) must converge to one

of these zeros as r goes to in�nity. Combining with the fact that u ∈ L2, we obtain

lim
r→∞

u(r) = 0.

By uniqueness and since F (r) = 0, we see that if u(r) = 0 for some r, then u is identically 0.
This implies that u(r) has a constant sign. Changing u into −u if necessary, we can assume that
u(r) > 0 for large r. Using the equation satis�es by u and the fact that u goes to 0 we obtain that
u′′(r) > 0 for large r. Thus u′(r) < 0 for large r. Using the equation F (r) = 0, we deduce that for
large r,

1√
2
u′(r) = −

√
a0

p0 + 2
|u(r)|p0+2 +

a1
p1 + 2

|u(r)|p1+2.

Solving this equation, we obtain that u(r)r
2
p1 has a nonzero limit as r goes to in�nity. Since p1 > 4,

this contradicts u ∈ L2(R), concluding the proof in the case d = 1.
We next assume d = 2 and let M(r) = sups⩾r |u(s)|. Then by (A.4), for large r, we have

|∂r(r∂ru)| ≲M(r)p1−1|u|2r.

Integrating between r = R and ∞, using that M(r) is decreasing, that
∫∞
0

|u|2rdr <∞, and (A.5)
we obtain

|∂ru(R)| ≲
1

R
M(R)p1−1.

Since M(R) ≲ R−1/2, we deduce, letting α = p1 − 2 > 0, that for r large,

|∂ru(r)| ≲M(r)
1

r1+α/2
,

and thus integrating again between r = R and ∞,

|u(r)| ≲M(r)
1

rα/2
.

Since r 7→M(r) 1
rα/2 is decreasing, we obtain

M(r) ≲M(r)
1

rα/2

for large r. Thus M(r) = 0 for large r. This implies u(r) = 0 for large r and thus, by standard
ODE theory, that u is identically 0.
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We next assume d ∈ {3, 4}. We �rst show that for all a > 0, there exists a constant C > 0
such that

∃C > 0, r > C =⇒ |u(r)| ⩽ Cr−a. (A.6)

Indeed, since |rd−1∂ru| and u(r) go to 0 as r → ∞, (A.6) holds for a = d− 2. Next, assuming that
(A.6) holds for some a ⩾ d−2, one has, integrating (A.4) between r and∞, |rd−1∂ru| ≲ rd−(p1+1)a,
and thus |u(r)| ≲ r2−(p1+1)a. This shows that (A.6) holds with a replaced by a′ = (p1 + 1)a− 2 ⩾
a+ ap1 − 2. Since ap1 − 2 ⩾ p1 − 2 > 0, we deduce that (A.6) holds for all a > 0. Integrating twice
the equation (A.4) as above we obtain that M(r) ≲ 1

rM(r) for large r, which shows again that u
is identically 0. □
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Partial Di�er. Equations, 35(6):945�987, 2010.

[20] M. Lewin and S. Rota Nodari. The double-power nonlinear Schrödinger equation and its generaliza-
tions: uniqueness, non-degeneracy and applications. Calc. Var. Partial Di�er. Equ., 59(6):48, 2020.
Id/No 197.

[21] F. J. Liu, T.-P. Tsai, and I. Zwiers. Existence and stability of standing waves for one dimensional NLS
with triple power nonlinearities. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods,
211:34, 2021. Id/No 112409.



24 Thomas Duyckaerts and Phan Van Tin

[22] C. Lu and J. Zheng. The radial defocusing energy-supercritical NLS in dimension four. J. Di�er.
Equations, 262(8):4390�4414, 2017.

[23] F. Merle, P. Raphaël, I. Rodnianski, and J. Szeftel. On blow up for the energy super critical defocusing
nonlinear Schrödinger equations. Invent. Math., 227(1):247�413, 2022.

[24] F. Merle and L. Vega. Compactness at blow-up time for L2 solutions of the critical nonlinear
Schrödinger equation in 2D. Internat. Math. Res. Notices, (8):399�425, 1998.

[25] C. Miao, J. Murphy, and J. Zheng. The defocusing energy-supercritical NLS in four space dimensions.
J. Funct. Anal., 267(6):1662�1724, 2014.

[26] C. Miao, G. Xu, and L. Zhao. The dynamics of the 3d radial NLS with the combined terms. Commun.
Math. Phys., 318(3):767�808, 2013.

[27] J. Murphy. Threshold scattering for the 2d radial cubic-quintic NLS. Commun. Partial Di�er. Equa-
tions, 46(11):2213�2234, 2021.

[28] S. Pohozaev. On the eigenfunctions of the equation ∆u+λf(u) = 0. In Sov. Math. Doklady, volume 6,
pages 1408�1411, 1965.

[29] E. Ryckman and M. Visan. Global well-posedness and scattering for the defocusing energy-critical
nonlinear Schrödinger equation in R1+4. Am. J. Math., 129(1):1�60, 2007.

[30] S. Shao. Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger
equation. Electron. J. Di�er. Equ., 2009:13, 2009. Id/No 03.

[31] R. S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of
wave equations. Duke Math. J., 44(3):705�714, 1977.

[32] T. Tao, M. Visan, and X. Zhang. The nonlinear Schrödinger equation with combined power-type
nonlinearities. Commun. Partial Di�er. Equations, 32(8):1281�1343, 2007.

[33] M. Visan. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke
Math. J., 138(2):281�374, 2007.

[34] X. Zhang. On the Cauchy problem of 3d energy-critical Schrödinger equations with subcritical per-
turbations. J. Di�er. Equations, 230(2):422�445, 2006.

Thomas Duyckaerts
(Thomas Duyckaerts) LAGA (UMR 7539),

Institut Galilée, Université Sorbonne Paris Nord,
99 avenue Jean-Baptiste Clément,
93430 Villetaneuse, France
and Département Mathématiques et Application,
École Normale Supérieure
45 rue d'Ulm
75005 Paris, France

e-mail, Thomas Duyckaerts: duyckaer@math.univ-paris13.fr

Phan Van Tin
(Phan Van Tin) LAGA (UMR 7539),

Institut Galilée, Université Sorbonne Paris Nord,
99 avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

e-mail, Phan Van Tin: vantin.phan@math.univ-paris13.fr


