This paper addresses the formulation and discrete approximation of dynamic contact initial-value problems. The continuous problem is presented in the context of non-linear kinematics. Standard semi-discrete time integrators are introduced and are shown to be unsuccessful in modeling the kinematic constraints imposed on the interacting bodies during persistent contact. A procedure that bypasses the aforementioned difficulties is proposed by means of a novel variational formulation.

Numerical simulations are conducted and the results are reported and discussed.

Introduction

Mechanical contact is encountered whenever two or more bodies physically interact along their boundaries. Contact is of particular interest in numerous engineering appli cations ranging from metal forming and machine design to soil-structure and structure structure interaction under dynamic excitation.

The non-linear character of contact boundary conditions allows for very few inter esting problems to be solved analytically. Since the inception of the finite element method in the late 50s, numerical solutions to contact problems have been intensively investigated by various researchers. Conry and Seireg appear to be the first to treat contact as a quadratic programming problem, [START_REF] Conry | A mathematical programming method for design of elastic bodies in contact[END_REF], while Chan and Tuba first intro duced a general slideline methodology, [START_REF] Chan | A finite element method for contact problems of solid bodies -part I. theory and validation[END_REF]. Moreover, the works of Zienkiewicz on a flexibility approach, [START_REF] Francavilla | A note on numerical computation of elastic contact problems[END_REF], and Hughes on Lagrange multiplier methods, significantly contributed to the development of robust finite element approximations, applicable to the simulation of large-scale problems.

This work is concerned with the time dimension of contact problems. By way of background, continuous non-linear elastodynamics is briefly reviewed in Section 2. Section 3 addresses the two-body contact problem in the continuous setting, while Sec tion 4 presents Lagrange multiplier and penalty formulations in space and semi-discrete integrators in time suitable for finite element approximations. Section 5 investigates standard second-order implicit time integrators of the Newmark family and their per formance in modeling jump conditions in the kinematic fields (e.g., velocities and accel erations) of the interacting bodies. These integrators are shown to produce undesirable oscillatory solutions along the contact surface. The original Lagrange multiplier for mulation of the two-body problem is appropriately extended so that it eliminate this inconsistency. One-and two-dimensional numerical simulations are offered in Section 6 and demonstrate the significance of the proposed formulation. In this section the initial-value problem of non-linear elastodynamics is briefly re viewed. To this end, a deformable body B is identified with an open set n in the R 3 linear space equipped with the standard basis (Ei. E 2 , E3)• It follows that a typical material point of Bis algebraically represented by vector coordinates X = (Xi. X 2 , X 3 ) in the undeformed (reference) configuration. The boundary of the body, /JO, possesses a unique outer normal N at each of its points, provided it is sufficiently smooth (at least pointwise differentiable). Furthermore, assume that there exists an invertible mapping X defined as x = .X(X, t) , where x denotes the position of particle X in the deformed (current) configuration at a generic time t. The displacement field, u, associated with the motion, is introduced according to u(X, t) = X -X and the deformation gradient, F , as

The strong form of the initial-value problem of non-linear elastodynamics is de scribed by the following set of equations: iio(X) on n.

V•P + P o h P o ii on nxRt,
(5)

In the above, uo and u0 denote the initial displacement and velocity fields of the body, respectively, while P is the 1st Piola-Kirchhoff stress tensor. Also, po = P o(X) is the mass density in the reference state and fu, ft are the Dirichlet and Neumann portions of the boundary, on which boundary displacements, ii, and surface tr�tions, T, are specified, respectively. A hyperelastic constitutive assumption is made in the present context. Thus aw P(X , t

) = P o BF , ( 6 
)
where W is a strain energy functional, per unit mass, expressed in terms of some invariant measure of deformation. Equations (1-6) constitute Problem (P).

An integral counterpart of Problem (P} with reference to both the temporal and the spatial dimension can be stated by means of Hamilton's law of Varying Action, [START_REF] Hamilton | On a general method in dynamics[END_REF][START_REF] Hamilton | Second essay on a general method in dynamics[END_REF] U is the space of kinematicall y admissible displacements for the given problem given by

U = {u E H1(fl xRt)' u = u on fu X Rt u(X , 0) = Uo , u(X , 0) = iio on n } ,
while ii is the associated space of admissible variations defined as

ii = {ii E n1 (n x Rt)
ii ii(X , 0) = 0 , fI(X , 0) = O on fl} .

After integration by parts on the kinetic energy, Hamilton's law of Varying Action gives rise to a statement of virtual work for the initial-value problem according to

[' { { [poii • ii + poDuW(u) -pob • ii] dV (7) t, lo -fr I T . ii df} dt = 0 v ii E ii , ( t; ' t fl c R+ .
Equation ( 7) constitutes the basis for the space-time discretization of the problem and will be subsequently utilized in the development of finite elements for dynamic contact. The dynamic contact problem distinguishes itself from the static in that inequality constraint conditions hold not only for the displacements along the contacting surfaces, but also for their rates. The impenetrability constraint may be expressed as

[(Xp2 + u(Xp2, t)) -(Xp1 + u(Xp1 , t))] • np1(X, t) = 0, (8)
where np1 = n is the outer unit normal from body B 1 in the current configuration. Time differentiation of (8) results in

[ii(Xp2 , t) u(Xp1 , t)J • np1(X, t) + [(Xp2 + u(Xp2 , t)) -(Xp1 + u(Xp1 , t))J • ilp1(X, t) = 0,
which, taking into account that the unit normal, np1 is, by definition, parallel to the distance between the contacting points, can be readily shown to reduce to

[ii(Xp2, t) -ti(Xp1, t)]•np1(�, t) = 0. (9)
Likewise, a second time differentiation on (8) yields

(ii(Xp2 , t) -ii(Xp1 , t)] • np1 (X , t) = 0 .
(10)

Similar results may be obtained for higher time derivatives of the boundary displace ments. As it has been just illustrated in the continuous setting, equations ( 9) and (10) are obtained directly from the impenetrability condition and, therefore, do not repre sent additional constraints. They have been derived here because of their significance in discrete solutions.

In the case of persistent contact, the two body problem is summarized as follows:

Problem {Pc)

Given state at time t; for 0'', a = 1, 2, solve (1-6) at interval (t; , t1J subject to p g = 0 , p :'.S 0 , g � 0 on C.

Integral formulations of the problem can be obtained by exploiting the statement of Hamilton's law (or, equivalently, the statement of virtual work) presented earlier in this section. A formulation based on Lagrange multipliers reads:

Problem (VL) Find (u1 , u2 , p) E U1 x U2 x P such that f1 1 t { f )pgii". u" + pgDu.oW"(u") -pgb" • u"JdV lt. o=l Jn -f 'i'". u"'dr } dt + t1 f (fi g + pog)dfdt= o �to h� � v (u1 , u 2 , f>) E u1 x u 2 x f:>, (t; , t1J c R+ .
The spaces of admissible and virtual displacements are as in the previous section, while the respective pressure fields is defined as The overall characteristics of any particular Newmark scheme governed by the choice of the above two parameters. In particular, unconditional stability is guaranteed for 2(3 2 'Y 2 0.5, as shown in [START_REF] Wood | Practical Time-stepping Schemes[END_REF]. Furthermore, integration is globally first-order accurate (error O(tl.t 2 )) provided that 'Y = 0.5.

W't = ( -l ) "LP hAfo n , c, w,, = L g(Vh)A(Ji Q = 1, 2.
For the remainder of this section, all subscripts associated with spatial discretization of the various fields w, ill be dropped in favor of those pertaining to the temporal descrip tion. The Lagrange multiplier formulation of the previous section leads to equations of motion written at time tn+I as 2 L[M" a �+1 + Q"(un+i) -W�+I + W't (u �+I ) ] (

) 14 
Use of equations (11) and ( 12) in (13) results in elimination of the unknown velocity and acceleration fields, thus yielding a set of equations with the displacement vector at time tn+t as the only unknown, according to 2 .?; L � L � M"u� +1 + Q"(u� +1) + W£ (u� +1) -W� +t

(15) -M"MLl� � u� + Ll� n v� + (1 - 2 2 ,B)�n = 0 .
Equations (14-15) are generally non-linear and have to be solved by an iterative algorithm such as Newton's method or any of its variants.

5

Dynamic contact/release conditions

In the preceding section, Newmark integrators were employed in the solution of the two-body contact problem, where contact/release constraints were imposed on the dis placement fields, in accordance with (8). Unfortunately, in contrast with the continuous case, the velocity and acceleration fields recovered from such an integration scheme do not satisfy the respective rate impenetrability constraints realized by ( 9) and (10). This can be easily seen with the help of a simple example; consider contact between two nodal points, each belonging to one of the contacting bodies, as in Figure 1. The points come into initial contact at time tn and the following conditions hold:

X1 + u� = X 2 + u� = 0 ' v� = Vo v� = 0,
a�= a�= O.

Enforcement of the impenetrability condition on the discrete displacement fields, as 

provided that f3 > O. Likewise, subtracting the discrete velocities of the two nodes a.t

t n +t from one another a.nd using a.gain the initial conditions a.t t n gives

( 2 1 . 1 v n +t -V n +d ••n = �t� (ll n +t -llft+t) • n -V o • n,
which, with the a.id of {16), results in

(v � +1 -v! +i> • n = {� -l)v o • n .

{17)

Equations {16) a.nd {17) illustrate the problematic behavior of Newmark integrators, when directly used in simulating dynamic contact/release conditions. It ca.n be readily concluded that the discontinuity in the post-contact velocities is independent of the time step, while the discontinuity in the accelerations is inversely proportional to the time step, thus consistency is not attained as �t -+ 0. Finally, notice that equations {16) a.nd {17) were obtained without any reference to dynamic equilibrium (which, in this case would only determine the exact position of the nodes at time t n +t ).

The above analysis indicates that a special treatment is necessary for an accurate simulation of contact/release conditions. Indeed, the discrepancy in the computed rate quantities, although immaterial within linear elasticity, can be potentially devastating in non-linear problems employing rate-dependent constitutive assumptions. In an earlier attempt, Hughes and coworkers have used the Newmark solution as a predictor to be subsequently followed by a corrector step, in which velocities were matched on the con tact surface by means of a. local wave propagation analysis. Moreover, accelerations were weighted by the (lumped) masses of the interacting nodes, so that dynamic equilibrium be observed after the treatment, see (HTS + 76]. Here a slightly different methodology is proposed based on a priori satisfaction of the impenetrability constraint and its two rate forms, corresponding to equations {8) and {9-10), respectively. To this end, the Lagrange multiplier formulation in Section 3 is augmented by the variational terms

and 2 f '°'{ w "'(v"' -v n "' -�t n {l -"')a"' n Jch� a n +t ' (19) -�t n 1a� +tl • n (i� +1 • n) + A�(-l) "' i� +t • n + Aa(-l) "' a� +t • n}dr = 0,
where w�, w� > 0 are weighting functions. Equations ( 18) and (19} reveal that the Newmark integrator is modified along the cont. act boundary. Particularly, the admissible contact velocity and acceleration fields are, in principle, assumed independent of the displacements, while the Lagrange multipliers Av and Aa enforce the conditions where

[(•)]c = ((•) 2 -(•) 1 ] • n .
The multipliers Av and Aa are viewed as generalized momenta, energy conjugate to the contact velocities and accelerations, respectively. Equation (18) requires that w�[u! +t -u� -�t n v� -�t� (� -f3)a� -�t� f3a� +1] • n -Av = 0 and

w�[ u ! + I -u ! -At n v ! -At ! ( � -,B)a ! -At ! .Ba ! +i J • n + Av = 0
along Ch. Premultiplying each of the above with the weighting function of the other, recalling that (X + U n +iJc = 0, and, finally, differencing, gives

Av = (X + U n )c + At n (v n )c + At � (� -,B)(a n )c I + I wr W?
Similarly, equation (19) dictates that and 0

w�[v � + l -v � -At n (l -1)a � -At n /R � +iJ • n + Aa 0.
Repeating the same process as before yields

I + I wr W1" (20) (21) 
In case one of the contacting bodies is rigid, then it is, by assumption, associated with infinite weighting functions, so that (20) and ( 21 L a {[u� + 1 -u� -At n v� -At � (� -,B)a� J • n + (-1)" �; } In the absence of contact, as well as during persistent contact, the proposed treatment reduces naturally to the associated Newmark method. Indeed, in the former case, as meas ( Ch) = 0, all Lagrange multipliers disappear at the outset, while in the latter, equations (20) and (21) require the multipliers to be again identically equal to zero.

The weighting functions w� and w�, are chosen so that the integrands in ( 18) and ( 19) be (virtual) work quantities. Here, they are set to be where m" denotes a characteristic mass quantity of body a.

Whenever release is detected (as defined in [HTS + 76]), equations ( 18) and (19) yield, in direct analogy to initiation of contact 

+ Av ( 1 + -) WV w2 v 1 1 + Aa ( 1 + 2) Wa Wa 0 ( 22 
) = 0. ( 23 
)
In this work, both Lagrange multipliers in ( 22) and ( 23) are set to zero at release, as their appearance was originally identified with the (currently inactive) constraint of equal velocities and accelerations in the direction normal to the contact surface.

Numerical simulations

Numerical solutions for two dynamic contact/impact problems are presented in this section. Computations are conducted within the environment of the fully non-linear general purpose Finite Element Analysis Program (FEAP), briefly documented in Chap ter 15 of (ZT89) and Chapter 16 of (ZT91).

Although implicit time integration schemes are used throughout, an attempt is made to keep the time step as close to optimal, with regard to the explicit stability limit, as possible. Diagonal (lumped) mass matrices are used for all types of elements, as their behavior is considered superior to that of corresponding consistent matrices whenever, as in given class of problems, the associated kinematic fields exhibit discontinuities (or near-discontinuities) in time. Lumped masses are also used as weighting functions of the modified Newmark impact treatment. Bar 1 is discretized uniformly by 100 elements and Bar 2 by 70 elements, so that, for time step At= 0.142857, both are integrated in time optimall y. Plots of the displacements, velocities and contact force at the contacting tip are shown in Figure 3. Excellent agreement with the exact solutions is exhibited for all three fields.

Cylinder on rigid surface

An elastic cylinder in plane strain is dropped with initial velocity v = -1.0� to wards a rigid surface, see Figure 4. No gravity effects are included in the analysis. The cylinder is modeled by two-dimensional 9-node bi-quadratic elements and the mesh is shown in Figure 5. The elastic constants for the cylinder are E""1 = 5. x 10 2 , """' = 0.3 and the mass density is p = 1.0. The Newmark parameters are set to (3 = 0.25 and 'Y = 0.5. The deformed meshes corresponding to selected stages of the analysis conducted with time step At = 0.05, are illustrated in Figure 6. The history of total force developed due to contact is plotted in Figure 7. Three choices of time step are considered, namely At = 0.02, 0.05, 0.15. It is evident that At = 0.05 produces slightly smoother results than the smaller time step. This can be explained by observing that the stability limit is, in an average sense, closer to one for the larger time •step than for the small er. The larger time step yields somewhat inaccurate resultant forces, as it fails to capture the abrupt changes in the response. 
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  Dynamic contact problemIn this section a local formulation of the dynamic contact problem is furnished. Considerations are restricted to the two-body problem, with generalization to multi body contact omitted for simplicity. Observing the notation of the previous section, the boundary of bodies B 1 and B2 can be uniquely decomposed into three distinct regions according to an" = ar� U arr U c , °' = i, 2 , where C is the common contact surface. Contact is said to occur if meas(C) > 0. Gap and pressure functions can be defined along C, by means of projection of boundary points from one body onto the other, see [Pap91], as g p r� ) x (an2 r�) x (an 2 f�) x Rt f�) x Rt ,.....

  P :'.So } and Integral statements such as Problem (VL) generally form the basis of finite element approximations to problems in elastodynamics. Formulations based on various penalty regularizations (in the classical penalty, perturbed Lagrangian or augmented Lagrangian sense) can also be obtained in a straightforward manner.4Spatial and temporal discretizationFor a given time, the displacement field, u, and its rates are approximated according to where A(/) is a matrix of basis functions for the entire domain, normally composed by standard interpolation functions within each element (no summation is implied on I).

  Further, vectors u(/)> v(/) and a(/) consist of all nodal displacements, velocities and accelerations, respectively. In addition, the pressure field is spatially approximated according to P � Ph = A(' I) P(l) • Moreover, subscript h characterizes spatially discretized fields. It follows that Prob lem (VL) may be recast in the form: where and Find (ul , u� , Ph) E U� x Ul x Ph such that Q" = L:: vAfoP(u(n),

  In the above definitions, summation symbols over the domain or parts of its boundary refer to the usual assembly operation.A Newmark scheme is employed for the time integration of the spatially discretized equations of motion resulting from the Lagrange multiplier or penalty formulation of the contact problem. The family of Newmark integrators, as originally suggested in[START_REF] Newmark | A method of computation in structural dynamics[END_REF], imposes dynamic equilibrium at the two end points of the finite time interval tl.tn = tn+I -tn. The general form of the integrator is (12) where (•)n = (•)(tn)• Parameters (3 and 'Y (called the Newmark pammeters) may vary according to 0 ::; (3 ::; 0.5
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 01 Figure 1: Dynamic contact; failure of Newmark algorithms defined in (11), along the normal, n, to the contact surface at time tn+l• yields

  ) are modified accordingly. Velocity and acceleration fields normal to the contact surface are recovered with the aid of the above constraint equations as and v� + I • n = [v� + At n (l -1)a� + At n /R� +il • n -(-1)" � w� a � + !• n = .B
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 34567 Figure 3: Impact of dissimilar bars; history of tip displacements, velocities and contact force