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ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE

CHARACTERISTIC II

BO-HAE IM, HOJIN KIM, KHAC NHUAN LE, TUAN NGO DAC, AND LAN HUONG PHAM

Abstract. Zagier-Hoffman’s conjectures predict the dimension and a basis for

the Q-vector spaces spanned by Nth cyclotomic multiple zeta values (MZV’s)
of fixed weight where N is a natural number.

For N = 1 (MZV’s case), half of these conjectures have been solved by the

work of Terasoma, Deligne-Goncharov and Brown with the help of Zagier’s
identity. The other half are completely open. For N = 2 (alternating MZV’s

case) and N = 3, 4, 8, Deligne-Goncharov and Deligne solved the same half of

these conjectures for Nth-cyclotomic MZV’s. For other values of N , no sharp
upper bound on the dimension is known.

In this paper we completely establish, for all N , Zagier-Hoffman’s conjec-

tures for Nth cyclotomic multiple zeta values in positive characteristic. By
working with the tower of all cyclotomic extensions, we present a proof that

is uniform on N and give an effective algorithm to express any cyclotomic
multiple zeta value in the chosen basis. This generalizes all previous work on

these conjectures for MZV’s and alternating MZV’s in positive characteristic.
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Introduction

0.1. Classical multiple zeta values.
Let N = {1, 2, . . . } be the set of positive integers. Multiple zeta values (MZV’s

for short) are the convergent series given by

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 kn2

2 . . . knrr
,

for ni ∈ N with nr ≥ 2. The MZV’s of depth 1 and 2 were first studied by Euler [28]
in the 18th century and then neglected for more than two centuries. In the nineties of
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the last century, Zagier [68] rediscovered the general MZV’s and initiated intensive
work related to various fields of mathematics including arithmetic geometry, number
theory, K-theory and knot theory (see for example [14, 26, 27, 29, 39, 48, 49, 41,
42, 43, 51, 59, 60]). At the same time, MZV’s were suddenly appeared in various
branches of physics, such as in the theory of quantum field theory and deformation
quantization (see e.g., [10, 13, 12, 48, 49]).

There exist more general objects called cyclotomic multiple zeta values (cyclo-
tomic MZV’s for short). Letting N ∈ N be a positive integer and ΓN be the group
of Nth roots of unity, we define cyclotomic multiple zeta values by

ζ

(
ε1 . . . εr
n1 . . . nr

)
=

∑
0<k1<···<kr

εk11 . . . εkrr
kn1

1 . . . knrr

for εi ∈ ΓN and ni ∈ N with (nr, εr) 6= (1, 1) for convergence. These objects were
first studied systematically by Arakawa, Deligne, Goncharov, Kaneko and Racinet
(see [5, 6, 24, 26, 31, 33, 34, 57]). Since then they have been also studied by a lot of
mathematicians and physicists, including Broadhurst, Hoffman, Kreimer, Kaneko,
Tsumura [10, 12, 40, 47] in various fields of mathematics and physics. For N = 1
we recover MZV’s. For N = 2 the cyclotomic multiple zeta values are also known
as alternating multiple zeta values or Euler sums.

Significant progress has been made, but fundamental questions remain and cy-
clotomic multiple zeta values are still an active fast-moving field (see for example
[7, 18, 52, 54]).

As explained in [17, 25, 68], the main goal of the theory of cyclotomic multiple
zeta values is to find all linear relations among cyclotomic MZV’s over Q. It led to
several important conjectures formulated by Ihara-Kaneko-Zagier [41], Zagier [68]
and Hoffman [39]. In this paper we work only with Zagier and Hoffman’s conjectures
which predict the dimension and a basis for the span of cyclotomic MZV’s of fixed
weight. We refer the reader to the excellent articles [16, 17, 25, 60] for more details
on Ihara-Kaneko-Zagier’s, Zagier-Hoffman’s conjectures and related topics. We also
refer the reader to the articles of Broadhurst and his colleagues [10, 11, 9] for a data
mine of cyclotomic MZV’s and further references.

0.1.1. N = 1 (the case of MZV’s).
We work with the case N = 1, or equivalently with MZV’s. Letting Zk be the Q-

vector space spanned by MZV’s of weight k, we consider a Fibonacci-like sequence of
integers dk as follows. Letting d0 = 1, d1 = 0 and d2 = 1 we define dk = dk−2 +dk−3

for k ≥ 3. Using numerical evidence Zagier [68] formulated the following conjecture:

Conjecture 0.1 (Zagier’s conjecture). For k ∈ N we have dimQ Zk = dk.

Hoffman [39] went further and suggested a refinement of Zagier’s conjecture.

Conjecture 0.2 (Hoffman’s conjecture). The Q-vector space Zk is spanned by the
basis consisting of MZV’s of weight k of the form ζ(n1, . . . , nr) with ni ∈ {2, 3}.

In the last two decades one “half” of these conjectures (called the algebraic part
in [55]) has been completely solved by the seminal works of Brown [14], Deligne-
Goncharov [26] and Terasoma [59]. Although Zagier-Hoffman’s conjectures are eas-
ily stated, the proofs of Brown, Deligne-Goncharov and Terasoma use the theory
of mixed Tate motives and also an intriguing identity due to Zagier [69].

Theorem 0.3 (Deligne-Goncharov, Terasoma). For k ∈ N we have dimQ Zk ≤ dk.
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Theorem 0.4 (Brown). For all k ∈ N, the Q-vector space Zk is spanned by MZV’s
of weight k of the form ζ(n1, . . . , nr) with ni ∈ {2, 3}.

We mention that the second half of these conjectures called the transcendental
part in [55] is completely out of reach: we do not know any k ∈ N such that
dimQ Zk > 1.

0.1.2. N = 2 (the case of alternating MZV’s) and N = 3, 4, 8.
In the seminal paper [24] Deligne succeeded in proving the same half of Zagier-

Hoffman’s conjectures for cyclotomic MZV’s for N = 2, 3, 4, 8 (see [24, Théorèmes
6.1 and 7.2]). For these few exceptional values, he was able to use the theory of mixed
Tate motives and obtained a generating set for the Q-span of Nth cyclotomic MZV’s
of fixed weight. Thus the upper bound obtained in [26] for N = 2, 3, 4, 8 is sharp.
As mentioned in loc. cit. Deligne’s result was inspired by numerical computations
due to Broadhurst [10] in 1996 related to computations of Feynman integrals. Later
Glanois [30] gave another proof of Deligne’s result.

A technical but crucial point that we want to emphasize is that Deligne used the
depth filtration for N = 2, 3, 4, 8 while Brown used the level filtration for N = 1. It
has already been noted that the depth is pathological for N = 1 (see [24, page 102,
lines 23-25]).

0.1.3. Other values of N .
For other values of N Deligne and Goncharov [26] proved an upper bound on

the dimension of the span of Nth cyclotomic MZV’s. Unfortunately, for many N
Goncharov [32] showed that these bounds are not sharp. To our knowledge, no
sharp upper bound on the dimensions is known. We mention that for N = 6 partial
results have been obtained by Deligne [24, Théorème 8.9] and also by Glanois [30].

0.2. Multiple zeta values in positive characteristic.
By a well-known analogy between number fields and function fields (see for exam-

ple [46, 53, 66]), we switch to the setting of function fields in positive characteristic.
Let A = Fq[θ] be the polynomial ring in the variable θ over a finite field k := Fq of
q elements of characteristic p > 0. We denote by A+ the set of monic polynomials
in A. Let K = Fq(θ) be the fraction field of A equipped with the rational point ∞.
Let K∞ = k((1/θ)) be the completion of K at ∞ and C∞ be the completion of a
fixed algebraic closure K of K at ∞.

We fix N ∈ N and denote by kN ⊂ k̄ the cyclotomic field over k generated by
a primitive Nth root ζN of unity. The group of Nth roots of unity is denoted by
ΓN whose cardinality is denoted by γN . We put AN = kN [θ], KN = kN (θ) and
KN,∞ = kN ((1/θ)).

Based on the pioneering work of Carlitz [19] and Thakur [61], Harada [36, 37]
introduced the notion of Nth cyclotomic multiple zeta values in positive character-
istic. Letting s = (s1, . . . , sr) ∈ Nr and ε = (ε1, . . . , εr) ∈ (ΓN )r we introduce

ζA

(
ε
s

)
=
∑ εdeg a1

1 . . . εdeg ar
r

as11 . . . asrr
∈ KN,∞,

where the sum is over all tuples (a1, . . . , ar) ∈ Ar+ with deg(a1) > · · · > deg(ar).

We define the depth and weight of ζA

(
ε
s

)
in a similar way, that is, r is the depth

and w(s) = s1 + · · · + sr is the weight. When N = 1 (resp. N = 1 and r = 1) we
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recover the notion of MZV’s defined by Thakur (resp. zeta values introduced by
Carlitz). For further references on the MZV’s in positive characteristic, see [3, 4,
35, 58, 61, 62, 63, 64, 67].

In loc. cit., Harada also showed some fundamental properties of cyclotomic
MZV’s including non-vanishing, sum-shuffle relations, period interpretation and
linear independence.

As in the classical setting the main goal of the theory of cyclotomic MZV’s in
positive characteristic is to comprehend all of their K-linear relations. Harada [37]
showed that it is equivalent to understand all KN -linear relations among cyclotomic
MZV’s of the same weight. Letting w ∈ N we denote by CZN,w the KN -span of Nth
cyclotomic MZV’s of weight w. Then the positive characteristic version of Zagier-
Hoffman’s conjectures for cyclotomic MZV’s consist in determining the dimension
and finding an explicit basis of CZN,w.

0.3. Statement of the main theorems.

0.3.1. Main results.
In this paper we prove, for all N , Zagier-Hoffman’s conjectures in positive char-

acteristic for Nth cyclotomic MZV’s. This could be seen as the final part of the
series of work previously done by the fourth author in [55] and the authors in [44].

The main result reads as follows:

Theorem A (Hoffman’s conjecture in positive characteristic). Let N ∈ N. For
w ∈ N we recall that CZN,w denotes the KN -span of N th cyclotomic MZV’s of
weight w. Let CSN,w be the set of Carlitz multiple polylogarithms at N th roots of

unity Li

(
ε1 · · · εn
s1 · · · sn

)
such that q - si and εi ∈ ΓN for all i (see §1.3 for more

details). Then the set CSN,w forms a basis for CZN,w.

As a direct consequence, we obtain

Theorem B (Zagier’s conjecture in positive characteristic). We keep the above
notation. We recall that γN = |ΓN | and define a Fibonacci-like sequence dN (w) as
follows. We put

dN (w) =


1 if w = 0,

γN (γN + 1)w−1 if 1 ≤ w < q,

γN ((γN + 1)w−1 − 1) if w = q,

and for w > q, dN (w) = γN
q−1∑
i=1

dN (w − i) + dN (w − q). Then

dimKN CZN,w = dN (w).

Surprisingly, our proof of Theorem A is uniform on N in contrast to the classical
setting, where the proofs of known results differ on N as we have explained before
(see for example §0.1.2 and [14, 16, 24] for more details). To do this we have to
work with the whole tower of cyclotomic extensions of the function field K.

Perhaps more importantly, our proof is constructive. The proof gives an effective
algorithm for expressing any cyclotomic MZV in the basis CSN,w as opposed to the
classical setting (see [15, 24, 25] for more explanations).

Our main result generalizes several previous works of the authors in [44, 55].
However, compared to [55] we still have to overcome several notable challenges,
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which we will highlight. First, the naive extension of [55, §2–3] does not give a
sharp upper bound due to the presence of non-trivial characters. Thus, we must
develop a refinement of [55, §2–3] that takes the characters into account. Second,
the transcendental techniques developed in [55, §4–6] deal only with Anderson t-
motives of level 1 and do not work for arbitrary N . We use Harada’s construction of
higher level Anderson t-motives connected to cyclotomic MZV’s, where the level is
equal to the degree of the Nth cyclotomic extension of Fq. Thus we have to develop
a higher level transcendental theory that generalizes [55, §4–6]. Finally, another
original ingredient is that we use a descent argument on the tower of all cyclotomic
extensions of K (compared to [24, 30] in the classical setting).

0.3.2. Known results.
Below we present the list of all known cases where Zagier-Hoffman’s conjecture

in positive characteristic for Nth cyclotomic MZV’s. As noted above, it suffices to
prove Theorem A as Theorem A implies Theorem B.

N = 1 (the case of MZV’s).

• Theorem B (resp. a variant of Theorem A) was formulated by Todd [65]
(resp. Thakur [64]).
• In [55, Theorem A] the fourth author proved an analogue of Brown’s the-

orem and solved one half (the algebraic part) of these conjectures. He also
proved the second half of Theorem A for small weights w ≤ 2q− 2 (see [55,
Theorem D]). Consequently, it remains to prove the second half of Theorem
A to get the complete theorem A as well as Thakur’s variant.
• In [44] the authors proved the other half (the transcendental part) of The-

orem A for all weights w (see [44, Theorem B]). In [21] the other half of
Theorem A was proved using the same method, objects and proof strategy
but their presentation is different.

N = q − 1 (the case of alternating MZV’s).

• In [44] the authors proved Theorem A for N = q− 1 and all weights w (see
[44, Theorem A]).

0.4. Outline of the proof and plan of the paper.
Similar to the classical setting, the proof is divided into two parts with completely

different flavours.

0.4.1. Part A: an analogue of Brown-Deligne’s theorems.
We want to prove an analogue of Brown-Deligne’s theorems (Brown [14] for

N = 1 and Deligne [24] for N = 2, 3, 4, 8) in our context. It says that the set CSN,w
spans the vector space CZN,w. The techniques are a refinement of those developed
in [55, §2–3]. The proof is divided into three steps:

(A1) First we briefly review the techniques introduced in [55, §2 and §3] and
show that the vector space CZN,w is spanned by another set of CTN,w of

larger cardinality consisting of cyclotomic MZV’s ζA

(
ε1 · · · εn
s1 · · · sn

)
such

that si ≤ q, εi ∈ ΓN for all i and sn < q. Note, however, that |CTN,w| is
generally larger than |CSN,w|. So we have to do extra work to get the sharp
upper bound.
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(A2) Second we again extend the techniques mentioned above and prove a sim-
ilar result for the vector space CLN,w spanned by Carlitz multiple poly-
logarithms (CMPL’s for short) at roots of unity. Importantly, we use the
key fact that the MZV’s in CTN,w given in Step (A1) are CMPL’s at roots
of unity. Thus we discover a connection between cyclotomic MZV’s and
CMPL’s at roots of unity in Theorem 1.9 which extends [44, Proposition
1.9].

(A3) Last we exploit the fact that the product for CMPL’s at roots of unity is
“simple” and similar to the stuffle product for classical cyclotomic MZV’s.
Thus we are able to “reduce” the generating set from CTN,w to the desired
set CSN,w and prove the desired analogue of Brown-Deligne’s theorems in
Theorem 1.11.

0.4.2. Part B: dual t-motives connected to CMPL’s at roots of unity.
We want to prove (see Theorem 2.7) that the elements in CSN,w are linearly

independent over KN . We follow the strategy developed in [55, §4–6] and [44, §2–3]
which are based on the theory of Anderson t-motives introduced by Anderson [1]
and the fruitful transcendental tool called the Anderson-Brownawell-Papanikolas
criterion devised in [2]. However, carrying out this strategy for arbitrary N turns
out to be highly non-trivial due to the fact that the extension of kN/k is non-trivial
in general.

Below we outline the steps of the proof, explain the problems that we have
to overcome and present our solutions. Recall that R denotes the degree of the
cyclotomic extension kN over k.

(B1) First we construct t-motives connected to CMPL’s at Nth roots of unity
(resp. cyclotomic MZV’s).

– When N = 1 in [55] and N = q−1 in [44], the cyclotomic field kN is k,
hence R = 1. The construction of dual t-motives connected to CMPL’s
at Nth roots of unity (or Nth cyclotomic MZV’s) is due to Anderson-
Thakur in [4], Chang [20] and Harada [36] using the Anderson-Thakur
polynomials in [3] and twisted L-series in [4, 20].

For arbitrary N , the previous construction does not work. Harada [37]
solved this problem by considering an untwisted L-series (see §2.2). In loc.
cit. he then constructed dual t-motives of level R connected to CMPL’s at
Nth roots of unity (resp. Nth cyclotomic MZV’s). The trade-off is that we
have to deal with higher level and that the associated matrices are more
complicated.

(B2) Second, we must develop a higher transcendental theory that generalizes
that of level 1 in [55, §4–6] and [44, §2–3]. Then using Harada’s idea, we
succeed in constructing dual t motives of level R which lift linear relations
among CMPL’s at roots of unity in CSN,w and the appropriate of Carlitz’s
period.

(B3) Last we apply the Anderson-Brownawell-Papanikolas criterion to reduce
the proof to the task of finding solutions to a system of σ-linear equations
of order R (higher order), which turns out to be the hardest task. Our
solution is more complicated than the one in [55, 44], which explains the
long section 3.

Roughly speaking, one original ingredient is that we use the descent
on the tower of all cyclotomic extensions of K (compared to [24, 30] in the
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classical setting). Another key point (see Proposition 3.5) is to show that the
system of σ-linear equations of order R for which we want to find solutions
in kN [t] has at most one solution up to a constant in kN (t). Furthermore,
if they admit one solution, then there exists a solution belonging to k[t]
and satisfying a system of σ-linear equations of order 1. Finally, the latter
system can be solved as in our previous work [44] and we are done. We
note that in the last step we have to use the analogue of Brown-Deligne’s
theorems for CMPL’s proved in §0.4.1.

0.4.3. Plan of the paper. We will briefly explain the organization of the manuscript.

• In §1 we introduce the notation, recall the definition and basic properties
of cyclotomic multiple zeta values and Carlitz multiple polylogarithms at
roots of unity. We then extend the algebraic tools given in [55, §2–3] for
these objects and obtain an analogue of Brown-Deligne’s theorems in The-
orem 1.11. Steps (A1) and (A2–A3) are carried out in §1.2 and §1.4,
respectively.
• In §2 and §3 we recall Harada’s construction of dual t-motives of higher

level connected to CMPL’s at roots of unity. We then construct dual t-
motives (also of higher level) related to linear combinations of such objects
and Carlitz’s period. We then state the linear independence of the chosen
set in Theorem 2.7, the proof of which is given in §3. Steps (B1), (B2)
and (B3) are carried out in §2.2, §2.3 and §3, respectively.
• Finally, in §4 we prove the main results, i.e., Zagier-Hoffman’s conjectures

in positive characteristic for Nth cyclotomic multiple zeta values for all N .

Acknowledgments. The first named author (B.-H. Im) was supported by the Ba-
sic Science Research Program through the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) NRF-2023R1A2C1002385.
Two of the authors (KN. L. and T. ND.) were partially supported by the Excellence
Research Chair “L-functions in positive characteristic and applications” funded by
the Normandy Region. The fourth author (T. ND.) was partially supported by the
ANR grant COLOSS ANR-19-CE40-0015-02.

1. Cyclotomic MZV’s and CMPL’s at roots of unity

In this section we introduce the notion of MZV’s and that of CMPL’s at roots of
unity. We then develop a refinement of [55, §2–3] that takes into account the Nth
cyclotomic character. The presentation closely follows that in [44] where the case
N = q − 1 was treated.

1.1. Notation. We recall some notation used in [44, 55].

1.1.1. We recall the notation given in the Introduction. Let q be a power of prime
p and k = Fq be a finite field of order q. We denote by k̄ := Fq an algebraic closure
of Fq. We recall that A = Fq[θ] denotes the polynomial ring in θ over Fq and A+

denotes the set of monic polynomials in A. Then K = Fq(θ) is the fraction field of
A equipped with the rational point ∞. Let K∞ = k((1/θ)) be the completion of K
at∞ and C∞ be the completion of a fixed algebraic closure K of K at∞. Further,
let v∞ be the discrete valuation on K associated to the place ∞ normalized as
v∞(θ) = −1 and | · |∞ = q−v∞(·) be the corresponding norm on K.
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The following constant will play an important role in this paper:

(1.1) D1 := θq − θ ∈ A.

1.1.2. Letting t be another independent variable, we denote by T the Tate algebra
in the variable t with coefficients in C∞ equipped with the Gauss norm ‖.‖∞, and
by L the fraction field of T.

We denote E the ring of series
∑
n≥0 ant

n ∈ K[[t]] such that limn→+∞
n
√
|an|∞ =

0 and [K∞(a0, a1, . . .) : K∞] <∞. Then any f ∈ E is an entire function.
We denote by π̃ the Carlitz period which is a fundamental period of the Carlitz

module. We fix a choice of (q − 1)st root of (−θ) and set

Ω(t) := (−θ)−q/(q−1)
∏
i≥1

(
1− t

θqi

)
∈ T×

so that

Ω(−1) = (t− θ)Ω and
1

Ω(θ)
= π̃.

1.1.3. Throughout this paper, we fix N ∈ N. We denote by kN ⊂ k̄ the cyclotomic
extension of k = Fq generated by a primitive Nth root ζN of unity and put R =
[kN : k]. The group of Nth roots of unity is denoted by ΓN . We set γN := |ΓN | = N ′

where N = pkN ′ with k ≥ 0 and N ′ prime to p. We put AN = kN [θ], KN = kN (θ)
and KN,∞ := kN ((1/θ)).

1.1.4. Let s = (s1, . . . , sn) be a tuple of positive integers. We put w(s) = s1 + · · ·+
sn and call it the weight of s. The number n is called the depth of s.

Let s = (s1, . . . , sr) and t = (t1, . . . , tk) be tuples of positive integers. We say
that s ≤ t if the following assertions hold:

• For all i ∈ N we have s1 + · · · + si ≤ t1 + · · · + ti where we recall si = 0
(resp. ti = 0) for i bigger than the depth of s (resp. t).
• s and t have the same weight.

Letting s = (s1, s2, . . . , sr) ∈ Nr we set s− := (s2, . . . , sr). For i ∈ N we define
Ti(s) to be the tuple (s1 + · · ·+ si, si+1, . . . , sr). Note that T1(s) = s. Further, for
tuples of positive integers s, t and for i ∈ N, if Ti(s) ≤ Ti(t), then Tk(s) ≤ Tk(t) for
all k ≥ i.

Let s = (s1, . . . , sn) be a tuple of positive integers. We denote by 0 ≤ i ≤ n the
biggest integer such that sj ≤ q for all 1 ≤ j ≤ i and define the initial tuple Init(s)
of s to be the tuple

Init(s) := (s1, . . . , si).

In particular, if s1 > q, then i = 0 and Init(s) is the empty tuple.
For two different tuples s and t, we consider the lexicographical order for initial

tuples and write Init(t) � Init(s) (resp. Init(t) ≺ Init(s), Init(t) � Init(s) and
Init(t) � Init(s)).

1.1.5. Letting s = (s1, . . . , sn) ∈ Nn and ε = (ε1, . . . , εn) ∈ (ΓN )n, we set s− :=

(s2, . . . , sn) and ε− := (ε2, . . . , εn). A positive array

(
ε
s

)
is an array of the form(

ε
s

)
=

(
ε1 · · · εn
s1 · · · sn

)
.
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We set si = 0 and εi = 1 for all i > depth(s). Further we recall w(s) = s1 + · · ·+ sn
and put χ(ε) = ε1 . . . εn.

Let

(
ε
s

)
,

(
ε
t

)
be two positive arrays. We define

(
ε
s

)
+

(
ε
t

)
:=

(
εε
s + t

)
. We

say that

(
ε
s

)
≤
(
ε
t

)
if the following conditions are satisfied:

• w(s) = w(t),
• s1 + · · ·+ si ≤ t1 + · · ·+ ti for all i ∈ N,
• χ(ε) = χ(ε).

1.2. Multiple zeta values in positive characteristic.
For d ∈ Z and for s = (s1, . . . , sn) ∈ Nn, we recall that Sd(s) and S<d(s) are

given by

Sd(s) =
∑

a1,...,an∈A+

d=deg a1>···>deg an≥0

1

as11 . . . asnn
∈ K,

S<d(s) =
∑

a1,...,an∈A+

d>deg a1>···>deg an≥0

1

as11 . . . asnn
∈ K.

Further letting

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be a positive array, we put

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

d=deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ KN ,

S<d

(
ε
s

)
=

∑
a1,...,an∈A+

d>deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ KN .

Following Harada [37], we define the cyclotomic MZV by

ζA

(
ε
s

)
=
∑
d≥0

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ KN,∞.

Remark 1.1. In [37] these objects are called colored multiple zeta values. We note
that in the classical setting similar objects have several names in the literature:
cyclotomic multiple zeta values by Brown in [16], multiple zeta values relative to
µN by Deligne in [24], or colored multiple zeta values by Zhao in [70].

Using Chen’s formula in [23], Harada [37] proved that for s, t ∈ N and ε, ε ∈ ΓN ,

(1.2) Sd

(
ε
s

)
Sd

(
ε
t

)
= Sd

(
εε
s+ t

)
+
∑
i

∆i
s,tSd

(
εε 1

s+ t− i i

)
,

where

∆i
s,t =

{
(−1)s−1

(
i−1
s−1

)
+ (−1)t−1

(
i−1
t−1

)
if q − 1 | i and 0 < i < s+ t,

0 otherwise.

We mention that when s+ t ≤ q, all the coefficients ∆i
s,t are zero.

Harada then proved similar results for products of cyclotomic MZV’s (see [37]):
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Proposition 1.2. Let

(
ε
s

)
,

(
ε
t

)
be two positive arrays. Then

1) There exist fi ∈ Fq and positive arrays

(
µi
ui

)
with

(
µi
ui

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(ui) ≤ depth(s) + depth(t) for all i such that

Sd

(
ε
s

)
Sd

(
ε
t

)
=
∑
i

fiSd

(
µi
ui

)
for all d ∈ Z.

2) There exist f ′i ∈ Fq and positive arrays

(
µ′i
u′i

)
with

(
µ′i
u′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′i) ≤ depth(s) + depth(t) for all i such that

S<d

(
ε
s

)
S<d

(
ε
t

)
=
∑
i

f ′iS<d

(
µ′i
u′i

)
for all d ∈ Z.

3) There exist f ′′i ∈ Fq and positive arrays

(
µ′′i
u′′i

)
with

(
µ′′i
u′′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′′i ) ≤ depth(s) + depth(t) for all i such that

Sd

(
ε
s

)
S<d

(
ε
t

)
=
∑
i

f ′′i Sd

(
µ′′i
u′′i

)
for all d ∈ Z.

We denote by CZN the KN -vector space spanned by the cyclotomic MZV’s and
CZN,w the KN -vector space spanned by the cyclotomic MZV’s of weight w. When
N = 1 we use Z (resp. Zw) instead of CZ1 (resp. CZ1,w).

Proposition 1.2 easily implies that CZN is a commutative algebra over KN .
However, we mention that the associativity of Z was not known in [55] (see Remark
2.2 of loc. cit.). It was recently proved in [45, Theorem A]. As a direct consequence,
we see that CZN is also associative for all N .

We extend without difficulty the algebraic theory developed in [55, §2 and §3]
to the setting of cyclotomic MZV’s to obtain a weak analogue of Brown-Deligne’s
theorems for cyclotomic MZV’s (see Theorem 1.3). We refer the reader to §1.3
where we give more details of this theory in a similar setting.

Theorem 1.3. We denote by CTN,w the set of all cyclotomic MZV’s ζA

(
ε1 . . . εn
s1 . . . sn

)
of weight w such that s1, . . . , sn−1 ≤ q and sn < q. Then

1) For all positive arrays

(
ε
t

)
of weight w, ζA

(
ε
t

)
can be expressed as an AN -

linear combination of ζA

(
ε
s

)
’s in CTN,w.

2) The set of all elements ζA

(
ε
s

)
such that ζA

(
ε
s

)
∈ CTN,w forms a set of

generators for CZN,w.

Remark 1.4. 1) Theorem 1.3, Part 2 can be seen as an analogue (weak version)
of a theorem for cyclotomic MZV’s proved by Brown [14] for N = 1 and Deligne
[24] for N = 2, 3, 4, 8 (see also [30]). More specifically,

• Brown [14] proved that the Q-vector space spanned by classical MZV’s of
fixed weight is spanned by Hoffman’s basis consisting of ζ(n1, ..., nr) of the
same weight with ni ∈ {2, 3}. As a corollary, he recovered the sharp upper
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bound on the dimension of this vector space proved by Terasoma [59] and
Deligne-Goncharov [26]. Brown used the theory of mixed Tate motives and
the motivic version of MZV’s. The proof is by induction on the level, i.e., the
number of 3’s in Hoffman’s basis, and based on an identity among MZV’s
due to Zagier [69].
• Deligne [24] gave a generating set for the Q-vector space spanned by cy-

clotomic MZV’s for N = 2, 3, 4, 8 (Deligne used the terminology MZV’s
relative to µN ). He also used the theory of mixed Tate motives and the
motivic version of MZV’s. But the proof is by induction on the depth. It is
already noted that the depth is pathological for N = 1 (see [24, page 102,
lines 23-25]).
• We refer the reader to the articles [16, 25] for more details.

2) Theorem 1.3, Part 1 states that CTN,w is an integral generating set of CZN,w.
Furthermore, it gives an effective algorithm to express any cyclotomic MZV’s as an
AN -linear combination of cyclotomic MZV’s in CTN,w. In the classical setting, these
results are not known as discussed in [25, page 2, the discussion after Theorem 0.2]
and [24, page 103, lines 8–10] (see also [15]).

1.3. Multiple polylogarithms in positive characteristic.
We now review the notion of multiple polylogarithms (or Carlitz multiple poly-

logarithms) in positive characteristic. We put `0 := 1 and `d :=
∏d
i=1(θ − θqi) for

all d ∈ N. Letting s = (s1, . . . , sn) ∈ Nn, for d ∈ Z, we define

Sid(s) =
∑

d=d1>···>dn≥0

1

`s1d1 . . . `
sn
dn

∈ K,

Si<d(s) =
∑

d>d1>···>dn≥0

1

`s1d1 . . . `
sn
dn

∈ K.

Let

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be a positive array. For d ∈ Z, we put

Sid

(
ε
s

)
=

∑
d=d1>···>dn≥0

εd11 . . . εdnn
`s1d1 . . . `

sn
dn

∈ KN ,

Si<d

(
ε
s

)
=

∑
d>d1>···>dn≥0

εd11 . . . εdnn
`s1d1 . . . `

sn
dn

∈ KN .

Then we introduce the Carlitz multiple polylogarithm at roots of unity (CMPL
at roots of unity for short) as follows:

Li

(
ε
s

)
=
∑
d≥0

Sid

(
ε
s

)
=

∑
d1>···>dn≥0

εd11 . . . εdnn
`s1d1 . . . `

sn
dn

∈ KN,∞.

The connection between cyclotomic MZV’s and CMPL’s at roots of unity is
encoded in the following lemma which turns out to be crucial in the sequel (see
Theorem 1.9).

Lemma 1.5. For all

(
ε
s

)
as above such that si ≤ q for all i, we have

Sd

(
ε
s

)
= Sid

(
ε
s

)
for all d ∈ Z.
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Therefore,

ζA

(
ε
s

)
= Li

(
ε
s

)
.

Proof. See for example [62]. �

We now equip an algebra structure for CMPL’s at roots of unity. We observe

(1.3) Sid

(
ε
s

)
Sid

(
ε
t

)
= Sid

(
εε
s+ t

)
,

hence, for t = (t1, . . . , tn),

(1.4) Sid

(
ε
s

)
Sid

(
ε
t

)
= Sid

(
εε1 ε−
s+ t1 t−

)
.

We emphasize that one advantage of working with CMPL’s at roots of unity
is that the product of these objects as in Eq. (1.3) is much simpler than that
of cyclotomic MZV’s in Eq. (1.2). We will use this fact to obtain an analogue of
Brown-Deligne’s theorems for CMPL’s at roots of unity (see Theorem 1.10).

Using Eqs. (1.3) and (1.4) we obtain

Proposition 1.6. Let

(
ε
s

)
,

(
ε
t

)
be two positive arrays. Then

1) There exist fi ∈ Fq and positive arrays

(
µi
ui

)
with

(
µi
ui

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(ui) ≤ depth(s) + depth(t) for all i such that

Sid

(
ε
s

)
Sid

(
ε
t

)
=
∑
i

fi Sid

(
µi
ui

)
for all d ∈ Z.

2) There exist f ′i ∈ Fq and positive arrays

(
µ′i
u′i

)
with

(
µ′i
u′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′i) ≤ depth(s) + depth(t) for all i such that

Si<d

(
ε
s

)
Si<d

(
ε
t

)
=
∑
i

f ′i Si<d

(
µ′i
u′i

)
for all d ∈ Z.

3) There exist f ′′i ∈ Fq and positive arrays

(
µ′′i
u′′i

)
with

(
µ′′i
u′′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′′i ) ≤ depth(s) + depth(t) for all i such that

Sid

(
ε
s

)
Si<d

(
ε
t

)
=
∑
i

f ′′i Sid

(
µ′′i
u′′i

)
for all d ∈ Z.

Proof. The proof follows the same line as in [55, Proposition 2.1]. We omit the
details. �

We denote by CLN the KN -vector space spanned by the CMPL’s at roots of unity
and by CLN,w the KN -vector space spanned by the CMPL’s at roots of unity of
weight w. Proposition 1.6 implies that CLN is a KN -algebra which is commutative
and associative.
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1.4. Brown-Deligne’s theorems for CMPL’s at roots of unity.
This section is devoted to the development of the so-called algebraic theory as in

[55, §2 and §3] to the setting of CMPL’s at roots of unity. We adopt the operators
B∗ and C of Todd [65] and the operator BC of Ngo Dac [55] to this setting. We then
derive an analogue of Brown-Deligne’s theorems for CMPL’s at roots of unity (see
Theorem 1.8). As a consequence, we prove that for a fixed weight the vector space
spanned by cyclotomic MZV’s and that spanned by CMPL’s at roots of unity are
the same (see Theorem 1.9). Finally, we exploit the fact that the product formula for
CMPL’s at roots of unity is “simple” and prove a strong version of Brown-Deligne’s
theorems for CMPL’s at roots of unity (see Theorem 1.10).

WhenN = q−1 (i.e., the case of alternating CMPL’s), the theory that we develop
in this section was presented in detail in our previous paper [44]. Our presentation
follows the same line as in loc. cit. We write down some details for the convenience
of the reader.

1.4.1. Binary relations. A binary relation is a KN -linear combination of the form∑
i

ai Sid

(
εi
si

)
+
∑
i

bi Sid+1

(
εi
ti

)
= 0 for all d ∈ Z,

where ai, bi ∈ KN and

(
εi
si

)
,

(
εi
ti

)
are positive arrays of the same weight.

We denote by BRw the set of all binary relations of weight w. Then BRw is a
KN -vector space. From the fundamental relation in [62, §3.4.6] follows an important
family of binary relations

(1.5) Rε : Sid

(
ε
q

)
+ ε−1D1 Sid+1

(
ε 1
1 q − 1

)
= 0.

Here D1 = θq − θ given in Eq. (1.1) and ε ∈ ΓN .
For the rest of this section, let R ∈ BRw be a binary relation of the form

(1.6) R(d) :
∑
i

ai Sid

(
εi
si

)
+
∑
i

bi Sid+1

(
εi
ti

)
= 0,

where ai, bi ∈ KN and

(
εi
si

)
,

(
εi
ti

)
are positive arrays of the same weight. We now

define some operators on KN -vector spaces of binary relations.

1.4.2. Operators B∗. Let

(
σ
v

)
be a positive array of depth 1. We define an operator

B∗σ,v : BRw −→ BRw+v as follows: for each R ∈ BRw, the image B∗σ,v(R) =

Sid

(
σ
v

)∑
j<dR(j) is a binary relation of the form

0 = Sid

(
σ
v

)(∑
i

ai Si<d

(
εi
si

)
+
∑
i

bi Si<d+1

(
εi
ti

))

=
∑
i

ai Sid

(
σ
v

)
Si<d

(
εi
si

)
+
∑
i

bi Sid

(
σ
v

)
Si<d

(
εi
ti

)
+
∑
i

bi Sid

(
σ
v

)
Sid

(
εi
ti

)
=
∑
i

ai Sid

(
σ εi
v si

)
+
∑
i

bi Sid

(
σ εi
v ti

)
+
∑
i

bi Sid

(
σεi1 εi−
v + ti1 ti−

)
.
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The last equality follows from the explicit formula (1.4).

Let

(
Σ
V

)
=

(
σ1 . . . σn
v1 . . . vn

)
be a positive array. We define B∗Σ,V (R) by B∗Σ,V (R) =

B∗σ1,v1 ◦ · · · ◦B
∗
σn,vn(R).

1.4.3. Operators C. Let

(
Σ
V

)
be a positive array of weight v. We define an operator

CΣ,V (R) : BRw −→ BRw+v as follows: for each R ∈ BRw, the image CΣ,V (R) =

R(d) Si<d+1

(
Σ
V

)
is a binary relation of the form

0 =

(∑
i

ai Sid

(
εi
si

)
+
∑
i

bi Sid+1

(
εi
ti

))
Si<d+1

(
Σ
V

)
=
∑
i

ai Sid

(
εi
si

)
Sid

(
Σ
V

)
+
∑
i

ai Sid

(
εi
si

)
Si<d

(
Σ
V

)
+
∑
i

bi Sid+1

(
εi
ti

)
Si<d+1

(
Σ
V

)
=
∑
i

fi Sid

(
µi
ui

)
+
∑
i

f ′i Sid+1

(
µ′i
u′i

)
.

The last equality follows from Proposition 1.6.

1.4.4. Operators BC. Let ε ∈ ΓN . We define an operator BCε,q : BRw −→ BRw+q

as follows: for R ∈ BRw as in Eq. (1.6), the image BCε,q(R) is a binary relation
given by

BCε,q(R) = B∗ε,q(R)−
∑
i

biCεi,ti(Rε).

By direct calculations, we see that BCε,q(R) is of the form∑
i

ai Sid

(
ε εi
q si

)
+
∑
i,j

bij Sid+1

(
ε εij
1 tij

)
= 0,

where bij ∈ KN and

(
εij
tij

)
are positive arrays satisfying

(
εij
tij

)
≤
(

1
q − 1

)
+

(
εi
ti

)
for all j.

1.4.5. A key expression. We recall the following result which is crucial to obtain
the strong version of Brown-Deligne’s theorems in our setting (see [44, Proposition
1.6]). The key fact is that we exploit the simple product formula for CMPL’s at
roots of unity given by Eq. (1.2) to obtain a simple and explicit expression of terms
of type 1.

Proposition 1.7. We recall that AN = kN [θ].

1) Let

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be a positive array such that Init(s) = (s1, . . . , sk−1)

(see §1.1) for some 1 ≤ k ≤ n, and let ε be an element in ΓN . Then Li

(
ε
s

)
can be

decomposed as follows

Li

(
ε
s

)
= −Li

(
ε′

s′

)
︸ ︷︷ ︸

type 1

+
∑
i

bi Li

(
ε′i
t′i

)
︸ ︷︷ ︸

type 2

+
∑
i

ci Li

(
µi
ui

)
︸ ︷︷ ︸

type 3

,
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where bi, ci ∈ AN are divisible by D1 given as in Eq. (1.1) such that for all i, the
following properties are satisfied:

• For all positive arrays

(
ε
t

)
appearing on the right-hand side, depth(t) ≥

depth(s) and Tk(t) ≤ Tk(s).

• For the positive array

(
ε′

s′

)
of type 1 with respect to

(
ε
s

)
, we have(

ε′

s′

)
=

(
ε1 . . . εk−1 ε ε−1εk εk+1 . . . εn
s1 . . . sk−1 q sk − q sk+1 . . . sn

)
.

Moreover, for all k ≤ ` ≤ n,

s′1 + · · ·+ s′` < s1 + · · ·+ s`.

• For the positive array

(
ε′

t′

)
of type 2 with respect to

(
ε
s

)
, for all k ≤ ` ≤ n,

t′1 + · · ·+ t′` < s1 + · · ·+ s`.

• For the positive array

(
µ
u

)
of type 3 with respect to

(
ε
s

)
, we have Init(s) ≺

Init(u).

2) Let

(
ε
s

)
=

(
ε1 . . . εk
s1 . . . sk

)
be a positive array such that Init(s) = s and sk = q.

Then Li

(
ε
s

)
can be decomposed as follows:

Li

(
ε
s

)
=
∑
i

bi Li

(
ε′i
t′i

)
︸ ︷︷ ︸

type 2

+
∑
i

ci Li

(
µi
ui

)
︸ ︷︷ ︸

type 3

,

where bi, ci ∈ AN divisible by D1 such that for all i, the following properties are
satisfied:

• For all positive arrays

(
ε
t

)
appearing on the right-hand side, depth(t) ≥

depth(s) and Tk(t) ≤ Tk(s).

• For the positive array

(
ε′

t′

)
of type 2 with respect to

(
ε
s

)
,

t′1 + · · ·+ t′k < s1 + · · ·+ sk.

• For the positive array

(
µ
u

)
of type 3 with respect to

(
ε
s

)
, we have Init(s) ≺

Init(u).

Proof. For the convenience of the reader we outline how to obtain the decompo-
sitions. For m ∈ N, we denote by q{m} the sequence of length m with all terms
equal to q. We agree by convention that q{0} is the empty sequence. Setting s0 = 0,
we can assume that there exists a maximal index j with 0 ≤ j ≤ k − 1 such that

sj < q, hence Init(s) = (s1, . . . , sj , q
{k−j−1}). We set

(
Σ′

V ′

)
=

(
ε1 . . . εj
s1 . . . sj

)
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For Part 1, since Init(s) = (s1, . . . , sk−1), we get sk > q. We put

(
Σ
V

)
=(

ε−1εk εk+1 . . . εn
sk − q sk+1 . . . sn

)
. Then the desired decomposition is obtained from the

binary relation

B∗Σ′,V ′ ◦BCεj+1,q ◦ · · · ◦BCεk−1,q ◦ CΣ,V (Rε).

Here we recall that Rε is the binary relation given in Eq. (1.5).
For Part 2, the desired decomposition is obtained from the binary relation

B∗Σ′,V ′ ◦BCεj+1,q ◦ · · · ◦BCεk−1,q(R1).

Again R1 is the binary relation given in Eq. (1.5) for ε = 1 (known as the funda-
mental relation in [55]). �

1.4.6. A weak version of Brown-Deligne’s theorems for CMPL’s at roots of unity.
We recall (see Theorem 1.3) that CTN,w denotes the set of all cyclotomic MZV’s

ζA

(
ε
s

)
of weight w such that s1, . . . , sn−1 ≤ q and sn < q. By Lemma 1.5, we

know that ζA

(
ε
s

)
= Li

(
ε
s

)
. Thus CTN,w equals the set of all CMPL’s at roots of

unity Li

(
ε
s

)
of weight w such that s1, . . . , sn−1 ≤ q and sn < q.

Using Proposition 1.7 we obtain a weak version of Brown-Deligne’s theorems for
CMPL’s at roots of unity whose proof follows the same line as that in [55, §3] (see
also [44, §1]):

Theorem 1.8. 1) For all positive arrays

(
ε
t

)
of weight w, Li

(
ε
t

)
can be expressed

as an AN -linear combination of Li

(
ε
s

)
’s in CTN,w.

2) The KN -vector space CLN,w spanned by all CMPL’s at roots of unity of weight
w is spanned by the set CTN,w.

Combining Theorems 1.3 and 1.8 allows us to identify the two vector spaces of
cyclotomic MZV’s and CMPL’s at roots of unity.

Theorem 1.9. The KN -vector space CZN,w of cyclotomic MZV’s of weight w and
the KN -vector space CLN,w of CMPL’s at roots of unity of weight w are the same.

1.4.7. An analogue of Brown-Deligne’s theorems for CMPL’s at roots of unity. Fol-
lowing [44] we consider the set Tw consisting of positive tuples s = (s1, . . . , sn) of
weight w such that s1, . . . , sn−1 ≤ q and sn < q, together with the set Sw consisting
of positive tuples s = (s1, . . . , sn) of weight w such that q - si for all i. We define a
map

ι : Sw −→ Tw

as follows: letting s = (s1, . . . , sn) ∈ Sw, we express si = hiq + ri where 0 < ri < q
and hi ∈ Z≥0 and put

ι(s) = (q, . . . , q︸ ︷︷ ︸
h1 times

, r1, . . . , q, . . . , q︸ ︷︷ ︸
hn times

, rn).

It is clear that this map is a bijection.
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Let CSN,w denote the set of CMPL’s at roots of unity Li

(
ε
s

)
such that s =

(s1, . . . , sn) ∈ Sw and ε = (ε1, . . . , εn) ∈ (ΓN )n. We note that CSN,w is smaller than
CTN,w.

Theorem 1.10. The set CSN,w forms a set of generators for CLN,w.

Proof. Letting Li

(
ε
s

)
∈ CTN,w, we know that s ∈ Tw. Thus there exists a unique

tuple s′ ∈ Sw such that s = ι(s′) as ι is a bijection. By Proposition 1.7 and Theorem

1.8, it follows that there exists a tuple ε′ ∈ (ΓN )depth(s′) such that Li

(
ε′

s′

)
can be

expressed as follows:

Li

(
ε′

s′

)
=
∑

a(ε′,s′),(ε,t) Li

(
ε
t

)
,

where

(
ε
t

)
ranges over all elements of CTN,w and a(ε′,s′),(ε,t) ∈ AN satisfying

a(ε′,s′),(ε,t) ≡

±1 (mod D1) if

(
ε

t

)
=

(
ε

s

)
,

0 (mod D1) otherwise.

We observe that Li

(
ε′

s′

)
∈ CSN,w.

It implies immediately that the transition matrix from the set consisting of such

Li

(
ε′

s′

)
as above to the set consisting of Li

(
ε
s

)
with

(
ε
s

)
∈ CTN,w is invertible.

The theorem follows. �

Combining Theorems 1.9 and 1.8 yields

Theorem 1.11. Let CSN,w denote the set of CMPL’s at roots of unity Li

(
ε
s

)
such

that s ∈ Sw. Then the set CSN,w forms a set of generators for CZN,w.

We easily see that one has an effective algorithm for expressing any cyclotomic
multiple zeta value as a linear combination of CZN,w as opposed to the classical
setting (see [15, 24, 25] for more explanations).

2. Dual t-motives connected to CMPL’s at roots of unity

2.1. Dual t-motives.
We recall the notion of dual t-motives due to Anderson and refer the reader to

[1] for the related notion of t-motives. For i ∈ Z we consider the i-fold twisting of
C∞((t)) defined by

C∞((t))→ C∞((t))

f =
∑
j

ajt
j 7→ f (i) :=

∑
j

aq
i

j t
j .

We extend i-fold twisting to matrices with entries in C∞((t)) by twisting entry-wise.
Let K[t, σ] be the non-commutative K[t]-algebra generated by the new variable

σ subject to the relation σf = f (−1)σ for all f ∈ K[t].
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Definition 2.1. An effective dual t-motive is a K[t, σ]-module M′ which is free
and finitely generated over K[t] such that for `� 0 we have

(t− θ)`(M′/σM′) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [22,
36, 50] (see also [38, §4] for a more general notion of dual t-motives). Throughout
this paper we will always work with effective dual t-motives. Therefore, we will
sometimes drop the word “effective” where there is no confusion.

Letting M be a dual t-motive, we say that it is represented by a matrix Φ ∈
Matr(K[t]) if M is a K[t]-module free of rank r and the action of σ is represented
by the matrix Φ on a given K[t]-basis for M. We say that M is uniformizable or
rigid analytically trivial if there exists a matrix Ψ ∈ GLr(T) satisfying Ψ(−1) = ΦΨ.
The matrix Ψ is called a rigid analytic trivialization of M.

We now recall the Anderson-Brownawell-Papanikolas criterion which is crucial
in the sequel (see [2, Theorem 3.1.1]). The curious reader might compare it with
Beukers’ result [8] in the classical setting.

Theorem 2.2 (Anderson-Brownawell-Papanikolas). Let Φ ∈ Mat`(K[t]) be a ma-
trix such that det Φ = c(t − θ)s for some c ∈ K and s ∈ Z≥0. Let ψ ∈ Mat`×1(E)
(see §1.1 for E) be a vector satisfying ψ(−1) = Φψ and ρ ∈ Mat1×`(K) such that
ρψ(θ) = 0. Then there exists a vector P ∈ Mat1×`(K[t]) such that

Pψ = 0 and P (θ) = ρ.

To end this section we recall R = [kN : k] and mention that by replacing Fq
(resp. σ) by FqR (resp. σR) one gets a theory of dual t-motives of level R (see
[22, 37] for more details).

2.2. Dual t-motives connected to CMPL’s at roots of unity.
We recall that as in §1.1, π̃ denotes the Carlitz period which is a fundamental

period of the Carlitz module (see [35, 61]) and Ω denotes the Anderson-Thakur
function introduced in [3].

Let s = (s1, . . . , sr) ∈ Nr be a tuple and ε = (ε1, . . . , εr) ∈ (ΓN )r. For all
1 ≤ i ≤ r we fix a (qR−1)th root µi of εRi ∈ k

×
N . Following Harada [37] we consider

the untwisted L-series

Lun(s; ε) :=
∑

i1>···>ir≥0

εi11 (Ωs1)(i1) . . . εirr (Ωsr )(ir).(2.1)

Remark 2.3. We mention that these series are different from those that appeared
in our previous works on MZV’s and AMZV’s [55, 44] which are twisted series
defined by Chang [20].

It can be proved that Lun(s, ε) ∈ E (the proof follows the same line as in [37,
Lemma 4.2]). In the sequel, we will use the following property of this series (see
[37, Lemma 4.4]): for all j ∈ Z≥0 divisible by R, we have

Lun(s; ε)(θ) =

Li

(
ε
s

)
π̃w(s)

,(2.2)

Lun(s; ε)(θq
j

) = (ε1 . . . εr)
j(Lun(s; ε)(θ))q

j

.(2.3)
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We note that in the proof of [37, Lemma 4.4], we need the equalities ε
(j)
i = εi which

follow from the fact that j divisible by R.
Further,

Lun(s1, . . . , sr; ε1, . . . , εr)
(−1) = (ε1 . . . εr)

(−1)Lun(s1, . . . , sr; ε
(−1)
1 , . . . , ε(−1)

r )

+ (ε1 . . . εr−1)(−1)(t− θ)srΩsrLun(s1, . . . , sr−1; ε
(−1)
1 , . . . , ε

(−1)
r−1 ).

As in [37, Lemma 3.3], it follows that for all j ∈ N,

Lun(s1, . . . , sr; ε1, . . . , εr)
(−j) = ((ε1 . . . εr)

j)(−j)
r∑
i=0

Ωsi+1+···+sr

×
∑

0<ji+1<···<jr≤j

Tsi+1,ji+1((εi+1)(−j)) . . . Tsr,jr ((εr)
(−j))Lun(s1, . . . , si; ε

(−j)
1 , . . . , ε

(−j)
i ).

Here for all s ∈ N, k ∈ N and ε ∈ ΓN , we put

Ts,k := (t− θ)s((t− θ)s)(−1) . . . ((t− θ)s)(−(k−1)),(2.4)

Ts,k(ε) := ε−kTs,k = ε−k(t− θ)s((t− θ)s)(−1) . . . ((t− θ)s)(−(k−1)).

In particular, when j = R, since ε
(−R)
i = εi, we obtain

Lun(s1, . . . , sr; ε1, . . . , εr)
(−R) = (ε1 . . . εr)

R
r∑
i=0

Ωsi+1+···+sr

×
∑

0<ji+1<···<jr≤R

Tsi+1,ji+1
(εi+1) . . . Tsr,jr (εr)L

un(s1, . . . , si; ε1, . . . , εi).

We consider the dual t-motives Ms,ε and M′s,ε attached to (s, ε) given by the
matrices

Φs,ε

=



Ts1+···+sr,R 0 0 . . . 0

µ1Ts2+···+sr,R
∑R
j1=1 Ts1,j1(ε1) Ts2+···+sr,R 0 . . . 0

... µ2Ts3+···+sr,R
∑R
j2=1 Ts2,j2(ε2)

. . .
...

...
. . . Tsr,R 0

µ1 . . . µr
∑

0<j1<···<jr≤R

Ts1,j1(ε1) . . . Tsr,jr (εr) . . . . . . µr
∑R
jr=1 Tsr,jr (εr) 1


∈ Matr+1(K[t]),

and Φ′s,ε ∈ Matr(K[t]) which is the upper left r × r sub-matrix of Φs,ε. More
precisely, the ith row of Φs,ε is (Φi,1, . . . ,Φi,i, 0, . . . , 0) where for 1 ≤ k ≤ i,

Φi,k = µk . . . µi−1Tsi+···+sr,R
∑

0<jk<···<ji−1≤R

Tsk,jk(εk) . . . Tsi−1,ji−1
(εi−1).

From now on, we write

(2.5) L(s; ε) := µ(s; ε)Lun(s; ε)
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instead of µ1 . . . µrL
un(s; ε). It follows from Eqs. (2.2) and (2.3) that for all j ∈ Z≥0

divisible by R, we have

L(s; ε)(θ) = µ1 . . . µr

Li

(
ε
s

)
π̃w(s)

,(2.6)

L(s; ε)(θq
j

) = (L(s; ε)(θ))q
j

.(2.7)

Then the matrix given by

Ψs,ε

=



Ωs1+···+sr 0 0 . . . 0
µ1L

un(s1; ε1)Ωs2+···+sr Ωs2+···+sr 0 . . . 0
... µ2L

un(s2; ε2)Ωs3+···+sr . . .
...

...
. . .

. . .
...

µ1 . . . µr−1L
un(s1, . . . , sr−1; ε1, . . . , εr−1)Ωsr µ2 . . . µr−1L

un(s2, . . . , sr−1; ε2, . . . , εr−1)Ωsr . . . Ωsr 0
µ1 . . . µrL

un(s1, . . . , sr; ε1, . . . , εr) µ2 . . . µrL
un(s2, . . . , sr; ε2, . . . , εr) . . . µrL

un(sr; εr) 1



=



Ωs1+···+sr 0 0 . . . 0
L(s1; ε1)Ωs2+···+sr Ωs2+···+sr 0 . . . 0

... L(s2; ε2)Ωs3+···+sr . . .
...

...
. . .

. . .
...

L(s1, . . . , sr−1; ε1, . . . , εr−1)Ωsr L(s2, . . . , sr−1; ε2, . . . , εr−1)Ωsr . . . Ωsr 0
L(s1, . . . , sr; ε1, . . . , εr) L(s2, . . . , sr; ε2, . . . , εr) . . . L(sr; εr) 1


∈ GLr+1(T)

satisfies

Ψ
(−R)
s,ε = Φs,εΨs,ε.

Thus Ψs,ε is a rigid analytic trivialization associated to the dual t-motive Ms,ε of
level R. We also denote by Ψ′s,ε the upper r× r sub-matrix of Ψs,ε. It is clear that
Ψ′s is a rigid analytic trivialization associated to the dual t-motive M′s,ε.

Further, combined with Eqs. (2.6) and (2.7) (see [37, Lemma 4.4]), the above
construction of dual t-motives implies that L(s; ε)(θ) has the MZ (multizeta) prop-
erty in the sense of [20, Definition 3.4.1]. By [37, Theorem 4.7 and Lemma 4.11]
(see [20, Proposition 4.3.1] for the MZV’s case), we get

Proposition 2.4. Let (si; εi) be as before for 1 ≤ i ≤ m. We suppose that all
the tuples of positive integers si have the same weight, say w. Then the following
assertions are equivalent:

i) L(s1; ε1)(θ), . . . , L(sm; εm)(θ) are KN -linearly independent.
ii) L(s1; ε1)(θ), . . . , L(sm; εm)(θ) are K-linearly independent.

We end this section by mentioning that Harada [37] also proved analogue of
Goncharov’s conjecture for cyclotomic MZV’s, generalizing [20] for the MZV’s case.

2.3. Dual t-motives and linear combinations of CMPL’s at roots of unity.

Let w ∈ N be a positive integer. Let {(si; εi)}1≤i≤n be a collection of pairs as
above such that si has weight w. Let {(ai)}1≤i≤n be elements in KN and we set
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ai(t) := ai|θ=t ∈ kN [t]. We write si = (si1, . . . , si`i) ∈ N`i and εi = (εi1, . . . , εi`i) ∈
(ΓN )`i so that si1 + · · ·+ si`i = w. We introduce the set of tuples

I(si; εi) := {∅, (si1; εi1), . . . , (si1, . . . , si(`i−1); εi1, . . . , εi(`i−1))},
and set

I := ∪iI(si; εi).

For all (t; ε) ∈ I, we set

(2.8) ft,ε :=
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i),

where the sum runs through the set of indices i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik)
for some 0 ≤ k ≤ `i − 1. In particular, f∅ =

∑
i ai(t)L(si; εi).

We now generalize some results of [55, §4 and §5] and also [44, Theorem 2.4]
to study the linear dependence of CMPL’s at roots of unity. The key point is
a construction of dual t-motives connected to linear combinations of CMPL’s at
roots of unity. The proof follows the same line as the above. We write it down for
completeness.

Theorem 2.5. We keep the above notation. We suppose further that {(si; εi)}1≤i≤n
satisfies the following conditions:

(LW) (for Lower Weights) For any weight w′ < w, the values L(t; ε)(θ) with
(t; ε) ∈ I and w(t) = w′ are all KN -linearly independent. In particular,
L(t; ε)(θ) is always nonzero.

(LD) (for Linear Dependence) There exist a ∈ AN and ai ∈ AN for 1 ≤ i ≤ n
which are not all zero such that

a+

n∑
i=1

aiL(si; εi)(θ) = 0.

Then for all (t; ε) ∈ I, ft,ε(θ) belongs to KN where ft,ε is given as in Eq. (2.8).

Proof. The proof will be divided into two steps.

Step 1. We first construct a dual t-motive connected to linear combinations of
CMPL’s at roots of unity.

For each pair (si; εi) we have attached to it a matrix Φsi,εi . For si = (si1, . . . , si`i) ∈
N`i and εi = (εi1, . . . , εi`i) ∈ (ΓN )`i we recall

I(si; εi) = {∅, (si1; εi1), . . . , (si1, . . . , si(`i−1); εi1, . . . , ε(`i−1))},
and I := ∪iI(si; εi).

We now construct a new matrix Φ′ by merging the same rows of Φ′s1,ε1 , . . . ,Φ
′
sn,εn

as follows. The matrix Φ′ will be a matrix indexed by elements of I, say Φ′ =(
Φ′(t;ε),(t′;ε′)

)
(t;ε),(t′;ε′)∈I

∈ Mat|I|(K[t]). For the row which corresponds to the

empty pair ∅ we put

Φ′∅,(t′;ε′) =

{
Tw,R if (t′; ε′) = ∅,
0 otherwise.

For the row indexed by (t; ε) = (si1, . . . , sij ; εi1, . . . , εij) for some i and 1 ≤ j ≤ `i−1
we put

Φ′(t;ε),(t′;ε′)
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=


Tw−w(t′),R if (t′; ε′) = (t; ε),

µi(k+1) . . . µijTw−w(t),R

∑∗
Tsi(k+1),mi(k+1)

(εi(k+1)) . . . Tsij ,mij (εij) if (t′; ε′) = (si1, . . . , sik; εi1, . . . , εik),

0 otherwise.

Here
∑∗

=
∑

0<mi(k+1)<···<mij≤R. Note that Φ′si,εi =
(

Φ′(t;ε),(t′;ε′)

)
(t;ε),(t′;ε′)∈I(si;εi)

for all i.
We define Φ ∈ Mat|I|+1(K[t]) by

Φ =

(
Φ′ 0
v 1

)
∈ Mat|I|+1(K[t]), v = (vt,ε)(t;ε)∈I ∈ Mat1×|I|(K[t]),

where

vt,ε =
∑
i

ai(t)µi(k+1) . . . µi`i
∑

0<mi(k+1)<···<mi`i≤R

Tsi(k+1),mi(k+1)
(εi(k+1)) . . . Tsi`i ,mi`i (εi`i).

Here the first sum runs through the set of indices i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik)
for some 0 ≤ k ≤ `i − 1.

We now introduce a rigid analytic trivialization matrix Ψ for Φ. We define Ψ′ =(
Ψ′(t;ε),(t′;ε′)

)
(t;ε),(t′;ε′)∈I

∈ GL|I|(T) as follows. For the row which corresponds to

the empty pair ∅ we define

Ψ′∅,(t′;ε′) =

{
Ωw if (t′; ε′) = ∅,
0 otherwise.

For the row indexed by (t; ε) = (si1, . . . , sij ; εi1, . . . , εij) for some i and 1 ≤ j ≤ `i−1
we put

Ψ′(t;ε),(t′;ε′) =
L(t; ε)Ωw−w(t) if (t′; ε′) = ∅,
L(si(k+1), . . . , sij ; εi(k+1), . . . , εij)Ω

w−w(t) if (t′; ε′) = (si1, . . . , sik; εi1, . . . , εik) for some 1 ≤ k ≤ j,
0 otherwise.

Note that Ψ′si,εi =
(

Ψ′(t;ε),(t′;ε′)

)
(t;ε),(t′;ε′)∈I(si;εi)

for all i.

We define Ψ ∈ GL|I|+1(T) by

Ψ =

(
Ψ′ 0
f 1

)
∈ GL|I|+1(T), f = (ft,ε)t∈I ∈ Mat1×|I|(T).

Here we recall (see Eq. (2.8))

ft,ε =
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i)

where the sum runs through the set of indices i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik)
for some 0 ≤ k ≤ `i − 1. In particular, f∅ =

∑
i ai(t)L(si; εi).

By construction and by §2.2, we get Ψ(−R) = ΦΨ.

Step 2. We apply the Anderson-Brownawell-Papanikolas criterion (see Theorem
2.2) to the previous construction.

In fact, we define

Φ̃ =

(
1 0
0 Φ

)
∈ Mat|I|+2(K[t])
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and consider the vector constructed from the first column vector of Ψ

ψ̃ =

 1
Ψ′(t;ε),∅
f∅


(t;ε)∈I

.

Then we have ψ̃(−R) = Φ̃ψ̃.
We also observe that for all (t; ε) ∈ I we have Ψ′(t;ε),∅ = L(t; ε)Ωw−w(t). Further,

a+ f∅(θ) = a+
∑
i

aiL(si; εi)(θ) = 0.

By Theorem 2.2 with ρ = (a, 0, . . . , 0, 1) we deduce that there exists h = (g0, gt,ε, g) ∈
Mat1×(|I|+2)(K[t]) such that hψ = 0, and that gt,ε(θ) = 0 for (t, ε) ∈ I, g0(θ) = a

and g(θ) = 1 6= 0. If we put g := (1/g)h ∈ Mat1×(|I|+2)(K(t)), then all the entries
of g are regular at t = θ.

Now we have

(g − g(−R)Φ̃)ψ̃ = gψ̃ − (gψ̃)(−R) = 0.(2.9)

We write g − g(−R)Φ̃ = (B0, Bt, 0)t∈I . We claim that B0 = 0 and Bt,ε = 0 for all
(t; ε) ∈ I. In fact, expanding (2.9) we obtain

(2.10) B0 +
∑
t∈I

Bt,εL(t; ε)Ωw−w(t) = 0.

By (2.7) we see that for (t; ε) ∈ I and j ∈ N divisible by R,

L(t; ε)(θq
j

) = (L(t; ε)(θ))q
j

which is nonzero by Condition (LW).

First, as the function Ω has a simple zero at t = θq
k

for k ∈ N, specializing (2.10)

at t = θq
j

yields B0(θq
j

) = 0 for j ≥ 1 divisible by R. Since B0 belongs to K(t), it
follows that B0 = 0.

Next, we put w0 := max(t;ε)∈I w(t) and denote by I(w0) the set of (t; ε) ∈ I such

that w(t) = w0. Then dividing (2.10) by Ωw−w0 yields
(2.11)∑
(t;ε)∈I

Bt,εL(t; ε)Ωw0−w(t) =
∑

(t;ε)∈I(w0)

Bt,εL(t; ε)+
∑

(t;ε)∈I\I(w0)

Bt,εL(t; ε)Ωw0−w(t) = 0.

Since each Bt,ε belongs to K(t), they are defined at t = θq
j

for j � 1. Note that

the function Ω has a simple zero at t = θq
k

for k ∈ N. Specializing (2.11) at t = θq
j

and using (2.7) yields ∑
(t;ε)∈I(w0)

Bt,ε(θ
qj )(L(t; ε)(θ))q

j

= 0

for j � 1 divisible by R.

We claim that Bt,ε(θ
qj ) = 0 for j � 1 divisible by R and for all (t; ε) ∈ I(w0).

Otherwise, we get a non-trivial K-linear relation among L(t; ε)(θ) with (t; ε) ∈ I of
weight w0. By Proposition 2.4 we deduce a non-trivial KN -linear relation among
L(t; ε)(θ) with (t; ε) ∈ I(w0), which contradicts with Condition (LW ). Now we

know that Bt,ε(θ
qj ) = 0 for j � 1 divisible by R and for all (t; ε) ∈ I(w0). Since

each Bt,ε belongs to K(t), it follows that Bt,ε = 0 for all (t; ε) ∈ I(w0).
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Next, we put w1 := max(t;ε)∈I\I(w0) w(t) and denote by I(w1) the set of (t; ε) ∈ I
such that w(t) = w1. Dividing (2.10) by Ωw−w1 and specializing at t = θq

j

yields∑
(t;ε)∈I(w1)

Bt,ε(θ
qj )(L(t; ε)(θ))q

j

= 0

for j � 1. Since w1 < w, by Proposition 2.4 and Condition (LW ) again we deduce

that Bt,ε(θ
qj ) = 0 for j � 1 divisible by R and for all (t; ε) ∈ I(w1). Since each

Bt,ε belongs to K(t), it follows that Bt,ε = 0 for all (t; ε) ∈ I(w1). Repeating the
previous arguments we deduce that Bt,ε = 0 for all (t; ε) ∈ I as required.

We have proved that g − g(−R)Φ̃ = 0. Thus 1 0 0
0 Id 0

g0/g (gt,ε/g)(t;ε)∈I 1

(−R)(
1 0
0 Φ

)
=

1 0 0
0 Φ′ 0
0 0 1

 1 0 0
0 Id 0

g0/g (gt,ε/g)(t;ε)∈I 1

 .

By [22, Prop. 2.2.1] we see that the common denominator b of g0/g and gt,ε/g for
(t, ε) ∈ I belongs to kN [t]\{0}. If we put δ0 = bg0/g and δt,ε = bgt,ε/g for (t, ε) ∈ I
which belong to K[t] and δ := (δt,ε)t∈I ∈ Mat1×|I|(K[t]), then δ

(−R)
0 = δ0 and(

Id 0
δ 1

)(−R)(
Φ′ 0
bv 1

)
=

(
Φ′ 0
0 1

)(
Id 0
δ 1

)
.(2.12)

If we put X :=

(
Id 0
δ 1

)(
Ψ′ 0
bf 1

)
, then X(−R) =

(
Φ′ 0
0 1

)
X. By [56, §4.1.6]

there exist νt,ε ∈ kN (t) for (t, ε) ∈ I such that if we set ν = (νt,ε)(t,ε)∈I ∈
Mat1×|I|(kN (t)),

X =

(
Ψ′ 0
0 1

)(
Id 0
ν 1

)
.

Thus the equation

(
Id 0
δ 1

)(
Ψ′ 0
bf 1

)
=

(
Ψ′ 0
0 1

)(
Id 0
ν 1

)
implies

(2.13) δΨ′ + bf = ν.

The left-hand side belongs to T, so does the right-hand side. Thus ν = (νt,ε)(t,ε)∈I ∈
Mat1×|I|(kN [t]). For any j ∈ N, by specializing Eq. (2.13) at t = θq

j

for j ∈ N
divisible by R and using Eq. (2.7) and the fact that Ω has a simple zero at t = θq

j

we deduce that
f(θ) = ν(θ)/b(θ).

Thus for all (t, ε) ∈ I, ft,ε(θ) given as in Eq. (2.8) belongs to KN . The proof is
complete. �

2.4. Linear relations among CMPL’s at roots of unity and Carlitz’s pe-
riod.

The main result for linear relations among CMPL’s roots of unity reads as fol-
lows:

Theorem 2.6. Let w ∈ N. We recall that Sw denotes the set of positive tuples
s = (s1, . . . , sn) of weight w such that q - si for all i and CSN,w denotes the set

of CMPL’s at roots of unity Li

(
ε
s

)
such that s = (s1, . . . , sn) ∈ Sw and ε =

(ε1, . . . , εn) ∈ (ΓN )n (see §1.4.7).
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1) Suppose that we have a non-trivial relation denoted by R(N,w):

a+
∑

si∈Sw

aiL(si; εi)(θ) = 0, for some a, ai ∈ Fq(θ).

Then q − 1 | w, a 6= 0 and εi = (1, . . . , 1) for all i.
2) Further, if q − 1 | w, then there is a unique relation

1 +
∑

si∈Sw

aiL(si; 1)(θ) = 0, for ai ∈ K.

We postpone the proof of Theorem 2.6 to the next section. We derive an imme-
diate consequence of Theorem 2.6:

Theorem 2.7. The CMPL’s at roots of unity in CSN,w are linearly independent
over KN .

3. CMPL’s at roots of unity and Carlitz’s period

This section is devoted to proving Theorem 2.6. We keep the notation of the
previous section and recall R := [kN : k] < N .

3.1. Auxiliary lemmas.
We begin this section by recalling several lemmas in [44].

Lemma 3.1. Let εi ∈ ΓN be different elements such that the values εRi are pairwise
distinct. We denote by µi ∈ Fq a (qR − 1) root of εRi . Then µi are all kN -linearly
independent.

Proof. See [44, Lemma 3.1]. �

Lemma 3.2. Let Li

(
εi
si

)
∈ CSN,w and ai ∈ KN satisfying∑

i

aiL(si; εi)(θ) = 0.

For ε ∈ ΓN we denote by I(εR) = {i : χ(εi)
R = εR} the set of pairs such that the

Rth power of the corresponding character equals εR. Then for all ε ∈ ΓN ,∑
i∈I(εR)

aiL(si; εi)(θ) = 0.

Proof. See [44, Lemma 3.2]. �

Lemma 3.3. Let m ∈ N, ε ∈ ΓN , δ ∈ K[t] and F (t, θ) ∈ Fq[t, θ] (resp. F (t, θ) ∈
kN [t, θ]) satisfying

εδ = δ(−R)Tm,R + F (−R)(t, θ).

Then δ ∈ Fq[t, θ] (resp. δ ∈ kN [t, θ]) and

degθ δ ≤ max

{
qm

q − 1
,

degθ F (t, θ)

qR

}
.

Proof. This lemma is a slight generalization of [50, Theorem 2], which proved the
case N = 1 (hence R = 1 and Tm,R = (t− θ)m).

By twisting R times the equality εδ = δ(−R)Tm,R +F (−R)(t, θ) and the fact that

ε(R) = ε, we get
εδ(R) = δ(Tm,R)(R) + F (t, θ).
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We put n = degt δ and express δ = ant
n+ · · ·+a1t+a0 ∈ K[t] with a0, . . . , an ∈ K.

For i < 0 we put ai = 0.
Recall that Tm,R = (t− θ)m((t− θ)m)(−1) . . . ((t− θ)m)(−(R−1)), thus

T
(R)
m,R = ((t− θ)m)(R)((t− θ)m)(R−1) . . . ((t− θ)m)(1)

= (t− θq
R

)m . . . (t− θq)m

= tmR + cmR−1t
mR−1 + · · ·+ c1t+ c0,

where ci ∈ Fq[θ]. We put cmR = 1 and ci = 0 for i < 0.
Since

degt δ
(R) = degt δ = n < degt(δ(Tm,R)(R)) = n+mR,

it follows that degt F (t, θ) = n+mR. Thus we write F (t, θ) = bn+mRt
n+mR+ · · ·+

b1t+ b0 with b0, . . . , bn+mR ∈ Fq[θ]. Plugging into the previous equation, we obtain

ε(aq
R

n tn + · · ·+ aq
R

0 )

= (ant
n + · · ·+ a0)(Tm,R)(R) + bn+mRt

n+mR + · · ·+ b0

= (ant
n + · · ·+ a0)(tmR + cmR−1t

mR−1 + · · ·+ c0) + bn+mRt
n+mR + · · ·+ b0.

Comparing the coefficients tj for n+ 1 ≤ j ≤ n+mR yields

aj−mR +

n∑
i=j−mR+1

aicj−i + bj = 0.

Since bj ∈ Fq[θ] for all n+ 1 ≤ j ≤ n+mR, we can show by descending induction

that aj ∈ Fq[θ] for all n+ 1−mR ≤ j ≤ n.
If n + 1 −mR ≤ 0, then we are done. Otherwise, comparing the coefficients tj

for mR ≤ j ≤ n yields

aj−mR +

n∑
i=j−mR+1

aicj−i + bj − εaq
R

j = 0.

Since bj ∈ Fq[θ] for all mR ≤ j ≤ n and aj ∈ Fq[θ] for all n + 1 −mR ≤ j ≤ n,

we can show by descending induction that aj ∈ Fq[θ] for all 0 ≤ j ≤ n −mR. We

conclude that δ ∈ Fq[t, θ].
We now show that degθ δ ≤ max{ qmq−1 ,

degθ F (t,θ)
qR

}. Otherwise, suppose that

degθ δ > max{ qmq−1 ,
degθ F (t,θ)

qR
}. Then degθ δ

(R) = qR degθ δ. It implies that degθ δ
(R) >

degθ(δ(Tm,R)(R)) = degθ δ +m qR+1−q
q−1 and degθ δ

(R) > degθ F (t, θ). Hence we get

degθ(εδ
(R)) = degθ δ

(R) > degθ(Tm,R)(R) + F (t, θ),

which is a contradiction. �

Lemma 3.4. Recall that the set Sw consists of positive tuples s = (s1, . . . , sn) of
weight w such that q - si for all i as in §1.4.7. Let w ∈ N such that q− 1 | w. Then
there exists a linear relation

1 +
∑

si∈Sw

aiL(si; 1)(θ) = 0, with ai ∈ K.

Proof. Since q − 1 | w, it follows that ζA(w)/π̃w belongs to K×. Theorems 1.9 and
1.10 applied to N = 1 imply immediately the desired assertion. �
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The rest of this section presents a proof of Theorem 2.6.

3.2. Setup.
The proof of Theorem 2.6 is by induction on N + w.
If N + w = 2, then N = w = 1. Thus we have only one tuple (s1, ε1) = (1, 1).

Suppose that we have a non-trivial relation

a+ a1L(1; 1) = 0, for a, a1 ∈ Fq(θ).

Then a 6= 0 and it follows that q − 1 | 1. Hence q = 2 and Theorem 2.6 follows as
L(1; 1) belongs to K.

Let M be a positive integer with M > 2. Suppose that

H(N,w): Theorem 2.6 holds for all pairs (N,w) such that N + w < M .

We claim that Theorem 2.6 holds for all pairs (N,w) such that N + w = M . In
what follows, we fix such a pair (N,w). We recall R = [kN : k] < N .

Suppose that we have a non-trivial relation

(3.1) R(N,w) : a+
∑

si∈Sw

aiL(si; εi)(θ) = 0, for a, ai ∈ Fq(θ).

We claim that we can suppose a, ai ∈ KN . In fact, if a = 0, then the claim
follows from Proposition 2.4. If q − 1 - w, then by Eq. (2.6) any linear relation

a+
∑

si∈Sw

aiL(si; εi)(θ) = 0

with a, ai ∈ Fq(θ) implies that a = 0. By the previous discussion, we are done.
Otherwise, we have q − 1 | w and a 6= 0. By Lemma 3.4, there exists a linear
relation

1 +
∑

ti∈Sw

biL(ti; 1)(θ) = 0

with bi ∈ K. Thus

−a
∑

ti∈Sw

biL(ti; 1)(θ) +
∑

si∈Sw

aiL(si; εi)(θ) = 0.

By Proposition 2.4 again, we can suppose that a, ai ∈ KN .
Further, by Lemma 3.2 we can suppose further that εRi has the same character,

i.e., there exists ε ∈ ΓN such that for all i,

(3.2) χ(εi)
R = (εi1 . . . εi`i)

R = εR.

3.3. Trivial characters.
We now apply Theorem 2.5 to our setting of CMPL’s at roots of unity. We know

that the hypotheses are verified:

(LW) By the induction hypothesis, for any weight w′ < w, the values L(t; ε)(θ)
with (t; ε) ∈ I and w(t) = w′ are all KN -linearly independent.

(LD) By Eq. (3.1), there exist a ∈ AN and ai ∈ AN for 1 ≤ i ≤ n which are not
all zero such that

a+

n∑
i=1

aiL(si; εi)(θ) = 0.
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Thus Theorem 2.5 implies that for all (t; ε) ∈ I, ft,ε(θ) belongs to KN where ft,ε
is given by

ft;ε :=
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i).

Here, the sum runs through the set of i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik)
for some 0 ≤ k ≤ `i − 1.

We derive a direct consequence of this result. Let (t; ε) ∈ I and t 6= ∅. Then
(t; ε) = (si1, . . . , sik; εi1, . . . , εik) for some i and 1 ≤ k ≤ `i−1. We denote by J(t; ε)
the set of all such i. We know that there exists b ∈ KN such that

b+ ft;ε(θ) = 0,

or equivalently,

b+
∑

i∈J(t;ε)

aiL(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i)(θ) = 0.

The CMPL’s at roots of unity appearing in the above equality belong to CSN,w−w(t).
By the induction hypothesis applied to the pair (N,w − w(t)), we deduce that
εi(k+1) = · · · = εi`i = 1. Further, if q − 1 - w − w(t), then ai = 0 for all i ∈
J(t; ε). Therefore, letting (si, εi) = (si1, . . . , si`i ; εi1, . . . , εi`i) we can suppose that
si2, . . . , si`i are all divisible by q− 1 and εi2 = · · · = εi`i = 1. In particular, for all i,

εRi1 = χ(εi)
R = εR.

3.4. σ-linear equations of higher order.
Now we want to solve Eq. (2.12) and we can assume that b = 1. We define

J := I ∪ {(si; εi)}

For (t; ε) ∈ J ,

• if (t; ε) 6= (∅, ∅), then we put

mt :=
w − w(t)

q − 1
∈ Z≥0.

• we denote by J1(t; ε) consisting of (t′; ε′) ∈ J such that there exist i and
0 ≤ j < `i so that (t; ε) = (si1, si2, . . . , sij ; εi1, 1, . . . , 1) and (t′, ε′) =
(si1, si2, . . . , si(j+1); εi1, 1, . . . , 1));
• we denote by J∞(t; ε) consisting of (t′; ε′) ∈ J such that there exist i and

0 ≤ j < k ≤ `i so that (t; ε) = (si1, si2, . . . , sij ; εi1, 1, . . . , 1) and (t′, ε′) =
(si1, si2, . . . , sik; εi1, 1, . . . , 1).

Thus J1(t; ε) ⊂ J∞(t; ε). Further, for (t; ε) = (si; εi), both J1(t; ε) and J∞(t; ε) are
the empty set.

Here letting (t; ε) = (si1, si2, . . . , sij ; εi1, 1, . . . , 1) for some i and 0 ≤ j < `i and
(t′; ε′) = (si1, si2, . . . , sik; εi1, 1, . . . , 1) ∈ J∞(t; ε) with j < k ≤ `i, we recall (see the
proof of Theorem 2.5)

• Φ′(t;ε),(t;ε) = Tw−w(t),R.

• If j = 0 that means (t; ε) = ∅, then

Φ′(t′;ε′),∅ = µi1Tw−w(t′),R

∑
0<mi1<···<mik≤R

ε−mi1i1 Tsi1,mi1 . . . Tsik,mik .
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• If j > 0 that means (t; ε) 6= ∅, then

Φ′(t′;ε′),(t;ε) = Tw−w(t′),R

∑
0<mi(j+1)<···<mik≤R

Tsi(j+1),mi(j+1)
. . . Tsik,mik .

It is clear that (2.12) is equivalent finding (δt,ε)(t;ε)∈J ∈ Mat1×|J|(K[t]) such that

(3.3) δt,ε = δ
(−R)
t,ε Tw−w(t),R +

∑
(t′,ε′)∈J∞(t,ε)

δ
(−R)
t′,ε′ Φ′(t′;ε′),(t;ε), for all (t, ε) ∈ J \ ∅,

and

(3.4) δ∅ = δ
(−R)
∅ Tw−w(t),R +

∑
(t′,ε′)∈J∞(∅)

δ
(−R)
t′,ε′ Φ′(t′;ε′),∅, for (t, ε) = ∅.

In fact, for (t, ε) = (si, εi), the corresponding equation becomes δsi,εi = δ
(−R)
si,εi . Thus

δsi,εi = ai(t) ∈ kN [t].

3.5. Solving Eqs. (3.3): statement of the result.
Letting y be a variable, we denote by vy the valuation associated to the place y

of the field Fq(y). We put

(3.5) T := t− tq, X := tq − θq.

We are ready to solve Eqs. (3.3):

Proposition 3.5. We keep the above notation. Then
1) For all (t, ε) ∈ J \ ∅, the polynomial δt,ε is of the form

δt,ε = ft,ε

(
Xmt +

mt−1∑
i=0

P(t,ε),i(T )Xi

)
where

• ft,ε ∈ kN [t],
• for all 0 ≤ i ≤ mt − 1, P(t,ε),i(y) belongs to Fq(y) with vy(P(t,ε),i) ≥ 1.

2) For all (t, ε) ∈ J \ ∅ and all (t′, ε′) ∈ J1(t, ε), there exists F(t,ε),(t′,ε′) ∈ Fq(y)
such that

ft′,ε′ = ft,εF(t,ε),(t′,ε′)(T ).

In particular, if ft,ε = 0, then ft′,ε′ = 0.

3) For all (t, ε) ∈ J \ ∅, if for all (t′, ε′) ∈ J1(t, ε), we set

ξt,ε = Xmt +

mt−1∑
i=0

P(t,ε),i(T )Xi,

ξt′,ε′ = F(t,ε),(t′,ε′)(T )

(
Xmt′ +

mt′−1∑
i=0

P(t′,ε′),i(T )Xi

)
.

then

ξt,ε = ξ
(−1)
t,ε (t− θ)w−w(t) +

∑
(t′,ε′)∈J1(t;ε)

ξ
(−1)
t′,ε′ (t− θ)w−w(t).

This proposition states that there is a unique solution δt,ε ∈ kN [t, θ] for (t, ε) ∈
J \ ∅ of Eqs. (3.3) up to a constant in kN (t). Further they admit a solution all
belonging to k[t, θ] which satisfies σ-linear equations of order 1.
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3.6. Solving Eqs. (3.3): proof of the result.
In this section we present a proof of Proposition 3.5.

3.6.1. Induction. The proof of Proposition 3.5 is by induction on mt. We start with

mt = 0. Then t = si and ε = εi for some i. Since δsi,εi = δ
(−R)
si,εi , we have observed

that δsi,εi = ai(t) ∈ kN [t]. Thus ξsi,εi = 1 and we are done.
Suppose that Proposition 3.5 holds for all (t, ε) ∈ J \ ∅ with mt < m for some

m ∈ N. We now prove the claim for all (t, ε) ∈ J \ ∅ with mt = m. In fact, we fix a
pair (t, ε) ∈ J \ ∅ with mt = m and want to find δt,ε ∈ K[t] such that Eq. (3.3) for
(t, ε) is satisfied:

(3.6) δt,ε = δ
(−R)
t,ε Tw−w(t),R +

∑
(t′,ε′)∈J∞(t,ε)

δ
(−R)
t′,ε′ Φ′(t′;ε′),(t;ε).

The induction hypothesis implies

1) For all (t′, ε′) ∈ J∞(t; ε), we know that

δt′,ε′ = ft′,ε′

(
Xmt′ +

mt′−1∑
i=0

P(t′,ε′),i(T )Xi

)
where

– ft′,ε′ ∈ kN [t],
– for all 0 ≤ i ≤ mt′ − 1, P(t′,ε′),i(y) ∈ Fq(y) with vy(P(t,ε),i) ≥ 1.

2) For all (t′, ε′) ∈ J∞(t, ε) and all (t′′, ε′′) ∈ J1(t′, ε′), there exists F(t′,ε′),(t′′,ε′′) ∈
Fq(y) such that

ft′′,ε′′ = ft′,ε′F(t′,ε′),(t′′,ε′′)(T ).

3) For all (t′, ε′) ∈ J∞(t, ε) and all (t′′, ε′′) ∈ J1(t′, ε′), if we put

ξt′,ε′ = Xmt′ +

mt′−1∑
i=0

P(t′,ε′),i(T )Xi,

ξt′′,ε′′ = F(t′,ε′),(t′′,ε′′)(T )

(
Xmt′′ +

mt′′−1∑
i=0

Pt′′,i(T )Xi

)
,

then δt′,ε′ = ft′,ε′ξt′,ε′ , δt′′,ε′′ = ft′,ε′ξt′′,ε′′ and

(3.7) ξt′,ε′ = ξ
(−1)
t′,ε′ (t− θ)w−w(t′) +

∑
(t′′,ε′′)∈J1(t′;ε′)

ξ
(−1)
t′′,ε′′(t− θ)

w−w(t′).

Hence we are reduced to solve Eq. (3.6), i.e., to find δt,ε ∈ K[t] with the unknown
parameters ft′,ε′ ∈ kN [t] where (t′, ε′) runs through the set J1(t, ε).

3.6.2. Proof of Proposition 3.5 for (t, ε): first part. In this section we derive several
useful formulas, in particular a simpler expression for the right-hand side of Eq.
(3.6) as a consequence of the induction hypothesis.

We write
(t; ε) = (si1, . . . , sij ; εi1, 1, . . . , 1)

for some i and 1 ≤ j < `i. If (t′; ε′) = (si1, . . . , sik; εi1, 1, . . . , 1) ∈ J∞(t; ε) with
j < k ≤ `i, we recall

Φ′(t′;ε′),(t;ε) = Tw−w(t′),R

∑
0<mi(j+1)<···<mik≤R

Tsi(j+1),mi(j+1)
. . . Tsik,mik .
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If (t′, ε′) ∈ J∞(t, ε) \ J1(t, ε), then we put (t0; ε0) = (si1, . . . , si(j+1); εi1, 1, . . . , 1).
Thus (t0; ε0) ∈ J1(t; ε) and (t′, ε′) ∈ J∞(t0, ε0).

Lemma 3.6. Let (t′; ε′) ∈ J∞(t; ε). Then for all n ∈ N, we have

(3.8) ξt′,ε′ = ξ
(−n)
t′,ε′ Tw−w(t′),n +

∑
(t′′,ε′′)∈J1(t′;ε′)

n∑
`=1

ξ
(−`)
t′′,ε′′Tw−w(t′),`.

Proof. The proof is by induction on n. For n = 1, Eq. (3.8) is exactly Eq. (3.7) and
we are done. Suppose that Eq. (3.8) holds for some n ∈ N. We prove that it still
holds for n+1. Twisting Eq. (3.8) once and putting this equality into Eq. (3.7) gets

ξt′,ε′ = ξ
(−1)
t′,ε′ (t− θ)w−w(t′) +

∑
(t′′,ε′′)∈J1(t′;ε′)

ξ
(−1)
t′′,ε′′(t− θ)

w−w(t′)

= (t− θ)w−w(t′)ξ
(−n−1)
t′,ε′ T

(−1)
w−w(t′),n + (t− θ)w−w(t′)

∑
(t′′,ε′′)∈J1(t′;ε′)

n∑
`=1

ξ
(−`−1)
t′′,ε′′ T

(−1)
w−w(t′),`

+
∑

(t′′,ε′′)∈J1(t′;ε′)

ξ
(−1)
t′′,ε′′(t− θ)

w−w(t′)

= Tw−w(t′),n+1ξ
(−n−1)
t′,ε′ +

∑
(t′′,ε′′)∈J1(t′;ε′)

n∑
`=1

ξ
(−`−1)
t′′,ε′′ Tw−w(t′),`+1

+
∑

(t′′,ε′′)∈J1(t′;ε′)

ξ
(−1)
t′′,ε′′(t− θ)

w−w(t′)

= Tw−w(t′),n+1ξ
(−n−1)
t′,ε′ +

∑
(t′′,ε′′)∈J1(t′;ε′)

n+1∑
`=1

ξ
(−`−1)
t′′,ε′′ Tw−w(t′),`+1.

The proof is complete. �

Lemma 3.7. We keep the above notation. Let (t′; ε′) = (si1, . . . , sik; εi1, 1, . . . , 1) ∈
J∞(t; ε) with j < k ≤ `i. Then for all n ∈ N, we have∑

ξ
(−n)
t′′,ε′′Tw−w(t′′),n

∑
0<mi(k+1)<···<mi`≤n

Tsi(k+1),mi(k+1)
. . . Tsi`,mi`

= ξt′,ε′ − ξ(−n)
t′,ε′ Tw−w(t′),n

where the first sum runs through the set of all (t′′, ε′′) = (si1, . . . , si`; εi1, 1, . . . , 1) ∈
J∞(t′, ε′).

Proof. Letting n ∈ N and (t′; ε′) = (si1, . . . , sik; εi1, 1, . . . , 1) ∈ J∞(t; ε) with j <
k ≤ `i, we put

S(t′, ε′, n) :=
∑

ξ
(−n)
t′′,ε′′Tw−w(t′′),n

∑
0<mi(k+1)<···<mi`≤n

Tsi(k+1),mi(k+1)
. . . Tsi`,mi`

where the first sum runs through the set of all (t′′, ε′′) = (si1, . . . , si`; εi1, 1, . . . , 1) ∈
J∞(t′, ε′).

We want to show that for all n ∈ N and all (t′; ε′) ∈ J∞(t; ε),

(3.9) S(t′, ε′, n) = ξt′,ε′ − ξ(−n)
t′,ε′ Tw−w(t′),n.
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The proof is by induction on n ∈ N. For n = 1 we are done by Eq. (3.7) applied
to (t′; ε′) ∈ J∞(t; ε). Let n ∈ N. Suppose that for all r < n and all (t′; ε′) ∈ J∞(t; ε),
Eq. (3.9) holds. We claim that for all (t′; ε′) ∈ J∞(t; ε),

S(t′, ε′, n) = ξt′,ε′ − ξ(−n)
t′,ε′ Tw−w(t′),n.

In fact, let (t′; ε′) = (si1, . . . , sik; εi1, 1, . . . , 1) ∈ J∞(t; ε) with j < k ≤ `i. We
consider the following partition of J∞(t′, ε′)

J∞(t′, ε′) = J1(t′, ε′) ∪
⋃

(t0,ε0)∈J1(t′,ε′)

J∞(t0, ε0).

and express S(t′, ε′, n) as a sum of terms induced by this partition:

S(t′, ε′, n) =
∑

(t0,ε0)∈J1(t′,ε′)

+
∑

(t0,ε0)∈J1(t′,ε′)

∑
(t′′,ε′′)∈J∞(t0,ε0)

.

In the following we fix (t0, ε0) = (si1, . . . , si(k+1); εi1, 1, . . . , 1) ∈ J1(t′, ε′) and
consider the sums running through the set of all (t′′, ε′′) = (si1, . . . , si`; εi1, 1, . . . , 1) ∈
J∞(t0, ε0):∑
(t′′,ε′′)∈J∞(t0,ε0)

ξ
(−n)
t′′,ε′′Tw−w(t′′),n

∑
0<mi(k+1)<···<mi`≤n

Tsi(k+1),mi(k+1)
. . . Tsi`,mi`

=
∑

(t′′,ε′′)∈J∞(t0,ε0)

∑
0<mi(k+1)<n

ξ
(−n)
t′′,ε′′Tw−w(t′′),nTsi(k+1),mi(k+1)

∑
mi(k+1)<···<mi`≤n

Tsi(k+2),mi(k+2)
. . . Tsi`,mi`

=
∑

(t′′,ε′′)∈J∞(t0,ε0)

∑
0<mi(k+1)<n

ξ
(−n)
t′′,ε′′Tsi(k+1),mi(k+1)

(Tw−w(t′′),mi(k+1)
(Tw−w(t′′),n−mi(k+1)

)(−mi(k+1)))

×
∑

mi(k+1)<···<mi`≤n

(Tsi(k+2),mi(k+1)
(Tsi(k+2),mi(k+2)−mi(k+1)

)(−mi(k+1))) . . . (Tsi`,mi(k+1)
(Tsi`,mi`−mi(k+1)

)(−mi(k+1)))

=
∑

(t′′,ε′′)∈J∞(t0,ε0)

∑
0<mi(k+1)<n

ξ
(−n)
t′′,ε′′Tw−w(t′),mi(k+1)

(Tw−w(t′′),n−mi(k+1)
)(−mi(k+1))

×
∑

0<m′′
i(k+2)

<···<m′′i`≤n−mi(k+1)

(Tsi(k+2),m
′′
i(k+2)

)(−mi(k+1)) . . . (Tsi`,m′′i`)
(−mi(k+1))

=
∑

(t′′,ε′′)∈J∞(t0,ε0)

∑
0<mi(k+1)<n

Tw−w(t′),mi(k+1)

×

ξ(−(n−mi(k+1)))

t′′,ε′′ Tw−w(t′′),n−mi(k+1)

∑
0<m′′

i(k+2)
<···<m′′i`≤n−mi(k+1)

Tsi(k+2),m
′′
i(k+2)

. . . Tsi`,m′′i`

(−mi(k+1))

=
∑

0<mi(k+1)<n

Tw−w(t′),mi(k+1)
S(t0, ε0, n−mi(k+1))

(−mi(k+1)).

The induction hypothesis implies∑
(t′′,ε′′)∈J∞(t0,ε0)

ξ
(−n)
t′′,ε′′Tw−w(t′′),n

∑
0<mi(k+1)<···<mi`≤n

Tsi(k+1),mi(k+1)
. . . Tsi`,mi`

=
∑

0<m<n

Tw−w(t′),mS(t0, ε0, n−m)(−m)

=
∑

0<m<n

Tw−w(t′),m(ξt0,ε0 − ξ
(−m)
t0,ε0

Tw−w(t0),n−m)(−m)
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=
∑

0<m<n

(
Tw−w(t′),mξ

(−m)
t0,ε0

− Tsi(k+1),mTw−w(t0),nξ
(−n)
t0,ε0

)
.

Putting altogether, we obtain

S(t′, ε′, n)

=
∑

(t0,ε0)∈J1(t′,ε′)

ξ
(−n)
t0,ε0

Tw−w(t0),n

∑
0<m≤n

Tsi(k+1),m

+
∑

(t0,ε0)∈J1(t′,ε′)

∑
0<m<n

(
Tw−w(t′),mξ

(−m)
t0,ε0

− Tsi(k+1),mTw−w(t0),nξ
(−n)
t0,ε0

)
=

∑
(t0,ε0)∈J1(t′,ε′)

ξ
(−n)
t0,ε0

Tw−w(t0),n

∑
0<m≤n

Tsi(k+1),m

+
∑

(t0,ε0)∈J1(t′,ε′)

∑
0<m<n

(
Tw−w(t′),mξ

(−m)
t0,ε0

− Tsi(k+1),mTw−w(t0),nξ
(−n)
t0,ε0

)

=
∑

(t0,ε0)∈J1(t′,ε′)

n∑
m=1

ξ
(−m)
t0,ε0

Tw−w(t′),m.

By Lemma 3.6 we get the desired equality

S(t′, ε′, n) =
∑

(t0,ε0)∈J1(t′,ε′)

n∑
m=1

ξ
(−m)
t0,ε0

Tw−w(t′),m = ξt′,ε′ − ξ(−n)
t′,ε′ Tw−w(t′),n.

�

Lemma 3.8. We keep the above notation. Letting (t0; ε0) ∈ J1(t; ε) we put

S(t0, ε0) :=
∑

(t′,ε′)∈{(t0;ε0)}∪J∞(t0,ε0)

ξ
(−R)
t′,ε′ Φ′(t′;ε′),(t;ε).

Then

S(t0, ε0) =

R∑
m=1

ξ
(−m)
t0,ε0

Tw−w(t),m.

Proof. We have

S(t0, ε0) =
∑

(t′,ε′)∈{(t0;ε0)}∪J∞(t0,ε0)

ξ
(−R)
t′,ε′ Φ′(t′;ε′),(t;ε)

=
∑

(t′,ε′)∈{(t0;ε0)}∪J∞(t0,ε0)

ξ
(−R)
t′,ε′ Tw−w(t′),R

∑
0<mi(j+1)<···<mik≤R

Tsi(j+1),mi(j+1)
. . . Tsik,mik .

By direct calculations as in the proof of Lemma 3.7 we get

S(t0, ε0) =
∑

(t′,ε′)∈{(t0;ε0)}∪J∞(t0,ε0)

∑
0<mi(j+1)<R

Tw−w(t),mi(j+1)

×

ξ(−(R−mi(j+1)))

t′,ε′ Tw−w(t′),R−mi(j+1)

∑
0<m′

i(j+2)
<···<m′ik≤R−mi(j+1)

Tsi(j+2),m
′
i(j+2)

. . . Tsik,m′ik

(−mi(j+1))

.

We use the decomposition∑
(t′,ε′)∈{(t0;ε0)}∪J∞(t0,ε0)

=
∑

(t′,ε′)=(t0,ε0)

+
∑

(t′,ε′)∈J∞(t0,ε0)
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to express
S(t0, ε0) = S1(t0, ε0) + S2(t0, ε0).

We analyze each term of the previous sum. For the first term, we get

S1(t0, ε0) = ξ
(−R)
t0,ε0

Tw−w(t0),R

∑
0<mi(j+1)≤R

Tsi(j+1),mi(j+1)

=
∑

0<mi(j+1)<R

ξ
(−R)
t0,ε0

Tw−w(t0),RTsi(j+1),mi(j+1)
+ ξ

(−R)
t0,ε0

Tw−w(t),R.

For the second term,

S2(t0, ε0)

=
∑

(t′,ε′)∈J∞(t0,ε0)

∑
0<mi(j+1)<R

Tw−w(t),mi(j+1)

×

ξ(−(R−mi(j+1)))

t′,ε′ Tw−w(t′),R−mi(j+1)

∑
0<m′

i(j+2)
<···<m′ik≤R−mi(j+1)

Tsi(j+2),m
′
i(j+2)

. . . Tsik,mik

(−mi(j+1))

=
∑

0<mi(j+1)<R

Tw−w(t),mi(j+1)

×

 ∑
(t′,ε′)∈J∞(t0,ε0)

ξ
(−(R−mi(j+1)))

t′,ε′ Tw−w(t′),R−mi(j+1)

∑
0<m′

i(j+2)
<···<m′ik≤R−mi(j+1)

Tsi(j+2),m
′
i(j+2)

. . . Tsik,mik

(−mi(j+1))

.

By Lemma 3.7 we get

S2(t0, ε0) =
∑

0<mi(j+1)<R

Tw−w(t),mi(j+1)

(
ξt0,ε0 − ξ

(−(R−mi(j+1)))
t0,ε0

Tw−w(t0),R−mi(j+1)

)(−mi(j+1))

=
∑

0<mi(j+1)<R

(
Tw−w(t),mi(j+1)

ξ
(−mi(j+1))
t0,ε0

− Tsi(j+1),mi(j+1)
Tw−w(t0),Rξ

(−R)
t0,ε0

)
.

Putting altogether, we obtain the desired equality:

S(t0, ε0) = S1(t0, ε0) + S2(t0, ε0)

= Tw−w(t),Rξ
(−R)
t0,ε0

+
∑

0<mi(j+1)<R

Tw−w(t),mi(j+1)
ξ

(−mi(j+1))
t0,ε0

=

R∑
m=1

Tw−w(t),mξ
(−m)
t0,ε0

.

�

3.6.3. Proof of Proposition 3.5 for (t, ε): second part. We are ready to prove the
following result:

Proposition 3.9. We keep the above notation.
a) If δt,ε ∈ K[t] is a solution of Eq. (3.6), then

1) δt,ε is of the following form

δt,ε = ft,ε

(
Xmt +

mt−1∑
i=0

P(t,ε),i(T )Xi

)
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where
– ft,ε ∈ kN [t],
– for all 0 ≤ i ≤ mt − 1, P(t,ε),i(y) ∈ Fq(y) with vy(P(t,ε),i) ≥ 1.

2) For all (t′, ε′) ∈ J1(t, ε), there exists F(t′,ε′),(t′′,ε′′) ∈ Fq(y) such that

ft′,ε′ = ft,εF(t,ε),(t′,ε′)(T ).

b) Further, if R = 1, then there exists a solution δt,ε ∈ K[t] of Eq. (3.6).

Proof. For Part a), we recall T = t − tq and X = tq − θq given as in Eq. (3.5).
For (t′, ε′) ∈ J1(t; ε), we write t′ = (t, (m − k)(q − 1)) with 0 ≤ k < m and k 6≡ m
(mod q), in particular mt′ = k. We note that ε′ is uniquely determined and equals
(ε, 1). We put fk = ft′,ε′ ∈ kN [t] and P(t′,ε′),j = Pk,j ∈ Fq(t) so that

(3.10) δt′,ε′ = fk

Xk +

k−1∑
j=0

Pk,j(T )Xj

 ∈ kN [t, θq].

We recall

ξt′,ε′ = Xk +

k−1∑
j=0

Pk,j(T )Xj ∈ Fq[θq](t).

By Lemma 3.8 we are reduced to find δt,ε ∈ K[t] and ft′,ε′ ∈ kN [t] for (t′, ε′) ∈
J1(t; ε) such that

(3.11) δt,ε = δ
(−R)
t,ε Tw−w(t),R +

∑
(t′,ε′)∈J1(t;ε)

ft′,ε′
R∑
`=1

ξ
(−`)
t′,ε′ Tw−w(t),`.

By Lemma 3.3, δt,ε belongs to KN [t], and degθ δt,ε ≤ mq. Further, since δt,ε
is divisible by (t − θ)m(q−1), we write δt,ε = F (t − θ)m(q−1) with F ∈ KN [t] and

degθ F ≤ m. Dividing Eq. (3.11) by (t− θ)m(q−1) and twisting R times yields

F (R) = F (t− θ)m(q−1)((t− θ)m(q−1))(R−1) . . . ((t− θ)m(q−1))(1)

(3.12)

+
∑

(t′,ε′)∈J1(t;ε)

ft′,ε′
R∑
`=1

ξ
(R−`)
t′,ε′ ((t− θ)m(q−1))(R−1) . . . ((t− θ)m(q−1))(R−`+1).

As ξt′,ε′ ∈ kN [θq](t) for all (t′, ε′) ∈ J1(t; ε), it follows that F (t−θ)m(q−1) ∈ kN [t, θq].
As degθ F ≤ m, we get

F =
∑

0≤i≤m/q

fm−iq(t− θ)m−iq, with fm−iq ∈ kN [t].

Thus

F (t− θ)m(q−1) =
∑

0≤i≤m/q

fm−iq(t− θ)mq−iq =
∑

0≤i≤m/q

fm−iqX
m−i,

F (R) =
∑

0≤i≤m/q

fm−iq(t− θq
R

)m−iq =
∑

0≤i≤m/q

fm−iq(T + T q + · · ·+ T q
R−1

+XqR−1

)m−iq.

For all j ≥ 1, we write

(t− θ)(j) = t− θq
j

= T + T q + · · ·+ T q
j−1

+Xqj−1

,
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X(j−1) = tq − θq
j

= T q + · · ·+ T q
j−1

+Xqj−1

.

Putting these equalities and Eq. (3.10) into Eq. (3.12) gets

∑
0≤i≤m/q

fm−iq(T + T q + · · ·+ T q
R−1

+XqR−1

)m−iq

(3.13)

=
∑

0≤i≤m/q

fm−iqX
m−i

R−1∏
j=1

(T + T q + · · ·+ T q
j−1

+Xqj−1

)m(q−1)

+
∑

0≤k<m
k 6≡m (mod q)

fk

R∑
`=1

Xk +

k−1∑
j=0

Pk,j(T )Xj

(R−`)
R−1∏

j=R−`+1

(T + T q + · · ·+ T q
j−1

+Xqj−1

)m(q−1).

Reducing both sides (mod T ) yields∑
0<i≤m/q

fm−iqX
(m−iq)qR−1

=
∑

0<i≤m/q

fm−iqX
m−i

R−1∏
j=1

Xm(q−1)qj−1

+
∑

0≤k<m
k 6≡m (mod q)

fk

R∑
`=1

XkqR−`
R−1∏

j=R−`+1

Xm(q−1)qj−1

(mod T ),

or equivalently∑
0<i≤m/q

fm−iqX
(m−iq)qR−1

=
∑

0<i≤m/q

fm−iqX
mqR−1−i

+
∑

0≤k<m
k 6≡m (mod q)

fk

R∑
`=1

XkqR−`+mqR−1−mqR−` (mod T ),

Comparing the coefficients of powers of XqR−1

of Eq. (3.13) yields the following
linear system in the variables f0, . . . , fm−1:

(3.14) B∣∣y=T

fm−1

...
f0

 = fm

Qm−1

...
Q0

∣∣y=T

.

Here for 0 ≤ i ≤ m− 1, Qi ∈ yFq[y] and B = (Bij)0≤i,j≤m−1 ∈ Matm(Fq(y)) such
that

• vy(Bij) ≥ 1 if i > j,
• vy(Bij) ≥ 0 if i < j,
• vy(Bii) = 0 as Bii = ±1.

The above properties follow from the fact that Pk,i ∈ Fq(y) and vy(Pk,i) ≥ 1. Thus
vy(detB) = 0 so that detB 6= 0. It follows that for all 0 ≤ i ≤ m−1, fi = fmPi(T )
with Pi ∈ Fq(y) and vy(Pi) ≥ 1. Thus Part a) is proved.

To conclude, we prove Part b). We want to show that if R = 1, then there exists
a solution δt,ε ∈ K[t] of Eq. (3.6). In fact, since R = 1, we see that Eqs. (3.12) and
(3.14) are equivalent and we are done. �
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3.6.4. Proof of Proposition 3.5 for (t, ε): last part. We continue the proof of Propo-
sition 3.5 for (t, ε). Recall that we want to solve Eq. (3.6), i.e., to find δt,ε ∈ K[t] with
the unknown parameters ft′,ε′ ∈ kN [t] where (t′, ε′) runs through the set J1(t, ε).
By Proposition 3.9 there exists at most one solution up to a scalar in kN (t). Fur-
ther, if R = 1, then we get a stronger statement, i.e., there exists a unique solution
up to a scalar in k(t).

To finish the proof of Proposition 3.5 for (t, ε), it suffices to exhibit a solution of
Eq. (3.6), or equivalently Eq. (3.11), such that

• δt,ε ∈ K[t] and ft′,ε′ ∈ Fq[t] where (t′, ε′) runs through the set J1(t, ε),
• The following σ-equation of order 1 holds

(3.15) δt,ε = δ
(−1)
t,ε (t− θ)w−w(t) +

∑
(t′,ε′)∈J1(t;ε)

δ
(−1)
t′,ε′ (t− θ)w−w(t).

In fact, by Proposition 3.9, Part b), there exist δt,ε ∈ K[t] and ft′,ε′ ∈ Fq[t] where
(t′, ε′) runs through the set J1(t, ε) such that Eq. (3.15) holds. We claim that these
elements δt,ε ∈ K[t] and ft′,ε′ ∈ Fq[t] for (t′, ε′) ∈ J1(t, ε) verify Eq. (3.11). By
similar arguments as those given in the proof of Lemma 3.6 and the fact that

f
(−1)
t′,ε′ = ft′,ε′ as ft′,ε′ ∈ Fq[t] for all (t′, ε′) ∈ J1(t, ε), we show by induction on
n ∈ N that

(3.16) δt,ε = δ
(−n)
t,ε Tw−w(t),n +

∑
(t′,ε′)∈J1(t;ε)

ft′,ε′
n∑
`=1

ξ
(−`)
t′,ε′ Tw−w(t),`.

We conclude by applying Eq. (3.16) for n = R.

3.7. Solving Eq. (3.4).
Our last task is to solve Eq. (3.4). We have some extra work as we may have

some pairs (t′, ε′) ∈ J1(∅) with the same tuple t′. Further, there are a factor µ(−R)

and some powers of ε in the terms Φ′(t′;ε′),∅ on the right-hand side of Eq. (3.4).

As there exists ε ∈ ΓN such that εRi1 = εR for all i, there exists µ ∈ Fq such that

µ(R) = µεR and µi1 = µ for all i. We use µ(−R) = µ/εR and put δ := δ∅,∅/µ ∈ K[t].
Then we have to solve

εRδ = δ(−R)Tw,R + εR
∑

(t′,ε′)=(si1,...,sik;εi1,1,...,1)∈J∞(∅)

δ
(−R)
t′,ε′ Tw−w(t′),R×

×
∑

0<mi1<···<mik≤R

ε−mi1i1 Tsi1,mi1 . . . Tsik,mik .

By Lemma 3.8 and using the fact that εRi1 = εR for all i we are reduced to solve

(3.17) εRδ = δ(−R)Tw,R +
∑

(t′,ε′)=(si1,εi1)∈J1(∅)

ft′,ε′
R∑
`=1

ξ
(−`)
t′,ε′ ε

R−`
i1 Tw,`.

We distinguish two cases.

3.7.1. Case 1: q − 1 - w and we write w = m(q − 1) + r with 0 < r < q − 1.
We denote by I(ε, R) the set of εi ∈ ΓN such that εRi = εR.
We know that for all (t′, ε′) ∈ J1(∅), says t′ = ((m−k)(q−1)+r) with 0 ≤ k ≤ m

and k 6≡ m− r (mod q), and ε′ = εi for some εi ∈ I(ε, R). We write (k, εi) instead
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of (t′, ε′) = ((m− k)(q − 1) + r, εi). We know

(3.18) δk,εi = δt′,ε′ = fk,εi

Xk +

k−1∑
j=0

Pk,j(T )Xj

 ∈ kN [t, θq]

where

• fk,εi ∈ kN [t],
• for all 0 ≤ j ≤ k − 1, Pk,j(y) belongs to Fq(y) with vy(Pk,j) ≥ 1.

We put

ξk,εi = Xk +

k−1∑
j=0

Pk,j(T )Xj ∈ Fq[t, θq].

We mention that the coefficients Pk,j(T ) do not depend on the character εi.
By Lemma 3.3, δ belongs to KN [t]. We claim that degθ δ ≤ mq. Otherwise, we

have degθ δ∅ > mq. Twisting Eq. (3.17) R times gets

εRδ(R) = δT
(R)
w,R +

∑
(k,εi)∈J1(∅)

fk,εi

R∑
`=1

ξ
(R−`)
k,εi

ε−`i T
(R)
w,` .

As degθ δ > mq, we compare the degrees of θ on both sides and obtain

q degθ δ = degθ δ + wq.

Thus q − 1 | w, which is a contradiction. We conclude that degθ δ ≤ mq.
From Eq. (3.17) we see that δ is divisible by (t−θ)w. Thus we write δ = F (t−θ)w

with F ∈ KN [t] and degθ F ≤ mq − w = m − r. Dividing Eq. (3.17) by (t − θ)w
and twisting R times yields

εRF (R) = F (t− θ)w((t− θ)w)(R−1) . . . ((t− θ)w)(1)

(3.19)

+
∑

(k,εi)∈J1(∅)

fk,εi

R∑
`=1

ξ
(R−`)
k,εi

εR−`i ((t− θ)w)(R−1) . . . ((t− θ)w)(R−`+1).

Since ξk,εi ∈ Fq[t, θq] for all (k, εi) ∈ J1(∅), it follows that F (t− θ)w ∈ kN [t, θq].
As degθ F ≤ m− r, we write

F =
∑

0≤i≤(m−r)/q

fm−r−iq(t− θ)m−r−iq, for fm−r−iq ∈ kN [t].

It follows that

F (t− θ)w =
∑

0≤i≤(m−r)/q

fm−r−iq(t− θ)mq−iq =
∑

0≤i≤(m−r)/q

fm−r−iqX
m−i,

F (R) =
∑

0≤i≤(m−r)/q

fm−r−iq(t− θq
R

)m−r−iq =
∑

0≤i≤(m−r)/q

fm−r−iq(T + T q + · · ·+ T q
R−1

+XqR−1

)m−r−iq.

Combining the previous equations with Eq. (3.18) into Eq. (3.19) implies

εR
∑

0≤i≤(m−r)/q

fm−r−iq(T + T q + · · ·+ T q
R−1

+XqR−1

)m−r−iq
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=
∑

0≤i≤(m−r)/q

fm−r−iqX
m−i

R−1∏
j=1

(T + T q + · · ·+ T q
j−1

+Xqj−1

)m(q−1)+r

+
∑

0≤k<m
k 6≡m−r (mod q)

∑
εi∈I(ε,R)

fk,εi

R∑
`=1

Xk +

k−1∑
j=0

Pk,j(T )Xj

(R−`)

εR−`i ×

×
R−1∏

j=R−`+1

(T + T q + · · ·+ T q
j−1

+Xqj−1

)m(q−1)+r.

Taking (mod T ) yields

εR
∑

0≤i≤(m−r)/q

fm−r−iqX
qR−1(m−r−iq)

(3.20)

=
∑

0≤i≤(m−r)/q

fm−r−iqX
m−i

R−1∏
j=1

Xqj−1(m(q−1)+r)

+
∑

0≤k<m
k 6≡m−r (mod q)

∑
εi∈I(ε,R)

fk,εi

R∑
`=1

XkqR−`εR−`i

R−1∏
j=R−`+1

Xqj−1(m(q−1)+r)

=
∑

0≤i≤(m−r)/q

fm−r−iqX
mqR−1−i+r q

R−1−1
q−1

+
∑

0≤k<m
k 6≡m−r (mod q)

∑
εi∈I(ε,R)

fk,εi

R∑
`=1

εR−`i XmqR−1−mqR−`+kqR−`+r q
R−1−qR−`

q−1 .

We set R0 := |I(ε, R)| ≤ R. We consider the following sets

S1 = {XqR−1(m−r−iq) : 0 ≤ i ≤ (m− r)/q},

S2 = {XmqR−1−mqR−`+kqR−`+r q
R−1−qR−`

q−1 : 0 ≤ k < m, k 6≡ m− r (mod q); 1 ≤ ` ≤ R}

S2,R0 = {XmqR−1−mqR−`+kqR−`+r q
R−1−qR−`

q−1 : 0 ≤ k < m, k 6≡ m− r (mod q); 1 ≤ ` ≤ R0}
S = S1 ∪ S2,R0

.

Then the elements in S1 ∪ S2 are pairwise distinct. Thus the cardinality of the set
S equals the number of variables

V = {fm−r−iq : 0 ≤ i ≤ (m− r)/q}
∪ {fk,εi : 0 ≤ k < m, k 6≡ m− r (mod q); εi ∈ I(ε, R)}.

Comparing the coefficients of Xk with Xk ∈ S yields the following linear system
in the variables f∗ ∈ V:

B∣∣y=T
(f∗)|V|×1 = 0.

Here B = (Bij)0≤i,j≤m ∈ Mat|V|(kN (y)).
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We claim that B (mod T ) is invertible. In fact, it suffices to prove the following
statement: suppose that

εR
∑

0≤i≤(m−r)/q

fm−r−iqX
qR−1(m−r−iq) =

∑
0≤i≤(m−r)/q

fm−r−iqX
mqR−1−i+r q

R−1−1
q−1

+
∑

0≤k<m
k 6≡m−r (mod q)

∑
εi∈I(ε,R)

fk,εi

R0∑
`=1

εR−`i XmqR−1−mqR−`+kqR−`+r q
R−1−qR−`

q−1 .

Then we want to prove that f∗ = 0 for all f∗ ∈ V. In fact, since the elements in
S1∪S2 are pairwise distinct, by descending induction on i we show that fm−r−iq = 0
for all 0 ≤ i ≤ (m− r)/q. Therefore,

0 =
∑

0≤k<m
k 6≡m−r (mod q)

∑
εi∈I(ε,R)

fk,εi

R0∑
`=1

εR−`i XmqR−1−mqR−`+kqR−`+r q
R−1−qR−`

q−1 .

Again, by the fact that the elements in S2 are pairwise distinct and using a variant
of Vandermonde’s matrix, we conclude that fk,εi = 0 for all pairs (k, εi).

As B (mod T ) is invertible, B is invertible and f∗ = 0 for all f∗ ∈ V. It follows
that δ∅;∅ = 0 and δt′,ε′ = 0 for all (t′; ε′) ∈ J1(∅). We conclude that δt,ε = 0 for all
(t, ε) ∈ J . In particular, for all i, ai(t) = δsi,εi = 0, which is a contradiction. Thus
this case can never happen.

3.7.2. Case 2: q − 1 | w, says w = m(q − 1).
By similar arguments as above, we show that δ = F (t−θ)m(q−1) with F ∈ KN [t]

of the form

F =
∑

0≤i≤m/q

fm−iq(t− θ)m−iq, for fm−iq ∈ kN [t].

Thus

F (t− θ)m(q−1) =
∑

0≤i≤m/q

fm−iq(t− θ)mq−iq =
∑

0≤i≤m/q

fm−iqX
m−i,

F (R) =
∑

0≤i≤m/q

fm−iq(t− θq
R

)m−iq =
∑

0≤i≤m/q

fm−iq(T + T q + · · ·+ T q
R−1

+XqR−1

)m−iq.

Putting these and Eq. (3.10) into Eq. (3.17) gets

εR
∑

0≤i≤m/q

fm−iq(T + T q + · · ·+ T q
R−1

+XqR−1

)m−iq(3.21)

=
∑

0≤i≤m/q

fm−iqX
m−i

R−1∏
j=1

(T + T q + · · ·+ T q
j−1

+Xqj−1

)m(q−1)

+
∑

0≤k<m
k 6≡m (mod q)

∑
εi∈I(ε,R)

fk,εi

R∑
`=1

Xk +

k−1∑
j=0

Pk,j(T )Xj

(R−`)

εR−`i

×
R−1∏

j=R−`+1

(T + T q + · · ·+ T q
j−1

+Xqj−1

)m(q−1).
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Taking (mod T ) yields

(εR − 1)fmX
m +

∑
0<i≤m/q

fm−iqX
(m−iq)qR−1

=
∑

0<i≤m/q

fm−iqX
m−i

R−1∏
j=1

Xm(q−1)qj−1

+
∑

0≤k<m
k 6≡m (mod q)

∑
εi∈I(ε,R)

fk,εi

R∑
`=1

XkqR−`εR−`i

R−1∏
j=R−`+1

Xm(q−1)qj−1

(mod T ),

or equivalently

(εR − 1)fmX
m +

∑
0<i≤m/q

fm−iqX
(m−iq)qR−1

=
∑

0<i≤m/q

fm−iqX
mqR−1−i

+
∑

0≤k<m
k 6≡m (mod q)

∑
εi∈I(ε,R)

fk,εi

R∑
`=1

εR−`i XkqR−`+mqR−1−mqR−` (mod T ).

We set

V = {fm−iq : 0 < i ≤ m/q} ∪ {fk,εi : 0 ≤ k < m, k 6≡ m (mod q); εi ∈ I(ε, R)},

By similar arguments as in the case q − 1 - w, comparing the coefficients of powers
of X in Eq. (3.21) yields

εRfm = fm

and the following linear system in the variables in V:

B∣∣y=T
(f∗)|V|×1 = fm((Q∗)|V|×1)∣∣y=T

.

Here all Q∗ ∈ yFq[y] and B = (Bij) ∈ Mat|V|(kN (y)). We can show that B (mod T )
is invertible, hence B is invertible.

We distinguish two subcases.

Subcase 1: εR 6= 1.
It follows that fm = 0. Then f∗ = 0 for all f∗ ∈ V. Thus δt,ε = 0 for all (t, ε) ∈ J .

In particular, for all i, ai(t) = δsi,εi = 0. This is a contradiction and we conclude
that this case can never happen.

Subcase 2: εR = 1.
From the induction hypothesis for (R,w) with R + w < N + w, it follows that

fk,εi = 0 whenever εi 6= 1. We are reduced to solve a linear system in the variables

V′ = {fm−iq : 0 < i ≤ m/q} ∪ {fk,1 : 0 ≤ k < m, k 6≡ m (mod q)}

given by

B∣∣y=T
(f∗)|V′|×1 = fm((Q∗)|V′|×1)∣∣y=T

.

Here fm ∈ kN [t], all Q∗ ∈ yFq[y] and B = (Bij) ∈ Mat|V′|(Fq(y)). We note that
the coefficients of B belong to Fq(y) since the characters are all trivial. We have
already know that B is invertible. Hence we have shown that there exists at most
one solution of Eqs. (3.3) and (3.4) up to a factor in kN (t). Recall that for all i,
ai(t) = δsi,εi . Therefore, up to a scalar in K×N , there exists at most one non-trivial
relation

aπ̃w +
∑
i

aiL(si; εi)(θ) = 0
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with a, ai ∈ KN and Li

(
ε
s

)
∈ CSN,w. Further, we must have εi = (1, . . . , 1) for all

i. Hence we have proved Theorem 2.6, Part 1.
By Lemma 3.4, there exists such a linear relation with a 6= 0. Combining this

with Theorem 2.6, Part 1, we obtain Theorem 2.6, Part 2. Hence the proof of
Theorem 2.6 is finished.

4. Proof of the main theorems

We now prove Theorems A and B.

Proof of Theorem A. By Theorem 2.7 the CMPL’s at roots of unity in CSN,w are
all linearly independent over KN . Then by Theorem 1.11 we deduce that the set
CSN,w form a basis for CLN,w. �

Proof of Theorem B. We recall

dN (w) =


1 if w = 0,

γN (γN + 1)w−1 if 1 ≤ w < q,

γN ((γN + 1)w−1 − 1) if w = q,

and for w > q, dN (w) = γN
q−1∑
i=1

dN (w− i) + dN (w− q). Then we want to show that

dimKN CZN,w = dN (w).

We note that if we set dN (w) = 0 for w < 0, then the equality dN (w) =

γN
q−1∑
i=1

dN (w − i) + dN (w − q) holds for every integer w 6= 0, q.

For w ∈ N we put d′N (w) = |CSN,w|. We also set d′N (w) = 1 for w = 0 and

d′N (w) = 0 for w < 0. Then the equality d′N (w) = γN
q−1∑
i=1

d′N (w−i)+d′N (w−q) holds

for all w ∈ N and w 6= q. Furthermore, for w = q we have d′N (q) = γN
q−1∑
i=1

d′N (q− i).

Hence it follows that for all w ∈ N, d′N (w) = dN (w). We combine this equality with
Theorem A to obtain Theorem B. �
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