N
N

N

HAL

open science

From Probabilistic Programming to Complexity-based
Programming

Giovanni Sileno, Jean-Louis Dessalles

» To cite this version:

Giovanni Sileno, Jean-Louis Dessalles. From Probabilistic Programming to Complexity-based Pro-
gramming. 26th European Conference on Artificial Intelligence ECAI 2023, Sep 2023, Krakéw, Poland.

pp-304-317, 10.1007/978-3-031-50485-3 32 . hal-04464156

HAL Id: hal-04464156
https://hal.science/hal-04464156
Submitted on 18 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04464156
https://hal.archives-ouvertes.fr

From Probabilistic Programming to
Complexity-based Programming

Giovanni Sileno! and Jean-Louis Dessalles?

! University of Amsterdam, Amsterdam, The Netherlands
2 Télécom Paris, Paris-Saclay University, France
g.sileno@uva.nl, dessalles@telecom-paris.fr

Abstract. The paper presents the main characteristics and a prelimi-
nary implementation of a novel computational framework named Com-
pLOG. Inspired by probabilistic programming systems like ProbLog, Com-
pLog builds upon the inferential mechanisms proposed by Simplicity
Theory, relying on the computation of two Kolmogorov complexities
(here implemented as min-path searches via ASP programs) rather than
probabilistic inference. The proposed system enables users to compute
ex-post and ezx-ante measures of unexpectedness of a certain situation,
mapping respectively to posterior and prior subjective probabilities. The
computation is based on the specification of world and mental models
by means of causal and descriptive relations between predicates weighted
by complexity. The paper illustrates a few examples of application: gen-
erating relevant descriptions, and providing alternative approaches to
disjunction and to negation.

Keywords: Complexity-based programming - Simplicity Theory - Causal
models - Descriptive models - Probability - Relevant descriptions - Nega-
tion - Kolmogorov complexity - Answer Set Programming

1 Introduction

Probabilistic forms of programming are increasingly attracting attention [1, 14,
7,18], and part of this success is likely because they provide an intuitive com-
mon ground between numeric and symbolic approaches. Yet, the axiomatization
of probability theory relies on assuming the presence of a measurable space of
events, which can in principle be contested. Given any description of the world,
we can always add new elements, eg. entities previously not in focus, arrange-
ments at other moments in time, properties not considered before. On the other
hand, scalability concerns generally hinder considering an ever-growing number
of variables.

In previous work [16], we have argued that the notion of “unexpectedness”
introduced by Simplicity Theory (ST) [3], based on the computation of two
bounded Kolmogorov complexities, provides a framework more general than
Bayes’ rule to compute the posterior of a certain situation. On the basis of this
conjecture, we propose here a novel computational framework named CoMPLOG,

2 G. Sileno and J.-L. Dessalles

able to compute ex-post and ex-ante measures of unexpectedness of a certain sit-
uation, mapping respectively to posterior and prior subjective probabilities. The
computation relies on the representation of causal and descriptive relationships,
specified as relationships between predicates, weighted by complexity.

At syntactic level, the system we propose is inspired by ProbLog [1], yet it has
its own unique characteristics. (1) CompLog enables by design the distinction
between descriptive and causal dimensions, and thus in principle supports the
integration of distinct dedicated tools for the two dimensions (ontologies, and
causal models, for instance). (2) With adequate operators, CompLog can mimic
cognitive mechanisms observable in humans. This is because the Simplicity The-
ory of cognition on which it builds upon has a better alignment with evaluations
of relevance expressed by humans compared to Shannon’s Information theory.
(3) From a technical point of view, because the minimization of complexity is
based upon a non-extensional search (the framework does not keep and propa-
gate random distributions), we hypothesize that CompLog may be faster than a
probabilistic equivalent system, and thus in principle it may be used efficiently
both for abduction and prediction (causal, non-primarily statistical).

The present paper does not aim to demonstrate all these goals, but will
present and discuss the first design choices we are taking in this line of work.
Section 2 provides a brief overview to Simplicity Theory, the cognitive model
underlying the inferential mechanisms we implement; on ProbLog; and on some
of the problems lying at the boundary between logical and probabilistic ap-
proaches. Section 3 presents the main CompLog’s components: a (simplistic)
programming language, inferential mechanisms, and a preliminary implementa-
tion in ASP. Section 4 provides a few examples of application, meant to show
CompLog’s distinctive characteristics in comparison with functionally compara-
ble systems.

2 Theoretical Background

2.1 Simplicity Theory

Shannon’s theory of information entails that samples extracted from a uniform
distribution are maximally informative. Yet, very few humans would agree with
such a conclusion. Motivated by addressing this shortcoming, Simplicity The-
ory (ST) [3] was presented as an alternative computational model of cognition.
Technically, ST introduces a measure of unexpectedness [5] building upon results
from algorithmic information theory, which is defined as:

U(s) = Cw(s) — Cp(s)

where s is a situation in focus, and Cy and Cp are two Kolmogorov complexi-
ties computed via distinct bounded Turing machines.? The causal complezity Cy

3 The Kolmogorov complexity of a string = is defined as the minimal length of a
program that, given a certain optional input parameter y, produces x as an output:
Ky(z|ly) = min, {|p| s ply) = ac} Note that the length of the minimal program
depends on the operators and symbols available to the machine ¢.

From Probabilistic Programming to Complexity-based Programming 3

(also called world complexity or generation complexity) relies on a “world model”
maintained by a world machine W, whose operators are expected to be about
occurrences, causal dependencies, and possibly forms of causal compositionality.
The description complezity Cp builds upon a “mind model” maintained by a
description machine D, whose operators are expected to be about concept re-
trieval, association, and possibly various forms of descriptive compositionality.
Informally, ST entails that situations are unexpected if they are (algorithmically)
simpler to describe (ie. visualize mentally) than to generate in the world (ie. to
simulate their generation according to the agent’s world model). Because com-
plexities are expressed on a logarithmic scale, one may introduce an additional
constraint:

U(s) >0

to capture a principle of cognitive economy: situations are described up to the
extent they are unexpected to occur.

Previous works [3,2,4,5] have shown that this definition predicts various
human phenomena observed in experimental settings, amongst which judgments
on remarkable lottery draws (e.g. 11111 is more unexpected than 64178, even if
the lottery is fair), coincidence effects (e.g. meeting by chance a friend in a foreign
city is more unexpected than meeting any unknown person equally improbable),
deterministic yet unexpected events (e.g. lunar eclipses), and many others.

Unexpectedness and Bayes’ rule Interestingly, we have recently acknowl-
edged [16] that Bayes’ rule can be seen as a specific instantiation of ST’s Un-
expectedness that: (a) makes a candidate “cause” explicit and does not select
automatically the best candidate; (b) takes a frequentist-like approach for en-
coding observables. We traced therefore the following correspondence:

posterior likelihood prior evidence

—_—— N
U(s) = mcin [Cw(cxs)—Cp(s)] = mcin[C’W(ch) +Cw(c)— Cp(s)]

Wy

where “x” is a (temporal) sequential compositional operator, ¢ is a situation
(candidate cause of s), and “||” map to the “|” notation in conditional probability,
with an additional explicit temporal constraint (in this case ¢ has to occur before
than s). Taking unexpectedness as an alternative measure of subjective posterior
probability, it could in principle replace Bayesian inference in a probabilistic
deduction system.

2.2 ProbLog

ProbLog [1] is plausibly the best known amongst the available solutions for
probabilistic programming. It provides a suite of efficient algorithms for various
inference tasks, relying on a conversion of a program, queries, and evidence to
a weighted Boolean formula, and thus transforming the inferential task into
weighted model counting, which can be solved using state-of-the-art methods.
The knowledge bases of ProbLog programs can be represented in various ways,
amongst which Prolog/Datalog facts. Here is an example of code:

4 G. Sileno and J.-L. Dessalles

0.5 friendof (john, mary).

0.5 friendof (mary, pedro).

0.5 friendof (mary, tom).

0.5 friendof (pedro, tom).

1.0 :: likes(X, Y) :- friendof (X, Y).

0.8 :: likes(X, Y) :- friendof (X, Z), likes(Z, Y).

evidence (likes (mary, tom)).
query (likes (mary, pedro)).

A ProbLog program consists of facts (eg. friendof (john, mary)), rules (eg.
likes(X, Y) :- friendof(X, Y)), possibly annotated with a certain probabil-
ity (eg. 0.5). Special predicates are used to specify goals (query/1) and obser-
vations (evidence/1). ProbLog also introduces the possibility to specify disjoint
facts in the head of rules to capture the existence of mutually exclusive outcomes.
Solving the previous program?* returns as outcome probability: 0.58333333.

2.3 From ProbLog to CompLog

The outcome of the ProbLog program above can be read both as saying that
Mary likes Pedro a bit, or that Mary likes Pedro in more than half of the possible
world configurations specified by the program. Indeed, applications of probability
theory oftentimes are used to deal with two dimensions of uncertainty: descrip-
tive uncertainty (also indetermination) and causal uncertainty. This is based on
the assumption that the degree or the extent to which it is true that, for instance,
the email just received is spam may also be captured as the probability that this
email is spam. Whether and when the passage between the two types of uncer-
tainties is legitimate is still an open question, which goes beyond probability
theory and involves research fields such as fuzzy logic and other quantitative ap-
proaches to logic. Here we will consider however an alternative line of arguments
with respect to this issue.

Epistemic vs ontological On a more fundamental level, the descriptive di-
mension can be associated to epistemic uncertainty, ascribed to things that have
not been unveiled yet (or proven, in a logical framing), including things that
may not be proven; it is therefore primarily a matter of conditions holding in
the world. In contrast, the causal dimension can be associated to ontological un-
certainty, ascribed to things that have not been created yet (or extracted, in a
sampling framing); it is a matter of events occurring in the world. Interestingly,
seen in terms of conditions/events, passing from one dimension to the other can
be related to various, and very distinct, challenges studied in AI and related
fields. We will cover two prototypical cases here: symbolic automated reasoning
about events, and causality in Bayesian networks.

1 See eg. https://dtai.cs.kuleuven.be/problog/editor.html for an online running
version of ProbLog.

From Probabilistic Programming to Complexity-based Programming 5

Reasoning about events with logic programs In symbolic Al, particularly in the
80s/90s, reasoning about the effects of events (including actions) has been a
mainstream topic, eventually related to the infamous frame problem. It became
soon manifest that it was rather difficult to perform automated reasoning about
events by means of simple deduction. In order to deal with phenomena as inertia
and locality of effects, several axiomatizations were proposed, the most known
being situation calculus [10,13], event calculus [8,15], fluent calculus [17]. Look-
ing at the event calculus, for instance, meta-level predicates are introduced to
deal with two different types of entities: fluents (ie. conditions that vary in
time) and events (ie. transitions/changes of fluents that occur at a certain point
in time). Facts about the world are then reified either via holds(C, T) for flu-
ents, or as occurs(E, T) for events, where T is a temporal coordinate. Other
solutions share similar meta-level constructs.

Interventions with Bayesian Networks In probabilistic inference, from a formal
point of view, Bayesian Networks are known to capture only associationistic
relationships. Any causal reading exists only in the mind of the modeler. To take
into account interventions, like those present in causal scenarios (and relevant eg.
to scientific experimentation), we need to consider an additional do operator [11,
12]. The do operator provides local counterfactuality by performing an operation
on the Bayesian network: its presence entails that the edges from the intervened
node towards its parent nodes have to be cut. Because this operation is performed
at the level of the Bayesian network, and not at the level of the variables, the
construct can be seen also in this case as operating at a meta-level.

Simplicity Theory as an integrative framework The examples above il-
lustrate that: (1) both logical and probabilistic inferences work primarily at the
level of conditions; and (2) additional machinery is required to properly take into
consideration the side effects of events. ST, in contrast, explicitly relies on two
different machines to compute unexpectedness: one for the world (making events
occurring), and one for the mind (determining conditions). Intuitively, this cogni-
tive model offers a more principled solution to separate ontological and epistemic
uncertainty concerns, and indeed CompLog (in contrast eg. to PropLog or other
probabilistic inference systems) stems from the idea of keeping them distinct.

3 Complog

This section presents our current design choices on CompLog going over three
dimensions: the programming language, the inferential mechanisms, and their
implementation.

3.1 Language

We introduce here a simplistic propositional language meant to specify both
causal and associative (descriptive) relationships. We do not require it to be
comprehensive, but rather to be functional for early experimentations.

6 G. Sileno and J.-L. Dessalles

Conditions and events The language is based upon a primary distinction between
conditions and events. Events are predicates whose duration of applicability, in
the descriptive frame considered, is irrelevant, whereas conditions are predicates
that can be applied for some relevant amount of time. We will then use simple
literals to specify conditions: s, x, y, z. We will distinguish events from condi-
tions by means of prefixed literals: #x, #y, etc. Two special type of events will
be introduced, specified by their effects: +x for the initiation (or creation, pro-
duction, addition, etc.) of condition x, -x for the termination (or destruction,
consumption, removal, etc.) of a certain condition x.

Declarative and active rules A declarative rule (to be read as if condition then
conclusion) is specified as a relation between two conditions, eg. x => y. In the
prolog/ASP syntax this construct would correspond to y :- x. An active rule
(to be read as if antecedent then consequent) is specified as a relation between
two events, eg. #push => +light (if you push the button, the light goes on).
Note that the syntax is sufficiently rich to describe causal dependencies with
consumption (eg. +x => +y, -x) and without (eg. +x => +y). Active rules can
be also extended to fit the ECA template (when event in condition then action):
#push : electricity => +light.

Race conditions The term “race condition” is used in concurrent systems to
indicate a critical point in which only a limited amount of threads or processes
have access to a resource, therefore execution may bring non-deterministic re-
sults, unless priority of access is defined up-front. Active rules in principle are
susceptible to race conditions. For instance, given the following program:

+x => +y.

+x => +z.

it is not clear whether only one amongst of +y or +z should be triggered after
+x, or both of them. To make the syntax non-ambiguous, we assume that the
state of the world changes always at the activation of any causal rule®, therefore
the previous rules are interpreted as in a race condition, and only one of the
two will be executed. To specify the absence of race conditions we can use the
ECA template, allowing active rules with no triggering event, and introducing a
catalyst entity which is not consumed:

=> +x.
X => +y.
X => +z.

Active formulas with no triggering event can be seen as related to ergodic prop-
erties of the world, underlying asymptotic growth phenomena. In a propositional
setting, growth is however constrained to be non-linear and capped.

Program A CompLog program consists of a world model, specified as a set of
causal relationships (in the proposed language, active rules) and centered on
events; and a mental model, specified as a set of associationistic relationships (eg.

5 There will be certainly a change of temporal coordinate, even if implicit.

From Probabilistic Programming to Complexity-based Programming 7

logical, in the proposed language via declarative rules), centered on conditions. If
a program consists only of facts about events and active rules, it is called active
program. If a program consists only of facts about conditions and declarative
rules it is called declarative program. Any program can be divided into active and
declarative programs, mapping isomorphically to world and to mental models.

Program augmentation Given a declarative program, we can read it as an active
program by capturing explicitly initiation and termination mechanisms. Here we
will focus only on initiation, as it has a more prominent role when thinking of
the plausibility of a target situation. The transformation can be applied in two
ways, with race conditions, or with no race conditions:

X. X > y. % declarative
+Xx. +x => +y. ¥ active with race conditions
+x. : x => +y. J, active without race conditions

Complezities Whereas in ProbLog facts and rules can be given a probability
(a value between 0 and 1), in CompLog facts and rules can be given a value
of complexity (a positive value). When complexity is specified within a world
model, associated to an element of an active program, it has to be interpreted as
a causal complexity Cy, when it is specified within a mental model, associated
to an element of a declarative program, it has to be interpreted as a descriptive
complexity C'p. Consider the following example:

4 :: eagle.
12 :: #eagle.

This program expresses that conceptually evoking an eagle is much easier than
actually encountering it.%

3.2 Inference

A second intuition motivating the introduction of CompLog is that the world
and mental models connect to two different characterizations of computation,
which can be treated separately.

Productive vs epistemic characterization Causal events generally consume re-
sources (except for catalysts); we will therefore consider a productive character-
ization of computation to simulate the world generation processes, which can
be put in correspondence with graphical notations as, eg., Petri Nets. We will
instead consider an epistemic characterization for the computation of mental
objects: once a fact has been unveiled (eg. it has been proven true or retrieved
from memory), it becomes part of the current resources and cannot be removed,
unless non-monotonic effects apply. This view can be applied to systems based
on logic, and can also be given a graphical representation, as for instance through
dependency graphs.

5 The easiness of retrieval may be due to a much more frequent appearance of the
concept of eagle in discourses around the observer.

8 G. Sileno and J.-L. Dessalles

Fig. 1. Graph constructed from of a descriptive model. Coloured nodes (in black) are
available resources. Numbers on edges specify the complexity of colouring the target
node if the source node is coloured.

Computation as a “colouring” task From the above, we hypothesize that the
world and mental models can be represented as two distinct directed graphs.
The nodes coloured at a certain moment in time count as resources which are
available at that moment. The edges reify the complexity, ie. the cost of colouring
the target node, when the source node is coloured already. Queries specify goal
nodes. With this mapping, the minimization of complexity required by the com-
putation of Kolmogorov complexity maps to the application of min-path search
algorithms. We require two distinct search algorithms, because transitions on
the two graphs behave differently (respectively, with or without consumption).
Consider for instance the following declarative program (mental model):

4 :: x. 4 y. 4 :: z.
1 ::z ->x. 1 :: z ->y.
3 :: x ->y. 3 y -> x.

Adding an initial state, the various relations can be represented on a graph like
the one in Fig. 1. We can then augment the declarative program to generate a
corresponding active program, obtaining:

4 :: +x. 4 :: +y. 4 :: +z.
1 :: +z => +x. 1 :: +z => +y.
3 1 +x => +y. 3 :: +y => +x.

Note how we have illustratively kept the same primitive values of complexity
in the two models, and yet the computed derived complexities vary. For in-
stance, Cp(x) = 4 is equal to Cy (+x) = 4, whereas Cp((x,y)) = 6 is inferior to
Cyw ({(+x,+y)) = 7.7 This divergence appears because on the descriptive program
we apply an epistemic computation, which does not consume any resources;

7 (...,...) is an operation used to specify multiple goals, all of which need to achieved,
regardless of the order.

From Probabilistic Programming to Complexity-based Programming 9

we can then generate z as a more efficient basis to construct both x and y. In
contrast, on the active program we apply a productive computation, which (gen-
erally) consumes resources; the given program has a race condition over +z, and
therefore it cannot be used both to trigger +x and +y. Note however how the
designer can modify this behaviour in case z acts rather as a catalyst.

Output In CompLog, given a query, we will compute its unexpectedness (map-
ping to a posterior, ex-post probability) as the difference between the complexi-
ties computed on the world and on the description machine, ie. U = Cy — Cp.
In the example illustrated in Fig. 1, we can infer for instance that U((x,y)) = 1,
and therefore, this input would be (slightly) unexpected if it had to occur.

In order to generate an ex-ante value, relevant for predicting what will occur
in the future, the determination cost needs to be added back to unexpectedness,
ie. CY, = U+ Cp [16]. On simple cases, this seems rather inefficient, as we could
simply compute Cyy. However, in general cases, there may be elements in the
query (which describes a situation) which may turn out to be irrelevant. The
optimization on Cp to compute U is functional to finding the correct framing
by which to interpret the input situation. In probabilistic approaches, this is left
implicit in the choice of random variables; for instance, we approach a lottery
without considering the context that brought the lottery to be, nor other events
that may disrupt its functioning: the framing is given by design. For further
information, see the informational principle of framing elaborated in [16].

3.3 Implementation

Because it relies on the computation of (bounded) Kolmogorov complexities,
the core inferential mechanism of CompLog are min-path search algorithms to
be applied on the graphs resulting from the world and mental models. For our
preliminary experiments, we have manually implemented the search algorithms
in answer set programming (ASP) [9], using the ASP solver clingo [6].% This
choice was motivated by the intention of keeping control on the various steps.
Yet, other solutions may be more efficient.”

The ASP program we use to encode the inferential mechanisms of CompLog
consists of model and control parts, related respectively to the given problem
(specific) and to the control mechanisms (generic) required to run the inference.

The model part consists of statements reifying the edges of the graph with
their cost (complexity), including the initial state (the coloured nodes) and the
query (the goal nodes). The graph in Fig. 1 is for instance reified as:

cost(s, x, 4). cost(s, y, 4). cost(s, z, 4).
cost(z, x, 1). cost(z, y, 1).

cost(x, y, 3). cost(y, x, 3).

start(s). goal(x). goal(y).

8 https://potassco.org/clingo/
9 Interestingly, a new probabilistic programming framework (including ProbLog infer-
ential mechanisms) based on ASP/clingo has been recently presented: plingo [7].

10 @G. Sileno and J.-L. Dessalles

The control part of the program is an axiomatization consisting of three com-
ponents: a common exploration core, specific constraints depending on whether
we are in the context of productive or epistemic computation (ie. consumption
or no-consumption, race conditions), and axioms for defining optimization. For
the exploration axioms, we consider:

path(X, Y) :- reached(X, N), edge(X, Y).

reached (X, 0) :- start(X).
:- goal(Y), not reached(Y, _).

The first line states that every outgoing edge from a reached node may be trav-
eled. The second specifies that the initial state consists of nodes reached at time
0. The third states that all goals should be reached eventually. The search mech-
anism is then extended with specific constraints. In an epistemic computation
setting, time is deemed irrelevant:

{ reached(Y, N) } :- path(X, Y), reached(X, N).

which states that if the node X was reached at time N, and there is a path
between X and Y, then Y may be reached in the same moment. In a productive
computation setting, time is instead relevant:

{ reached(Y, N + 1) } :- path(X, Y), reached(X, N), N < 10.

This expression introduces a temporal aspect in going through the graph. (The
boundary to N acts as a maximal depth of search, at the moment set as a hard-
coded parameter.) We may want also to add race conditions: only one event can
be caused at once (what in concurrent systems is called an interleaved seman-
tics). This constraint can be encoded in the following ASP rule:

:- reached (X, N), reached(Y, N), X != Y.
Finally, the optimization criteria can be expressed as simply as:

totalcost(T) :- T = #sum{C,X,Y : path(X, Y), cost(X, Y, C)}.
#minimize {T: totalcost(T)}.

By solving this program, we obtain the minimal path achieving all goals (colour-
ing all target nodes) from the start conditions, together with its cost.

4 Examples of application

This section provides three examples of application, aiming to highlight the
potential of a system like CompLog.

4.1 Most relevant description

Suppose we are given a certain ontology (including taxonomical and terminolog-
ical aspects), here expressed in the form of declarative rules:
eagle -> bird. pigeon -> bird. canary -> bird.

tiger -> mammal. dog -> mammal. cat -> mammal.
dog -> pet. cat -> pet. canary -> pet.

From Probabilistic Programming to Complexity-based Programming 11

Suppose we have some descriptive complexity associated to those terms (eg.
related to their appearance in discourses):

3 :: dog. 3 :: cat. 3 :: bird.
4 :: eagle. 4 :: tiger. 4 :: pigeon.
6 :: canary.

as well as some measures on world complexity (eg. related to actual frequencies
of encounter):

3 :: #pigeon. 3 :: #dog. 3 :: #cat. 3 :: #bird.
7 :: #canary.
12 :: #eagle. 12 :: #tiger.

By computing the various measures of unexpectedness we can settle on what is
the best descriptor of the current situation (minimizing U). For instance, given
#pigeon, we may prefer to say bird (as Cw (#pigeon) — Cp(pigeon) < 0),
whereas we would keep saying eagle for #eagle.!’

4.2 Disjunction

Suppose we have a die with 4 faces. In ProbLog, an extraction would be specified
by means of an exclusive disjunction:

0.25 :: diel; 0.25 :: die2; 0.25 :: die3; 0.25 :: die4d.

The equivalent representation in CompLog would distinguish the declarative
from the active part (obtained eg. by program augmentation) as:

2 :: diel. 2 :: die2. 2 :: die3d. 2 :: die4.

2 :: => +diel. 2 :: => +die2. 2 :: => +die3d. 2 :: => +dieéd.

Note that disjunction is a by-design consequence of the race conditions. Stated
otherwise, exclusive disjunction in probabilistic specifications can be seen as
conveying implicitly the presence of race conditions.

4.3 Negation

Probability theory allows us to compute the probability of a negated event (eg.
— diel) as the probability of the union set of events dual to the event which
is negated, or, algebraically, as 1 — P(diel). This possibility is enabled by the
closure of the horizon of events by means of an extensional semantics, ie. defining
random events as sets, and then using set operations.

In contrast, Simplicity Theory (and thus CompLog) does not assume such
a closure, as it deems cognitively unsound to infer the unexpectedness of en-
countering eg. a not-dog. Yet, it hints to a way to approach negation which is

10 Here we are assuming that there the rules provided with the ontology are applied
with no cost. Yet, for the mental mode, they should rather be thought as reifying as-
sociationistic relations, related to how often the two concepts are activated together.
If the target concept is abstract/rarely used (eg. mammal), additional cost may be
associated to declarative rules involving it.

12 @G. Sileno and J.-L. Dessalles

procedural and incremental, at a meta-level with respect to the core inference.
Suppose that someone says, “I just met an animal, which was not a dog”. Plau-
sibly, the person wants to convey that she was in a context in which she would
have expected a dog, but then that expectation wasn’t met. Therefore, in our
mind we need first to reconstruct a context in which dog is expected, then we
remove the appearance of a dog, and the first animal that would appear in its
stead (eg. a cat) would give us a proxy measure for the complexity looked for.
As a more concrete example, let us apply the same intuition to the case of the
die, which is more extreme, being a fair lottery. We first compute the complexity
of diel, which is 2. We then remove diel from the graph. We compute the node
with the best complexity, eg. die2, which is still 2. We could take this as a
proxy of the negation of the target, however, this computation also shows that
the best alternative has the same level of unexpectedness of the target, which
can be taken as a hint to proceed further. We can then apply another iteration:
negating die2, finding die3 with again complexity 2, and then we may aggregate
the complexities of the two alternatives. This procedure can be formulated as
a general heuristic: the search/aggregation can be stopped (i) when the best
alternative has a sufficiently high complexity, or (ii) when the aggregated value
has a sufficiently low complexity, with respect to the complexity of the target.

5 Conclusion and future works

The paper presented the general motivation, the underlying theory, the main
components, and elements of an initial implementation of ComplLog, a novel
complexity-based programming framework. CompLog is meant to explore a space
of research in the domain of computational inferential systems (not extensional,
not primarily statistical, but algorithmic, and cognitively sound inference) which
has not yet attracted much attention. In future works, besides further clarifying
the various components, and consolidating the various definitions, we will explore
additional applications, including learning mechanisms, and attempt to integrate
CompLog with existing computational frameworks, symbolic and sub-symbolic.
We also aim to perform experiments to benchmark performances of CompLog on
tasks where probabilistic-oriented frameworks are currently used, both in terms
of computability, and of empirical alignment with human behaviour.

References

1. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence. pp. 2462-2467 (2007)

2. Dessalles, J.L.: Coincidences and the encounter problem: A formal account. Pro-
ceedings of the 30th Annual Conference of the Cognitive Science Society (CogSci
2008) pp. 2134-2139 (2008)

3. Dessalles, J.L.: La pertinence et ses origines cognitives. Hermes-Science (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

From Probabilistic Programming to Complexity-based Programming 13

Dessalles, J.L.: Simplicity Effects in the Experience of Near-Miss. Proceedings of
thee 33th Annual Meeting of the Cognitive Science Society (CogSci 2011) pp. 408—
413 (2011)

Dessalles, J.L.: Algorithmic simplicity and relevance. Algorithmic probability and
friends 7070 LNAI, 119-130 (2013)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. TPLP 19, 27-82 (2019)

Hahn, S., Janhunen, T., Kaminski, R., Romero, J., Riithling, N., Schaub, T.: Plingo:
A System for Probabilistic Reasoning in Clingo Based on LPMLN. In: Rules and
Reasoning. pp. 54-62. Springer International Publishing, Cham (2022)

Kowalski, R., Sergot, M.: A logic based calculus of events. New Generation Com-
puting 4(June 1975), 67-95 (1986)

Lifschitz, V.: What is answer set programming? Proceedings of the AAAT Confer-
ence on Artificial Intelligence (2008)

McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence, pp. 1-51. Edimburgh University
Press (1969)

Pearl, J.: Causality. Cambridge university press (2009)

Pearl, J., Glymour, M., Jewell, N.P.: Causal inference in statistics: A primer. John
Wiley & Sons (2016)

Reiter, R.: Knowledge in action: logical foundations for specifying and implement-
ing dynamical systems. MIT Press (2001)

Saad, F.A., Cusumano-Towner, M.F., Schaechtle, U., Rinard, M.C., Mansinghka,
V.K.: Bayesian synthesis of probabilistic programs for automatic data modeling.
Proceedings of the ACM on Programming Languages 3(POPL), 1-32 (2019)
Shanahan, M.: The event calculus explained. Artificial Intelligence Today pp. 409—
430 (1999)

Sileno, G., Dessalles, J.L.: Unexpectedness and bayes’ rule. In: Proceedings of the
3rd International Workshop on Cognition: Interdisciplinary Foundations, Models
and Applications (CIFMA 2021), co-located with Software Engineering and Formal
Methods conference (SEFM 2021). pp. 107-116. Springer International Publishing,
Cham (2022)

Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a
solution to the inferential frame problem. Artificial Intelligence 111(1-2), 277-299
(1999)

Winters, T., Marra, G., Manhaeve, R., De Raedt, L.: Deepstochlog: Neural stochas-
tic logic programming. In: Proceedings of the AAAI Conference on Artificial In-
telligence. vol. 36, pp. 10090-10100 (2022)

