Robust estimations from distribution structures: III. Invariant Moments
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This manuscript was compiled on [START_REF]Reproducibility and Replicability in Science[END_REF] Descriptive statistics for parametric models are currently highly sensative to departures, gross errors, and/or random errors. Here, leveraging the structures of parametric distributions and their central moment kernel distributions, a class of estimators, consistent simultanously for both a semiparametric distribution and a distinct parametric distribution, is proposed. These efficient estimators are robust to both gross errors and departures from parametric assumptions, making them ideal for estimating the mean and central moments of common unimodal distributions. This article also illuminates the understanding of the common nature of probability distributions and the measures of them.
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T he potential biases of robust location estimators in esti- mating the population mean have been noticed for more than two centuries [START_REF] Gauss | Theoria combinationis observationum erroribus minimis obnoxiae[END_REF], with numerous significant attempts made to address them. In calculating a robust estimator, the procedure of identifying and downweighting extreme values inherently necessitates the formulation of distributional assumptions. Previously, it was demonstrated that, due to the presence of infinite-dimensional nuisance shape parameters, the semiparametric approach struggles to consistently address distributions with shapes more intricate than symmetry. Newcomb (1886) provided the first modern approach to robust parametric estimation by developing a class of estimators that gives "less weight to the more discordant observations" [START_REF] Newcomb | A generalized theory of the combination of observations so as to obtain the best result[END_REF]. In 1964, Huber (3) used the minimax procedure to obtain M -estimator for the contaminated normal distribution, which has played a pre-eminent role in the later development of robust statistics. However, as previously demonstrated, under growing asymmetric departures from normality, the bias of the Huber M -estimator (HM) increases rapidly. This is a common issue in parametric robust statistics. For example, He and Fung (1999) constructed (4) a robust M -estimator (HFM) for the two-parameter Weibull distribution, from which the mean and central moments can be calculated. Nonetheless, it is inadequate for other parametric distributions, e.g., the gamma, Perato, lognormal, and the generalized Gaussian distributions (SI Dataset S1). Another interesting approach is based on L-estimators, such as percentile estimators. For examples of percentile estimators for the Weibull distribution, the reader is referred to the works of [START_REF] Menon | Estimation of the shape and scale parameters of the weibull distribution[END_REF] [START_REF] Menon | Estimation of the shape and scale parameters of the weibull distribution[END_REF], [START_REF] Sd Dubey | Some percentile estimators for weibull parameters[END_REF] [START_REF] Sd Dubey | Some percentile estimators for weibull parameters[END_REF], [START_REF] Marks | Estimation of weibull parameters from common percentiles[END_REF] [START_REF] Marks | Estimation of weibull parameters from common percentiles[END_REF], and Boudt, Caliskan, and Croux (2011) [START_REF] Boudt | Robust explicit estimators of weibull parameters[END_REF]. At the outset of the study of percentile estimators, it was known that they arithmetically utilize the invariant structures of parametric distributions [START_REF] Menon | Estimation of the shape and scale parameters of the weibull distribution[END_REF][START_REF] Sd Dubey | Some percentile estimators for weibull parameters[END_REF]). An estimator is classified as an I-statistic if it asymptotically satisfies I (LE1, . . . , LE l ) = (θ1, . . . , θq) for the distribution it is consistent, where LEs are calculated with the use of LU -statistics (defined in REDS II), I is defined using arithmetic operations and constants but may also incorporate transcendental functions and quantile functions, and θs are the population parameters it estimates. In this article, two subclasses of Istatistics are introduced, recombined I-statistics and quantile I-statistics. Based on LU -statistics, I-statistics are naturally robust. Compared to probability density functions (pdfs) and cumulative distribution functions (cdfs), the quantile functions of many parametric distributions are more elegant. Since the expectation of an L-estimator can be expressed as an integral of the quantile function, I-statistics are often analytically obtainable. However, it is observed that even when the sample follows a gamma distribution, which belongs to the same larger family as the Weibull model, the generalized gamma distribution, a misassumption can still lead to substantial biases in Marks percentile estimator (MP) for the Weibull distribution [START_REF] Marks | Estimation of weibull parameters from common percentiles[END_REF] (SI Dataset S1).

The purpose of this paper is to demonstrate that, in light of previous works, by utilizing the invariant structures of unimodal distributions, a suite of robust estimators can be constructed whose biases are typically smaller than the variances (as seen in Table 1 for n = 5184).

A. Invariant Moments. Most popular robust location estimators, such as the symmetric trimmed mean, symmetric Winsorized mean, Hodges-Lehmann estimator, Huber Mestimator, and median of means, are symmetric. As shown in REDS I, a symmetric weighted Hodges-Lehmann mean (SWHLM k,ϵ ) can achieve consistency for the population mean in any symmetric distribution with a finite mean. However, it falls considerably short of consistently handling other parametric distributions that are not symmetric. Shifting from semiparametrics to parametrics, consider a robust estimator with a non-sample-dependent breakdown point (defined in Subsection F) which is consistent simultaneously for both a semiparametric distribution and a parametric distribution that does not belong to that semiparametric distribution, it
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is named with the prefix 'invariant' followed by the name of the population parameter it is consistent with. Here, the recombined I-statistic is defined as

RI d,h k ,k 1 ,k 2 ,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,n,LU 1 ,LU 2 := lim c→∞ LU1 h k ,k 1 ,k 1 ,ϵ 1 ,γ 1 ,n + c d+1 LU2 h k ,k 2 ,k 2 ,ϵ 2 ,γ 2 ,n + c d -c ,
where d is the key factor for bias correction, LU h k ,k,k,ϵ,γ,n is the LU -statistic, k is the degree of the U -statistic, k is the degree of the LL-statistic, ϵ is the upper asymptotic breakdown point of the LU -statistic. It is assumed in this series that in the subscript of an estimator, if k, k and γ are omitted, First consider the location-scale distribution.

k = 1, k = 1, γ = 1 are assumed, if just one k is indicated, k1 = k2, if just one γ is indicated, γ1 = γ2, if n is omitted,
rm d,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,n,WL 1 ,WL 2 := RI d,h k =x,k 1 =1,k 2 =1,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,n,LU 1 =WL 1 ,LU 2 =WL 2 . Assuming finite means, rm d= µ-WL 1k 1 ,ϵ 1 ,γ 1 WL 1 k 1 ,ϵ 1 ,γ 1 -WL 2 k 2 ,ϵ 2 ,γ 2 ,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,WL
Since

rm d,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,WL 1 ,WL 2 = limc→∞ (WL1k 1 ,ϵ 1 ,γ 1 +c) d+1 (WL2k 2 ,ϵ 2 ,γ 2 +c) d -c = (d + 1) WL1 k 1 ,ϵ 1 ,γ - dWL2 k 2 ,ϵ 2 ,γ = µ. So, d = µ-WL 1k 1 ,ϵ 1 ,γ 1 WL 1k 1 ,ϵ 1 ,γ 1 -WL 2k 2 ,ϵ 2 ,γ 2
. In REDS I, it was established that any WL(k, ϵ, γ) can be expressed as λWL0(k, ϵ, γ) + µ for a location-scale distribution parameterized by a location parameter µ and a scale parameter λ, where WL0(k, ϵ, γ) is a function of Q0(p), the quantile function of a standard distribution without any shifts or scaling, according to the definition of the weighted L-statistic.

The simultaneous cancellation of µ and λ in

(λµ 0 +µ)-(λWL 1 0 (k 1 ,ϵ 1 ,γ 1 )+µ) (λWL 10 (k 1 ,ϵ 1 ,γ 1 )+µ)-(λWL 20 (k 2 ,ϵ 2 ,γ 2 )+µ)
assures that the d in rm is always a constant for a location-scale distribution. The proof of the second assertion follows directly from the coincidence property.

According to Theorem 17 in REDS I, for any symmetric distribution with a finite mean, SWHLM1

k 1 = SWHLM2 k 2 = µ. Then rm d,k 1 ,k 2 ,ϵ 1 ,ϵ 2 ,SWHLM 1 ,SWHLM 2 = limc→∞ (µ+c) d+1
(µ+c) d -c = µ. This completes the demonstration.

For example, the Pareto distribution has a quantile function

QP ar (p) = xm(1 -p) -1
α , where xm is the minimum possible value that a random variable following the Pareto distribution can take, serving a scale parameter, α is a shape parameter. The mean of the Pareto distribution is given by αxm α-1 . As WL(k, ϵ, γ) can be expressed as a function of Q(p), one can set the two WL k,ϵ,γ s in the d value of rm as two arbitrary quantiles QP ar (p1) and QP ar (p2). For the Pareto distribution, dP er,rm = µ P er -Q P ar (p 1 )

Q P ar (p 1 )-Q P ar (p 2 ) = αxm α-1 -xm(1-p 1 ) -1 α xm(1-p 1 ) -1 α -xm(1-p 2 ) -1 α .
xm can be canceled out. Intriguingly, the quantile function of exponential distribution is Qexp(p) = ln 1 1-p λ, λ ≥ 0. µexp = λ. Then, dexp,rm = µexp-Qexp(p 1 ) ,BM,m for distributions with skewness between those of the exponential and symmetric distributions are tiny (SI Dataset S1). rm d≈0.103,ν=3,ϵ= 1 24 ,BM,m exhibits excellent performance for all these common unimodal distributions (SI Dataset S1).

Qexp(p 1 )-Qexp(p 2 ) = λ-ln 1 1-p 1 λ ln 1 1-p 1 λ-ln 1 1-p 2 λ = - ln(1-p 1 )+1 ln(1-p 1 )-ln(1-p 2 ) . Since limα→∞ α α-1 -(1-p 1 ) -1/α (1-p 1 ) -1/α -(1-p 2 ) -1/α = - ln(1-p 1 )+1
d= µ-SWHLM 1k 1 ,ϵ 1 SWHLM 1k 1 ,ϵ 1 -SWHLM 2 k 2 ,ϵ 2 ,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),SWHLM
The recombined mean is a recombined I-statistic. Consider an I-statistic whose LEs are percentiles of a distribution obtained by plugging LU -statistics into a cumulative distribution function, I is defined with arithmetic operations, constants, and quantile functions, such an estimator is classified as a quantile I-statistic. One version of the quantile I-statistic can be defined as QI d,h k ,k,k,ϵ,γ,,n,LU :

= Qn,h k Fn,h k (LU ) -γ 1+γ d + Fn,h k (LU ) Fn,h k (LU ) ≥ γ 1+γ Qn,h k Fn,h k (LU ) -γ 1+γ -Fn,h k (LU ) d Fn,h k (LU ) < γ 1+γ , where LU is LU k,k,ϵ,γ,n , Fn,h k (x) is the empirical cumulative distribution function of the h k kernel distribution, Qn,h k is the quantile function of the h k kernel distribution.
Similarly, the quantile mean can be defined as qm d,k,ϵ,γ,n,WL := QI d,h k =x,k=1,k,ϵ,γ,n,LU =WL . Moreover, in extreme right-skewed heavy-tailed distributions, if the calculated percentile exceeds 1 -ϵ, it will be adjusted to 1 -ϵ. In a left-skewed distribution, if the obtained percentile is smaller than γϵ, it will also be adjusted to γϵ. Without loss of generality, in the following discussion, only the case where Fn (WL k,ϵ,γ,n ) ≥ γ 1+γ is considered. The most popular method for computing the sample quantile function was proposed by Hyndman and Fan in 1996 [START_REF] Rj Hyndman | Sample quantiles in statistical packages[END_REF]. Another widely used method for calculating the sample quantile function in-volves employing linear interpolation of modes corresponding to the order statistics of the uniform distribution on the interval [0, 1], i.e., Qn (p) = X ⌊h⌋ + (h -⌊h⌋) X ⌈h⌉ -X ⌊h⌋ , h = (n -1) p + 1. To minimize the finite sample bias, here, the inverse function of Qn is deduced as Fn (x) := 1 n

x-X cf X cf +1 -X cf + cf , based on Hyndman and Fan's definition, or Fn (x) := 1 n-1 cf -1 +

x-X cf X cf +1 -X cf , based on the latter definition, where cf = n i=1 1 X i ≤x , 1A is the indicator of event A.

The quantile mean uses the location-scale invariant in a different way, as shown in the subsequent proof.

Theorem A.2. qm d= F (µ)-F (WL k,ϵ,γ ) F (WL k,ϵ,γ )- γ 1+γ ,k,ϵ,γ,WL
is a consistent mean estimator for a location-scale distribution provided that the means are finite and F (µ), F (WL k,ϵ,γ ) and γ 1+γ are all within the range of [γϵ, 1 -ϵ], where µ and WL k,ϵ,γ are location parameters from that location-scale distribution. If WL = SWHLM, qm is also consistent for any symmetric distributions.

Proof. When F (WL k,ϵ,γ ) ≥ γ 1+γ , the solution of F (WL k,ϵ,γ ) -γ 1+γ d + F (WL k,ϵ,γ ) = F (µ) is d = F (µ)-F (WL k,ϵ,γ ) F (WL k,ϵ,γ )- γ 1+γ
.

The d value for the case where

F (WL k,ϵ,γ,n ) < γ
1+γ is the same. The definitions of the location and scale parameters are such that they must satisfy

F (x; λ, µ) = F ( x-µ λ ; 1, 0), then F (WL(k, ϵ, γ); λ, µ) = F ( λWL 0 (k,ϵ,γ)+µ-µ λ ; 1, 0) = F (WL0(k, ϵ, γ); 1, 0)
. It follows that the percentile of any weighted L-statistic is free of λ and µ for a location-scale distribution. Therefore d in qm is also invariably a constant. For the symmetric case,

F (SWHLM k,ϵ ) = F (µ) = F (Q( 1 2 )) = 1
2 is valid for any symmetric distribution with a finite second moment, as the same values correspond to same percentiles. Then,

qm d,k,ϵ,SWHLM = F -1 F (SWHLM k,ϵ ) -1 2 d + F (µ) = F -1 (0 + F (µ)) = µ.
To avoid inconsistency due to post-adjustment, F (µ), F (WL k,ϵ,γ ) and γ 1+γ must reside within the range of [γϵ, 1 -ϵ]. All results are now proven.

The cdf of the Pareto distribution is FP ar

(x) = 1 -xm x α .
So, set the d value in qm with two arbitrary percentiles p1 and p2, dP ar,qm =

1-

xm αxm α-1 α -1- xm xm (1-p 1 ) -1 α α 1- xm xm(1-p 1 ) -1 α α -1- xm xm(1-p 2 ) -1 α α = 1-( α-1 α ) α -p 1 p 1 -p 2
. The d value in qm for the exponential distribution is always identical to dP ar,qm as α → ∞,

since limα→∞ α-1 α α = 1
e and the cdf of the exponential distribution is Fexp

(x) = 1 -e -λ -1 x , then dexp,qm = (1-e -1 )-1-e -ln 1 1-p 1 1-e -ln 1 1-p 1 -1-e -ln 1 1-p 2 = 1-1 e -p 1 p 1 -p 2 .
So, for the Weibull, gamma, Pareto, lognormal and generalized Gaussian distribution, qm

d= Fexp (µ)-Fexp (SWHLM k,ϵ ) Fexp(SWHLM k,ϵ )-1 2 ,k,ϵ,SWHLM
is also consistent for at least one particular case, provided that µ and SWHLM k,ϵ are different location parameters from an exponential distribution and F (µ), F (SWHLM k,ϵ ) and 1 2 are all within the range of

[ϵ, 1 -ϵ]. Also let SWHLM k,ϵ,γ = BM ν=3,ϵ= 1 24 and µ = λ, then d = Fexp(µ)-Fexp(BM ν=3,ϵ= 1 24 ) Fexp(BM ν=3,ϵ= 1 24
)- To study the impact of the choice of WLs in rm and qm, it is constructive to recall that a weighted L-statistic is a combination of order statistics. While using a less-biased weighted L-statistic can generally enhance performance (SI Dataset S1), there is a greater risk of violation in the semiparametric framework. However, the mean-WAϵ,γ-γ-median inequality is robust to slight fluctuations of the QA function of the underlying distribution. Suppose for a right-skewed distribution, the QA function is generally decreasing with respect to ϵ in [0, u], but increasing in [u, 1 1+γ ], since all quantile averages with breakdown points from ϵ to 1 1+γ will be included in the computation of WAϵ,γ, as long as 1 1+γ -u ≪ 1 1+γ -γϵ, and other portions of the QA function satisfy the inequality constraints that define the νth γ-orderliness on which the WAϵ,γ is based, if 0 ≤ γ ≤ 1, the mean-WAϵ,γ-γ-median inequality still holds. This is due to the violation of νth γ-orderliness being bounded, when 0 ≤ γ ≤ 1, as shown in REDS I and therefore cannot be extreme for unimodal distributions with finite second moments. For instance, the SQA function of the Weibull distribution is non-monotonic with respect to ϵ when the shape parameter α > -median inequality retains valid when α ≤ 3.387. Another key factor in determining the risk of violation of orderliness is the skewness of the distribution. In REDS I, it was demonstrated that in a family of distributions differing by a skewness-increasing transformation in van Zwet's sense, the violation of orderliness, if it happens, only occurs as the distribution nears symmetry [START_REF] Wr Van Zwet | Convex Transformations of Random Variables: Nebst Stellingen[END_REF]. When γ = 1, the over-corrections in rm and qm are dependent on the SWAϵ-median difference, which can be a reasonable measure of skewness after standardization [START_REF] Al Bowley | Elements of statistics[END_REF][START_REF] Ra Groeneveld | Measuring skewness and kurtosis[END_REF], implying that the over-correction is often tiny with moderate d. This qualitative analysis suggests the general reliability of rm and qm based on the mean-WAϵ,γ-γ-median inequality, especially for unimodal distributions with finite second moments when 0 ≤ γ ≤ 1. Extending this rationale to other weighted L-statistics is possible, since the γ-U -orderliness can also be bounded with certain assumptions, as discussed previously.

Consider two continuous distributions belonging to the same location-scale family, according to Theorem 3 in REDS II, their corresponding kth central moment kernel distributions only differ in scaling. Although strict complete νth orderliness is difficult to prove, following the same logic as discussed above, even if the inequality may be violated in a small range, the mean-SWAϵ-median inequality remains valid, in most cases, for the central moment kernel distribution. Define the recombined kth central moment as

rkm d,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,n,WHLkm 1 ,WHLkm 2 := RI d,h k =ψ k ,k 1 =k,k 2 =k,k 1 ,k 2 ,ϵ 1 ,ϵ 2 ,γ 1 ,γ 2 ,n,LU 1 =WHLkm 1 ,LU 2 =WHLkm 2 .
Then, assuming finite kth central moment and applying the same logic as in Theorem A.1, rkm 

d= µ k -WHLkm 1 k 1 ,ϵ 1 ,γ 1 WHLkm 1k 1 ,ϵ 1 ,γ 1 -WHLkm 2 k 2 ,ϵ 2 ,γ 2 ,k 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,WHLkm
qkm d,k,ϵ,γ,n,WHLkm := QI d,h k =ψ k ,k=k,k,ϵ,γ,n,LU =WHLkm . qkm d= F ψ k (µ k )-F ψ k (WHLkm k,ϵ,γ ) F ψ k (WHLkm k,ϵ,γ )- γ 1+γ ,k,ϵ,γ,WHLkm
is also a consistent kth central moment estimator for a location-scale distribution provided that the kth central moment is finite and

F ψ k (µ k ), F ψ k (WHLkm k,ϵ,γ ) and γ
1+γ are all within the range of [γϵ, 1 -ϵ], where µ k and WHLkm k,ϵ,γ are different kth central moment parameters from that location-scale distribution. According to Theorem 2 in REDS II, if the original distribution is unimodal, the central moment kernel distribution is always a heavy-tailed distribution, as the degree term amplifies its skewness and tailedness. From the better performance of the quantile mean in heavy-tailed distributions, the quantile kth central moments are generally better than the recombined kth central moments regarding asymptotic bias.

Finally, the recombined standardized kth moment is defined to be

rskm ϵ=min (ϵ 1 ,ϵ 2 ),k 1 ,k 2 ,k 3 ,k 4 ,γ 1 ,γ 2 ,γ 3 ,γ 4 ,n,WHLkm 1 ,WHLkm 2 ,WHLvar 1 ,WHLvar 2 := rkm d,k 1 ,k 2 ,ϵ 1 ,γ 1 ,γ 2 ,n,WHLkm 1 ,WHLkm 2 (rvar d,k 3 ,k 4 ,ϵ 2 ,γ 3 ,γ 4 ,n,WHLvar 1 ,WHLvar 2 ) k/2 .
The quantile standardized kth moment is defined similarly,

qskm ϵ=min (ϵ 1 ,ϵ 2 ),k 1 ,k 2 ,γ 1 ,γ 2 ,n,WHLkm,WHLvar := qkm d,k 1 ,ϵ 1 ,γ 1 ,n,WHLkm (qvar d,k 2 ,ϵ 2 ,γ 2 ,n,WHLvar ) k/2 .

B. A shape-scale distribution as the consistent distribution.

In the last section, the parametric robust estimation is limited to a location-scale distribution, with the location parameter often being omitted for simplicity. For improved fit to observed skewness or kurtosis, shape-scale distributions with shape parameter (α) and scale parameter (λ) are commonly utilized. Weibull, gamma, Pareto, lognormal, and generalized Gaussian distributions (when µ is a constant) are all shapescale unimodal distributions. Furthermore, if either the shape parameter α or the skewness or kurtosis is constant, the shapescale distribution is reduced to a location-scale distribution.

Let D(|skewness|, kurtosis, k, etype, dtype, n) = d ikm denote the function to specify d values, where the first input is the absolute value of the skewness, the second input is the kurtosis, the third is the order of the central moment (if k = 1, the mean), the fourth is the type of estimator, the fifth is the type of consistent distribution, and the sixth input is the sample size. For simplicity, the last three inputs will be omitted in the following discussion. Hold in awareness that since skewness and kurtosis are interrelated, specifying d values for a shapescale distribution only requires either skewness or kurtosis, while the other may be also omitted. Since many common shape-scale distributions are always right-skewed (if not, only the right-skewed or left-skewed part is used for calibration, while the other part is omitted), the absolute value of the skewness should be the same as the skewness of these distributions. This setting also handles the left-skew scenario well.

For recombined moments up to the fourth ordinal, the object of using a shape-scale distribution as the consistent distribution is to find solutions for the system of equations rvar(WHLvar,γmvar,D(rkurt,2)) 2 . Clearly, this is an overdetermined nonlinear system of equations, given that the skewness and kurtosis are interrelated for a shape-scale distribution. Since an overdetermined system constructed with random coefficients is almost always inconsistent, it is natural to optimize them separately using the fixed-point iteration (see Algorithm 1, only rkurt is provided, others are the same). 

                   rm (WHLM, γm, D(|rskew|, rkurt, 1)) = µ rvar (WHLvar, γmvar, D(|rskew|, rkurt, 2)) = µ2 rtm (WHLtm, γmtm, D(|rskew|, rkurt, 3)) = µ3 rf m (WHLf m, γmf m, D(|rskew|, rkurt, 4) = µ4 rskew = µ 3 µ 3 2 2 rkurt = µ 4
i = i + 1 rkurti-1 ← rkurti 6: rkurti ← κ(rkurti-1) until i > maxit or |rkurti -rkurti-1| < δ
▷ maxit is the maximum number of iterations, δ is a small positive number.

The following theorem shows the validity of Algorithm 1. Then, assuming the mkms are all equal to zero and

varD = 1, κ(rkurt D ) rkurt D = f m D -SWHLf m D SWHLf m D (SWHLf m)+SWHLf m rkurt D SWHLvar SWHLvar D 2 = f m D -SWHLf m D SWHLf m D +1 (SWHLf m) f m D SWHLvar SWHLvar D 2 = SWHLf mSWHLvar 2 D SWHLf m D SWHLvar 2 = SWHLf m SWHLvar 2 SWHLf m D SWHLvar D 2 = SWHLkurt SWHLkurt D .
Since SWHLf mD are from the same fourth central moment kernel distribution as f mD = rkurtDvarD 2 , according to the definition of U -congruence, an increase in f mD will also result in an increase in SWHLf mD. Combining with Theorem 3 in REDS II, SWHLkurt is a measure of kurtosis that is invariant to location and scale, so lim rkurt D →∞ κ(rkurt D ) rkurt D < 1. As a result, if there is at least one fixed point, let the largest one be f ixmax, then it is attracting since

| ∂(κ(rkurt D )) ∂(rkurt D ) | < 1 for all rkurtD ∈ [f ixmax, kurtosismax],
where kurtosismax is the maximum kurtosis available in D.

As a result of Theorem B.1, assuming continuity, mkms are all equal to zero, and U -congruence of the central moment kernel distributions, Algorithm 1 converges surely provided that a fixed point exists within the domain of D. At this stage, D can only be approximated through a Monte Carlo study. The continuity of D can be ensured by using linear interpolation. One common encountered problem is that the domain of D depends on both the consistent distribution and the Monte Carlo study, so the iteration may halt at the boundary if the fixed point is not within the domain. However, by setting a proper maximum number of iterations, the algorithm can return the optimal boundary value. For quantile moments, the logic is similar, if the percentiles do not exceed the breakdown point. If this is the case, consistent estimation is impossible, and the algorithm will stop due to the maximum number of iterations. The fixed point iteration is, in principle, similar to the iterative reweighing in Huber M -estimator, but an advantage of this algorithm is that it is solely related to the inputs in Algorithm 1 and is independent of the sample size. Since they are consistent for a shape-scale distribution, |rskew| can specify drm and dtm, rkurt can specify drvar and d rf m . Algorithm 1 enables the robust estimations of all four moments to reach a near-consistent level for common unimodal distributions (Table 1, SI Dataset S1), just using the Weibull distribution as the consistent distribution.

C. Critical points, lines, and Multiple consistent distributions.

In 1895, Pearson considered how to construct probability distributions in which the skewness and kurtosis could be adjusted equally freely. The Pearson distribution is a family of unimodal continuous probability distribution functions that satisfy the following differential equation dP (x) dx = -(a 0 +a 1 x+a 2 x 2 )P (x) b 0 +b 1 x+b 2 x 2 +b 3 x 3 , where P (x) is the pdf of the Pearson distribution, and a0, a1, a2, b0, b1, b2, and b3 are constants that determine the specific type of Pearson distribution. This differential equation ensures that the distribution is unimodal and that the density function is continuous. The Pearson family subsumes many common unimodal distributions, e.g., beta distribution, Cauchy distribution, Chi-squared distribution, continuous uniform distribution, gamma distribution, inverse-chi-squared distribution, inverse-gamma distribution, normal distribution, and tudent's t-distribution. Plotting the kurtosis-skewness lines of the five shape-scale unimodal distributions used in this series into the Pearson diagram. One can immediately identify two critical points, one is 9-2, which is the exponential distribution or the limiting form of the Pareto distribution, another is the normal distribution. This further explains why using the exponential distribution as the consistent distribution has excellent performance even better than using the Weibull distribution as the consistent distribution, since it lays in this critical point. Then, we further consider the critical lines in the Pearson diagram (Figure 1). Consider if the underlying distribution is not the Weibull distribution, but the gamma distribution, then, using the Weibull distribution as an initial guess, calculating the Euclidean distance of the obtained kurtosis-skewness to the kurtosis-skewness lines of other consistent distributions, choosing the one that has the smallest distance, then recalculate the kurtosis-skewness according to the new consistent distribution, iterately, we can use multiple distributions as consistent distributions.

D. Variance.

As one of the fundamental theorems in statistics, the central limit theorem declares that the standard deviation of the limiting form of the sampling distribution of the sample mean is σ √ n . The principle, asymptotic normality, was later applied to the sampling distributions of robust location estimators [START_REF] Newcomb | A generalized theory of the combination of observations so as to obtain the best result[END_REF][START_REF] Daniell | Observations weighted according to order[END_REF][START_REF] Mosteller | On some useful" inefficient" statistics[END_REF][START_REF] Rao | Advanced statistical methods in biometric research[END_REF][START_REF] Bickel | Some contributions to the theory of order statistics[END_REF][START_REF] Chernoff | Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation[END_REF][START_REF] Lecam | On the assumptions used to prove asymptotic normality of maximum likelihood estimates[END_REF][START_REF] Bickel | Descriptive statistics for nonparametric models i[END_REF][START_REF] Bickel | Descriptive statistics for nonparametric models ii[END_REF][START_REF] Janssen | Asymptotic normality for a general class of statistical functions and applications to measures of spread[END_REF]. Daniell (1920) stated ( 13) that comparing the efficiencies of various kinds of estimators is useless unless they all tend to coincide asymptotically. Bickel and Lehmann, also in the landmark series [START_REF] Bickel | Descriptive statistics for nonparametric models i[END_REF][START_REF] Bickel | Descriptive statistics for nonparametric models ii[END_REF], argued that meaningful comparisons of the efficiencies of various kinds of location estimators can be accomplished by studying their standardized variances, asymptotic variances, and efficiency bounds. Standardized variance,

Var( θ) θ 2
, allows the use of simulation studies or empirical data to compare the variances of estimators of distinct parameters. However, a limitation of this approach is the inverse square dependence of the standardized variance on θ. If Var θ1 = Var θ2 , but θ1 is close to zero and θ2 is relatively large, their standardized variances will still differ dramatically. Here, the scaled standard error (SSE) is proposed as a method for estimating the variances of estimators measuring the same attribute, offering a standard error more comparable to that of the sample mean and much less influenced by the magnitude of θ. Definition D.1 (Scaled standard error). Let Ms i s j ∈ R i×j denote the sample-by-statistics matrix, i.e., the first column corresponds to θ, which is the mean or a U -central moment measuring the same attribute of the distribution as the other columns, the second to the jth column correspond to j -1 statistics required to scale, θr 1 , θr 2 , . . ., θr j-1 . Then, the

scaling factor S = 1, θ r 1 θ m , θ r 2 θ m , . . . , θr j-1 θ m T is a j × 1 matrix,
which θ is the mean of the column of Ms i s j . The normalized matrix is M N s i s j = Ms i s j S. The SSEs are the unbiased standard deviations of the corresponding columns of M N s i s j .

The U -central moment (the central moment estimated by using U -statistics) is essentially the mean of the central moment kernel distribution, so its standard error should be generally close to σ km √ n , although not exactly since the kernel distribution is not i.i.d., where σ km is the asymptotic standard deviation of the central moment kernel distribution. If the statistics of interest coincide asymptotically, then the standard errors should still be used, e.g, for symmetric location estimators and odd ordinal central moments for the symmetric distributions, since the scaled standard error will be too sensitive to small changes when they are zero.

The SSEs of all robust estimators proposed here are often, although many exceptions exist, between those of the sample median and those of the sample mean or median central moments and U -central moments (SI Dataset S1). This is because similar monotonic relations between breakdown point and variance are also very common, e.g., Bickel and Lehmann (20) proved that a lower bound for the efficiency of TMϵ to sample mean is (1 -2ϵ) 2 and this monotonic bound holds true for any distribution. However, the direction of monotonicity differs for distributions with different kurtosis. Lehmann andScheffé (1950, 1955) [START_REF] El Lehmann | Completeness, similar regions, and unbiased estimation-part i in Selected works of EL Lehmann[END_REF][START_REF] El Lehmann | Completeness, similar regions, and unbiased estimation-part II[END_REF] in their two early papers provided a way to construct a uniformly minimum-variance unbiased estimator (UMVUE). From that, the sample mean and unbiased sample second moment can be proven as the UMVUEs for the population mean and population second moment for the Gaussian distribution. While their performance for sub-Gaussian distributions is generally satisfied, they perform poorly when the distribution has a heavy tail and completely fail for distributions with infinite second moments. For sub-Gaussian distributions, the variance of a robust location estimator is generally monotonic increasing as its robustness increases, but for heavy-tailed distributions, the relation is reversed. So, unlike bias, the variance-optimal choice can be very different for distributions with different kurtosis.

Due to combinatorial explosion, the bootstrap [START_REF] Efron | Bootstrap methods: Another look at the jackknife[END_REF], introduced by Efron in 1979, is indispensable for computing central moments in practice. In 1981, Bickel and Freedman [START_REF] Bickel | Some asymptotic theory for the bootstrap[END_REF] showed that the bootstrap is asymptotically valid to approximate the original distribution in a wide range of situations, including U -statistics. The limit laws of bootstrapped trimmed U -statistics were proven by Helmers, Janssen, and Veraverbeke (1990) [START_REF] Helmers | Statistics, and System Theory[END_REF]. In REDS I, the advantages of quasi-bootstrap were discussed [START_REF] Rd Richtmyer | A non-random sampling method, based on congruences, for" monte carlo" problems[END_REF][START_REF] Im Sobol | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF][START_REF] Ka Do | Quasi-random resampling for the bootstrap[END_REF]. By using quasi-sampling, the impact of the number of repetitions of the bootstrap, or bootstrap size, on variance is very small (SI Dataset S1). An estimator based on the quasi-bootstrap approach can be seen as a complex deterministic estimator that is not only computationally efficient but also statistical efficient. The only drawback of quasi-bootstrap compared to non-bootstrap is that a small bootstrap size can produce additional finite sample bias (SI Text).

E. Root mean square error . [START_REF] Lai | Adaptive choice of mean or median in estimating the center of a symmetric distribution[END_REF] proposed an estimator that adaptively chooses the mean or median in a symmetric distribution and showed that the choice is typically as good as the better of the sample mean and median regarding variance [START_REF] Lai | Adaptive choice of mean or median in estimating the center of a symmetric distribution[END_REF]. Another approach which can be dated back to Laplace (1812) (31) is using wx + (1 -w)mn as a location estimator and w is deduced to achieve optimal variance. Inspired by Lai et al's approach [START_REF] Lai | Adaptive choice of mean or median in estimating the center of a symmetric distribution[END_REF], in this study, for rkurt, there are 364 combinations based on 14 SWHLf ms and 26 SWHLvars (SI Text). Each combination has a root mean square error (RMSE) for a single-parameter distribution, which can be inferred using a Monte Carlo study. For qkurt, there are another 364 combinations, but if the percentiles of quantile moments exceed the breakdown point, that combination is excluded. Then, the combination with the smallest RMSE, calibrated by a two-parameter distribution, is chosen. Similar to Subsection B, let I(kurtosis, dtype, n) = ikurt WHLf m,WHLvar represent these relationships. In this article, the breakdown points of the SWHLMs in SWHLkm were adjusted to ensure the overall breakdown points were 1 24 , as detailed in Theorem F.1). There are two approaches to determine ikurt. The first one is computing all 364+364 rkurt and qkurt, and then, since lim ikurt→∞ I(ikurt) ikurt < 1, the same fix point iteration algorithm as Algorithm 1 can be used to choose the RMSE-optimum combination. The only difference is that unlike D, I is defined to be discontinuous but linear interpolation can also ensure continuity. The second approach is shown in SI Algorithm 2. The RMSEs of these ikurt from the two approaches can be further determined by a Monte Carlo study. Algorithm 1 can also be used to determine the optimum choice among the two approaches. The 364+364 rkurt and qkurt can form a vector, V kurt, where the

Q V kurt ( 1 5 ) to Q V kurt ( 4 5 
) can be used to determine the d values of rkms and qkms. The RMSEs of those rkms and qkms can also be estimated by a Monte Carlo study and the estimator with the smallest RMSE of each ordinal is named as ikm. When k is even, the ikurt determined by Ism (detailed in the SI Text) is used to determine ikm. This approach yields results that are often nearly optimal (SI Dateset S1). The estimations of skewness and ikm, when k is odd, follow the same logic.

In general, the variances of invariant central moments are much smaller than those of corresponding unbiased sample central moments (deduced by Cramér [START_REF] Cramér | Mathematical methods of statistics[END_REF][START_REF] Gerlovina | Computer algebra and algorithms for unbiased moment estimation of arbitrary order[END_REF]), except that of the corresponding second central moment (Table 1). F. Robustness. The measure of robustness to gross errors used in this series is the breakdown point proposed by Hampel [START_REF] Hampel | Contributions to the theory of robust estimation[END_REF] in 1968. In REDS I, it has shown that the median of means (MoM) is asymptotically equivalent to the median Hodge-Lehmann mean. Therefore it is also biased for any asymmetric distribution. However, the concentration bound of MoM depends on 1 n [START_REF] Devroye | Sub-gaussian mean estimators[END_REF], it is quite natural to deduce that it is a consistent robust estimator. The concept, sampledependent breakdown point, is defined to avoid ambiguity. Definition F.1 (Sample-dependent breakdown point). The breakdown point of an estimator θ is called sample-dependent if and only if the upper and lower asymptotic breakdown points, which are the upper and lower breakdown points when n → ∞, are zero and the empirical influence function of θ is bounded. For a full formal definition of the empirical influence function, the reader is referred to Devlin, Gnanadesikan and Kettenring (1975)'s paper [START_REF] Sj Devlin | Robust estimation and outlier detection with correlation coefficients[END_REF]. . The second and third tables present the use of the Weibull distribution as the consistent distribution not plus/plus using the lognormal distribution for the odd ordinal moments optimization and the generalized Gaussian distribution for the even ordinal moments optimization. SQM is the robust mean estimator used in recombined/quantile moments. Unbiased sample central moments (var, tm, f m), U -central moments with quasi-bootstrap (var bs , tm bs , f m bs ), and other estimators were used as comparisons. The generalized Gaussian distribution was excluded for He and Fung M -Estimator and Marks percentile estimator, since the logarithmic function does not produce results for negative inputs. The breakdown points of estimators in the second and third table, besides M -estimators and percentile estimator, are all 1 24 . The tables include the average standardized asymptotic bias (ASAB, as n → ∞), root mean square error (RMSE, at n = 5184), average standardized bias (ASB, at n = 5184) and variance (SE ∨ SSE, at n = 5184) of these estimators, all reported in the units of the standard deviations of the distribution or corresponding kernel distributions. W means that the results were weighted by the number of Google Scholar search results on May 30, 2022 (including synonyms). The calibrations of d values and the computations of ASAB, ASB, and SSE were described in Subsection E, F and SI Methods. Detailed results and related codes are available in SI Dataset S1 and GitHub.

Bear in mind that it differs from the "infinitesimal robustness" defined by Hampel, which is related to whether the asymptotic influence function is bounded [START_REF] Hampel | A general qualitative definition of robustness[END_REF][START_REF] Hampel | The influence curve and its role in robust estimation[END_REF][START_REF] Pj Rousseeuw | Robust statistics: the approach based on influence functions[END_REF]. The proof of the consistency of MoM assumes that it is an estimator with a sample-dependent breakdown point since its breakdown point is b 2n , where b is the number of blocks, then limn→∞ b 2n = 0, if b is a constant and any changes in any one of the points of the sample cannot break down this estimator.

For the LU -statistics, the asymptotic upper breakdown points are suggested by the following theorem, which extends the method in Donoho and Huber (1983)'s proof of the breakdown point of the Hodges-Lehmann estimator [START_REF] Dl Donoho | The notion of breakdown point. A festschrift for Erich L. Lehmann[END_REF]. The proof is given in the SI Text.

Theorem F.1. Given a U-statistic associated with a symmetric kernel of degree k. Then, assuming that as n → ∞, k is a constant, the upper breakdown point of the LU -statistic is

1 -(1 -ϵ0) 1 k
, where ϵ0 is the upper breakdown point of the corresponding LL-statistic.

Remark. If k = 1, 1 -(1 -ϵ0) 1 k = ϵ0,
so this formula also holds for the LL-statistic itself. Here, to ensure the breakdown points of all four moments are the same, 1 24 , since ϵ0 = 1 -(1 -ϵ) k , the breakdown points of all LU -statistics for the second, third, and fourth central moment estimations are adjusted as ϵ0 = 47 576 , 1657 13824 , 51935 331776 , respectively. Every statistic is based on certain assumptions. For instance, the sample mean assumes that the second moment of the underlying distribution is finite. If this assumption is violated, the variance of the sample mean becomes infinitely large, even if the population mean is finite. As a result, the sample mean not only has zero robustness to gross errors, but also has zero robustness to departures. To meaningfully compare the performance of estimators under departures from assumptions, it is necessary to impose constraints on these departures. Bound analysis [START_REF] Gauss | Theoria combinationis observationum erroribus minimis obnoxiae[END_REF] is the first approach to study the robustness to departures, i.e., although all estimators can be biased under departures from the corresponding assumptions, but their standardized maximum deviations can differ substantially [START_REF] Devroye | Sub-gaussian mean estimators[END_REF][START_REF] Bieniek | Comparison of the bias of trimmed and winsorized means[END_REF][START_REF] Danielak | Theory & methods: Exact bounds for the bias of trimmed means[END_REF][START_REF] Li | Worst-case range value-at-risk with partial information[END_REF][START_REF] Bernard | Range value-at-risk bounds for unimodal distributions under partial information[END_REF][START_REF] Mathieu | Concentration study of m-estimators using the influence function[END_REF]. In REDS I, it is shown that another way to qualitatively compare the estimators' robustness to departures from the symmetry assumption is constructing and comparing corresponding semiparametric models. While such comparison is limited to a semiparametric model and is not universal, it is still valid for a wide range of parametric distributions. Bound analysis is a more universal approach since they can be deduced by just assuming regularity conditions [START_REF] Devroye | Sub-gaussian mean estimators[END_REF][START_REF] Bieniek | Comparison of the bias of trimmed and winsorized means[END_REF][START_REF] Danielak | Theory & methods: Exact bounds for the bias of trimmed means[END_REF][START_REF] Li | Worst-case range value-at-risk with partial information[END_REF][START_REF] Mathieu | Concentration study of m-estimators using the influence function[END_REF]. However, bounds are often hard to deduce for complex estimators. Also, sometimes there are discrepancies between maximum bias and average bias. Since the estimators proposed here are all consistent under certain assumptions, measuring their biases is also a convenient way of measuring the robustness to departures. Average standardized asymptotic bias is thus defined as follows. estimator θ is not classified as an RI-statistic, QI-statistic, or LU -statistic, the corresponding U -statistic, which measures the same attribute of the distribution, is utilized to determine the value of σ. For a two-parameter distribution, the first step is setting the lower bound of the kurtosis range of interest μ4 l , the spacing δ, and the bin count C. Then, the average standardized asymptotic bias is defined as

ASAB θ := 1 C δ+ μ4 l ≤ μ4 ≤Cδ+ μ4 l μ4 is a multiple of δ E θ| μ4 θ -θ σ
where μ4 is the kurtosis specifying the two-parameter distribution, E θ| μ4 denotes the expected value given fixed μ4.

Standardization plays a crucial role in comparing the performance of estimators across different distributions. Currently, several options are available, such as using the root mean square deviation from the mode (as in Gauss (1)), the mean absolute deviation, or the standard deviation. The standard deviation is preferred due to its central role in standard error estimation. In Table 1, δ = 0.1, C = 70. For the Weibull, gamma, lognormal and generalized Gaussian distributions, μ4 l = 3 (there are two shape parameter solutions for the Weibull distribution, the lower one is used here). For the Pareto distribution, μ4 l = 9. To provide a more practical and straightforward illustration, all results from five distributions are further weighted by the number of Google Scholar search results. Within the range of kurtosis setting, nearly all WLs and WHLkms proposed here reach or at least come close to their maximum biases (SI Dataset S1). The pseudomaximum bias is thus defined as the maximum value of the biases within the range of kurtosis setting for all five unimodal distributions. In most cases, the pseudo-maximum biases of invariant moments occur in lognormal or generalized Gaussian distributions (SI Dataset S1), since besides unimodality, the Weibull distribution differs entirely from them. Interestingly, the asymptotic biases of TM ϵ= 1 8 and WM ϵ= 1 8

, after averaging and weighting, are 0.107σ and 0.066σ, respectively, in line with the sharp bias bounds of TM2,14:15 and WM2,14:15 (a different subscript is used to indicate a sample size of 15, with the removal of the first and last order statistics), 0.173σ and 0.126σ, for any distributions with finite moments [START_REF] Bieniek | Comparison of the bias of trimmed and winsorized means[END_REF][START_REF] Danielak | Theory & methods: Exact bounds for the bias of trimmed means[END_REF].

Discussion

Statistics, encompassing the collection, analysis, interpretation, and presentation of data, has evolved over time, with various approaches emerging to meet challenges in practice. Among these approaches, the use of probability models and measures of random variables for data analysis is often considered the core of statistics. While the early development of statistics was focused on parametric methods, there were two main approaches to point estimation. The Gauss-Markov theorem [START_REF] Gauss | Theoria combinationis observationum erroribus minimis obnoxiae[END_REF]46) states the principle of minimum variance unbiased estimation which was enriched by [START_REF] Neyman | On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection[END_REF] [START_REF] Neyman | On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection[END_REF], [START_REF] Rao | Information and accuracy attainable in the estimation of statistical parameters[END_REF] [START_REF] Rao | Information and accuracy attainable in the estimation of statistical parameters[END_REF], [START_REF] Blackwell | Conditional expectation and unbiased sequential estimation[END_REF] [START_REF] Blackwell | Conditional expectation and unbiased sequential estimation[END_REF], and Lehmann and Scheffé (1950,1955) [START_REF] El Lehmann | Completeness, similar regions, and unbiased estimation-part i in Selected works of EL Lehmann[END_REF][START_REF] El Lehmann | Completeness, similar regions, and unbiased estimation-part II[END_REF]. Maximum likelihood was first introduced by Fisher in 1922 [START_REF] Fisher | On the mathematical foundations of theoretical statistics[END_REF] in a multinomial model and later generalized by Cramér (1946), Hájek (1970), and Le Cam (1972) [START_REF] Lecam | On the assumptions used to prove asymptotic normality of maximum likelihood estimates[END_REF][START_REF] Cramér | Mathematical methods of statistics[END_REF][START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF]. In 1939, Wald (52) combined these two principles and suggested the use of minimax estimates, which involve choosing an estimator that minimizes the maximum possible loss. Following Huber's seminal work [START_REF] Huber | Robust estimation of a location parameter[END_REF], M -statistics have dominated the field of parametric robust statistics for over half a century. Nonparametric methods, e.g., the Kolmogorov-Smirnov test, Mann-Whitney-Wilcoxon Test, and Hoeffding's independence test, emerged as popular alternatives to parametric methods in 1950s, as they do not make specific assumptions about the underlying distribution of the data. In 1963, Hodges and Lehmann proposed a class of robust location estimators based on the confidence bounds of rank tests [START_REF] Hodges | Estimates of location based on rank tests[END_REF]. In REDS I, when compared to other semiparametric mean estimators with the same breakdown point, the H-L estimator was shown to be the bias-optimal choice, which aligns Devroye, and Lerasle, Lugosi, and Oliveira's conclusion that the median of means is near-optimal in terms of concentration bounds [START_REF] Devroye | Sub-gaussian mean estimators[END_REF] as discussed. The formal study of semiparametric models was initiated by Stein (54) in 1956. Bickel, in 1982, simplified the general heuristic necessary condition proposed by Stein [START_REF] Stein | Efficient nonparametric testing and estimation in Proceedings of the third Berkeley symposium on mathematical statistics and probability[END_REF] and derived sufficient conditions for this type of problem, adaptive estimation [START_REF] Bickel | On adaptive estimation[END_REF]. These conditions were subsequently applied to the construction of adaptive estimates [START_REF] Bickel | On adaptive estimation[END_REF]. It has become increasingly apparent that, in robust statistics, many estimators previously called "nonparametric" are essentially semiparametric as they are partly, though not fully, characterized by some interpretable Euclidean parameters. This approach is particularly useful in situations where the data do not conform to a simple parametric distribution but still have some structure that can be exploited. In 1984, Bickel addressed the challenge of robustly estimating the parameters of a linear model while acknowledging the possibility that the model may be invalid but still within the confines of a larger model [START_REF] Bickel | Parametric robustness: small biases can be worthwhile[END_REF]. He showed by carefully designing the estimators, the biases can be very small. The paradigm shift here opens up the possibility that by defining a large semiparametric model and constructing estimators simultaneously for two or more very different semiparametric/parametric models within the large semiparametric model, then even for a parametric model belongs to the large semiparametric model but not to the semiparametric/parametric models used for calibration, the performance of these estimators might still be near-optimal due to the common nature shared by the models used by the estimators. Maybe it can be named as comparametrics. Closely related topics are "mixture model" and "constraint defined model," which were generalized in Bickel, Klaassen, Ritov, and Wellner's classic semiparametric textbook (1993) [START_REF] Bickel | Efficient and adaptive estimation for semiparametric models[END_REF] and the method of sieves, introduced by Grenander in 1981 [START_REF] Grenander | Abstract Inference[END_REF]. As the building blocks of statistics, invariant moments can reduce the overall errors of statistical results across studies and thus can enhance the replicability of the whole community [START_REF] Jt Leek | Reproducible research can still be wrong: adopting a prevention approach[END_REF][START_REF]Reproducibility and Replicability in Science[END_REF].

Methods

Methods of generating the Table 1 are summarized below, with details in the SI Text. The d values for the invariant moments of the Weibull distribution were approximated using a Monte Carlo study, with the formulae presented in Theorem A.1 and A.2. The computation of I functions is summarized in Subsection E and further explained in the SI Text. The computation of ASABs and ASBs is described in Subsection F. The SEs and SSEs were computed by approximating the sampling distribution using 1000 pseudorandom samples for n = 5184 and 50 pseudorandom samples for n = 2654208. The impact of the bootstrap size, ranging from n = 2.7 × 10 2 to n = 2.765 × 10 4 , on the variance of invariant moments and U -central moments was studied using the SEs and SSEs methods described above. A brute force approach was used to estimate the maximum biases of the robust estimators discussed for the five unimodal distributions. The validity of this approach is discussed in the SI Text.
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 1 ln(2) ≈ 3.259 as shown in the SI Text of REDS I, the violation of the second and third orderliness starts near this parameter as well, yet the mean-BM ν=3,ϵ= 1 24
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 2 where µ2, µ3 and µ4 are the population second, third and fourth central moments.|rskew| and rkurt should be the invariant points of the functions ς(|rskew|) = rtm(WHLtm,γmtm,D(|rskew|,3)) rvar(WHLvar,γmvar,D(|rskew|,2))

  ) = rf m(WHLf m,γmf m,D(rkurt,4))

Algorithm 1

 1 rkurt for a shape-scale distribution Input: D; WHLvar; WHLf m; γmvar; γmf m; maxit; δ Output: rkurti-1 i = 0 2: rkurti ← κ(kurtosismax) ▷ Using the maximum kurtosis available in D as an initial guess. repeat 4:

Theorem B. 1 .

 1 Assuming γ = 1 and mkms, where 2 ≤ k ≤ 4, are all equal to zero, |rskew| and rkurt, defined as the largest attracting fixed points of the functions ς(|rskew|) and κ(rkurt), are consistent estimators of μ3 and μ4 for a shape-scale distribution whose kth central moment kernel distributions are U -congruent, as long as they are within the domain of D, where μ3 and μ4 are the population skewness and kurtosis, respectively. Proof. Without loss of generality, only rkurt is considered, while the logic for |rskew| is the same. Additionally, the second central moments of the underlying sample distribution and consistent distribution are assumed to be 1, with other cases simply multiplying a constant factor according to Theorem 3 in REDS II. From the definition of D, κ(rkurt D ) rkurt D = f m D -SWHLf m D SWHLf m D -mf m D (SWHLf m-mf m)+SWHLf m rkurt D var D -SWHLvar D SWHLvar D -mvar D (SWHLvar-mvar)+SWHLvar 2 , where the subscript D indicates that the estimates are from the central moment kernel distributions generated from the consistent distribution, while other estimates are from the underlying distribution of the sample.
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  only the asymptotic behavior is considered, in the absence of subscripts, no assumptions are made. The subsequent theorem shows the significance of a recombined I-statistic.

	Theorem	A.1.	Define	the	recombined	mean
	as					

  ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,WL 1 ,WL 2

	Proof. Finding	d	that	make
	rm d,k 1 a	consistent
	mean estimator is equivalent to finding the so-
	lution	of	rm d,k	

1 ,WL 2 is a consistent mean estimator for a location-scale distribution, where µ, WL1 k 1 ,ϵ 1 ,γ 1 , and WL2 k 2 ,ϵ 2 ,γ 2 are different location parameters from that location-scale distribution. If γ1 = γ2 = 1, WL = SWHLM, rm is also consistent for any symmetric distributions. 1 ,k 2 ,ϵ=min (ϵ 1 ,ϵ 2 ),γ 1 ,γ 2 ,WL 1 ,WL 2 = µ.

  both consistent mean estimators for any symmetric distribution and the exponential distribution with finite second moments. It's obvious that the asymptotic breakdown points of rm d≈0.103,ν=3,ϵ= 1

				1	=
	-e -1 +e -1+ln 1 -1+ln 2 -e 101898752449325 √ 26068394603446272 6 26068394603446272 6 √ 391 5/6 101898752449325 7 247 √ 3 √ 5 11 √ 7 3 √ 11 247 391 5/6 101898752449325 √ 5 5 6 √ 247 7 391 5/6 26068394603446272 3 √ 11e -1 e 1 2 -101898752449325 √ 5 6 √ 247 26068394603446272 3 11e √ 7 391 5/6 ≈	0.088.	2 Fexp(µ), =
	Fexp(BM ν=3,ϵ= 1 24 [ 1 24 , 23 24 ]. qm d≈0.088,ν=3,ϵ= 1 ) and 1 2 are all within the range of 24 ,BM works better in the fat-tail
	scenarios (SI Dataset S1). Theorem A.1 and A.2 show
	that rm d≈0.103,ν=3,ϵ= 1 24 ,BM,m	and qm d≈0.088,ν=3,ϵ= 1 24 ,BM

are 24 ,BM,m and qm d≈0.088,ν=3,ϵ= 1 24 ,BM are both

1 24 

. Therefore they are all invariant means.

  1 ,WHLkm 2 is a consistent kth central moment estimator for a location-scale distribution, where µ k , WHLkm1 k 1 ,ϵ 1 ,γ 1 , and WHLkm2 k 2 ,ϵ 2 ,γ 2 are different kth central moment parameters from that location-scale distribution. Similarly, the quantile will not change after scaling. The quantile kth central moment is thus defined as

Table 1 . Evaluation of invariant moments for five common unimodal distributions in comparison with current popular methods

 1 The first table presents the use of the exponential distribution as the consistent distribution for five common unimodal distributions: Weibull, gamma, Pareto, lognormal, and generalized Gaussian distributions. Popular robust mean estimators discussed in REDS 1 were used as comparisons. The breakdown points of mean estimators in the first table, besides H-L estimator and Huber M -estimator, are all1 8 

	Errors	x	TM	H-L	SM	HM	WM	SQM	BM	MoM	MoRM	mHLM	rmexp,BM	qmexp,BM
	WASAB	0.000	0.107	0.088	0.078	0.078	0.066	0.048	0.048	0.034	0.035	0.034	0.002		0.003
	WRMSE	0.014	0.111	0.092	0.083	0.083	0.070	0.053	0.053	0.041	0.041	0.038	0.017		0.018
	WASBn=5184	0.000	0.108	0.089	0.078	0.079	0.066	0.048	0.048	0.034	0.036	0.033	0.002		0.003
	WSE ∨ WSSE	0.014	0.014	0.014	0.015	0.014	0.014	0.014	0.015	0.017	0.014	0.014	0.017		0.017
	Errors		HFMµ	MPµ	rm	qm	im	var	var bs	Tsd 2	HFMµ 2	MPµ 2	rvar	qvar	ivar
	WASAB		0.037	0.043	0.001	0.002	0.001	0.000	0.000	0.200	0.027	0.042	0.005	0.018	0.003
	WRMSE		0.049	0.055	0.015	0.015	0.014	0.017	0.017	0.198	0.042	0.062	0.019	0.026	0.019
	WASBn=5184		0.038	0.043	0.001	0.002	0.001	0.000	0.001	0.198	0.027	0.043	0.005	0.018	0.003
	WSE ∨ WSSE		0.018	0.021	0.015	0.015	0.014	0.017	0.017	0.015	0.024	0.032	0.018	0.017	0.018
	Errors	tm	tm bs	HFMµ 3	MPµ 3	rtm	qtm	itm	f m	f m bs	HFMµ 4	MPµ 4	rf m	qf m	if m
	WASAB	0.000	0.000	0.052	0.059	0.006	0.083	0.034	0.000	0.000	0.037	0.046	0.024	0.038	0.011
	WRMSE	0.019	0.018	0.063	0.074	0.018	0.083	0.044	0.026	0.023	0.049	0.062	0.037	0.043	0.029
	WASBn=5184	0.001	0.003	0.052	0.059	0.007	0.082	0.038	0.001	0.009	0.037	0.047	0.024	0.036	0.013
	WSE ∨ WSSE	0.019	0.018	0.021	0.091	0.015	0.012	0.017	0.024	0.021	0.020	0.027	0.021	0.020	0.022
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Data and Software Availability. Data for Table 1 are given in SI Dataset S1-S4. All codes have been deposited in GitHub.