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RELATIONS FOR BERNOULLI–BARNES NUMBERS AND BARNES ZETA FUN CTIONS

ABDELMEJID BAYAD AND MATTHIAS BECK

Dedicated to the fond memory of Marvin I. Knopp (1933–2011)

ABSTRACT. TheBarnesζ -functionis

ζn(z,x;a) := ∑
m∈Zn

≥0

1
(x+m1a1+ · · ·+mnan)

z

defined for Re(x)> 0 and Re(z)> n and continued meromorphically toC. Specialized at negative integers−k,
the Barnesζ -function gives

ζn(−k,x;a) =
(−1)nk!
(k+n)!

Bk+n(x;a)

whereBk(x;a) is aBernoulli–Barnes polynomial, which can be also defined through a generating function that
has a slightly more general form than that for Bernoulli polynomials. SpecializingBk(0;a) gives theBernoulli–
Barnes numbers. We exhibit relations among Barnesζ -functions, Bernoulli–Barnes numbers and polynomials,
which generalize various identities of Agoh, Apostol, Dilcher, and Euler.

1. INTRODUCTION

We define, as usual, theBernoulli numbers Bk through the generating function

(1)
z

ez−1
= ∑

k≥0

Bk
zk

k!
.

A fundamental relation of Bernoulli numbers, known at leastsince Euler’s time, is (forn≥ 1)

(2)
n

∑
j=0

(
n
j

)
B j Bn− j =−nBn−1− (n−1)Bn .

Much more recently, multinomial generalizations of (2) were discovered by Agoh and Dilcher [1, 8]. They
can be viewed as relations between Bernoulli numbers andBernoulli numbers B(n)k of order n, defined
through

(3)

(
z

ez−1

)n

= ∑
k≥0

B(n)
k

zk

k!
.
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Dilcher and others proved generalized formulas relatingB(n)
k with B j . The first few are [8, p. 32]:

B(2)
k =−kBk−1− (k−1)Bk (for any k≥ 1),

B(3)
k = k(k−1)Bk−2+

3
2k(k−2)Bk−1+

1
2(k−1)(k−2)Bk (for any k≥ 2),

B(4)
k =−k(k−1)(k−2)Bk−3+

11
6 k(k−1)(k−3)Bk−2−k(k−2)(k−3)Bk−1−

1
6(k−1)(k−2)(k−3)Bk

(for any k≥ 3).

(4)

Our first goal is to derive relations amongBernoulli–Barnes numbers Bk(a), defined for a fixed vector
a= (a1,a2, . . . ,an) ∈ R

n
>0 through

(5)
zn

(ea1z−1) · · · (eanz−1)
= ∑

k≥0

Bk(a)
zk

k!
.

Note that, with (3) and (5), the Bernoulli–Barnes numbers and Bernoulli numbers are related as

Bk(a) = ∑
m1+···+mn=k

(
k

m1, . . . ,mn

)
am1−1

1 · · ·amn−1
n Bm1 · · ·Bmn .

Of course, one retrieves the Bernoulli numbers of ordern with the special casea1 = a2 = · · ·= an = 1, and
the Bernoulli numbers by further specializingn= 1. Our first main result is as follows.

Theorem 1. For n≥ 3, m≥ 1, where m is odd, anda= (a1,a2, . . . ,an) ∈ R
n
>0,

n

∑
j=n−m

(
n+ j −4

j −2

)
1

(m−n+ j)! ∑
|I |= j

Bm−n+ j(aI ) =

{
1
2 if n = m= 3,

0 otherwise,

where the inner sum is over all subsets I⊆ {1,2, . . . ,n} of cardinality j, andaI := (ai : i ∈ I).

Here and in what follows below, all binomial coefficients with a negative bottom entry are zero.

Corollary 2. For n≥ 3 and odd m≥ n−2,

n

∑
j=2

(
n+ j −4

j −2

)
m!

(m−n+ j)!

(
n
j

)
B( j)

m−n+ j =

{
3 if n = m= 3,

0 otherwise,

For example, forn= 3,4 and oddm≥ 1, Theorem 1 gives the relations

B(3)
m = 3

2δ3,m− 3
2mB(2)m−1 (m≥ 3),

B(4)
m =−2mB(3)m−1−m(m−1)B(2)

m−2 (m≥ 4).

More generally, for any positive integern≥ 4, Corollary 2 gives the following recurrence formula for the
numbersB(n)

m :

(6)

(
2n−4
n−2

)
B(n)

m =−
n−1

∑
j=2

(
n+ j −4

j −2

)
m!

(m−n+ j)!

(
n
j

)
B( j)

m−n+ j for any oddm≥ n−2.

The novelty of these relations as, e.g., compared with (4) isthat they are between Bernoulli numbers of order
higher than 1. We suspect that there are relations analogousto (6) for even mbut leave the search for them
as an open problem.
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One of the significances of Bernoulli numbers lies in the factthat they are essentially evaluations of the
Riemannζ -functionζ (z) := ∑m≥1m−z (meromorphically continued toC) at negative integers−k:

ζ (−k) =−
Bk+1

k+1
.

Bernoulli–Barnes numbers appear in a similar fashion in relation with theBarnesζ -function[4]

ζn(z,x;a) := ∑
m∈Zn

≥0

1
(x+m1a1+ · · ·+mnan)

z

defined for Re(x)> 0 and Re(z)> n and continued meromorphically toC [9, 10, 11, 16, 19, 21]. Specialized
at negative integers−k, the Barnesζ -function gives

(7) ζn(−k,x;a) =
(−1)nk!
(m+n)!

Bk+n(x;a)

whereBk(x;a) is aBernoulli–Barnes polynomial, defined through [4]

znexz

(ea1z−1) · · · (eanz−1)
= ∑

k≥0

Bk(x;a)
zk

k!
.(8)

Thus the Bernoulli–Barnes numbers are the special evaluationsBk(a) = Bk(0;a). It is clear that the Barnes
zeta function is a multidimensional generalization of various Riemann–Hurwitz zetas functions; e.g., when
n = 1 anda = (a), the functionζ (s;x,a) is the classicalHurwitz zeta function a−sζ (s; x

a). Likewise, the
Bernoulli–Barnes numbers and Bernoulli–Barnes polynomials extend the (generalized) Bernoulli numbers
and polynomials to higher dimensions. Further generalizations of Bernoulli numbers and polynomials in-
clude [13, 20].

Our second main result expresses the Barnes zeta function interms of Bernoulli–Barnes polynomials,
Hurwitz zeta functions, andFourier–Dedekind sums[5], defined as

σr (a1, . . . , â j . . . ,ad;a j) :=
1
a j

∑
λaj =16=λ

λ r

∏
1≤k6= j≤n

(1−λ ak)
.

Fourier–Dedekind sums generalize and unify many variants of (generalized) Dedekind sums; see, e.g., [18]
or [6, Chapter 8].

Theorem 3. Let a1, . . . ,an be pairwise coprime positive integers. Then

ζ (s;x,a) =
(−1)n−1

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)ζ (s−k;x)

+
n

∑
j=1

a−s
j

aj−1

∑
r=0

σ−r(a1, . . . , â j , . . . ,an;a j)ζ
(

s;
x+ r
a j

)
.

Theorem 3 has several applications. Specializingsat negative integers gives, with the help of (7):

Corollary 4. Let a1, . . . ,an be pairwise coprime positive integers. Then

n

∑
j=1

am
j

aj−1

∑
r=0

σ−r(a1, . . . , â j , . . . ,an;a j)Bm+1

(
x+ r
a j

)
=

(−1)n−1 (m+1)!
(m+n)!

Bm+n(x,a)+
(−1)n−1(m+1)

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)

Bm+k+1(x)
m+k+1

.
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This is reminiscent of areciprocity lawfor generalized Dedekind sums, due to Apostol [2]; this can be
illustrated more easily in the casen= 2 anda= (a,b), for which Theorem 3 specializes to:

Corollary 5. Let a,b be coprime positive integers. Then

ζ (s;x,(a,b)) =
1
ab

ζ (s−1;x)+
(

1−
x
ab

)
ζ (s;x)

−a−s
a−1

∑
r=0

{
b−1r

a

}
ζ
(

s;
x+ r

a

)
−b−s

a−1

∑
r=0

{
a−1r

b

}
ζ
(

s;
x+ r

b

)
.

Again the specialization ofsat negative integers gives, forn= 2 anda= (a,b), using (7):

Corollary 6. Let a,b be coprime positive integers. Then

am
a−1

∑
r=0

{
b−1r

a

}
Bm+1

(
x+ r

a

)
+bm

a−1

∑
r=0

{
a−1r

b

}
Bm+1

(
x+ r

b

)
=

1
m+2

Bm+2(x,(a,b))+
1
ab

m+1
m+2

Bm+2(x)+
( x

ab
−1
)

Bm+1(x) .

This is a “polynomial generalization” of Apostol’s reciprocity law [2]

1
m

(
am−1sm(a,b)+bm−1sm(b,a)

)
=

Bm+1

(m+1)ab
+

1
m(m+1)ab

(aB−bB)m+1.

Herem is a positive integer,a andb are coprime, we use the umbral notation

(aB−bB)m+1 =
m+1

∑
i=0

(
m+1

i

)
(−1)m+1−iaibm+1−iBi Bm+1−i ,

and

Sm(a,b) =
a−1

∑
r=0

{
a−1r

b

}
Bm

( r
b

)
(9)

are theApostol–Dedekind sums. The classical Dedekind sums [7, 18] are captured by the special casem= 1.
Thus in some sense, our study can be viewed as a bridge betweenEuler-type identities and Dedekind-type
reciprocity laws.

Finally, we discuss the special casea= (1, . . . ,1) of Theorem 3. Denote

ζn(s;x) = ζ (s;x,(1, . . . ,1)) ,

theHurwitz zeta function of order n. Since in this case the sumsσr(a1, . . . , â j , . . . ,an;a j) vanish, we obtain
the following identity.

Corollary 7. For any positive integer n,

ζn(s;x) =
(−1)n−1

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
B(n)

n−1−k(x)ζ (s−k;x) .

Specializing once mores=−mat a negative integer gives:

Corollary 8. For any positive integers n,m,

B(n)
m+n(x) = (m+n)

(
m+n−1

n−1

)n−1

∑
k=0

(−1)k
(

n−1
k

)
B(n)

n−1−k(x)
Bm+k+1(x)
m+k+1

.
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Corollary 8 recovers once more Euler’s identity (2) and Dilcher’s results in [8]; it is also reminiscent of the
convolution identities in [23]. We also note that in the above corollaries the coefficients of the polynomials
B(n)

n−1−k(x) can be explicitly given in terms of Stirling numbers of the first kinds(n,k) as follows:

(
n−1

n−1−k

)
B(n)

n−1−k(x) =
n−1−k

∑
m=0

(
m+k

m

)
s(n,m+k+1)xm(10)

(see, e.g., [12, Equation (52.2.21)]).

2. PROOF OFTHEOREM 1

Our proof is based on identities of generating functions. Fix a= (a1,a2, . . . ,an) ∈ R
n
>0 We define for a

subsetI ⊆ {1,2, . . . ,n}

fI (z) :=
z|I |ez∑i∈I ai

∏i∈I (eaiz−1)
and F ( j)(z) := ∑

|I |= j

fI(z) .

Proposition 9. For n≥ 4,
n

∑
j=2

(
n+ j −4

j −2

)
(−z)n− jF( j)(z)

is an even function in z.

Proof. We need to prove that

F(z) :=
n

∑
j=2

(
n+ j −4

j −2

)
(−z)n− jF( j)(z) = ∑

|I |≥2

(
n+ |I |−4
|I |−2

)
(−z)n−|I | fI (z)

is even, so that if suffices to prove thatF(z) equals

F(−z) = ∑
|I |≥2

(
n+ |I |−4
|I |−2

)
zn−|I |e−z∑i∈I ai fI (z) ,

i.e., that

F(z)−F(−z) = ∑
|I |≥2

(
n+ |I |−4
|I |−2

)
zn−|I | fI (z)

(
(−1)n−|I |−e−z∑i∈I ai

)

is zero. Written with the denominator∏n
i=1 (e

aiz−1), the functionF(z)−F(−z) has the numerator

∑
|I |≥2

(
n+ |I |−4
|I |−2

)
znez∑i∈I ai

(
(−1)n−|I |−e−z∑i∈I ai

)
∏
i /∈I

(eaiz−1)

and so we can rephrase our goal to proving that

∑
|I |≥2

(
n+ |I |−4
|I |−2

)(
(−1)n−|I |ez∑i∈I ai −1

)
∏
i /∈I

(eaiz−1)

is zero. With∏i /∈I (e
aiz−1) = ∑J⊆I (−1)n−|I |−|J|ez∑i∈J ai , we can further rephrase our goal to proving that

(11) ∑
|I |≥2

(
n+ |I |−4
|I |−2

)
∑
J⊆I

(−1)|J|ez∑i∈I∪J ai = ∑
|I |≥2

(
n+ |I |−4
|I |−2

)
∑
J⊆I

(−1)n−|I |−|J|ez∑i∈J ai .
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We will show that the coefficients ofez∑i∈K ai , for anyK ⊆ {1,2, . . . ,n}, on both sides of (11) are equal. This
coefficient is on the left-hand side of (11) equal to

|K|−2

∑
j=0

(−1) j
(
|K|

j

)(
n+ |K|−4− j
|K|−2− j

)
.

The corresponding coefficient on the right-hand side of (11)is

∑
I 6⊇K

(−1)n−|I |−|K|

(
n+ |I |−4
|I |−2

)
=

n−|K|

∑
j=2

(−1)n− j−|K|

(
n+ j −4

j −2

)(
n−|K|

j

)
.

Thus (11) is equivalent to

k−2

∑
j=0

(−1) j
(

k
j

)(
n+k−4− j

k−2− j

)
=

n−k

∑
j=2

(−1)n− j−k
(

n+ j −4
j −2

)(
n−k

j

)
.

But both sides equal
(n−4

k−2

)
, as one can prove, e.g., by putting either side into a generating function fork. �

Proof of Theorem 1.Recalling thataI = (ai : i ∈ I), we see that

fI (z) =
z|I |ez∑i∈I ai

∏i∈I (eaiz−1)
=

(−z)|I |

∏i∈I (e−aiz−1)

is the exponential generating function for(−1)kBk(aI ). Thus, using Proposition 9 and the notation Odd(. . . )
for the odd part of a function, we compute

0= Odd

(
n

∑
j=0

(
n+ j −4

j −2

)
(−z)n− jF( j)(z)

)

= Odd

(
n

∑
j=0

(
n+ j −4

j −2

)
(−z)n− j ∑

|I |= j
∑
k≥0

(−1)kBk(aI )
zk

k!

)

=−
n

∑
j=0

(
n+ j −4

j −2

)
∑
|I |= j

∑
k≥0

n− j+k odd

1
k!

Bk(aI )zn− j+k

=− ∑
m≥0

modd

n

∑
j=n−m

(
n+ j −4

j −2

)
1

(m−n+ j)! ∑
|I |= j

Bm−n+ j(aI )zm.

Now read off the coefficients.
In the casen= 3, a quick calculation reveals

Odd

(
3

∑
j=0

(
j −1
j −2

)
(−z)3− jF ( j)(z)

)
=−

1
2

z3

and this explains the special case. �

We should remark that Theorem 1 was in part motivated by [15] in which Katayama proposed a three-
term generalization of the reciprocity theorem for Dedekind–Apostol sums [2]; Apostol’s theorem was a
byproduct of another paper of Katayama [14]. Unfortunately, the main theorem of [15] is wrong; to make the
central integral of the paper work, one has to use the integrand zs−1

(ez/a−1)(ez/b−1)(ez/c−1)
which, unfortunately,

does not give rise to Dedekind–Apostol sums. However, usingthis integrand we discovered Theorem 1.
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3. PROOF OFTHEOREM 3

The function
pA(t) := #

{
(k1, . . . ,kn) ∈ Z

n
≥0 : k1a1+ · · ·+knan = t

}
,

which counts all partitions oft with parts in the finite setA := {a1, . . . ,an}, is called arestricted partition
function. For example, basic combinatorics gives

p{1,...,1}(t) =

(
n−1+ t

n−1

)
,

and a slightly less trivial example was proved by Barlow [3, p. 323–325]: fora andb coprime,

p{a,b}(t) =
t

ab
+1−

{
b−1t

a

}
−

{
a−1t

b

}
,

where{x} = x−⌊x⌋ denotes the fractional part ofx, a−1 is computed modb, andb−1 moda. (The above
formulation of Barlow’s formula seems to be due to Popoviciu[17]; see also [6, Chapter 1].)

The following theorem was proved in [5]; however, the authors of that paper did not realize the explicit
role of Bernoulli–Barnes polynomials.

Theorem 10. If a1, . . . ,an are pairwise coprime positive integers, then

pA(t) =
(−1)n−1

(n−1)!
Bn−1(−t;(a1, . . . ,an))+

n

∑
j=0

σ−t (a1, . . . , â j , . . . ,an;a j) .

Proof. We give an outline of the proof. As in [5], we compute the residues of

Ft(z) =
1

zt+1 ∏n
i=1 (1−zai )

.

The residue atz= 0 givespA(t), whereas the residue atz= 1 gives (−1)n

(n−1)! Bn−1(−t;(a1, . . . ,an)). Finally, if
λ is a nontrivialai th root of unity,

Res(Ft(z); z= λ ) =−
1

ai λ t ∏ j 6=i (1−λ aj )
,

where the product runs over allj = 1, . . . ,n except j = i. Thus

∑
λai =16=λ

Res(Ft(z); z= λ ) =−σ−t (a1, . . . , âi , . . . ,an;ai) .

The residue theorem completes the proof of Theorem 10. �

Proof of Theorem 3.Sett = m1a1+ · · ·+mnan. We can rewrite the Barnes zeta function as follows:

ζ (s;x,a) = ∑
m1,...,mn≥0

1
(x+m1a1+ · · ·+mnan)s = ∑

t≥0

pA(t)
(x+ t)s .

By applying Taylor’s theorem to the functiont 7→ Bn−1(−t;a) at t =−x,

Bn−1(−t;a) =
n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)(x+ t)k,

and so with Theorem 10 we obtain

pA(t) =
(−1)n−1

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)(x+ t)k+

n

∑
j=0

σ−t (a1, . . . , â j , . . . ,an;a j) .
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Hence

ζ (s;x,a) =
(−1)n−1

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)ζ (s−k;x)+

n

∑
j=1

∑
t≥0

σ−t(a1, . . . , â j , . . . ,an;a j)

(x+ t)s .

Note thatσ−t (a1, . . . , â j , . . . ,an;a j) depends onlyt moda j . Settingt = maj + r, 0≤ r ≤ a j −1, we obtain

ζ (s;x,a) =
(−1)n−1

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)ζ (s−k;x)

+
n

∑
j=1

aj−1

∑
r=0

σ−r(a1, . . . , â j , . . . ,an;a j) ∑
m≥0

1
(x+ r +maj)s .

Writing (x+ r +maj)
−s = a−s

j

(
x+r
aj

+m
)−s

completes the proof of Theorem 3. �

4. THE SPECIAL CASEa= (a,1,1, . . . ,1)

In the special caseA= {a,1,1, . . . ,1} (with n 1’s), most of the terms in Theorem 10 disappear and we
obtain

(12) p{a,1,1,...,1}(t) =
(−1)n

n!
Bn(−t;(a,1,1, . . . ,1))+σ−t (1,1, . . . ,1;a) .

On the other hand, we can apply [6, Theorem 8.8] to this special case; thus fort = 1,2, . . . ,a+n−1,

σt (1,1, . . . ,1;a) =
(−1)n−1

n!
Bn(t;(a,1,1, . . . ,1)) .

Sinceσt (1,1, . . . ,1;a) only depends ont moda, this range fort is enough to determineσt (1,1, . . . ,1;a):

σt (1,1, . . . ,1;a) =

{
(−1)n−1

n! Bn(t moda; (a,1,1, . . . ,1)) if t 6≡ 0 moda,
(−1)n−1

n! Bn(a; (a,1,1, . . . ,1)) if t ≡ 0 moda.
(13)

For the caset ≡ 0 moda we can also use [6, Theorem 8.4] which gives

σ0(1,1, . . . ,1;a) = 1−
(−1)n

n!
Bn(0;(a,1,1, . . . ,1)) .

(An easy way to see that our two formulations ofσ0 (1,1, . . . ,1;a) are equivalent is through the difference
formula

Bm(x+a0;(a0,a1, . . .an))−Bm(x;(a0,a1, . . .an)) = mBm−1(x;(a1,a2, . . .an))

and then specializing this tom= n, x= 0, a0 = a, anda1 = a2 = · · · = an = 1.) Substituting this back into
(12) gives, withχa(t) := 1 if a|t andχa(t) := 0 otherwise:

Proposition 11. p{a,1,1,...,1}(t) =
(−1)n

n! (Bn(−t;(a,1,1, . . . ,1))−Bn(t moda; (a,1,1, . . . ,1)))+ χa(t) .

Using (13) and Theorem 3 we obtain:

Proposition 12. Leta= (a,1,1, . . . ,1), where a is a positive integer. Then

ζ (s;x,a) =
(−1)n−1

(n−1)!

n−1

∑
k=0

(−1)k
(

n−1
k

)
Bn−1−k(x;a)ζ (s−k;x)+

(−1)n−1

n!
a−s

a

∑
r=1

Bn(r;a)ζ
(

s;1+
x− r

a

)
.

Specializings= −m at negative integers gives, by Proposition 12 with the help of (7), the following
formula.
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Corollary 13. Leta= (a,1,1, . . . ,1), where a is a positive integer. Then

m!n!
(m+n)!

Bm+n(x,a) =
n−1

∑
k=0

(−1)k(k+1)

(
n

k+1

)
Bn−1−k(x;a)

Bm+k+1(x)
m+k+1

+am
a

∑
r=1

Bn(r;a)
Bm+1

(
1+ x−r

a

)

m+1
.

5. DIFFERENCE, SYMMETRY AND RECURRENCE FORMULAS FORBm(x;a)

We conclude by giving various formulas forBm(x;a), starting with the following difference formula.

Theorem 14. For a= (a1, . . . ,an) ∈R
n
≥0, we have the difference formula

(−1)mBm(−x;a)−Bm(x;a) = m!
n−1

∑
k=0

∑
|I |=k

Bm−n+k(x;aI )

(m−n+k)!
,

with Bm(x,aI ) = xm if I = /0. Furthermore,

Bm(x+
n

∑
i=1

ai ;a) = (−1)mBm(−x;a) .

Proof. By use of the identity

∑
I⊂{1,...,n}

∏
i∈Ī

(
eai t −1

)
= e(a1+···+an)t ,

we obtain the formula

tne(x+∑n
i=1 ai)t

n

∏
i=1

(
eait −1

) = ∑
I⊂{1,...,n}

tnext

∏
i∈I

(
eai t −1

) ,(14)

whereĪ = {1, . . . ,n}\I . On the other hand, we have the equality

tne(x+∑n
i=1 ai)t

n

∏
i=1

(
eai t −1

) =
(−t)next

n

∏
i=1

(
e−ai t −1

) .(15)

Therefore, by (14) and (15),

∑
I⊂{1,...,n}

tnext

∏
i∈I

(
eai t −1

) = (−t)next

n

∏
i=1

(
e−ait −1

) .

Together with (8) this completes the proof. �

Our next result is a symmetry formula.

Theorem 15. Leta= (a1, . . . ,an) ∈ R
n
≥0 with A := a1+ · · ·+an > 0. Then for any integers l,m≥ 0,

(16) (−1)m
m

∑
k=0

(
m
k

)
Am−kBl+k(x;a) = (−1)l

l

∑
k=0

(
l
k

)
Al−kBm+k(−x;a),

and
(−1)m

m+ l +2

m

∑
k=0

(
m+1

k

)
(l +k+1)Am+1−kBl+k(x;a)

+
(−1)l

m+ l +2

n

∑
k=0

(
l +1

k

)
(l +k+1)Al+1−kBm+k(−x;a)

= (−1)m+1Bl+m+1(x;a)+ (−1)l+1Bn+m+1(−x;a) .

(17)
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Proof. Observe that from (8) we obtain

d
dx

Bl+1(x;a) = (l +1)Bl (x;a)

and by applying the operatorddx to (16), this implies (17).
Now we prove (16). Consider the generating function

∑
m≥0

∑
l≥0

(
(−1)m

m

∑
k=0

(
m
k

)
Am−kBl+k(x;a)

)
ym

m!
zl

l !

= ∑
l≥0

∑
k≥0

A−kBl+k(x;a)
zl

l !

∞

∑
m=k

(−1)m
(

m
k

)
(Ay)m

m!

= ∑
l≥0

∑
k≥0

Bl+k(x;a)
zl

l !
(−y)k

k!
e−Ay = e−Ay∑

i≥0

i

∑
k=0

Bi(x;a)
zi−k

(i −k)!
(−y)k

k!

= ∑
l≥0

∑
k≥0

Bl+k(x;a)
zl

l !
(−y)k

k!
e−Ay = e−Ay∑

i≥0

i

∑
k=0

Bi(x;a)
i!

(
i
k

)
zi−k(−y)k

= e−Ay∑
i≥0

Bi(x;a)
(z−y)i

i!
= e−Ay (z−y)nex(z−y)

∏n
i=1

(
eai (z−y)−1

) = (z−y)nex(z−y)

∏n
i=1 (eaiz−eaiy)

.

Similarly the generating function is also equal to

∑
m≥0

∑
l≥0

(
(−1)l

l

∑
k=0

(
l
k

)
Al−kBm+k(−x;a)

)
ym

m!
zl

l !
=

(z−y)nex(z−y)

n

∏
i=1

(eaiz−eaiy)

. �

Specializing Theorem 15 atl = mwe obtain a recurrence formula for the polynomials

Pm(x) := (m+1)A−m
(

Bm(−x;a)+Bm(x;a)
)

as follows.

Corollary 16. For any positive integer m≥ 1,

P2m+1(x) =−
2m+1

2(m+1)

m

∑
k=0

(
m+1

k

)
Pm+k(x) .

In the case n= 1, a1 = 1, the polynomials Pm(x) are reduced to(m+1)
(

Bm(−x)+Bm(x)
)
.

The form of (16) is reminiscent of identities for self-dual sequences, in particular, [22]. Namely, setting

Qk(x;a) := (−1)kA−kBk(x;a) ,

the casel = 0 in Theorem 15 gives

Qm(−x;a) =
m

∑
k=0

(
m
k

)
(−1)kQk(x;a) =: Q∗

k(x;a) ,

thedual of Qk(x;a) (viewed as a sequence with indexk). In particular, the sequenceQk(0;a) is self dual:

Qm(0;a) = Q∗
k(0;a) ,

Let’s record this:
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Corollary 17. Let a = (a1, . . . ,an) ∈ R
n
≥0 with A := a1 + · · ·+ an > 0. Then

(
(−1)nA−nBn(a)

)
n∈Z≥0

is a
self-dual sequence.

It would be interesting to prove this corollary directly (i.e., without referring to Theorem 15). In fact, if
this is possible, one could then apply [22, Theorem 1.1] to give an independent proof of Theorem 15.

As a final result, we obtain the following recurrence formulafor the Bernoulli–Barnes numbers.

Theorem 18. For any positive integer m≥ 1,

B2m+1(a) =−
1

2(m+1)

m

∑
k=0

(
m+1

k

)
(m+k+1)Am+1−kBm+k(a)

and

B2m(a) =−
1

(m+1)(2m+1)

m

∑
k=0

(
m+1

k

)
(m+k+1)Am−kBm+k(a)

− (2m)! A−1
n−1

∑
k=0

∑
|I |=k

B2m+1−n+k(aI )

(2m+1−n+k)!
.

Note that forn= 1, the above results specialize to the well-known difference, symmetry and recurrence
concerning the ordinary Bernoulli numbers and polynomials.
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