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RELATIONS FOR BERNOULLI-BARNES NUMBERS AND BARNES ZETA FUN CTIONS

ABDELMEJID BAYAD AND MATTHIAS BECK

Dedicated to the fond memory of Marvin I. Knopp (1933-2011)

ABSTRACT. TheBarnes{-functionis
1
(X+ M@y + -+ Mhan)?

{n(z,xa) =
meZl,
defined for Réx) > 0 and Réz) > nand continued meromorphically @. Specialized at negative integerg,

the Barneg -function gives
{n(—kxa) = ﬂ Bkin(xa)
MR T (kg T
whereBy(x; a) is aBernoulli-Barnes polynomialvhich can be also defined through a generating function that
has a slightly more general form than that for Bernoulli painials. Specializin®y(0;a) gives theBernoulli—
Barnes numbersWe exhibit relations among Barnésfunctions, Bernoulli-Barnes numbers and polynomials,

which generalize various identities of Agoh, Apostol, Die, and Euler.

1. INTRODUCTION
We define, as usual, tigernoulli numbers Bthrough the generating function

z X

1) =) Bk
1 2B

A fundamental relation of Bernoulli numbers, known at lesiste Euler’s time, is (fon > 1)

n

) J;(?)B,- Bn_j= —NBn_1— (n—1)By.

Much more recently, multinomial generalizations[df (2) evdiscovered by Agoh and Dilcher [1, 8]. They

can be viewed as relations between Bernoulli numbersBardoulli numbers ﬁ) of order n defined
through

z \" m Z
© <e2—1> L

Date 6 September 2013.

2000Mathematics Subject ClassificatioRrimary 11B68; secondary 11F20, 11M32.

Key words and phraseBernoulli-Barnes number, Bernoulli polynomial, Barnetafenction, Fourier—Dedekind sum.

We thank a referee for helpful comments on a previous versichis paper, in particular, for pointing out Sun’s work on
self-dual sequences[22], which gave rise to Corollaly s Tesearch project was initiated while M. Beck visited theversite
d’Evry Val d’Essonne; he thanks their Laboratoire analysprebabilités for their hospitality. A. Bayad was paryasupported
by the FDIR of the Université d’Evry Val d’Essonne; M. Beclasvpartially supported by the US National Science Foundatio
(DMS-1162638).

1


http://arxiv.org/abs/1301.7097v2

2 ABDELMEJID BAYAD AND MATTHIAS BECK

Dilcher and others proved generalized formulas relaﬁﬂéwith Bj. The first few arel[8, p. 32]:

(4)

Bl(<2) = —kB1— (k—1)Bx (forany k> 1),

B(Y = k(k— 1)Bc o+ 3k(k—2)Bc_1+ 1 (k—1)(k—2)Bx  (for any k> 2),
BLY = —k(k— 1)(k—2)By_3+ k(k—1)(k— 3)Be_2 — k(k— 2)(k—3)By_1 — & (k— 1)(k— 2)(k— 3)By
(for any k> 3).

Our first goal is to derive relations amomernoulli-Barnes numbersyBa), defined for a fixed vector
a=(ag,ay,...,a,) € R, through

el &
) (PZ_1).. (ez—1) k; Bk(a)ﬁ '

Note that, with[(B) and (5), the Bernoulli-Barnes numbeis Barnoulli numbers are related as

K m-—1 m,—1
... B - B .
ml+m+m1:k <m17 LR rnﬂ> al al"l m ™

Of course, one retrieves the Bernoulli numbers of ordeith the special case; =a) =--- =a, =1, and
the Bernoulli numbers by further specializing= 1. Our first main result is as follows.

Bk(a) =

Theorem 1. For n> 3, m> 1, where mis odd, and = (ag, &, ...,a,) € RY,

N nij-4 1 1 ifn=m=3
) —_ Bm—n+tj =72 .
j—%m( j—2 > (m—n+j)! “‘Z:j mons (@) {0 otherwise,
where the inner sum is over all subsets {1,2,....n} of cardinality j, anda := (g :i € ).

Here and in what follows below, all binomial coefficients lwvé negative bottom entry are zero.

Corollary 2. For n> 3 and odd m> n— 2,

d <n+j—4> m <n>B(J-) |3 ifn=m=3,
,Zz j—2 J(m—n+j\j/ ™" 10 otherwise,

For example, fon = 3,4 and oddn > 1, Theoreni Il gives the relations

BY =3&m-3mB?Y, (m>3),
By = —2mBY, —mm-1)BZ,  (m>4).

More generally, for any positive integar> 4, Corollary[2 gives the following recurrence formula foeth
numbersB,(ﬂ):

2n—4 "int -4 m! n\ (i
© (3 )m =L ("L e () rayoanzn-z
J: H

The novelty of these relations as, e.g., compared With (hgisthey are between Bernoulli numbers of order
higher than 1. We suspect that there are relations analdgd@$ for even nbut leave the search for them
as an open problem.
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One of the significances of Bernoulli numbers lies in the that they are essentially evaluations of the
Riemann{-function{(z) := 3>, m * (meromorphically continued t€) at negative integersk:

Bkr1
—k)=— .
(K =—111
Bernoulli-Barnes numbers appear in a similar fashion iatia@h with theBarnes{-function[4]

1
(X+Myag + -+ Mpag)*

{n(zxa) =

n
mezZl,

defined for Réx) > 0 and R€¢z) > nand continued meromorphically ©[9,[10,11[ 16, 19, 21]. Specialized
at negative integersk, the Barneg -function gives

ko (—1)”k'
whereBy(x;a) is aBernoulli-Barnes polynomiadefmed through [4]

e v
(8) (12— 1)..- (etZ—1) = 2 Be(xa)y; kl

k>0

Thus the Bernoulli-Barnes numbers are the special evahs#i(a) = Bi(0;a). It is clear that the Barnes
zeta function is a multidimensional generalization of @as Riemann—Hurwitz zetas functions; e.g., when
n= 1 anda = (a), the function{(s;x,a) is the classicaHurwitz zeta function @°((s; 7). Likewise, the
Bernoulli-Barnes numbers and Bernoulli-Barnes polynésr@atend the (generalized) Bernoulli numbers
and polynomials to higher dimensions. Further generadizatof Bernoulli numbers and polynomials in-
clude [13/20].

Our second main result expresses the Barnes zeta functitamnts of Bernoulli-Barnes polynomials,
Hurwitz zeta functions, anBourier—Dedekind sum&], defined as

AI’
55 (1—)\""“)'
1<k#j<n

Fourier-Dedekind sums generalize and unify many variainfgemeralized) Dedekind sums; see, elg.] [18]
or [6, Chapter 8].

O-r(ala" 7 ' 7ad1 j) a
1A

Theorem 3. Let &, ..., a, be pairwise coprime positive integers. Then
( 1 n—1 n— 1

{(sx,a) = I < 1> Bn-1-k(X@) {(s—k;X)

%0_ a,...,a ewg)((s%)

Theoreni B has several appllcatlons. Specializagnegative integers gives, with the help[df (7):

Corollary 4. Leta,...,a, be pairwise coprime positive integers. Then

X+
Za %O‘ a17 -,a anaj)Bm+l<a—>:

I

(=) (m+1)"t n—1 . .y Bmikr1(X)
Bmn(X,@) + (-1t kzo(_l)k< K > Br-1-1(%8) m+k+1"

nfl(m"i' 1)!

(=) (m-+n)!
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This is reminiscent of aeciprocity lawfor generalized Dedekind sums, due to Apostol [2]; this can b
illustrated more easily in the case= 2 anda = (a,b), for which Theorem13 specializes to:
Corollary 5. Let a b be coprime positive integers. Then
X

dsx (@) = £ 2(s- 1+ (1- 2} 2(s

A (b X A ratthr X
e ) e e s

Again the specialization afat negative integers gives, for= 2 anda = (a,b), using (7):

Corollary 6. Let ab be coprime positive integers. Then

al(p-1f X+ al(g-1f X+ r
m 0t AT m a T AT
w3 e () e % e ()

1 I1m+1 X
#

m—+28m+2(x> (a,b)) + abmi 2 m+2(X) e l) B 1(X).

This is a “polynomial generalization” of Apostol’s recimity law [2]

l m-1 m—1 _ Bmy1 1 _ m+1
m(a Sm(a,b) +b Sm(b’a))_(m+1)ab+m(m+1)ab(aB bB)™,

Heremis a positive integerm andb are coprime, we use the umbral notation

m+-1 <m+l

@-bpyt =5 (™ ) a e B
=

and

©) Sn(ab) = Z:{a—;r} e (©)

are theApostol-Dedekind sum%he classical Dedekind sums [7, 18] are captured by theamasem = 1.
Thus in some sense, our study can be viewed as a bridge beBuésmtype identities and Dedekind-type
reciprocity laws.

Finally, we discuss the special case- (1,...,1) of TheoreniB. Denote

n(sx) ={(s%,(1,...,1)),

the Hurwitz zeta function of order.rSince in this case the surgg(ay, . . .,da;,...,as;a;) vanish, we obtain
the following identity.

Corollary 7. For any positive integer n,

_1\h—1n-1 o
{n(SX) = ((ni)l)! k;(_l)k<n ) 1) BE:)PK(X) {(s—k;x).

Specializing once more= —mat a negative integer gives:

Corollary 8. For any positive integers,m,

_ n-1 _
o =men (") B (e
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Corollary(8 recovers once more Euler’s identify (2) and Beics results in[B]; it is also reminiscent of the
convolution identities in[[23]. We also note that in the abaorollaries the coefficients of the polynomials

Bf]”f)lfk(x) can be explicitly given in terms of Stirling numbers of thesffikinds(n, k) as follows:

_ n—1-k
0 (ot = 3 (M sinmeker e

m=0

(see, e.q./[12, Equation (52.2.21)]).

2. PROOF OFTHEOREM[I]

Our proof is based on identities of generating functions &= (a1, ay,...,a,) € R, We define for a
subset C {1,2,...,n}

ZmeZZielai ;
fil(z) = ————— and FU(z):= 5 fi(2).
R PRy A
Proposition 9. For n > 4,
n n+j—4> n—ic(i
_ —2"IFU)(z
,%( I

is an even function in z.

Proof. We need to prove that

LR B n+—4\, oy
Fo=3 (M1 o ||Z>2< e e

is even, so that if suffices to prove thatz) equals
n+\|\—4> T,
F(—2) = Mllg23icrai § 2),
(-2 Il;( - @

i.e., that
n+|l|—4

R n%z < I -2 )f“ 1) (o —e=zan)

is zero. Written with the denominat@t;! ; (€%7— 1), the functionF (z) — F(—z) has the numerator
n+|||_4 Yiel & _1\-l _ g Z3icr & iZ

;( 12 )z”ez (( 1) e )_|‘|(ea* 1)

[1>2 1€l
and so we can rephrase our goal to proving that

n—l—|||—4> n—|l| a 7
(- lNefiad g (6% —1)
5 (M) il

is zero. With[Tig (€42 —1) = 3 ;1(—1)"II-Nle?ZZiwd@ 'we can further rephrase our goal to proving that

11 n+|l|—4 _\HgSiawa — n+[l|—4 _-I=PlgzTicoa
( ) ||222< |||_2 >Z( ) |I222< |||_2 >Z( )

Jcr Jcr
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We will show that the coefficients @& 2i<c& for anyK C {1,2,...,n}, on both sides of{11) are equal. This
coefficient is on the left-hand side @f{11) equal to

Zer (DO

The corresponding coefficient on the right-hand sidé of {41)

|;<(_1)n_l|_|K <”m!; 4> _ "J_Z':(_l)n—j—m (”Ti; 4> <n —j\K!> '

Thus [11) is equivalent to

() Eor ()

But both sides equa([jjg), as one can prove, e.g., by putting either side into a gangriainction fork. [

Proof of Theorerm]1Recalling thaty = (g :i € |), we see that
AllgZTici a (_Z)II\
 [ia (821 e (€732-1)

is the exponential generating function fer1)“By(a ). Thus, using Propositidi 9 and the notation Qdg)
for the odd part of a function, we compute

o-oa( 3 ("1, ") o e

B n n+j—4 AN B z
‘Odd<,§< e PP 1>kBk<a>k!>
e (nt+j-4 1 s

=2 ( L2 >||Z—j ; " By(ay) 2" 11K

n n+j—4 1

m>0 j=n—m
modd

Now read off the coefficients.
In the casen = 3, a quick calculation reveals

3 | — . .
Odd(Z (i _;)(—2)3”:(”(2)) _ _%

1=0

1(Z

and this explains the special case. d

We should remark that Theordm 1 was in part motivated by [A5yhich Katayama proposed a three-
term generalization of the reciprocity theorem for Deddkipostol sums_[2]; Apostol’s theorem was a
byproduct of another paper of Katayarnal[14]. Unfortunatilg main theorem of [15] is wrong; to make the

central integral of the paper work, one has to use the inneg(rg/a_ 0 ef:j 1)(@1) which, unfortunately,

does not give rise to Dedekind—Apostol sums. However, usiisgntegrand we discovered Theorem 1.
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3. PROOF OFTHEOREM[3
The function
pA(t) Z:#{(kl,...,kn) EZ;OZ k1a1—|—---+knan:t},

which counts all partitions df with parts in the finite sef := {ay,...,an}, is called arestricted partition
function For example, basic combinatorics gives

n—1+t
Pi1...., 1}(t):< n—1 >7

and a slightly less trivial example was proved by Barlow [33§3—-325]: fora andb coprime,

t b1t a1t
Piap () = %4‘1— {T} - {T}v

where{x} = x— |x| denotes the fractional part & a—* is computed modb, andb~! moda. (The above
formulation of Barlow’s formula seems to be due to Popovjtir]; see also [6, Chapter 1].)

The following theorem was proved in/[5]; however, the aushafrthat paper did not realize the explicit
role of Bernoulli-Barnes polynomials.

Theorem 10. If ay,...,a, are pairwise coprime positive integers, then

_1\n—-1

n
Bn-1(—t;(a1,...,an)) + ;a_t (ag,...,dj,...,an;aj).
J:
Proof. We give an outline of the proof. As in][5], we compute the rasisl of

1
R e

The residue at = 0 givespa(t), whereas the residue at 1 gives((nj—l)n Bn_1(—t; (ag,...,a)). Finally, if

1!
A is a nontriviala;th root of unity,
1
Re 2);z2=A)=— )
$Ri2iz=2) = ~ 5 )
where the product runs over gl=1,...,nexceptj =i. Thus
Resk(z);z=A) = -0 (a,...,&,...,an &).
A% ST4A
The residue theorem completes the proof of Thedrem 10. O

Proof of Theorerhl3Sett = ma; + - - - + mya,. We can rewrite the Barnes zeta function as follows:

. B 1 < balt)
dexm)= m17..ZfTh>0 (X+Mag + -+ Mhan)° _t; (x+1)

By applying Taylor’s theorem to the functidn— B,_1(—t;a) att = —Xx,

n-1 _
Bra-tia) = 5 (K" ) Brasteaier

and so with Theoremm 10 we obtain
(_l)n—l n—1 <n_ 1

pA(t):meO(—l)k } )Bnlk(x;a)(x+t)k—|—1;at (a,..,&,--.,an;d;).
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Hence
(_1)nfln—1 a,t(al,...,aj,...,an;aj)

n—1 ) ) n
T kZO(—l)k< 5 >Bn_1—k(X,a)Z(S—k,X)+jth; e .

{(s;x,a) =

Note thato_ (ay,...,dj,...,an;a;) depends only moda,. Settingt = ma;+r, 0<r < a; — 1, we obtain

_1\n—1n-1 _
{(sxa) = ((ni)l)! kzo(_l)k<n 1

> Bnh-1-k(X;@) {(s—Kk;Xx)

k
n aj—l 1
+ o_r(ag,...,4aj,...,8na;) —_—
gl & ) ) %O (X+r1+ma)s
—S
Writing (X+r+magj) > = aj‘S (%r + m) completes the proof of Theordm 3. O

4. THE SPECIAL CASEa= (a,1,1,...,1)

In the special casé = {a,1,1,...,1} (with n 1's), most of the terms in Theorem]10 disappear and we
obtain

(="

(12) Pass..y ) = = Ba(-t(@lL....,1)+0(L1....La).
On the other hand, we can apply [6, Theorem 8.8] to this speas®; thus fot =1,2,...,a+n—1,
(_l)n—l
a(1,1,...,1a) = o Bn(t;(a,1,1,...,1)).

Sincea (1,1,...,1;a) only depends ohmod a, this range fot is enough to determine; (1,1,...,1;a):

U g (t moda; (a,1,1,...,1)) if t 0 mod
(13) a(1,1,...,1;a) = (_f)!n—l n(tmoda; (3,1.1,...,1) I # 0 moda,
-—Bn(a (3, 1,1,...,1)) if t =0 moda.
For the cas¢ = 0 moda we can also useé [6, Theorem 8.4] which gives
(="
n!

(An easy way to see that our two formulationsaf(1,1,...,1;a) are equivalent is through the difference
formula

oo(1,1,....,1,8) =1—

Bn(0;(a,1,1,...,1)).

Bm(X+ a0; (0,81, -.-8)) —Bm(X; (80,81, ...@n)) = MBn-1(X; (a1, 82,...an))
and then specializing thistm=n, x =0, ay = a, anda; = a, = --- = a, = 1.) Substituting this back into
(@2) gives, withx,(t) ;= 1if alt and xa(t) := 0 otherwise:

Proposition 11. pa1s. 1y(t) = G2 (Ba(~t; (@, 1,1,...,1)) — Ba(t moda; (a,1,1,...,1))) + Xa(t).

n!

Using (13) and Theorem 3 we obtain:
Proposition 12. Leta= (a,1,1,...,1), where a is a positive integer. Then

oy (Y n-1 : N G e : g X
{(sx,a) = 1) kZO( 1) K Bn_1-k(x;a) {(s—k;x) + o a r 1Bn(r,a)Z s 1+ =)

Specializings = —m at negative integers gives, by Propositiod 12 with the hélfi/h the following
formula.

V]
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Corollary 13. Leta=(a,1,1,...,1), where ais a positive integer. Then

ml n! n-1 k n ) Bm+k+1(X) m a . Bm+1 (1+ X—;r)
gy o) = 5 (1) <k+ 1) BT g T 2 BT

5. DIFFERENCE SYMMETRY AND RECURRENCE FORMULAS FOFBm(X; a)

We conclude by giving various formulas fBr,(x; a), starting with the following difference formula.

Theorem 14. For a= (&, ...,a) € R%,, we have the difference formula

n-1

m . . Bm-nik(X &)
—1)"Bmn(—%;a) — Bm(x;a) = m! _—
(=1)"Bm(—x;a) — Bm(x;@) = m kzougk

(m—n+k)! ’
with Bm(x, &) = X" if | = 0. Furthermore,

Bm(X+ _ia;;a) =(—=1)"Bn(—x;a).

Proof. By use of the identity
(eaqt _ 1) — e(a1+~<+an)t7
Ic{1,...,n} iel
we obtain the formula
g+l a)t thext

ﬁ (e —1) - |c{g.,.n}g(ea7‘t_l),

wherel = {1,...,n}\Il. On the other hand, we have the equality

(14)

a5 t:e(x+zP:1a>t _ (—t)"et .
|‘l (et —1) |‘l (e7at—1)
Therefore, by[(14) and (15), ) :
tnext (—t)net

Ic{gﬂn} D (eat B 1) - Iﬂl (efa@t _ 1) .

Together with[(8) this completes the proof.

Our next result is a symmetry formula.
Theorem 15. Leta= (ay,...,an) € }Rgo with A:=a; +---+a, > 0. Then for any integers m > 0,

my (M amkg  (x AT _
(16) 75 (0 )Am Bastxa) = (3 5 ([ )4 Bt xa)
and
% g (m:l>(| +k+ 1) AMRB (x a)
k=0
17 (-1)' L /1+1 e .
() +7m+|+2kzo< . >(I+k+1)A' K Bnyk(—xa)

= (=)™ Biym1(68) + (—1) " Bormia(—xa).



10 ABDELMEJID BAYAD AND MATTHIAS BECK

Proof. Observe that fron{ {8) we obtain

%(de(x; a)=(1+1)B(xa)

and by applying the operatf;, to (18), this implies[(17).
Now we prove[(16). Consider the generating function

$0i50 Im Kk S i—-k! K
_ 2 (-yf a sy B (1
—é&ZBHMme € V=e ﬂzé; 7 (02 (—y)
oA @y (ZeyreEy (zoy)ne@Y)
= yi> Bi(x;a) i =€ yl_lin:l (eaa(z—y) —l) - ﬂrzl(eaiz—eai)’) .

Similarly the generating function is also equal to

LN . ym Z —y)nex(zy)
R L P D

1=
Specializing Theoreiin 15 &= mwe obtain a recurrence formula for the polynomials
Pu(X) := (M+ 1) A-m<|3m(—x; a) + Bm(X: a))
as follows.
Corollary 16. For any positive integer rx 1,
2m+1 2 /m+1
P = R .
a0 =~ 5 (M) Pmntt)

In the case =1, a; = 1, the polynomials R(x) are reduced tam+ 1) (Bm(—x) + Bm(x)).

The form of [16) is reminiscent of identities for self-duabjsiences, in particulaf, [22]. Namely, setting
Q(xa) == (—1)*A*By(x;a),
the casé = 0 in Theoreni Ib gives

m

Qn(-xa) = 3 ('y) (-D*Quxa) = Qilxia.

k=0
thedual of Q(x;a) (viewed as a sequence with indx In particular, the sequeneg(0;a) is self dual
Qm(0;a) = Qc(0;a),

Let's record this:
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Corollary 17. Leta= (ay,...,an) € R%, with A:=a; +---+ay > 0. Then((—1)"A""By(a)),, isa
self-dual sequence. -

It would be interesting to prove this corollary directlye(i. without referring to Theorem 115). In fact, if
this is possible, one could then apgly [22, Theorem 1.1]¥e gih independent proof of Theoréni 15.
As a final result, we obtain the following recurrence formiadathe Bernoulli-Barnes numbers.

Theorem 18. For any positive integer rx 1,

Bomi1(a) = _2(m7]:|—1) kgo <m: 1> (m+k-+1)A™Ikg\(a)
and
Bon(e) = D & K )M DA Bt
— (2m)! A*lnil Bam1-nk(@)

&o ek (2m+1—n+k)!"

Note that forn = 1, the above results specialize to the well-known diffeeersymmetry and recurrence
concerning the ordinary Bernoulli numbers and polynomials
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