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Abstract

The use of LASSO technics permit to select automatically regressors in
linear or generalized linear models. We combine here this method to get a
selection operator of the number of components for non parametric estimators.
The method is compared to different data driven technics. Elastic Net method
is also studied. Simulation show the potential of this approach. A real data
in actuarial science is studied.
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1 General problem

Let µ be a reference measure with an associated dense orthogonal basisQ = {Qk; k ∈
Nd}, satisfying Q0 = 1 and such that∫

Rd

Qj(x)Qk(x)ν(dx) = δjk,

with δjk = 1 if j = k and 0 otherwise. We consider g ∈ L2(µ) such that for all
x ∈ Rd

g(x) =
∑
i∈Nd

giQk(x) with gi :=

∫
Rd

Qk(x)gi(x)µ(dx).

For an integer K > 0 we define the Kth order approximation of g by

g(K)(x) =
∑
|i|≤K

giQk(x), (1)

where |i| = i1 + · · · + id. If we observe n random vectors X1, · · · , Xn such that
E(Qk(Xi)) = gi, we can estimate this quantity by

ĝi =
n∑

j=1

gi(Xj)

and we deduce a Kth order non parametric estimator of g as

ĝ(K)(x) =
∑
|i|≤K

ĝiQk(x).

Our problem is to choose the order K of this estimator. There exists various methods
as cross validation (see ), minimax approach (see), MISE (see ). In this paper we
consider the estimation problem as a regression model adn we apply a penalized
technic to select automatically the components.

Remark 1 We can also consider K ∈ Nd. Then we have to use an order on Rd.
Here we consider a canonical basis, e = (e1, · · · , ed) and we assume that x < y if
|x| < |y| or if |x| = |y| and if j is the greater non null component index of y then
xj < yj.
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2 A regression model

We describe here the bivariate case (but the multivariate is similar). We consider the
selection of the non null coefficients in the sequence g1, · · · , gk. If we use a product
of univariate orthogonal basis, writing X = (Y, Z) and Qi,j(x) = Pi(y)Rj(z) we get

gi,j = E(Qi,j(X)) = E(Pi(Y )Rj(Z)).

It is easily seen that for all integers u, s,

E(Ps(Y )|Z) = 0 ⇒ gu,s = 0

E(Ru(Z)|Y ) = 0 ⇒ gu,s = 0

and that

E(Ps(Y )|Z) = 0 ⇔ E(Z|Ps(Y )) = 0

E(Ru(Z)|Y ) = 0 ⇔ E(Y |Ru(Z)) = 0.

Then (1) is related to the regression problem

E(Z|P1(Y ), · · · , PK(Y )) =
K∑
i=1

βiPi(Y ), (2)

with βi = E(Z|Pi(Y )). The LASSO procedure can be used to detect which coef-
ficients βi are null. The model to be considered is the regression of Y on Rt(Z),
t = 1, 2, · · · , K. Or by symmetry the regression of Z on Pt(Y ), t = 1, 2, · · · , K. The
Elastic Net approach could also be used to select more than n components.

3 Bootstrap approach

Consider the regression model (2) and write gK(Y ) = E(Z|P1(Y ), · · · , PK(Y )). As-
sume that Y is a random variable with known distribution with respect to ν, say
fY . Let Pn be a sequence of orthonormal functions with respect to ν. Then we have

K ≤ K0 ⇔ E(
gK(Y )Pk(Y )

fY (Y )
h(Y )) = 0 ∀k > K0,

where h denotes the density of ν. Starting from this characterization of the order
approximation, we now want to find the distribution of Y . One way is to consider
an empirical density f̂Y and to write

K ≤ K0 ⇔ E(
gK(Y )Pk(Y )

f̂Y (Y )
h(Y )) = 0 ∀k > K0,
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which is true asymptotically. Another way is to change the distribution of Y , keep-
ing its relation with Z. We then propose a weighted bootstrap, such that the
bootrstraped distribution of Y ∗ is close the ν. We then draw Y with a weighted
equal to h(Y )/f̂Y (Y ).

4 Numerical Analyses

4.1 Monte-Carlo Experiment

Empirical levels

Empirical powers

4.2 Real data sets
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Appendix

The first orthonormal Hermite polynomials are

Q1(x) = x,

Q2(x) =
1√
2

(x2 − 1)

Q3(x) =
1√
6

(x3 − 3x)

Q4(x) =
1√
24

(x4 − 6x2 + 3)

Q5(x) =
1√
120

(x5 − 10x3 + 15x)
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