
HAL Id: hal-04463926
https://hal.science/hal-04463926

Preprint submitted on 17 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

draft Clustering Independence in high dimensions
Yves I Ngounou Bakam

To cite this version:

Yves I Ngounou Bakam. draft Clustering Independence in high dimensions. 2024. �hal-04463926�

https://hal.science/hal-04463926
https://hal.archives-ouvertes.fr


draft
Clustering Independence in high dimensions

Yves I. Ngounou Bakam

Abstract

1. Introduction and motivation

For k = 1, · · · ,K, let X(k) = (X(k)
1 , · · · , X

(k)
pk ) be a pk-dimensional random variable with univariate marginals

probability distribution function (pdf) denoted by F(k)
1 , · · · , F

(k)
pk .

The goal is to partition the set S = {X(1), · · · , X(K)} of random vectors, each potentially of different dimensions,
into clusters. Within each cluster, the variables should exhibit independence, while across clusters, there should be
some level of dependence. As far as we know, addressing this problem in its complete generality remains unexplored.

This clustering of independence among random vectors offers several advantages and points of interest, particu-
larly in various scientific, technological, and practical applications:

• Promoting Ethical Practices: As machine learning technologies become more pervasive and influential in soci-
ety, addressing ethical considerations such as fairness, bias, and accountability becomes paramount. Clustering
independence can help mitigate risks associated with data dependencies, model biases, and unintended conse-
quences, promoting ethical practices and responsible AI development.

• Resource Optimization: In various applications such as machine learning and optimization problems, cluster-
ing independence helps in efficiently allocating resources by identifying independent components that can be
processed or analyzed separately.

• Efficient Algorithms: Algorithms designed to leverage clustering independence can be more computationally
efficient, reducing time and computational resources required for tasks like data processing, analysis, and mod-
eling.

• Resilient Systems: Understanding the independence structure ensures that systems or models are built on robust
foundations, minimizing the risk of overfitting and enhancing stability across different scenarios or environ-
ments.

• Relevant Features: By understanding which variables or features are independent of each other, one can prior-
itize and select the most relevant features for modeling and prediction tasks, improving model efficiency and
accuracy.

Partitioning a set of random vectors into clusters characterized by intra-cluster independence and inter-cluster
dependence offers a structured, flexible, and insightful approach to analyzing complex systems and datasets, providing
numerous advantages in terms of modeling, efficiency, interpretability, and applicability across diverse domains and
applications.

The paper is organised as follows:

Preprint submitted to ... February 17, 2024



2. Copula coefficients test of independence

We consider the following null hypothesis of independence

H0 : X(1) ⊥⊥ X(2) ⊥⊥ · · · ⊥⊥ X(K) versus H1 : ¬H0 (1)

When K = 2, there is a large literature for testing independence between two random vectors. We can mention the two
seminal papers of Gieser and Randles [17] and Horrell and Lessig [19]. More recently, Feng et al. [12] considered the
problem of multivariate tests of independence using high dimensional rank statistics as Spearman and Kendall’ones.
We can also mention Berrett and Samworth [5] where the test statistic is based on entropies, Bodnar et al. [6] resticting
their study to high dimension Gaussian vectors, as in Silva et al. [27]. And among others Albert et al. [1] and Yin and
Yuan [29].

When p1 = · · · = pK = 1, (1) remains to test the independence of the K components of a vector. In such a case
a numerous works attempt to construct efficient statistics, with a series of papers based on copulas as in Genest et al.
[15], González-Barrios et al. [18], Roy et al. [25], or Genest et al. [13]. Other approaches can be mentioned as in Mao
[23], using high dimension Kendall’s tau, as more recently in Drton et al. [10].

In the general case, when K > 2 and p j ≥ 1, there is very few general works. One reason for this is that the null
distributions for the proposed test statistics become difficult to evaluate. We can mention Chakraborty and Zhang [7]
where their approach is based on the notion of distance covariance and Roy and Ghosh [24] who uses the ideas of
maximun mean discrepancy and ranks of nearest neighbors. Certain restrict their study to Gaussian vectors, as in Bao
et al. [4] or Chen and Liu [8], working on the covariance structure in high dimension. The work who seems to tackle
the general problem is that of Fan et al. [11] where the authors represented the independence hypothesis through
the product of characteristic functions. They deduce a Cramer-Von-Mises statistic with null asymptotic distribution
related to a process involving eigenvalues of covariance function. In addition their approach necessitates a weight
function to calibrate the numerical integration of the Cramer-Von-Mises statistic. However, these authors worked in a
very general setting since they consider continuous as well as discrete or mixed random vectors.

Our approach can be considered as a competitor of Fan et al. [11] in the continuous case and is quite similar in
spirit but instead of using the characteristic functions we use copulas.

By definition, a pk-dimensional copula C(k) is the joint cumulative distribution of a random vector U(k) = (U(k)
1 , · · · ,U

(k)
pk )

with uniform marginals over [0, 1] , that is,

C(k) : [0, 1]pk → [0, 1]

u = (u1 · · · , upk ) 7→ C(k)(u)
= P

(
U(k)

1 ≤ u1, · · · ,U(k)
pk
≤ upk

)
.

The copula coefficients associated to C(k), denoted ρ(k)
j , are defined to be (see ? ])

ρ(k)
j =

∫
[0,1]pk

L j1 (u1) · · · L jpk
(upk )dC(k)(u1 · · · , upk ), (2)

where L j is the Legendre polynomial on [0, 1] of degree j satisfying∫
[0,1]

L j(x)Lk(x)dx = δ jk

where δ jk = 1 if j = k and 0 otherwise. These polynomials are defined by

L0 = 1, L1(x) =
√

3(2x − 1), and for n > 1 :

(n + 1)Ln+1(x) =
√

(2n + 1)(2n + 3)(2x − 1)Ln(x) −
n
√

2n + 3
√

2n − 1
Ln−1(x).

According to Proposition 1 of Bakam and Pommeret [2], the series of copula coefficients entirely characterize the
copulas, that is

C(k) = C(ℓ) if and only if ρ(k)
j = ρ

(ℓ)
j for all j (3)

where for all j ∈ {1, · · · , pk}, I j =

∫ 1

0
L j(s)ds.
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2.1. Notation
Write p = p1 + · · · + pK . For j ∈ Np and for x ∈ Rp we decompose j = (j(1), · · · , j(K)), x = (x(1), · · · , x(K))

and u = (u(1)
1 , · · · , u

(K)
pK ), where j(k) = ( j(k)

1 , · · · , j(k)
pk ), x(k) = (x(k)

1 , · · · , x
(k)
pk ) and u(k) = (u(k)

1 , · · · , u
(k)
pk ), for all k =

1, · · · ,K. u(k) = (u(k)
1 , · · · , u

(k)
pk ) and u = (u(1)

1 , · · · , u
(K)
pK ). We also write X = (X(1), · · · ,X(K)) the p-vector obtained

from the K populations. We use the classical transformations: U = (U(1), · · · ,U(K)) where U(k) = (U(k)
1 , · · · ,U

(k)
pk ) =

(F(k)
1 (X(k)

1 ), · · · , F(k)
pk (X(k)

pk ), for all k = 1, · · · ,K. The empirical versions based of n iid observations of such variables
are obtained by replacing U(k)

j by Û(k)
j where

Û(k)
j =

1
n

n∑
i=1

F̂(k)
j (X(k)

j,i ),

where X(k)
j,i is the ith observation of the jth component from population K.

By Sklar’s theorem (Sklar [28]), the continuity assumption on the marginals implies that the the testing problem
(1) can be rewritten as follows

H0 : C = C(1) · · ·C(K) versus H1 : C , C(1) · · ·C(K) (4)

where for k = 1, · · · ,K, C(k) and C are the unique copulas associated toX(k) and X respectively such that

C
(
1, . . . , 1,u(k), 1, . . . , 1

)
= C(k)(u(k))

Rather than comparing copulas, our procedure is based on the copula coefficients defined in (2). According to (3),
the null hypothesis changes in the following way

H̃0 : ρj = ρ
(1)
j(1) · · · ρ

(K)
j(K) , ∀j ∈ Np, (5)

where ρj is the jth copula coefficient associated to C.

2.2. Data-driven smooth test
Our procedure consists in detecting the largest differences between the copula coefficients involved in (5). We

consider K iid samples from X(1), · · · ,X(K), denoted by

(X(1)
1,i , · · · , X

(1)
p1,i

)i=1,··· ,n, · · · , (X
(K)
1,i , · · · , X

(K)
pK ,i

)i=1,··· ,n.

We want to detect a difference between ρj and ρ(1)
j(1) · · · ρ

(K)
j(K) , for some j ∈ Np. For any vector j = ( j1, · · · , jp) we denote

the L1 norm by
∥j∥1 = | j1| + · · · + | jp|,

Remark 1. From the orthogonality of the Legendre polynomials we obtain:

• If j is a zero vector, then ρj − ρ
(1)
j(1) · · · ρ

(K)
j(K) = 0

• If only one of the coefficients of j is non null, then ρj − ρ
(1)
j(1) · · · ρ

(K)
j(K) = 0

Considering the null hypothesis H̃0 as expressed in (??), our test procedure is based on the sequences of differences

rj := ρ̂j − ρ̂
(1)
j(1) · · · ρ̂

(K)
j(K) , for j ∈ Np,

where

ρ̂j =


1 if j = 0,
0 if exactly one component of j is non nul,
1
n

n∑
i=1

L j(1)
1

(Û(1)
1,i ) × · · · × L j(1)

p1
(Û(1)

p1,i
) × L j(2)

1
(Û(2)

1,i ) × · · · × L j(K)
pK

(Û(K)
pK ,i

), else.

ρ̂(k)
j(k) =


1 if j(1) = 0,
0 if exactly one component of j(1) is non null,
1
n

n∑
i=1

L j(k)
1

(Û(k)
1,i ) × · · · × L j(k)

pk
(Û(k)

pk ,i
), else.

3



Note that by construction rj = 0 when j satisfies one of the conditions of Remark 1. Such estimators of copula
coefficients have been studied in Bakam and Pommeret [3] where it is shown their excellent behavior.

In order to select automatically the number of copula coefficients we introduce the following set for any integer
p > 1:

S(p) = {j ∈ Np; and at least two components are non null}.

We introduce the following order on S(p).
If j and j̃ are two vectors in S(p) we define

k(j, j̃) = min{k ∈ {1, · · · ,K}; j(k) , j̃(k)}

the first index such that the subvectors of j and j̃ are different. In the same way

k(jk), j̃(k)) = min{ℓ ∈ {1, · · · , pk}; j(k)
ℓ
, j̃(k)
ℓ
}

Then the order on S(p) is defined by

j < j̃ if
{
∥j∥1 < ∥̃j∥1
∥j∥1 = ∥̃j∥1 and j(R)

r < j̃(R)
r

where R = k(j, j̃) and r = k(j(R), j̃(R)).
For instance, the first element of S(p) is such that j(1) = (1, 0, · · · , 0), j(2) = (1, 0, · · · , 0), and j(k) = (0, · · · , 0), for

k = 3, · · · , p. In that case we say that Ord(j) = 1.
To construct our test statistics, we consider a sequence d(n) which tends to infinity as n→ ∞, and we introduce a

series of statistics based on the sequence (rj)j∈Np as follows: for 1 ≤ k ≤ d(n), we define

Tk = n
∑

j∈S(p);ord(j)≤k

(rj)2. (6)

Clearly all these statistics are embedded.
When d(n) is large it will make it possible to compare high coefficient orders through rj, while k will permit to

visit all the values of j for this given order. Notice that we need to compare all copula coefficients and then to let d(n)
tend to infinity to detect all possible alternatives. However, choosing too large parameters tends to power dilution of
the test. Following [21], we suggest a data driven procedure to select automatically the number of coefficients to test
the hypothesis H̃0. Namely, we set

D(n) := min
{
argmax
1≤k≤d(n)

(Tk − kqn)
}
, (7)

where qn and d(n) tend to +∞ as n → +∞, kqn being a penalty term which penalizes the embedded statistics propor-
tionally to the number of copula coefficients used. Finally, the data-driven test statistic that we use to compare C and
C(1) · · ·C(p) is TD(n) and we consider the following rate for the number of components in the statistic:

(A) d(n)(7p−4) = o(qn)

A classical choice for qn is qn = log(n) initially used in Schwarz [26] (see for instance the seminal work of Ledwina
[22]). This choice is convenient to detect smooth alternatives (see Section 2.3) and will be adopted in our simulation.
Our first result shows that under the null the least penalized statistic will be selected.

Theorem 1. Let assumption (A) holds. Then, under H0, D(n) converges in Probability towards 1 as n→ +∞.

Theorem 2. Let assumption (A) holds. Then, under H0, TD(n) converges in law towards a central normal distribution
with variance

σ2 = V
(
L1(U(1)

1 )L1(U(2)
1 )

+2
√

3
∫ ∫ (

I(X(1)
1 ≤ x) − F(1)

1 (x)
)
L1(F(2)

1 (y))dF(1)(x)dF(2)(y)

+2
√

3
∫ ∫ (

I(X(2)
1 ≤ y) − F(2)

1 (y)
)
L1(F(1)

1 (x))dF(1)(x)dF(2)(y)
)
.
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In order to normalize the test, write

σ̂2 =
1
n

n∑
i=1

(
Mi − M

)2
, with M =

1
n

n∑
i=1

Mi,

where

Mi = L1(Û(1)
i,1 )L1(Û(2)

i,1 ) +
2
√

3
n

n∑
k=1

(
I
(
X(1)

i,1 ≤ X(1)
k,1

)
− Û(1)

k,1

)
L1(Û(2)

k,1)

+
2
√

3
n

n∑
k=1

(
I
(
X(2)

i,1 ≤ X(2)
k,1

)
− Û(2)

k,1

)
L1(Û(1)

k,1).

Proposition 1. Under H0 we have the following convergence in probability

σ̂2 P
−→ σ2.

We then deduce the limit distribution under the null.

Corollary 1. Let assumption (A) holds. Then under H0, TD(n)/σ̂
2 converges in law towards a chi-squared of one

degree of freedom distribution χ2
1 as n→ +∞.

2.3. Convergence under alternative hypotheses
We consider the general alternative hypothesis: H1 : C , C(1) · · ·C(p) and we make the following assumption:

(B) bn = o(n).

Theorem 3. Assume that (A)-(B) hold. Then under H1, TD(n) converges to +∞, that is, P(TD(n) < ϵ) → 0, for all
ϵ > 0.

Remark 2. In the classical smooth test approach [22] a standard penalty is qn = bn = log(n), which is related to the
Schwarz criteria [26] as discussed in [21]. Note also that [20] compared this type of Schwarz penalty to the Akaike
one where they proposed bn or qn to be constant. In our simulation we consider the classical choice qn = bn = log(n).

3. Clustering approach

The purpose of this section is to partition any set S = {X(1), · · · , X(K)} of random vectors of arbitrary dimension
into clusters in such a way that inside each cluster the variables are independent and the clusters between themselves
are dependent. To our knowledge, the problem in its full generality has not yet been addressed.

This clustering procedure can solve several complex problems in a very short time and is useful in practice, for
instance: i) in finance to build a well-diversified portfolio whose stock options would be less subject to a systemic
crisis; ii) in the world of actuarial science by making it possible to practice a price segmentation strategy; iii) in biology
to classify interdependent and intra-independent network of genes; iv) in a general regression framework where it is
of importance to retain a set of independent covariables.

3.1. Clustering principle
In the sequel we propose to adapt the previous test procedure to obtain a data-driven method to cluster K multi-

variate variables into N subgroups characterized by a common dependence. The number N of clusters is unknown
and will be automatically chosen by the previous procedure and validated by our testing method.

More precisely, we consider a multivariate variable S = {X(1), · · · , X(K)} of p dimension in which X(ℓ) is a pℓ ≥ 1-
dimensional random vectors for ℓ ∈ {1, 2, · · · ,K}, such that p1 + p2 + · · · + pK = p. For l = 1, · · ·K, we consider
a sample {X(l)

i,1, · · · , X
(l)
i,pl

)i=1,··· ,n}, l = 1, · · ·K from X(ℓ). The clustering algorithm starts by choosing the two variables
of S that are less distant in terms of independence. In this way, it chooses the smallest two-sample statistic. If the
independence of both associated vectors is not rejected, these two variables form the first cluster. Then the algorithm
proposes a new variable closest to this cluster in terms of independence. While the test accepts the simultaneous
independence of the vectors, the cluster growths. If the test is rejected then the cluster is closed. We iterate this
several times until every vector is associated with a cluster.
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3.2. Clustering algorithm

We can summarize the clustering algorithm as follows:

Algorithm: Independence clustering

1 Initialization: c = 1, S = {X(1), · · · , X(K)}, and S 0 = ∅ ;
2 Select {ℓ⋆,m⋆} = argmin{V (ℓ,m))

D(n) ; ℓ , m ∈ S \
⋃c

k=1 S k−1} ;

3 Test H0 between X(ℓ⋆) and X(m⋆) ;
4 if H0 is not rejected then

5 S 1 = {Xℓ
⋆

, Xm⋆ };
6 else
7 STOP. There is no cluster.
8 end
9 while S \

⋃c
k=1 S k , ∅ do

10 Select { j⋆} = argmin{V (i, j)
D(n); i ∈ S c, j ∈ S \

⋃c
k=1 S k};

11 Test H0 the simultaneous independence of all X(i), i ∈ S c and X( j⋆);

12 if H0 is not rejected then

13 S c = S c
⋃
{X( j⋆)};

14 else
15 S c+1 = {X( j⋆)};
16 c = c + 1 ;
17 end
18 end

4. Simulation study

5. Real datasets Application

5.1. Geology data

We analyse the well-known uranium exploration dataset of Cook and Johnson [9]. The same data set has been
analyzed by Genest & Rivest [16] and Genest, Quessy & Rémillard [14] to demonstrate a semiparametric inference
for Archimedean copulas and a goodness-of-fit test. The data consists of concentrations of seven chemical elements
in 655 water samples collected from the Montrose quad-rangle of Western Colorado. Concentrations of Uranium
(U), Lithium (Li), Cobalt (Co), Potassium (K), Cesium (Cs), Scandium (S c) and Titanium (Ti) were measured. The
comparison of these chemical elements in the context of mutual dependence or groupwise dependence is a major
concern for geologists.

5.2. Finance data

In an ever-evolving global landscape shaped by globalization and the outsourcing of major corporations, often
through a growing nexus of cooperation and economic integration among countries and financial markets, making
astute investments and achieving success becomes progressively complex. In this context, investors are keen on
examining the interplay among significant global financial markets to construct a diversified portfolio with substantial
potential.
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5.3. Machine learning

6. Conclusion

7. Proofs
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