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Introduction and motivation

For k = 1, • • • , K, let X (k) = (X (k) 1 , • • • , X (k)
p k ) be a p k -dimensional random variable with univariate marginals probability distribution function (pdf) denoted by F (k) 1 , • • • , F (k) p k . The goal is to partition the set S = {X (1) , • • • , X (K) } of random vectors, each potentially of different dimensions, into clusters. Within each cluster, the variables should exhibit independence, while across clusters, there should be some level of dependence. As far as we know, addressing this problem in its complete generality remains unexplored.

This clustering of independence among random vectors offers several advantages and points of interest, particularly in various scientific, technological, and practical applications:

• Promoting Ethical Practices: As machine learning technologies become more pervasive and influential in society, addressing ethical considerations such as fairness, bias, and accountability becomes paramount. Clustering independence can help mitigate risks associated with data dependencies, model biases, and unintended consequences, promoting ethical practices and responsible AI development.

• Resource Optimization: In various applications such as machine learning and optimization problems, clustering independence helps in efficiently allocating resources by identifying independent components that can be processed or analyzed separately.

• Efficient Algorithms: Algorithms designed to leverage clustering independence can be more computationally efficient, reducing time and computational resources required for tasks like data processing, analysis, and modeling.

• Resilient Systems: Understanding the independence structure ensures that systems or models are built on robust foundations, minimizing the risk of overfitting and enhancing stability across different scenarios or environments.

• Relevant Features: By understanding which variables or features are independent of each other, one can prioritize and select the most relevant features for modeling and prediction tasks, improving model efficiency and accuracy.

Partitioning a set of random vectors into clusters characterized by intra-cluster independence and inter-cluster dependence offers a structured, flexible, and insightful approach to analyzing complex systems and datasets, providing numerous advantages in terms of modeling, efficiency, interpretability, and applicability across diverse domains and applications.

The paper is organised as follows:

Copula coefficients test of independence

We consider the following null hypothesis of independence

H 0 : X (1) ⊥ ⊥ X (2) ⊥ ⊥ • • • ⊥ ⊥ X (K) versus H 1 : ¬H 0 (1) 
When K = 2, there is a large literature for testing independence between two random vectors. We can mention the two seminal papers of Gieser and Randles [START_REF] Gieser | A nonparametric test of independence between two vectors[END_REF] and Horrell and Lessig [START_REF] Horrell | A note on a nonpαrαmetric test of independence between two vectors[END_REF]. More recently, Feng et al. [START_REF] Feng | Multivariate tests of independence and their application in correlation analysis between financial markets[END_REF] considered the problem of multivariate tests of independence using high dimensional rank statistics as Spearman and Kendall'ones. We can also mention Berrett and Samworth [START_REF] Berrett | Nonparametric independence testing via mutual information[END_REF] where the test statistic is based on entropies, Bodnar et al. [START_REF] Bodnar | Testing for independence of large dimensional vectors[END_REF] resticting their study to high dimension Gaussian vectors, as in Silva et al. [START_REF] Silva | Kronecker delta method for testing independence between two vectors in high-dimension[END_REF]. And among others Albert et al. [START_REF] Albert | Adaptive test of independence based on hsic measures[END_REF] and Yin and Yuan [START_REF] Yin | A new class of measures for testing independence[END_REF].

When

p 1 = • • • = p K = 1, (1 
) remains to test the independence of the K components of a vector. In such a case a numerous works attempt to construct efficient statistics, with a series of papers based on copulas as in Genest et al. [START_REF] Genest | Asymptotic local efficiency of cramér-von mises tests for multivariate independence[END_REF], González-Barrios et al. [START_REF] González-Barrios | A novel characterization and new simple tests of multivariate independence using copulas[END_REF], Roy et al. [START_REF] Roy | Some new copula based distribution-free tests of independence among several random variables[END_REF], or Genest et al. [START_REF] Genest | Testing for independence in arbitrary distributions[END_REF]. Other approaches can be mentioned as in Mao [START_REF] Mao | Testing independence in high dimensions using kendall's tau[END_REF], using high dimension Kendall's tau, as more recently in Drton et al. [START_REF] Drton | High-dimensional consistent independence testing with maxima of rank correlations[END_REF].

In the general case, when K > 2 and p j ≥ 1, there is very few general works. One reason for this is that the null distributions for the proposed test statistics become difficult to evaluate. We can mention Chakraborty and Zhang [START_REF] Chakraborty | Distance metrics for measuring joint dependence with application to causal inference[END_REF] where their approach is based on the notion of distance covariance and Roy and Ghosh [START_REF] Roy | Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors[END_REF] who uses the ideas of maximun mean discrepancy and ranks of nearest neighbors. Certain restrict their study to Gaussian vectors, as in Bao et al. [START_REF] Bao | Test of independence for high-dimensional random vectors based on freeness in block correlation matrices[END_REF] or Chen and Liu [START_REF] Chen | Testing independence with high-dimensional correlated samples[END_REF], working on the covariance structure in high dimension. The work who seems to tackle the general problem is that of Fan et al. [START_REF] Fan | Multivariate nonparametric test of independence[END_REF] where the authors represented the independence hypothesis through the product of characteristic functions. They deduce a Cramer-Von-Mises statistic with null asymptotic distribution related to a process involving eigenvalues of covariance function. In addition their approach necessitates a weight function to calibrate the numerical integration of the Cramer-Von-Mises statistic. However, these authors worked in a very general setting since they consider continuous as well as discrete or mixed random vectors.

Our approach can be considered as a competitor of Fan et al. [START_REF] Fan | Multivariate nonparametric test of independence[END_REF] in the continuous case and is quite similar in spirit but instead of using the characteristic functions we use copulas.

By definition, a p k -dimensional copula C (k) is the joint cumulative distribution of a random vector

U (k) = (U (k) 1 , • • • , U (k) p k ) with uniform marginals over [0, 1] , that is, C (k) : [0, 1] p k → [0, 1] u = (u 1 • • • , u p k ) → C (k) u = P U (k) 1 ≤ u 1 , • • • , U (k) p k ≤ u p k .
The copula coefficients associated to C (k) , denoted ρ (k) j , are defined to be (see ? ])

ρ (k) j = [0,1] p k L j 1 (u 1 ) • • • L j p k (u p k )dC (k) (u 1 • • • , u p k ), (2) 
where L j is the Legendre polynomial on [0, 1] of degree j satisfying

[0,1] L j (x)L k (x)dx = δ jk
where δ jk = 1 if j = k and 0 otherwise. These polynomials are defined by

L 0 = 1, L 1 (x) = √ 3(2x -1)
, and for n > 1 :

(n + 1)L n+1 (x) = (2n + 1)(2n + 3)(2x -1)L n (x) - n √ 2n + 3 √ 2n -1 L n-1 (x).
According to Proposition 1 of Bakam and Pommeret [START_REF] Bakam | K-sample test for equality of copulas[END_REF], the series of copula coefficients entirely characterize the copulas, that is

C (k) = C (ℓ) if and only if ρ (k) j = ρ (ℓ) j for all j (3) 
where for all j ∈ {1, • • • , p k }, I j = 1 0 L j (s)ds.

Notation

Write p = p 1 + • • • + p K . For j ∈ N p and for x ∈ R p we decompose j = (j (1) ,

• • • , j (K) ), x = (x (1) , • • • , x (K) ) and u = (u (1) 1 , • • • , u (K) p K ), where j (k) = ( j (k) 1 , • • • , j (k) p k ), x (k) = (x (k) 1 , • • • , x (k) p k ) and u (k) = (u (k) 1 , • • • , u (k) p k ), for all k = 1, • • • , K. u (k) = (u (k) 1 , • • • , u (k) p k ) and u = (u (1) 1 , • • • , u (K) p K ).
We also write X = (X (1) , • • • , X (K) ) the p-vector obtained from the K populations. We use the classical transformations: U = (U (1) 

, • • • , U (K) ) where U (k) = (U (k) 1 , • • • , U (k) p k ) = (F (k) 1 (X (k) 1 ), • • • , F (k) p k (X (k) p k ), for all k = 1, • • • , K.
The empirical versions based of n iid observations of such variables are obtained by replacing U (k) j by U (k) j where

U (k) j = 1 n n i=1 F (k) j (X (k) j,i ),
where X (k) j,i is the ith observation of the jth component from population K. By Sklar's theorem (Sklar [START_REF] Sklar | Fonctions de repartition an dimensions et leurs marges[END_REF]), the continuity assumption on the marginals implies that the the testing problem (1) can be rewritten as follows

H 0 : C = C (1) • • • C (K) versus H 1 : C C (1) • • • C (K) ( 4 
)
where k) and C are the unique copulas associated toX (k) and X respectively such that

for k = 1, • • • , K, C ( 
C 1, . . . , 1, u (k) , 1, . . . , 1 = C (k) u (k)
Rather than comparing copulas, our procedure is based on the copula coefficients defined in [START_REF] Bakam | K-sample test for equality of copulas[END_REF]. According to (3), the null hypothesis changes in the following way

H 0 : ρ j = ρ (1) j (1) • • • ρ (K) j (K) , ∀j ∈ N p , (5) 
where ρ j is the jth copula coefficient associated to C.

Data-driven smooth test

Our procedure consists in detecting the largest differences between the copula coefficients involved in [START_REF] Berrett | Nonparametric independence testing via mutual information[END_REF]. We consider K iid samples from X (1) , • • • , X (K) , denoted by (X (1) 1,i ,

• • • , X (1) p 1 ,i ) i=1,••• ,n , • • • , (X (K) 1,i , • • • , X (K) p K ,i ) i=1,••• ,n .
We want to detect a difference between ρ j and ρ (1)

j (1) • • • ρ (K) j (K)
, for some j ∈ N p . For any vector j = ( j 1 , • • • , j p ) we denote the L1 norm by

∥j∥ 1 = | j 1 | + • • • + | j p |, Remark 1.
From the orthogonality of the Legendre polynomials we obtain:

• If j is a zero vector, then ρ j -ρ (1) j (1) • • • ρ (K) j (K) = 0
• If only one of the coefficients of j is non null, then ρ j -ρ (1) j (1) • • • ρ (K) j (K) = 0 Considering the null hypothesis H 0 as expressed in (??), our test procedure is based on the sequences of differences

r j := ρ j -ρ (1) j (1) • • • ρ (K) j (K) , for j ∈ N p ,
where

ρ j =                  1 if j = 0, 0 if exactly one component of j is non nul, 1 n n i=1 L j (1) 1 ( U (1) 1,i ) × • • • × L j (1) p 1 ( U (1) p 1 ,i ) × L j (2) 1 ( U (2) 1,i ) × • • • × L j (K) p K ( U (K) p K ,i ), else. ρ (k) j (k) =                  1 if j (1) = 0, 0 if exactly one component of j (1) is non null, 1 n n i=1 L j (k) 1 ( U (k) 1,i ) × • • • × L j (k) p k ( U (k) p k ,i ), else.
3 Note that by construction r j = 0 when j satisfies one of the conditions of Remark 1. Such estimators of copula coefficients have been studied in Bakam and Pommeret [START_REF] Bakam | Nonparametric estimation of copulas and copula densities by orthogonal projections[END_REF] where it is shown their excellent behavior.

In order to select automatically the number of copula coefficients we introduce the following set for any integer p > 1: S(p) = {j ∈ N p ; and at least two components are non null}.

We introduce the following order on S(p).

If j and j are two vectors in S(p) we define

k(j, j) = min{k ∈ {1, • • • , K}; j (k) j (k) }
the first index such that the subvectors of j and j are different. In the same way

k(j k) , j (k) ) = min{ℓ ∈ {1, • • • , p k }; j (k) ℓ j (k)
ℓ } Then the order on S(p) is defined by

j < j if ∥j∥ 1 < ∥ j∥ 1 ∥j∥ 1 = ∥ j∥ 1 and j (R) r < j (R)
r where R = k(j, j) and r = k(j (R) , j (R) ).

For instance, the first element of S(p) is such that j

(1) = (1, 0, • • • , 0), j (2) = (1, 0, • • • , 0), and j (k) = (0, • • • , 0), for k = 3, • • • , p.
In that case we say that Ord(j) = 1.

To construct our test statistics, we consider a sequence d(n) which tends to infinity as n → ∞, and we introduce a series of statistics based on the sequence (r j ) j∈N p as follows: for 1 ≤ k ≤ d(n), we define

T k = n j∈S(p);ord(j)≤k (r j ) 2 . ( 6 
)
Clearly all these statistics are embedded. When d(n) is large it will make it possible to compare high coefficient orders through r j , while k will permit to visit all the values of j for this given order. Notice that we need to compare all copula coefficients and then to let d(n) tend to infinity to detect all possible alternatives. However, choosing too large parameters tends to power dilution of the test. Following [START_REF] Kallenberg | Consistency and monte carlo simulation of a data driven version of smooth goodness-of-fit tests[END_REF], we suggest a data driven procedure to select automatically the number of coefficients to test the hypothesis H 0 . Namely, we set

D(n) := min argmax 1≤k≤d(n) (T k -kq n ) , (7) 
where q n and d(n) tend to +∞ as n → +∞, kq n being a penalty term which penalizes the embedded statistics proportionally to the number of copula coefficients used. Finally, the data-driven test statistic that we use to compare C and

C (1) • • • C (p) is T D(n)
and we consider the following rate for the number of components in the statistic:

(A) d(n) (7p-4) = o(q n )
A classical choice for q n is q n = log(n) initially used in Schwarz [START_REF] Schwarz | Estimating the dimension of a model[END_REF] (see for instance the seminal work of Ledwina [START_REF] Ledwina | Data-driven version of neyman's smooth test of fit[END_REF]). This choice is convenient to detect smooth alternatives (see Section 2.3) and will be adopted in our simulation.

Our first result shows that under the null the least penalized statistic will be selected.

Theorem 1. Let assumption (A) holds. Then, under H 0 , D(n) converges in Probability towards 1 as n → +∞.

Theorem 2. Let assumption (A) holds. Then, under H 0 , T D(n) converges in law towards a central normal distribution with variance

σ 2 = V L 1 (U (1) 1 )L 1 (U (2) 1 ) +2 √ 3 I(X (1) 1 ≤ x) -F (1) 1 (x) L 1 (F (2)
1 (y))dF (1) (x)dF (2) (y)

+2 √ 3 I(X (2) 1 ≤ y) -F (2) 1 (y) L 1 (F (1)
1 (x))dF (1) (x)dF (2) (y) .

In order to normalize the test, write

σ 2 = 1 n n i=1 M i -M 2 , with M = 1 n n i=1 M i ,
where

M i = L 1 ( U (1) i,1 )L 1 ( U (2) i,1 ) + 2 √ 3 n n k=1 I X (1) i,1 ≤ X (1) k,1 -U (1) k,1 L 1 ( U (2) k,1 ) + 2 √ 3 n n k=1 I X (2) i,1 ≤ X (2) k,1 -U (2) k,1 L 1 ( U (1)
k,1 ).

Proposition 1. Under H 0 we have the following convergence in probability

σ 2 P -→ σ 2 .
We then deduce the limit distribution under the null.

Corollary 1. Let assumption (A) holds. Then under H 0 , T D(n) / σ 2 converges in law towards a chi-squared of one degree of freedom distribution χ 2 1 as n → +∞.

Convergence under alternative hypotheses

We consider the general alternative hypothesis:

H 1 : C C (1) • • • C (p)
and we make the following assumption:

(B) b n = o(n). Theorem 3. Assume that (A)-(B) hold. Then under H 1 , T D(n) converges to +∞, that is, P(T D(n) < ϵ) → 0, for all ϵ > 0.
Remark 2. In the classical smooth test approach [START_REF] Ledwina | Data-driven version of neyman's smooth test of fit[END_REF] a standard penalty is q n = b n = log(n), which is related to the Schwarz criteria [START_REF] Schwarz | Estimating the dimension of a model[END_REF] as discussed in [START_REF] Kallenberg | Consistency and monte carlo simulation of a data driven version of smooth goodness-of-fit tests[END_REF]. Note also that [START_REF] Inglot | Towards data driven selection of a penalty function for data driven neyman tests[END_REF] compared this type of Schwarz penalty to the Akaike one where they proposed b n or q n to be constant. In our simulation we consider the classical choice q n = b n = log(n).

Clustering approach

The purpose of this section is to partition any set S = {X (1) , • • • , X (K) } of random vectors of arbitrary dimension into clusters in such a way that inside each cluster the variables are independent and the clusters between themselves are dependent. To our knowledge, the problem in its full generality has not yet been addressed.

This clustering procedure can solve several complex problems in a very short time and is useful in practice, for instance: i) in finance to build a well-diversified portfolio whose stock options would be less subject to a systemic crisis; ii) in the world of actuarial science by making it possible to practice a price segmentation strategy; iii) in biology to classify interdependent and intra-independent network of genes; iv) in a general regression framework where it is of importance to retain a set of independent covariables.

Clustering principle

In the sequel we propose to adapt the previous test procedure to obtain a data-driven method to cluster K multivariate variables into N subgroups characterized by a common dependence. The number N of clusters is unknown and will be automatically chosen by the previous procedure and validated by our testing method.

More precisely, we consider a multivariate variable S = {X (1) , ℓ) . The clustering algorithm starts by choosing the two variables of S that are less distant in terms of independence. In this way, it chooses the smallest two-sample statistic. If the independence of both associated vectors is not rejected, these two variables form the first cluster. Then the algorithm proposes a new variable closest to this cluster in terms of independence. While the test accepts the simultaneous independence of the vectors, the cluster growths. If the test is rejected then the cluster is closed. We iterate this several times until every vector is associated with a cluster.

• • • , X (K) } of p dimension in which X (ℓ) is a p ℓ ≥ 1- dimensional random vectors for ℓ ∈ {1, 2, • • • , K}, such that p 1 + p 2 + • • • + p K = p. For l = 1, • • • K, we consider a sample {X (l) i,1 , • • • , X (l) i,p l ) i=1,••• ,n }, l = 1, • • • K from X (

Clustering algorithm

We can summarize the clustering algorithm as follows:

Algorithm: Independence clustering

1 Initialization: c = 1, S = {X (1) , • • • , X (K) }, and S 0 = ∅ ; 2 Select {ℓ ⋆ , m ⋆ } = argmin{V (ℓ,m)) D(n) ; ℓ m ∈ S \ c k=1 S k-1 } ; 3 Test H 0 between X (ℓ ⋆ ) and X (m ⋆ ) ; 4 if H 0 is not rejected then 5 S 1 = {X ℓ ⋆ , X m ⋆ }; 6 else 7 STOP. There is no cluster. 8 end 9 while S \ c k=1 S k ∅ do 10 Select { j ⋆ } = argmin{V (i, j) D(n) ; i ∈ S c , j ∈ S \ c k=1 S k };
11 Test H 0 the simultaneous independence of all X (i) , i ∈ S c and X ( j ⋆ ) ;

12 if H 0 is not rejected then 13 S c = S c {X ( j ⋆ ) }; 

Geology data

We analyse the well-known uranium exploration dataset of Cook and Johnson [START_REF] Cook | Generalized burr-pareto-logistic distributions with applications to a uranium exploration data set[END_REF]. The same data set has been analyzed by Genest & Rivest [START_REF] Genest | Statistical inference procedures for bivariate archimedean copulas[END_REF] and Genest, Quessy & Rémillard [START_REF] Genest | Goodness-of-fit procedures for copula models based on the probability integral transformation[END_REF] to demonstrate a semiparametric inference for Archimedean copulas and a goodness-of-fit test. The data consists of concentrations of seven chemical elements in 655 water samples collected from the Montrose quad-rangle of Western Colorado. Concentrations of Uranium (U), Lithium (Li), Cobalt (Co), Potassium (K), Cesium (Cs), Scandium (S c) and Titanium (T i) were measured. The comparison of these chemical elements in the context of mutual dependence or groupwise dependence is a major concern for geologists.

Finance data

In an ever-evolving global landscape shaped by globalization and the outsourcing of major corporations, often through a growing nexus of cooperation and economic integration among countries and financial markets, making astute investments and achieving success becomes progressively complex. In this context, investors are keen on examining the interplay among significant global financial markets to construct a diversified portfolio with substantial potential.

14 else 15 S 16 c = c + 1

 1415161 c+1 = {X ( j ⋆ ) };