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abstrat

1. Introduction. The problem we consider in this paper is testing the independence be-
tween continous random vectors with different dimensions More precisely, for k = 1, · · · ,K ,
let X(k) = (X

(k)
1 , · · · ,X(k)

pk ) be a pk-dimensional continuous random variable with joint
probability distribution function F(k) and with univariate marginals distribution function de-
noted by F

(k)
1 , · · · , F (k)

pk . We consider the following hypotheses

H0 :X
(1) ⊥⊥X(2) ⊥⊥ · · · ⊥⊥X(K) versus H1 : ∃l ̸= k X(l)⊥̸⊥X(k).(1)

When K = 2, there is a large literature for testing independence between two random vec-
tors. We can mention two seminal papers Gieser et al (1997) and Horrell et al (1974). More
recently, Feng et al (2020) who used high dimensional rank statistics as Spearman and
Kendall’ones. Also Berrett et al (2017) where the statistic is based on entropies, Bodnard
et al (2018) resticting their study to high dimension Gaussian vectors, as in Silva et al (2021).
And among others Albert et al (2020) and Yin et al (2019).

When p1 = · · · = pK = 1, it remains to test the independence of the K components of a
vector. In such a case a numerous works attempt to construct efficient statstics, sometimes
based on copulas as in Genest et al (2007), Gonz´alez-Barrios et al (2019), Roy et al (2019),
or Genest et al (2019). Other approaches can be mentioned as in Mao (2018), using high
dimension Kendall’s ta, or mor eercently in Drton et al (2020).

In the general case, when K > 2 and pj > 1, there is very few general works. Certain
restrict ther study to Gaussian vectors, as in Bao et al (2017) or Chen et al (2017), working
on the covariance structure in high dimension. The work who seems to tackle the general
problem is that of Fan et al (2017) where the authors represented the independence hypothesis
through the product of characteristic functions. They deduce a Cramer Von Mises staistic with
null asymptpotic distribution related to a process involving eigenvalues of . In addition their
appraoch necessitates a weight function to calibrate the numerical integration of the Cramer-
Von-Mises statistic. Also the lack of study of alternatives may suggest that such a test could
not always detect departures from the null. However, these authors worked in a very general
setting since they consider continuous as well as discrete or mixed random vectors, which
is outside the scope of our paper, even if we suggest potential extension in the discussion
at the end of the paper. In addition Fan et al (2017) proposed a package "" to use their
approach. Our work is quite similar in spirit to that of Fan et al (2017) but instead of using
the characteristic functions we use copulas. We will see that the resulting results are very
easy to use with a chi-square asymptotic distribution under the null and a convergence of the
test under alternatives. We will then compare numerically our method with that of Fan et al

MSC2020 subject classifications: Primary ???, ???; secondary ???.
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(2017). Finally, we deduce a clustering method which yield to a data driven classification of
populations by depence.

In this paper we restrict our attention to continuous random vectors. According to Sklar’s
theorem, there exists distribution function C(1), · · · ,C(K), and C, with standard uniform
margins, namely copulas, such that for j = 1, · · · ,K

F(j)(x) =C(j)(F
(j)
1 (x1), · · · , F (j)

pj
(xpj

)),(2)

F(i,j)(z) =C(i,j)(F
(i)
1 (z1), · · · , F (i)

pi
(zpi

), F
(j)
1 (zpi+1), · · · , F (j)

pj
(zpi+pj

)),(3)

such that for all ≊ ∈Npi and ≿ ∈Npj ,

C(i,j)(1, · · · ,1,≿) =C(j)(≿) and C(i,j)(≊,1, · · · ,1) =C(i)(≊)

Testing problem (1) can be rewritten as follows

H0 :C
(i,j) =C(i).C(j) versus H1 :C

(i,j) ̸=C(i).C(j)(4)

2. Two sample case . Let X a d
Let set p = p1 + p2. We assume that K = 2 and we observe two iid samples from

X(1),X(2), denoted by

(X
(1)
i,1 , · · · ,X

(1)
i,p )i=1,··· ,n, (X

(2)
i,1 , · · · ,X

(2)
i,p )i=1,··· ,n.

We want to test

H0 :X
(1) ⊥⊥X(2) versus H1 :X

(1)⊥̸⊥X(2).(5)

Let us write X := (X(1),X(2)) = (X
(1)
1 , · · · ,X(1)

p1 ,X
(2)
1 , · · · ,X(2)

p2 ) the p-dimensional
random variable formed by X(1) and X(2).

In the rest of paper we denote any integer vector j= (j1, · · · , jpl+pk
) := (j(l), j(k)) where

j(l) = (j1, · · · , jpl
) and j(k) = (jpl+1, · · · , jpk

)

2.1. Formalism of the test. Write L = {Ln;n ∈ N} the set of shifted Legendre polyno-
mials which are orthonormal with respect to uniform measure µ. From L2 decomposition
(see paper of Denys and Yves), the expression of these copulas above are given by: for all
≊(1) = (u

(1)
1 , · · · , u(1)p1 ) ∈ Ip1 , ≊(2) = (u

(2)
1 , · · · , u(2)p2 ) ∈ Ip2 and ≊= (≊(1),≊(2)) ∈ Ip

C(1)(≊(1)) =
∑

m∈Np

ρmIm(≊(1)) with Im(u(1)) = Im1
(u

(1)
1 ) · · · Imp1

(u(1)p1
),(6)

C(2)(≊(2)) =
∑
k∈Nq

ρkIk(u
(2)) with Ik(≊(2)) = Ik1

(u
(2)
1 ) · · · Ikq

(u(2)p2
),(7)

C(1,2)(≊) =
∑

j∈Np1+p2

ρjIj(w) with Ij(w) = Ij1(u
(1)
1 ) · · · Ijp1 (u

(1)
p1

)Ijp1+1
(u

(2)
1 ) · · · Ijp+q

(u(2)p2
),

where

ρ
(1)
m = E(Lm1

(U
(1)
1 ) · · ·Lmp

(U (1)
p )) with Ui = FXi

(Xi),

ρ
(2)
k = E(Lk1

(U
(2)
1 ) · · ·Lkq

(U (2)
q )) with Vi = FYi

(Yi),

ρj = E(Lj1(U
(1)
1 ) · · ·Ljp1

(U (1)
p1

)Ljp1+1
(U

(2)
1 ) · · ·Ljp1+p2

(U (2)
p2

)),

Ii(t) =

∫ t

0
Li(x)dx,
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Write j= (j(1), j(2)). Then

H0 ⇐⇒CX =C(1).C(2)

⇐⇒ ρj − ρ
(1)
j(1) × ρ

(2)
j(2) = 0 ∀j ∈Np1+p2

REMARK 1. 1. Combinaison of remark ?? and properties of multivariate marginal prob-
ability distribution function implies
• if the first p1 coefficients of j are zero, that is j= (0, · · · ,0, jp1+1, · · · , jp1+p2

) then

ρj = ρ
(2)
k and ρ

(1)
m = 1=⇒ ρj − ρ

(1)

j̃
× ρ

(2)

j̄
= 0

• if the last p2 coefficients of j are zero, that is j= (j1, · · · , jp1
,0, · · · ,0) then

ρj = ρ
(1)
m and ρ

(2)
k = 1=⇒ ρj − ρ

(1)

j̃
× ρ

(2)

j̄
= 0

2. If j is a zero vector, then

ρj − ρ
(1)

j̃
× ρ

(2)

j̄
= 0

3. If only one of the coefficients of j is nonzero, then

ρj − ρ
(1)

j̃
× ρ

(2)

j̄
= 0

Our test procedure is based on the sequences of differences

r
(1,2)
j := ρ̂j − ρ̂

(1)
j(1) × ρ̂

(2)
j(2) for j ∈Np1+p2 ,

where

ρ̂j =
1

n

n∑
i=1

Lj1(Û
(1)
i,1 )× · · · ×Ljp1

(Û
(1)
i,p1

)×Ljp1+1
(Û

(2)
i,1 )× · · · ×Ljp1+p2

(Û
(2)
i,p2

)),

with the convention that r(1,2)j = 0 when j satistify the properties of above remark.
In order to select automatically the number of copula coefficients we consider the L1 norm

of any vector j= (j1, · · · , jp1+p2
) defined by

∥j∥= |j1|+ · · ·+ |jp1+p2
|,

and for any integer d > 1 we write

S(d) = {j ∈Np1+p2 ;∥j∥= d and there exists k ≤ p1 and k′ > p1 such that jk > 0 and jk′ > 0}.
The set S(d) contains all non null integers j= (j1, · · · , jp+q) wich the sum is equal to d and
such that the first p1 element and the last p2 element are different of zero. We will denote
by c(d) =

(
d

d+p1+p2−1

)
−
(

d
d+p1−1

)
−
(

d
d+p2−1

)
the cardinal of S(d) ... and we introduce a

lexicographic order on j ∈ S(d) as follows:

j= (d− 1,0 · · · ,0,1,0, · · · ,0)⇒ ord(j, d) = 1

j= (d− 1,0 · · · ,0,0,1, · · · ,0)⇒ ord(j, d) = 2

...
...

...
...

j= (0, · · · ,0,1,0, · · · ,0,1, d− 2)⇒ ord(j, d) = c(d)− 1

j= (0, · · · ,0,1,0, · · · ,0,0, d− 1)⇒ ord(j, d) = c(d).

For instance,
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• in the univariate case, that is p1 = p2 = 1, with d= 2 we have one possibility: j= (j1, j2) =
(1,1)⇒ ord(j, d) = 1 the cases (0,1) and (1,0) are excluded.

• in the bivariate case, that is p1 = p2 = 2 with d= 2, there is only four possibilities:

j= (j1, j2, j3, j4) = (1,0,1,0)⇒ ord(j, d) = 1

j= (j1, j2, j3, j4) = (1,0,0,1)⇒ ord(j, d) = 2

j= (j1, j2, j3, j4) = (0,1,1,0)⇒ ord(j, d) = 3

j= (j1, j2, j3, j4) = (0,1,0,1)⇒ ord(j, d) = 4.

The cases (2,0,0,0),(0,2,0,0), (0,0,2,0),(0,0,0,2),(1,1,0,0) or (0,0,1,1) are ex-
cluded.

To construct our test statistics, we introduce a series of statistics based on the differences
between their copula coefficients and copula coefficients of the vector Z = (X(1),X(2)) as
follows: for 1≤ k ≤ c(2) we define

T2,k = n
∑

j∈S(2);ord(j,2)≤k

(r
(1,2)
j )2,(8)

and for d > 2 and 1≤ k ≤ c(d),

Td,k = Td−1,c(d−1) + n
∑

j∈S(d);ord(j,d)≤k

(r
(1,2)
j )2.(9)

Clearly all these statistics are embedded since we have for 2≤ k < c(d)

Td,k = Td,k−1 + n(r
(1,2)
j )2Ij∈S(d);Ord(j,d)=k

= n

d−1∑
u=2

∑
j∈S(u)

(r
(1,2)
j )2 +

∑
j∈S(d);ord(j,d)≤k

(r
(1,2)
j )2

 ,

where I denotes the indicator function. It follows that

T2,1 ≤ T2,2 ≤ T2,c(2) ≤ T3,1 ≤ · · · ≤ Td,k ≤ · · · ≤ Td,c(d) ≤ Td+1,1 ≤ · · · .

When d is large it will make it possible to compare high coefficient orders through rj, while
k will permit to visit all the values of j for this given order. To simplify notation we write
such a sequence of statistics as

V
(1,2)
1 = T2,1; V2 = T2,2; · · · V (1,2)

c(2) = T2,c(2); V
(1,2)
c(2)+1 = T3,1 · · ·

By construction, for all integer k > 0 there exists a set H(k)⊂
∞⋃
d=2

S(d) with card(H(k)) =

k and such that

V
(1,2)
k = n

∑
j∈H(k)

(r
(1,2)
j )2,(10)

and we have the following relation: for all k ≥ 1 and j = 1, · · · , c(k+ 1)

V
(1,2)
c(1)+c(2)+···+c(k)+j = Tk+1,j ,

with the convention c(1) = 0.
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Notice that we need to compare all copula coefficients and then to let k tend to infinity
to detect all possible alternatives. However, choosing too large parameters tends to power
dilution of the test. Following ?, we suggest a data driven procedure to select automatically
the number of coefficients to test the hypothesis H0. Namely, we set

(11) D(n) := min
{

argmax
1≤k≤d(n)

(V
(1,2)
k − kqn)

}
,

where qn and d(n) tend to +∞ as n→+∞, kqn being a penalty term which penalizes the
embedded statistics proportionally to the number of copula coefficients used. Finally, the
data-driven test statistic that we use to compare X(1) and X(2) is VD(n) and we consider the
following rate for the number of components in the statistic:

(A) d(n)(7max(p1,p2)−4) = o(qn)

A classical choice for qn is log(n) initially used in ? (see for instance the seminal work of ?).
This choice is convenient to detect smooth alternatives (see Section 4) and will be adopted in
our simulation. Our first result shows that under the null the least penalized statistic will be
selected.

THEOREM 2.1. Let assumption (A) holds. Then, under H0, D(n) converges in Proba-
bility towards 1 as n→+∞.

It is worth noting that under the null, the asymptotic distribution of the statistic V (1,2)
D(n) coin-

cides with the asymptotic distribution of V (1,2)
1 = T

(1,2)
2,1 = n(r

(1,2)
j )2, with j= (j(1), j(2)) =

((1,0, · · · ,0), (1,0, · · · ,0)). In that case we have

r
(1,2)
j = ρ̂j − ρ̂j(1) × ρ̂j(2)

=
1

n

n∑
i=1

(
L1(Û

(1)
i,1 )L1(Û

(2)
i,1 )
)
− 0× 0, since ρj(1) = ρj(2) = 0 following remark 1.

It follows that r(1,2)j is the estimation of kendall’s tau between U
(1)
1 and U

(2)
1 . Under the

null, this coefficient is equal to zero and this is the least penalized statistic which is retained
by the procedure. Asymptotically, the null distribution reduces to that of V (1,2)

1 and is given
below.

THEOREM 2.2. Let assumption (A) holds and assume that j= (1,0, · · · ,0,1,0, · · · ,0).
Then, under H0, V (1,2)

1 =
√
nr

(1,2)
j converges in law towards a central normal distribution

with variance

σ2(1,2) = V

(
L1(U

(1)
1 )L1(U

(2)
1 )

+2
√
3

∫ ∫ (
I(X(1)

1 ≤ x)− F
(1)
1 (x)

)
L1(F

(2)
1 (y))dF (1)(x)dF (2)(y)

+2
√
3

∫ ∫ (
I(X(2)

1 ≤ y)− F
(2)
1 (y)

)
L1(F

(1)
1 (x))dF (1)(x)dF (2)(y)

)
.
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where F (i), i= 1,2 is the cumulative distribution function of X(i)
1 .

In order to normalize the test, write

σ̂2(1,2) =
1

n

n∑
i=1

(
Mi −M

)2
,

with

M =
1

n

n∑
i=1

Mi

where

Mi = L1(Û
(1)
i,1 )L1(Û

(2)
i,1 ) +

2
√
3

n

n∑
k=1

(
I
(
X

(1)
i,1 ≤X

(1)
k,1

)
− Û

(1)
k,1

)
L1(Û

(2)
k,1 )

+
2
√
3

n

n∑
k=1

(
I
(
X

(2)
i,1 ≤X

(2)
k,1

)
− Û

(2)
k,1

)
L1(Û

(1)
k,1 ).

PROPOSITION 1. Under H0 we have the following convergence in probability

σ̂2(1,2))
P−→ σ2(1,2).

We then deduce the limit distribution under the null.

COROLLARY 2.3. Let assumption (A) holds. Then under H0, V (1,2)
D(n)/σ̂

2(1,2) converges
in law towards a chi-squared distribution χ2

1 as n→+∞.

3. The K-sample case. We assume that we observe K iid samples from X(1), · · · ,X(K),
denoted by

(X
(1)
i,1 , · · · ,X

(1)
i,p )i=1,··· ,n, · · · , (X(K)

i,1 , · · · ,X(K)
i,p )i=1,··· ,n.

Our aim is to generalize the two-sample case by considering a series of embedded statis-
tics, each new of them including a new pair of populations to be compared. In this way we
introduce the following set of indexes:

V(K) = {(ℓ,m) ∈N2; 1≤ ℓ <m≤K}.

Clearly V(K) contains v(K) =K(K − 1)/2 elements which represent all the pairs of pop-
ulations that we want to compare and that can be ordered as follows: we write (ℓ,m) <V
(ℓ′,m′) if ℓ < ℓ′, or ℓ= ℓ′ and m<m′, and we denote by rankV(ℓ,m) the associated rank
of (ℓ,m) in V(K). This can be seen as a natural order (left to right and bottom to top) of the
elements of the upper triangle of a (K − 1)× (K − 1) matrix as represented below:

(1,2) (1,3) · · · · · · (1,K)
(2,3) · · · · · · (2,K)

. . .
(K − 1,K)

We see at once that rankV(1,2) = 1, rankV(1,3) = 2 and more generally, for ℓ,m ∈ V(K)
we have

rankV(ℓ,m) =K(l− 1)− l(l+ 1)

2
+m.
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Using the previous two-sample statistics we construct an embedded series of statistics as

V1 = V
(1,2)
D(n)

V2 = V
(1,2)
D(n) + V

(1,3)
D(n)

· · ·

Vv(K) = V
(1,2)
D(n) + · · ·+ V

(K−1,K)
D(n) ,

or equivalently,

Vk =
∑

(ℓ,m)∈V(K);rankV(ℓ,m)≤k

V
(ℓ,m)
D(n) ,

where D(n) is given by (11) and V (ℓ,m) is defined as in (10). We have V1 < · · · < Vv(K).
The first statistic V1 compares the first two populations 1 and 2. The second statistic V2

compares the populations 1 and 2, and, in addition, the populations 1 and 3. And so on. For
each 1< k < v(K), there exists a unique pair (ℓ,m) such that rankV(ℓ,m) = k. To choose
automatically the appropriate number k we introduce the following penalization procedure,
mimicking the Schwarz criteria procedure ?:

s(n) =min

 argmax
1≤k≤v(K)

(
Vk − k

∑
(ℓ,m)∈V(K)

pn(ℓ,m)IrankV(ℓ,m)=k

) ,

where pn(ℓ,m) is a penalty term. In the sequel we consider the penalty term as a function of
the sample sizes, that is pn(ℓ,m) = pn for all ℓ,m= 1, · · · ,K . And since n1 = · · ·= nK = n
we simply write pn = pn. We then obtain

(12) s(n) =min
{

argmax
1≤k≤v(K)

(
Vk − kpn

)}
.

We discuss this choice in Remark 2. We make the following assumption:

(A’) d(n)(7max(p1,··· ,pK)−4) = o(pn)???????????? Attention: les vecteurs n’ont pas la même
taille

The following result shows that under the null, the penalty chooses the first element of V(K)
asymptotically.

THEOREM 3.1. Assume that (A) and (A’) hold. Then under H0, s(n) converges in prob-
ability towards 1 as n→+∞.

COROLLARY 3.2. Assume that (A) and (A’) hold. Then under H0, Vs(n)/σ̂
2(1,2)) con-

verges in law towards a χ2
1 distribution.

Then our final data driven test statistic is given by

V = Vs(n)/σ̂
2(1,2)).(13)

4. Alternative hypotheses. We consider the following series of alternative hypotheses:

H1(1) :X
(1)⊥̸⊥X(2),

and for k > 1:

H1(k) :X
(i) ⊥⊥X(j) for rankV(i, j)< k andX(i)⊥̸⊥X(j) for rankV(i, j) = k,
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with 1< k ≤ v(K). The hypothesis H1(k) means that the ith and jth populations such that
rankV(i, j) = k are the first dependent on each other (in the sense of the order in V(K)).

We make the following assumption:

(B) pn = o(n).

THEOREM 4.1. Assume that (A)-(A’)-(B) hold. Then under H1(k), s(n) converges in
probability towards k, as n→+∞, and V converges to +∞, that is, P(V < ϵ)→ 0, for all
ϵ > 0.

REMARK 2. In the classical smooth test approach ? a standard penalty is qn = pn =
α log(n), which is related to the Schwarz criteria ? as discussed in ?. In practice, the factor α
permits to stabilize the empirical level to be as close as possible to the asymptotic one. Note
also that ? compared this type of Schwarz penalty to the Akaike one where they proposed pn
or qn to be constant. In our simulation we consider the classical choice qn = pn = α log(n),
with an automatic choice of α described in Section ?? which makes it possible to calibrate
the test very simply.

5. Simulation study.

5.1. Two sample.

5.1.1. p1 = 1 and p2 = 1.

5.1.2. p1 = 1 and p2 = 10.

5.1.3. p1 = 5 and p2 = 5.

5.1.4. p1 = 4 and p2 = 7.

5.2. Ten sample.

5.2.1. pi = 1, i= 1, · · · ,10.

5.2.2. p1 = · · ·= p10 = 3.

6. Conclusion.

7. Proof of Theorem 4.1. We give the proof for the case k > 1, the particular case k = 1
being similar. We first show that P(s(n)≥ k) tends to 1. Under H1(k), we have for all k′ < k:

P(s(n)< k)≤ P
(
Vk − kpn ≤ Vk′ − k′pn

)
= 1− P

(
(Vk − Vk′)≥ (k− k′)pn

)
= 1− P

 ∑
k′<rankV(ℓ,m)≤k

V
(ℓ,m)
D(n) ≥ (k− k′)pn


= 1− P

 ∑
k′<rankV(ℓ,m)≤k

n
∑

j∈H(D(n))

(r
(ℓ,m)
j )2 ≥ (k− k′)pn


≤ 1− P

I{rankV(ℓ,m)=k} n
∑

j∈H(D(nℓ,nm))

(r
(ℓ,m)
j )2 ≥ (k− k′)pn
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When rankV(ℓ,m) = k, under H1(k), since X(ℓ) ⊥̸⊥ X(m), there exists j0 such that ρj0 ̸=
ρ
(ℓ)
j0(1)

ρ
(m)
j0(2)

, that is, r(ℓ,m)
j0

̸= 0. We can write

P

I{rankV(ℓ,m)=k}n
∑

j∈H(D(n))

(r
(ℓ,m)
j )2 ≥ (k− k′)pn


≥ P

(
I{rankV(ℓ,m)=k}nIj0∈H(D(n))(r

(ℓ,m)
j0

)2 ≥ (k− k′)pn

)
(14)

and we can decompose r
(ℓ,m)
j0

as follows

r
(ℓ,m)
j0

= (ρ̂j0 − ρj0)−

(
ρ
(m)
j0(2)

(
ρ̂
(ℓ)
j0(1)

− ρ
(ℓ)
j0(1)

)
+ ρ̂

(ℓ)
j0(1)

(
ρ̂
(m)
j0(2)

− ρ
(m)
j0(2)

))
+
(
ρj0 − ρ

(ℓ)
j0(1)

ρ
(m)
j0(2)

)
According to lemma 8, we get

8. Proof.

Proof of Theorem 2.1. We want to show that P(D(n)> 1)→ 0 as n tends to infinity. We
have

P0

(
D(n)> 1

)
= P0

(
∃k ∈ {2, · · · , d(n)} : V (1,2)

k − k qn ≥ V
(1,2)
1 − qn

)
= P0

(
∃k ∈ {2, · · · , d(n)} : V (1,2)

k − V
(1,2)
1 ≥ (k− 1)qn

)
= P0

(
∃k ∈ {2, · · · , d(n)} : n

∑
j∈H∗(k)

(r
(1,2)
j )2 ≥ (k− 1)qn

)
≤ P0

(
n

∑
j∈H∗(d(n))

(r
(1,2)
j )2 ≥ qn

)
,(15)

with H(k) satisfying (10) and where H∗(k) =H(k)\H(1). The last inequality comes from
the fact that if a sum of (k − 1) positive terms, say

∑k
j=2 rj is greater than a constant c,

then necessarily there exists a term rj such that rj > c/(k − 1). The important point here
is that card(H∗(k)) = k − 1, which corresponds to the number of elements of the form
(r

(1,2)
j )2 in the difference V (1,2)

k −V
(1,2)
1 . For simplification of notation, we write H∗ instead

of H∗(d(n)).
Under the null we have ρj = ρ

(1)
j(1)ρ

(2)
j(2) and we can decompose r

(1,2)
j as follows

r
(1,2)
j = ρ̂j − ρ̂

(1)
j(1)ρ̂

(2)
j(2)

= (ρ̂j − ρj)− ρ̂
(1)
j(1)(ρ̂

(2)
j(2) − ρ

(2)
j(2))− ρ

(2)
j(2)(ρ̂

(1)
j(1) − ρ

(1)
j(1)).(16)

We write

ρ̃j =
1

n

n∑
s=1

Lj1(1)(U
(1)
s,1 ) · · ·Ljp1(1)

(U (1)
s,p1

)Ljp1+1(2)(U
(2)
s,1 ) · · ·Ljp1+p2

(2)(U
(2)
s,p2

)

There exists a constant c > 0 such that, for all j ∈H∗,

max(ρj, ρ̂j, ρ̃j)≤ c d(n)p1+p2

max(ρ
(k)
j(k), ρ̂

(k)
j(k), ρ̃

(k)
j(k)))≤ c d(n)pk k = 1,2
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Proof. If j belongs to H∗ =H∗(d(n)) we have ∥j∥ ≤ d(n) and the proof is immediate with
property (?) of Legendre polynomials.

■
Since Lemma ?? holds even if p1 = 0 or p2 = 0 we see at once that

(r
(1,2)
j )2 ≤ 3(ρ̂j − ρj)

2 + 3cd(n)2p1(ρ̂
(2)
j(2) − ρ

(2)
j(2))

2 + 3cd(n)2p2(ρ̂
(1)
j(1) − ρ

(1)
j(1))

2,

that we combine with the standard inequality for positive random variables: P(X+Y > z)≤
P(X > z/2) + P(Y > z/2), to get

P0

(
D(n)> 1

)
≤ P0

(
n
∑
j∈H∗

(ρ̂j − ρj)
2 ≥ qn/4

)
+ P0

(
nd(n)2p2

∑
j∈H∗

(ρ̂1j(1) − ρ1j(1))
2 ≥ qn/8

)
+ P0

(
nd(n)2p1

∑
j∈H∗

(ρ̂2j(2) − ρ2j(2))
2 ≥ qn/8

)
.

For all α> 0,

P(n
∑
j∈H∗

(ρ̂j − ρj)
2 ≥ αqn)→ 0

P(nd(n)2pk

∑
j∈H∗

(ρ̂
(k)
j(k) − ρ

(k)
j(k))

2 ≥ αqn)→ 0, k = 1,2

Proof. Write

Ej = ρ̂j − ρ̃j

Gj = ρ̃j − ρj

Hj = ρ̂j − ρj

Clearly

P(n
∑
j∈H∗

H2
j ≥ αqn)≤ P(n

∑
j∈H∗

2E2
j ≥ αqn) + P(n

∑
j∈H∗

2G2
j ≥ αqn)

We first study the quantity involving Ej.
Applying the mean value theorem to Ej we obtain

|Ej| ≤
1

n

n∑
s=1

 p1∑
i=1

S
(1)
i sup

x
|L′

ji(1)
(x)
∏
u̸=i

Lju(1)(x)|+
p2∑
i=1

S
(2)
i sup

x
|L′

ji(2)
(x)
∏
u̸=i

Lju(2)(x)|


= Ã + B̃.

Obviously we have |Ej|2 ≤ 2Ã2 + 2B̃2 and then

P0

(
n
∑
j∈H∗

(Ej)
2 ≥ αqn/2

)
≤ P0

(
n
∑
j∈H∗

(Ã)2 ≥ αqn/4
)
+ P0

(
n
∑
j∈H∗

(B̃)2 ≥ αqn/4
)
.(17)
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From (??) and (??) (see Appendix ??) there exists a constant c̃ > 0 such that

|Ã| ≤ c̃

p1∑
i=1

S
(1)
i (ji(1)

1/2
∏
u̸=i

ju(1)
5/2)

|B̃| ≤ c̃

p2∑
i=1

S
(2)
i (ji(2)

1/2
∏
u̸=i

ju(2)
5/2).

When j belongs to H∗ =H∗(d(n)) we necessarily have ∥j∥ ≤ d(n). It follows that

P0

(
n
∑
j∈H∗

(Ã)2 ≥ αqn/4
)

≤ P0

(
n
∑
j∈H∗

c̃

p1∑
i=1

p1∑
i′=1

S
(1)
i S

(1)
i′ ji(1)

1/2ji′(2)
1/2
∏
s ̸=i

js(1)
5/2
∏
s′ ̸=i′

j′s(2)
5/2 ≥ αqn/4

)
≤ P0

(
c̃

p1∑
i=1

p1∑
i′=1

nS
(1)
i S

(1)
i′ d(n)5p1−4 ≥ αqn/4

)
,

→ 0 as n→∞,(18)

since for all i = 1, · · · , p1,
√
nS

(1)
i converges in law to a Kolmogorov distribution and

d(n)5p1−3 = o(qn) by (A). In the same way we otain that

P0

(
n
∑
j∈H∗

(B̃)2 ≥ αqn/4
)
→ 0 as n→∞,(19)

and then

P0

(
n
∑
j∈H∗

(Ej)
2 ≥ αqn/2

)
→ 0 as n→∞,(20)

Coming back to (??) we now study the quantity involving Gj. First note that E(Gj) = 0.

Moreover, V(Gj) = V(
p1∏
i=1

Lji(1)(U
(1)
i )

p2∏
i=1

Lji(2)(U
(2)
i ))/n. Then, by Markov inequality we

have

P0

(
n
∑
j∈H∗

(Gj)
2 ≥ αqn/2

)
≤

∑
j∈H∗

V(
p1∏
i=1

Lji(1)(U
(1)
i )

p2∏
i=1

Lji(2)(U
(2)
i ))

αqn/2
.

From (??) (see Appendix ??) there exists a constant c > 0 such that

V
( p1∏
i=1

Lji(1)(U
(1)
i )

p2∏
i=1

Lji(2)(U
(2)
i )
)
≤ c

p1+p2∏
i=1

ji.

It follows that

P0

(
n
∑
j∈H∗

(Gj)
2 ≥ αqn/2

)
≤ cd(n)p1+p2

αqn/2

→ 0 as n→∞,(21)
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and finally

P(n
∑
j∈H∗

H2
j ≤ αqn)→ 0 as n→∞,

■
The proof is complete with Lemma ??.

■

Proof of Theorem 2.2. Let j = (1,0, · · · ,0,1,0, · · · ,0). We have V
(1,2)
1 = T

(1,2)
2,1 =(√

nr
(1,2)
j

)2
and we can decompose

√
nr

(1,2)
j under the null as follows:

√
nr

(1,2)
j =

√
n
(
ρ̂j − ρ̂

(1)
j ρ̂

(2)
j

)
=
√
n

(
1

n
(

n∑
i=1

L1(Û
(1)
i,1 )L1(Û

(2)
i,1 )−m

)
where under the null

m= ρj − ρ
(1)
j ρ

(2)
j = E(L1(U

(1)
i,1 )L1(U

(2)
i,1 ))−E(L1(U

(1)
i,1 ))E(L1(U

(2)
i,1 )) = 0 since ρj = ρ

(1)
j ρ

(2)
j

By Taylor expansion, using the fact that the Legendre polynomials satisfy L′
1 = 2

√
3 and

L′′
1 = 0, we obtain

√
nr

(1,2)
j =

√
n
(∫ ∫

L1(F̂
(1)
1 (x))L1(F̂

(2)
1 (y))dF̂n(x, y)−m

)
=

√
n
(∫ ∫

L1(F
(1)
1 (x))L1(F

(2)
1 (y))dF̂n(x, y)−m

)
+
√
n

∫ ∫
(F̂

(1)
1 (x)− F

(1)
1 (x))2

√
3L1(F

(2)
1 (y))dF (x, y)

+
√
n

∫ ∫
(F̂

(2)
1 (y)− F

(2)
1 (y))2

√
3L1(F

(1)
1 (x))dF (x, y)

+
√
n

∫ ∫
(F̂

(1)
1 (x)− F

(1)
1 (x))2

√
3L1(F

(2)
1 (y))d(F̂n(x, y)− F (x, y))

+
√
n

∫ ∫
(F̂

(2)
1 (y)− F

(2)
1 (y))2

√
3L1(F

(1)
1 (x))d(F̂n(x, y)− F (x, y))

:=
√
n (A1,n +A2,n +A3,n +B1,n +B2,n) .

Since (F̂ − F )(x) =
1

n

n∑
i=1

(
I(Xi ≤ x− F (x)

)
, we can rewrite

A1,n +A2,n +A3,n =
1

n

n∑
i=1

{
L1(F

(1)
1 (X

(1)
1,i )L1(F

(2)
1 (X

(2)
1,i ))−m

+2
√
3

∫ ∫
(I(X(1)

1,i ≤ x)− F
(1)
1 (x))L1(F

(2)
1 (y))dF (x, y)

+2
√
3

∫ ∫
(I(X(2)

1,i ≤ y)− F
(2)
1 (y))L1(F

(1)
1 (x))dF (x, y)

}
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:=
1

n

n∑
i=1

(Z1,i +Z2,i +Z3,i)

:=
1

n

n∑
i=1

Zi

where Zi are iid random variables.
Clearly E(Z1,i) = 0. Since E(I(X(1)

1,i ≤ x)) = F
(1)
1 (x) and E(I(X(2)

1,i ≤ x)) = F
(2)
1 (x), we

also have E(Z2,i) =E(Z3,i) = 0. Moreover, V(Zi)≤∞. By the Central Limit Theorem we
have

√
n (A1,n +A2,n +A3,n)→N (0, σ2(1,2)),

where

σ2(1,2) = V(Zi) =V
(
Z1,i +Z2,i +Z3,i

)
= V

(
L1(U

(1)
1 )L1(U

(2)
1 )

+2
√
3

∫ ∫ (
I(X(1)

1 ≤ x)− F
(1)
1 (x)

)
L1(F

(2)
1 (y))dF (x, y)

+2
√
3

∫ ∫ (
I(X(2)

1 ≤ y)− F
(2)
1 (y)

)
L1(F

(1)
1 (x))dF (x, y)

)
.

We proceed to show that B1,n and B2,n are oP(n
−1/2). We treat only the case of B1,n, since

the case of B2,n is similar by symmetric of reasoning. We can rewrite

√
nB1,n = 2

√
3

∫ ∫
(F̂

(1)
1 (x)− F

(1)
1 (x))L1(F

(2)
1 (y))d(F̂n(x, y)− F (x, y))

=
2
√
3

n

n∑
k=1

∫ ∫ (
(I(X(1)

1,k ≤ x)− F
(1)
1 (x)

)
L1(F

(2)
1 (y))d(F̂n(x, y)− F (x, y))

:=−2
√
3

n

n∑
k=1

(B1,k,n +B2,k,n) ,

where

B1,k,n =
1

n

n∑
i=1

(
1X

(1)
k,1≤X

(1)
i,1

−U
(1)
i,1

)
L1(U

(2)
i,1 )

− 1

n

n∑
i=1

(
1X

(1)
k,1≤X

(1)
i,1

− Û
(1)
i,1

)
L1(Û

(2)
i,1 )

and

(22) B2,k,n =

∫∫ (
1X

(1)
k,1≤x − F

(1)
1 (x)

)
L1

(
F

(2)
1 (y)

)
dF (x, y)

− 1

n

n∑
i=1

(
1X

(1)
k,1≤X

(1)
i,1

−U
(1)
i,1

)
L1(U

(2)
i,1 ).
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For B1,k,n, we have

B1,k,n =
2
√
3

n

n∑
i=1

1X
(1)
k,1≤X

(1)
i,1

(
U

(2)
i,1 − Û

(2)
i,1 )
)
+

2
√
3

n

n∑
i=1

Û
(1)
i,1

(
Û

(2)
i,1 −U

(2)
i,1

)

+
1

n

n∑
i=1

L1(U
(2)
i,1 )

(
Û

(1)
i,1 −U

(1)
i,1

)
.

By Glivenko-Cantelli’s Theorem we obtain

|B1,k,n| ≤ 2
√
3S

(2)
1 + 2

√
3S

(2)
1 +

√
3S

(1)
1 where S

(j)
1 = sup

x
|F̂ (j)

1 (x)− F
(j)
1 (x)|

= oP(1).(23)

We can decompose B2,k,n as follows

B2,k,n =

(
1

n

n∑
i=1

U
(1)
i,1 L1(U

(2)
i,1 )−

∫∫
F

(1)
1 (x)L1

(
F

(2)
1 (y)

)
dF (x, y)

)

+

(∫∫
1X

(1)
k,1≤x

(1)
1
L1

(
F

(2)
1 (y)

)
dF (x, y)− 1

n

n∑
i=1

1X
(1)
k,1≤X

(1)
i,1
L1(U

(2)
i,1 )

)
≡B1

2,k,n +B2
2,k,n.

To deal with B1
2,k,n, we note that

B1
2,k,n =

1

n

n∑
s=1

U
(1)
s,1L1(U

(2)
s,1 )−

∫∫
F

(1)
1 (x)L1

(
F

(2)
1 (y)

)
dF (x, y)

=
1

n

n∑
s=1

U
(1)
s,1L1(U

(2)
s,1 )−E

(
U

(1)
1 L1(U

(2)
1 )
)
.

Since (U
(1)
1,1 ,U

(2)
1,1 ), (U

(1)
2,1 ,U

(2)
2,1 ), · · · , (U

(1)
n,1,U

(2)
n,1) are iid from (U

(1)
1 ,U

(2)
1 ), the Weak Law of

Large Numbers and the Continuous Mapping Theorem show that

B1
2,k,n = oP(1).(24)

For B2
2,k,n, we have

B2
2,k,n =

∫∫
1X

(1)
k,1≤xL1

(
F

(2)
1 (y)

)
dF (x, y)− 1

n

n∑
i=1

1X
(1)
k,1≤X

(1)
i,1
L1(U

(2)
i,1 )

=

∫∫
1F

(1)
1 (X

(1)
k,1)≤F

(1)
1 (x)L1

(
F

(2)
1 (y)

)
dF (x, y)

− 1

n

n∑
i=1

1F
(1)
1 (X

(1)
k,1)≤F

(1)
1 (X

(1)
i,1 )

L1(U
(2)
i,1 )

=

∫ 1

0

∫ 1

0
1U

(1)
k,1≤uL1(v)dC

(1,2)(u, v)− 1

n

n∑
i=1

1U
(1)
k,1≤U

(1)
i,1
L1(U

(2)
i,1 )
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and since U
(1)
i,1 has continuous uniform distribution it follows that

|B2
2,k,n| ≤ sup

t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

1t≤U
(1)
i,1
L1(U

(1)
i,2 )−

∫ 1

0

∫ 1

0
1t≤u

(1)
1
L1(u

(2)
1 )dC(1,2)(u

(1)
1 , u

(2)
1 )

∣∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

1t≤U
(1)
i,1
L1(U

(2)
i,1 )−E

(
1t≤U

(1)
1
L1(U

(2)
1 )
)∣∣∣∣∣

≤ sup
t∈[0,1]

∣∣∣g(t, (U (1)
1,1 ,U

(2)
1,1 ), · · · , (U

(1)
n,1,U

(2)
n,1)
)
−E

(
g
(
t, (U

(1)
1 ,U

(2)
1 )
))∣∣∣

where

g (t, z1, · · · , zn) =
1

n

n∑
k=1

1t≤uk
L1(vk), with zk = (uk, vk) for k = 1, · · · , n.

Observe that for all t ∈ [0,1],

sup
z1,··· ,zn,

z′
i

∣∣g(t, z1, · · · , zn1
)− g(t, z1, · · · , zi−1, z

′
i, zi+1, · · · , zn)

∣∣≤ 2∥L1∥∞
n

=
4
√
3

n
,

that is, if we change the ith variable zi of g while keeping all the others fixed, then the value
of the function does not change by more than 4

√
3/n. Then, by McDiarmid’s Inequality, we

get ∀ϵ > 0

P
(
∀t,
∣∣∣g(t, (U (1)

1,1 ,U
(2)
1,1 ), · · · , (U

(1)
n,1,U

(2)
n,1)
)
−E

(
g
(
t, (U

(1)
1 ,U

(2)
1 )
))∣∣∣≥ ϵ

)
≤ 2e−nϵ2/24 −→

n→∞
0.

It implies that

B2
2,k,n = oP(1),(25)

and we conclude that B1,n = oP(n
−1/2). The same result occurs for B2,n.

Finally, by symmetry we obtain B
(2)
n = oP(n

−1/2), which proves the theorem.
■

Proof of Proposition 1. Let us define

W =
1

n

n∑
i=1

Wi

where

Wi = L1(U
(1)
i,1 )L1(U

(2)
i,1 ) + 2

√
3

∫ ∫ (
I(X(1)

i,1 ≤ x)− F
(1)
1 (x)

)
L1(F

(2)
1 (y))dF (x, y)

+2
√
3

∫ ∫ (
I(X(2)

i,1 ≤ y)− F
(2)
1 (y)

)
L1(F

(1)
1 (x))dF (x, y).

By construction W1,W2, · · · , ,Wn are iid and we have

1

n

n∑
i=1

(
Wi −W

)2 P−→ σ2(1,2)).(26)
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According to Slusky’s Lemma and (26), the proof is completed by showing that

1

n

n∑
i=1

(
Wi,1 −W

)2
− σ̂2(1,2))

P−→ 0.

We have
1

n

n∑
i=1

(
Wi −W

)2
− σ̂2(1,2))

=
1

n

n∑
i=1

(
Wi −W

)2
− 1

n

n∑
i=1

(
Mi −M

)2
=

1

n

n∑
i=1

(
Wi −Mi

)(
Wi +Mi

)
− 1

n

n∑
i=1

(
Wi −Mi

)(
M +W

)

=
1

n

n∑
i=1

(
Wi −Mi

)(
Wi +Mi −M −W

)
.

From (??), there exists a constant κ > 0 such that, for all n > 0 and for all i= 1, · · · , n,

max(|Wi|, |Mi|)≤ κ,

which implies that∣∣∣∣∣ 1n
n∑

i=1

(
Wi −W

)2
− σ̂2(1,2))

∣∣∣∣∣≤ 4κ

n

n∑
i=1

|Wi −Mi| .

It remains to prove that Wi −Mi
P−→ 0. We have

Wi,1 −Mi,1 = Ii,1 + 2
√
3Ii,2 + 2

√
3Ii,3,(27)

where

Ii,1 = L1(U
(1)
i,1 )L1(U

(2)
i,1 )−L1(Û

(1)
i,1 )L1(Û

(2)
i,1 ),

Ii,2 =

∫∫ (
I(X(1)

i,1 ≤ x)− F
(1)
1 (x)

)
L1

(
F

(2)
1 (y)

)
dF (x, y),

− 1

n

n∑
k=1

(
I(X(1)

i,1 ≤X
(1)
k,1)− Û

(1)
k,1

)
L1(Û

(2)
k,1 )

Ii,3 =

∫∫ (
I(X(2)

i,1 ≤ x)− F
(2)
1 (x)

)
L1

(
F

(1)
1 (y)

)
dF (x, y)

− 1

n

n∑
k=1

(
I(X(2)

i,1 ≤X
(2)
k,1)− Û

(2)
k,1

)
L1(Û

(1)
k,1 ).

Since L1(t) =
√
3(2t− 1), we get

Ii,1 = 2
√
3L1(U

(1)
i,1 )
(
U

(2)
i,1 − Û

(2)
1

)
+ 2

√
3L1(Û

(2)
1 )
(
U

(1)
i,1 − Û

(1)
1

)
≤ 6(S

(2)
1 + S

(1)
1 )

= oP(1)

Next, we remark that Ii,2 = B2,k,n, where B2,k,n is defined in (22). Then Ii,2 = oP(1) and

similarly Ii,3 = oP(1). It follows that Wi −Mi
P−→ 0 which completes the proof.

■
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Proof of Corollary 2.3. The proof is immediate.
■

Proof of Theorem 3.1. ■

Proof of Theorem 4.1. We give the proof for the case k > 1, the particular case k = 1
being similar. We first show that P(s(n) ≥ k) tends to 1. Under H1(k), we have for all
k′ < k:

P(s(n)< k)≤ P
(
Vk − kpn ≤ Vk′ − k′pn

)
= 1− P

(
(Vk − Vk′)≥ (k− k′)pn

)
= 1− P

 ∑
k′<rankV(ℓ,m)≤k

V
(ℓ,m)
D(n) ≥ (k− k′)pn


= 1− P

 ∑
k′<rankV(ℓ,m)≤k

n
∑

j∈H(D(n))

(r
(ℓ,m)
j )2 ≥ (k− k′)pn


≤ 1− P

I{rankV(ℓ,m)=k} n
∑

j∈H(D(nℓ,nm))

(r
(ℓ,m)
j )2 ≥ (k− k′)pn


When rankV(ℓ,m) = k, under H1(k), since X(ℓ) ⊥̸⊥ X(m), there exists j0 such that ρj0 ̸=
ρ
(ℓ)
j0(1)

ρ
(m)
j0(2)

, that is, r(ℓ,m)
j0

̸= 0. We can write

P

I{rankV(ℓ,m)=k}n
∑

j∈H(D(n))

(r
(ℓ,m)
j )2 ≥ (k− k′)pn


≥ P

(
I{rankV(ℓ,m)=k}nIj0∈H(D(n))(r

(ℓ,m)
j0

)2 ≥ (k− k′)pn

)
(28)

and we can decompose r
(ℓ,m)
j0

as follows

r
(ℓ,m)
j0

= (ρ̂j0 − ρj0)−

(
ρ
(m)
j0(2)

(
ρ̂
(ℓ)
j0(1)

− ρ
(ℓ)
j0(1)

)
+ ρ̂

(ℓ)
j0(1)

(
ρ̂
(m)
j0(2)

− ρ
(m)
j0(2)

))
+
(
ρj0 − ρ

(ℓ)
j0(1)

ρ
(m)
j0(2)

)
According to lemma 8, we get
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