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abstrat

1. Introduction. The problem we consider in this paper is testing the independence be-
tween continous random vectors with different dimensions More precisely, fork=1,--- | K,

let X(*¥) = (ka), e ,X,()f)) be a pi-dimensional continuous random variable with joint
probability distribution function F(*) and with univariate marginals distribution function de-
noted by Fl(k), e ,F;f). We consider the following hypotheses

(1) Hy: XM 11 X@ 11 oo 1 XE) versus Hy: 34k XOp X0,

When K = 2, there is a large literature for testing independence between two random vec-
tors. We can mention two seminal papers Gieser et al (1997) and Horrell et al (1974). More
recently, Feng et al (2020) who used high dimensional rank statistics as Spearman and
Kendall’ones. Also Berrett et al (2017) where the statistic is based on entropies, Bodnard
et al (2018) resticting their study to high dimension Gaussian vectors, as in Silva et al (2021).
And among others Albert et al (2020) and Yin et al (2019).

When p; = --- = pg =1, it remains to test the independence of the K components of a
vector. In such a case a numerous works attempt to construct efficient statstics, sometimes
based on copulas as in Genest et al (2007), Gonz “alez-Barrios et al (2019), Roy et al (2019),
or Genest et al (2019). Other approaches can be mentioned as in Mao (2018), using high
dimension Kendall’s ta, or mor eercently in Drton et al (2020).

In the general case, when K > 2 and p; > 1, there is very few general works. Certain
restrict ther study to Gaussian vectors, as in Bao et al (2017) or Chen et al (2017), working
on the covariance structure in high dimension. The work who seems to tackle the general
problem is that of Fan et al (2017) where the authors represented the independence hypothesis
through the product of characteristic functions. They deduce a Cramer Von Mises staistic with
null asymptpotic distribution related to a process involving eigenvalues of . In addition their
appraoch necessitates a weight function to calibrate the numerical integration of the Cramer-
Von-Mises statistic. Also the lack of study of alternatives may suggest that such a test could
not always detect departures from the null. However, these authors worked in a very general
setting since they consider continuous as well as discrete or mixed random vectors, which
is outside the scope of our paper, even if we suggest potential extension in the discussion
at the end of the paper. In addition Fan et al (2017) proposed a package "" to use their
approach. Our work is quite similar in spirit to that of Fan et al (2017) but instead of using
the characteristic functions we use copulas. We will see that the resulting results are very
easy to use with a chi-square asymptotic distribution under the null and a convergence of the
test under alternatives. We will then compare numerically our method with that of Fan et al
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(2017). Finally, we deduce a clustering method which yield to a data driven classification of
populations by depence.

In this paper we restrict our attention to continuous random vectors. According to Sklar’s
theorem, there exists distribution function C(!),... C¥) and C, with standard uniform
margins, namely copulas, such that for j =1,--- | K
) F(j)(x) — C(j)(Fl(])(m), e ,F(j)(xpj)),

Pj
3 FO(2) = CE () B () B ) B (),

such that for all = € NP and L € NP5,
ca, . 1, )= C(j)(g) and CO9) (= 1,... 1) = CO(x)

Testing problem (1) can be rewritten as follows

4) Hy: C%) = c®.cU) versus Hy : C) #* c®.cl)

2. Two sample case. Let X ad
Let set p = p; + pa. We assume that K = 2 and we observe two iid samples from
XM X denoted by

(X'(,ll)w" XUy, m(Xi(,Zl)?"' Xy,

7 'y ep > P “Mp
We want to test

(5) Hy: XM 11 X@ versus Hy : X 4 X?),

Let us write X := (X1, X®?)) = (Xl(l),m ,X};P,sz),'-- ,ng)) the p-dimensional
random variable formed by X() and X2,

In the rest of paper we denote any integer vector j = (j1, - , Jp,+p.) := (J({),j(k)) where
J(l) = (jlv e 7jpl) and.](k) - (ij-lv T 7jpk)

2.1. Formalism of the test. Write £ = {L,;n € N} the set of shifted Legendre polyno-
mials which are orthonormal with respect to uniform measure ;. From L? decomposition
(see paper of Denys and Yves), the expression of these copulas above are given by: for all

~1) — (ugl), e ,uz(i)) eI, ~? = (u?)’ e :Uz(a?) €I and = = (1) =@) e ?
COEY) = 3 pmln(®=Y)  with  In(u®) = Ly, (uf) - Ly, (ulD),

meNP
C(@) = 3 ph(u®)  with  Lo(=®) = I, (uf?) - I, (),

keNg

~ . 1 2
clA() = Y pli(w) with IL(w)=1I, @) 1, (L, L @) 4,

JENP1tP2
where

pin = E(Lyn, (U}) -+ L, (UY)) with U = Fy, (Xy),

P =E(Li, (U) - Ly, (UP))  with Vi = Fy, (),

p.] = E(le( 1(1)> e ij (Ulgll))LJm-H (U1(2)) T Ljp1+p2 (Ulgg)))’

(ul?

D2

),



Write j = (j(1),j(2)). Then
Hy <= CcX=cW.c?
= pj— pé(li) X p}?;) =0  VjeNPtP

REMARK 1. 1. Combinaison of remark ?? and properties of multivariate marginal prob-
ability distribution function implies
« if the first p; coefficients of j are zero, thatis j = (0,---,0,jp, 41, ", Jp,+p,) then

() (1) (1) ()_0
b5

pj = and pm’ = 1= p; —

* if the last py coefficients of j are zero, that is j = (]1,-'- . Jp1>0,--+,0) then
1 2
by = o) and o2 =1 = 5 — 0 x o =0

2. If j is a zero vector, then

1 2

P — %F ) ﬁ; '=0
3. If only one of the coefficients of j is nonzero, then
1 2

s =0

Our test procedure is based on the sequences of differences

j(va) = Z)\J "((1)) ’\((2)) fOI'J c Np1+p2

where

S|

i~ r7(1 (1 (2 (2

Py = Zle(Ui(»l)) Koo X Ljpl (Uz(,p)l) x Ljp1+1(Ui(,1)) Ko X Ljp1+p2 (Ui(,pl))v
i=1

with the convention that rJ.(l’z)

In order to select automatically the number of copula coefficients we consider the L' norm
of any vector j = (j1,- -+ , jip,+p,) defined by

= 0 when j satistify the properties of above remark.

3lF= 1] =+ -+ prpas
and for any integer d > 1 we write
S(d) = {j € N ™P2; ||j|| = d and there exists k < p; and k" > p; such that j; > 0 and ji > 0}.

The set S(d) contains all non null integers j = (j1, - - , jp+q) Wich the sum is equal to d and
such that the first p; element and the last 532 element are different of zero. We will denote
by c(d) = (d+p1_‘ip2_1) (d+p1_1) (41p,_1) the cardinal of S(d) ... and we introduce a

lexicographic order on j € S(d) as follows:
j=(d-1,0---,0,1,0,---,0) = ord(j,d) =1
j=(d-1,0---,0,0,1,---,0) = ord(j,d) =2

j=(0,---,0,1,0,---,0,1,d — 2) = ord(j,d) = c(d) — 1
j=(0,---,0,1,0,---,0,0,d — 1) = ord(j,d) = c(d).

For instance,
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* in the univariate case, that is p; = py = 1, with d = 2 we have one possibility: j = (j1,72) =
(1,1) = ord(j,d) =1 the cases (0,1) and (1,0) are excluded.

* in the bivariate case, that is p; = po = 2 with d = 2, there is only four possibilities:
i=(j1,72,73,J4) = (1,0,1,0) = ord(j,d) =1
J=(J1,42,3,4a) = (1,0,0,1) = ord(j,d) =
J=(j1.72,J3,4a) = (0,1,1,0) = ord(j,d) =
J= (1,72, 73,71) = (0,1,0,1) = ord(j,d)

The cases (2,0,0,0),(0,2,0,0), (0,0,2,0),(0,0,0,2),(1,1,0,0) or (0,0,1,1) are ex-
cluded.

To construct our test statistics, we introduce a series of statistics based on the differences
between their copula coefficients and copula coefficients of the vector Z = (X(l),X(Q)) as
follows: for 1 < k < ¢(2) we define

®) Tp=n > 0"
JES(2);0rd(§,2) <k
and for d >2and 1 <k < ¢(d),
©) Tak=Tirecan+n Y. (")
JES(d)ord(i,d)<k

Clearly all these statistics are embedded since we have for 2 < k < ¢(d)

1,2
Tap="Tap—1+ n(rj( ))2Hj65(d);0rd(j,d):k

= ZZ v S @M,

u=2jeS(u) JGS(d),ord( ,d)<k
where I denotes the indicator function. It follows that
Ton <Top<To o) <T31 < <Typ <+ <Tyeay <Tat11 <"

When d is large it will make it possible to compare high coefficient orders through r;, while
k will permit to visit all the values of j for this given order. To simplify notation we write
such a sequence of statistics as

V" =Ty Vo= Thg;- - Vc((lz’)Z) =13 c(2); V((l )2+)1 Tsa-

o0

By construction, for all integer k& > 0 there exists a set H (k) C |J S(d) with card(H(k)) =
d=2

k and such that

(10) v —p Z 1.2
JEH(K
and we have the following relation: forall k> 1and j=1,--- ,c(k+ 1)

(1,2) _
V(1)+c( 2)+telk)+i Tio+1,5,

with the convention ¢(1) = 0.
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Notice that we need to compare all copula coefficients and then to let k tend to infinity
to detect all possible alternatives. However, choosing too large parameters tends to power
dilution of the test. Following ?, we suggest a data driven procedure to select automatically
the number of coefficients to test the hypothesis Hy. Namely, we set

(11) D(n) := min { argmax (Vk(l’Q) —kagn)},
1<k<d(n)

where ¢, and d(n) tend to +o0 as n — 400, kg, being a penalty term which penalizes the
embedded statistics proportionally to the number of copula coefficients used. Finally, the

data-driven test statistic that we use to compare X (1) and X(?) is Vp(n) and we consider the
following rate for the number of components in the statistic:

(&) dn) TP = o)

A classical choice for g, is log(n) initially used in ? (see for instance the seminal work of ?).
This choice is convenient to detect smooth alternatives (see Section 4) and will be adopted in
our simulation. Our first result shows that under the null the least penalized statistic will be
selected.

THEOREM 2.1.  Let assumption (A) holds. Then, under Hy, D(n) converges in Proba-
bility towards 1 as n — +o0.

(1,2)
VD(n)
cides with the asymptotic distribution of ‘/1(1’2) = T2(}1’2) = n(rj(l’z))Q, with j = (j(1),j(2)) =
((1,0,---,0),(1,0,---,0)). In that case we have

It is worth noting that under the null, the asymptotic distribution of the statistic coin-

12) o~ o~ .
i =55~ By % Pica
1 N N
= Z (Ll(Uigll))Ll (Ul@l))) — 0% 0, since pj(1) = pj(2) = 0 following remark 1.
i=1

It follows that r{"*?) is the estimation of kendall’s tau between Ul(l) and UI(Z). Under the
null, this coefficient is equal to zero and this is the least penalized statistic which is retained

by the procedure. Asymptotically, the null distribution reduces to that of V1(1’2) and is given
below.

THEOREM 2.2. Let assumption (A) holds and assume that j = (1,0,---,0,1,0,---,0).

1,2 1,2 . C
Then, under Hy, Vl( 2) \/ﬁrj 2) converges in law towards a central normal distribution
with variance

U%LQy_V<LﬂUFULﬂUFU
+2v8 [ [ (G000 <o) FO@) (R ()P (@)aF D )

+m/ / 1(x? <y) - FP ) L (FP () dF D (2)dF?) <y>> .



where F(*) i = 1,2 is the cumulative distribution function of X Y‘).

In order to normalize the test, write

with

where

PROPOSITION 1. Under Hy we have the following convergence in probability
52(1,2)) — 0%(1,2).
We then deduce the limit distribution under the null.

COROLLARY 2.3. Let assumption (A) holds. Then under Hy, V[()I(j)) /5%(1,2) converges

in law towards a chi-squared distribution X% as n — +oo.
3. The K-sample case. We assume that we observe K iid samples from X(1) ... X(K)
denoted by

1 1 K K
(Xl'(71)7 e >X@'(7p))i:1,-~- My (Xi(,l )7 e 7X1'(’p ))i=1,-~- e

Our aim is to generalize the two-sample case by considering a series of embedded statis-
tics, each new of them including a new pair of populations to be compared. In this way we
introduce the following set of indexes:

V(K)={(,m)eN}1<l<m<K}.

Clearly V(K) contains v(K) = K (K — 1)/2 elements which represent all the pairs of pop-
ulations that we want to compare and that can be ordered as follows: we write (¢,m) <y
(',m’)if £ <, or £ =¢ and m < m’, and we denote by ranky (¢,m) the associated rank
of (¢,m) in V(K). This can be seen as a natural order (left to right and bottom to top) of the
elements of the upper triangle of a (K — 1) x (K — 1) matrix as represented below:

(172) (1’3) ...... (1’[()
(2’3) ...... (Q’K)
(K —1,K)

We see at once that ranky(1,2) = 1,ranky(1,3) = 2 and more generally, for ¢,m € V(K)
we have

w+y

ranky({,m)=K(—1)— 5



Using the previous two-sample statistics we construct an embedded series of statistics as

=i
_1/(12) (1,3)
Va=Vpi + Voin

L 1.2) (K—1,K)

Vo) =Vooy -+ Vpwy

or equivalently,

Vk = Z VD(n) ’

t,m)eV(K);ranky (¢,m)<k

where D(n) is given by (11) and V(Em) ig defined as in (10). We have Vi < -+ < V()
The first statistic V; compares the first two populations 1 and 2. The second statistic V5
compares the populations 1 and 2, and, in addition, the populations 1 and 3. And so on. For
each 1 < k < v(K), there exists a unique pair (¢, m) such that ranky (¢, m) = k. To choose
automatically the appropriate number £ we introduce the following penalization procedure,
mimicking the Schwarz criteria procedure ?:

S(n) = min argmax (Vk —k Z pn(& m)Hrankv(Z,m):k) ’

1sksv(K) (L:m)EV(K)
where p, (¢, m) is a penalty term. In the sequel we consider the penalty term as a function of
the sample sizes, that is p, (¢, m) = py forall ¢, m=1,--- | K. Andsincen; =---=ng =n
we simply write p, = p,. We then obtain
(12) s(n) = min{ argmax (Vk — k:pn) }
1<k<v(K)

We discuss this choice in Remark 2. We make the following assumption:

taille
The following result shows that under the null, the penalty chooses the first element of V(K)
asymptotically.

THEOREM 3.1. Assume that (A) and (A’) hold. Then under Hy, s(n) converges in prob-
ability towards 1 as n — +o0.

COROLLARY 3.2. Assume that (A) and (A’) hold. Then under H, 1/;(11)/62(1, 2)) con-
verges in law towards a x? distribution.

Then our final data driven test statistic is given by

(13) V =V,n)/0%(1,2)).

4. Alternative hypotheses. We consider the following series of alternative hypotheses:
Hy(1): XM g X,
and for k > 1:
Hi(k): XD 11 XY for ranky (i, j) < k and X U XU for ranky (i, j) = k,
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with 1 < k£ < wv(K). The hypothesis H; (k) means that the ith and jth populations such that
ranky(i,j) = k are the first dependent on each other (in the sense of the order in V(K)).
We make the following assumption:

(B) pn = o0(n).

THEOREM 4.1. Assume that (A)-(A’)-(B) hold. Then under H,(k), s(n) converges in
probability towards k, as n — +o00o, and V' converges to +oo, that is, P(V <€) — 0, for all
e> 0.

REMARK 2. In the classical smooth test approach ? a standard penalty is ¢, = p, =
alog(n), which is related to the Schwarz criteria ? as discussed in ?. In practice, the factor o
permits to stabilize the empirical level to be as close as possible to the asymptotic one. Note
also that ? compared this type of Schwarz penalty to the Akaike one where they proposed p,
or ¢y, to be constant. In our simulation we consider the classical choice g, = p, = alog(n),
with an automatic choice of « described in Section ?? which makes it possible to calibrate
the test very simply.

5. Simulation study.

5.1. Two sample.

5.1.1. py=1and p, = 1.
5.1.2. p1 =1 and po = 10.
5.1.3. py=5and py, =5.
5.14. p1=4and ps =17.
5.2. Ten sample.

521. p;=1,i=1,---,10.
522. py=---=prp=3.
6. Conclusion.

7. Proof of Theorem 4.1. We give the proof for the case k£ > 1, the particular case k =1
being similar. We first show that P(s(n) > k) tends to 1. Under H; (k), we have for all &' < k:
P(s(n) <k)<P (Vk — kpn < Vi — k’pn)
=1-P((Vk = Vi) > (k— k')pn)

lm
=1-P > Vi = (k= K )pn

k' <ranky (¢,m)<k

—1-P > Y @) (- K)pa

k' <ranky (£,m)<k jeH(D(n))

<1-P H{rank’v(ﬁ,m):k} n Z (T_j(&m))Q > (k - k/)pn
JEH(D(ne,nm))



9

When ranky (¢, m) = k: under H;(k), since X 1 X (™) there exists jo such that pj, #

p(ez )p( (%) that is, r 7é 0. We can write

l,m
P H{rank\;(é,m):k}n Z (TJ( ))2 > (k - k,)pn
JEH(D(n))
£,m
(14) ZP@gmmwmﬂy%ﬁm wﬂ( U%Nk—ymﬂ
and we can decompose rj(f’m) as follows

em) _~ _ N_ | m) (O _ (0 ~)  (Am) _ (m) L 0 (m)
"% T (p.lo IO.]O) (’Ojo(2) (pjo(l) pj0(1)> +Pj0(1) (Pjo 2) ’Ojo(2))> + (p,lo pjo(l)pjo(2)>
According to lemma 8, we get

8. Proof.

Proof of Theorem 2.1.  'We want to show that P(D(n) > 1) — 0 as n tends to infinity. We
have

Py (D(n) > 1) =Py <3k; €{2,---,d(n)}: Vk(l,Q) kg, > V(l 2) Qn)
B e (2, dm) V) - ) > (k- 1)

= o
Po(e 2 dm}in 3 ()22 (k= 1)gn)
(

JeH (k)

(15)

IN

Po(n b ))22(]71)7

JEH*(d(N))
with H(k) satisfying (10) and where 7*(k) = #H(k)\#(1). The last inequality comes from
the fact that if a sum of (k — 1) positive terms, say 25:2 r; is greater than a constant c,

then necessarily there exists a term r; such that r; > ¢/(k — 1). The important point here
is that card(H*(k)) = k — 1, which corresponds to the number of elements of the form

(rj(l’Q))2 in the difference Vk(m) - V1(1,2). For simplification of notation, we write 7{* instead

of H*(d(n)).

Under the null we have p; = pJg(ll))p%) and we can decompose rj(l’2) as follows
(12) _~ A1) A(2)
T AT hwAe
— (1) (~(2) (2) (2) (~(1) (1)
(16) = (23 = 1) = P30 (P2 ~ Pi2) ~ P2y Picy) ~ Py

We write
¢ ) 1 (2) 2
Z Li,yUsd) Ly U L, a2 (Us) - L, (USR))
There exists a constant ¢ > 0 such that, for all j € H*,
max(py, 75, 75) < ¢ d(n)? 7

k k k
max(pg(lz),'p\ﬁ(lz),f)ﬁ(,z))) <cdn)? k=1,2
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Proof. If j belongs to H* = H*(d(n)) we have ||j|| < d(n) and the proof is immediate with

property (?) of Legendre polynomials.
|

Since Lemma ?? holds even if p; = 0 or po = 0 we see at once that
(1,2)\2 -~ 2 2p1 ((2) (2) 2 2p; (5(1) (1) 2
(rj )7 <3(p; — p3)” + 3ed(n)? (pj(z) - Pj(g)) +3cd(n)™ (Pj(l) - Pj(1)> )
that we combine with the standard inequality for positive random variables: P(X +Y > z) <
P(X >2/2) +P(Y > 2/2), to get
Py (D(n) > 1)
<PBo(n 3 (3 — py)> = 4u/4)

jeH
+Po(nd(n)** > (Piny — pj1))> = 4n/8)
JEH™
+Po(nd(n)* Y (Bi(a) = Fi(z))* = 4n/8)-
JEH™

For all o« > 0,
Pn S (55— py)? = aga) = 0

JEH™*
) k k
JEH™
Proof. Write
Ej = b5 = p;
Gy = pj —pj
H; = p; = p;

Clearly
P(n Z sz > aqp) <P(n Z 2Ej2 > aqp) +P(n Z QGJ? > aqp)
JeH~ JeH~ JjeH~

We first study the quantity involving Ej.
Applying the mean value theorem to £ we obtain

1 n P1 P2
Bl < 30 | 2o s supl2f ) (@) [T Ly @)+ 37 8 sup |2 () [ ] Ly ()
s=1 \i=1 uF#i i=1 uF#i

= A + B.
Obviously we have |Ej|? < 242 + 2B2 and then
(A7) Po(n > (Ej)® > ag./2) <Po(n Y (A)?>agn/4) +Po(n > (B)* > ag./4).

JeH~ jeH~ JeH~
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From (??) and (??) (see Appendix ??) there exists a constant ¢ > 0 such that

|A|<CZS FAORS | FACES)

uF#i
|B| < CZS G2 T u2)).
uF#i
When j belongs to H* = H*(d(n)) we necessarily have ||j|| < d(n). It follows that
Po(n Z (A)? > ag,/4)
jeH*
<Bu(n 3 753000 @ [ T (27> aanf )
jeEH* i=14'=1 s#£i s'#i!
< @30 o nS S g )
i=11v=1
(18) — 0 as n — oo,
since for all . =1,--- ,p1, \/ﬁSi(l) converges in law to a Kolmogorov distribution and
d(n)®"*=3 = 0(gy) by (A). In the same way we otain that
(19) Po(n Y (B)? > agn/4) = 0asn — oo,
jeH
and then
(20) Py(n Z(Ej)2 > aqn/2) — 0 as n— oo,
jeH

Coming back to (??) We now study the quantity involving Gj. First note that E(Gj) = 0.

Moreover, V l_ILJ (U HLJ ) (U; (2 ))) /n. Then, by Markov inequality we
=1

P1 b2
> v ILio i) 1% s
-1

jeH: =1
agn /2

have

Po(n Y (G5)° > aga/2) <

JeH"

From (??) (see Appendix ??) there exists a constant ¢ > 0 such that

p1t+p2

HLJl(l) 1 HLJl(Q) U )§C H Ji-
i1

It follows that
Cd(n)pl +p2

Po(n Z (Gj)2 > aqn/2) < ozqn/2

jeH~

201 — 0 asn — oo,



12

and finally
n Z szgaqn)—>0asn—>oo,
jeH~
|
The proof is complete with Lemma ??.
|

Proof of Theorem 2.2. Let j = (1,0,---,0,1,0,--,0). We have V¥ = T3}* =

2
<\/ﬁrj(1’2)) and we can decompose \/ﬁrj(m) under the null as follows:

(i =5l )
< ZLl NL(OF) ~ m>

where under the null

m=p;— p{ o\ = B(Ly (U Ly (U)) = B(L1(US))E(L1 (ULY) = 0 since pj = pi” i

By Taylor expansion, using the fact that the Legendre polynomials satisfy L} = 21/3 and
L} =0, we obtain

Varitd = / / Ly(F{" (@) Li(F? (9))d () — m)
= vi( [ [ LE @) E? )iF () - m)
i [ [E0 @ - FP@)2vaLE? 0)dF @)
+Vn / / (FP (y) - FP ()2V3L1 (F ) (2))dF (, )
”ﬁ/ / (B (@) = By (@)2vV3La (F? ) d(Fa(,y) — Flx.y))
”ﬁ/ / (B (y) = F{? (9))2VBLy (F{Y (@)d(F(2,y) - F(,y)

= \/ﬁ (Al,n + A2,n + A3,n + Bl,n + BZ,n) .
~ 1 &
Since (F' — F)(z) = — Z <]I(Xi <z-— F(a:)), we can rewrite

n<
=1

1 n
At Ao+ g = EZ{Ll(F(”(Xfi’)LﬂFf”(Xf?)) —m

23 [ [axefl) <o) - PO @)L @)iF )
w2V [ [ax® <y)- <y>>L1<Ff”<w>>dF<x,y>}
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1 n
= Z(Zl,i + Z2i + Z3)
i=1

1 n
I E A
n <
=1
where Z; are iid random variables.

Clearly E(Z1,;) = 0. Since E(I(X{") < 2)) = F{" (z) and E(I(X{? < z)) = F*) (), we

also have E(Z5 ;) = E(Z3,;) = 0. Moreover, V(Z;) < co. By the Central Limit Theorem we
have

V(A + Ag 4+ Az ) — N(0,0%(1,2)),
where

0'2(1, 2) = V(ZZ) = V(Zl,i + ZQVZ' + Zgyl‘)

— V(Llwf”)mwf”)

+2v3 / / )= FV (@) Li(FP () dF (2, y)

+2V3 / / ([I(x? <y) - F1‘2><y>)L1<Ff”<x>>dF<x,y>>.

We proceed to show that By ;, and By ,, are O[p(n_l/ 2). We treat only the case of B ,,, since
the case of By j, is similar by symmetric of reasoning. We can rewrite

ViBin = 23 / / FO @) Ly (2 () d(Fo(w,y) — F(z,9)

- Z / / @(x{) <2) = V@) Li (B ) d(Fu(w,y) — F(a,y)

2v/3
= _T (Blykzn + BZ,IC,?’L) )
k=1
where
5N (1) 2)
1 2
Bren=5 Z; <1X,SISX£}B ~Uia )Ll(Uz‘,l )
1=
1 n
~(1 ~(2
n Z (]IXS{SXE? - Ui(,1)>L1(Ui(,1))
i=1 ' '
and

@ o= [[ (g FO@) L2 @) P @0)

1 n
n D (]lXﬁiSXf,lf - Ui(,ll))Ll(Uﬁ))-
=1
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For B i, we have
Bign = Z]lx“kxm ( 1(21) - A121 ) ZU'L 1 (Ui, Ui(,21)>

1 2)\ (71 1
+ﬁ ZLl(Ui(,l)) (Ui(,l) - Ui(,l)) .
i=1
By Glivenko-Cantelli’s Theorem we obtain
|B1 k| < 2\/§S§2) + 2\/§S§2) + \/5551) where Sfj) = sup \F\l(j) () — Fl(j)(x)\

(23) = op(1).

We can decompose Bs . ,, as follows

< z::Uz(,ll Ly (U 11 // F(2)( ))dF(x,y))

+ (//]IX,SIS:E(IULI (Fl( )( ))dF(:L’ y Z]IX(1)<X(1)L1(UZ(1))>

=1
— nl 2
= BQ,k:,n + BQ,k,n‘

To deal with B%} kn» We note that

1 n
= UL - [[ PO E? W) e)
s=1
1 n
= > v L (U%) - E<U1(1)L1(U1(2))) :
s=1

since (U, U, (05,03, (U, UL)) are iid from (UY,U{?)), the Weak Law of

n,1»~n,1
Large Numbers and the Continuous Mapping Theorem show that

(24) By o =0p(1).

For Bg’ kn»> We have

B%Jg’n _// X(1)< Ll (F( )( ))dF(x y Z]IX(U<X(1)L1(U( ))
N //]lFfl’(X,E%i)<Ff“(x>L1 (A () dF (2, y)

2
_*Z]IF“) X“))<F<”(X“))L1(U( ))
i=1

1 1 n
1
—/0 /0 ﬂU]Sl)SuLl(U)dC(L?)(u,’U) — E E ]lUli,lngi(,ll)Ll(Ui(,?[))
=1



15

(1)

and since U; ;" has continuous uniform distribution it follows that

|322,k,n| < st} Zﬂt<U(1)L1 / / < <1>L1 ))dC(l 2)( (1) u§2))
tef0,1

1 n
S sup 721t<U-(1)L1(Ui(,21)) —E <]1t<U(1>L1(U1(2))>‘
tefo1] | T =t

< sup |g (6 @1,02),, @, 02) —E(g(t, @V, 01))]
t€(0,1]

where
1 n
g(t,z1,-+ ,2n) =— ZﬂtgukLl(Uk), with z, = (ug,vg) fork=1,--- ,n
k=1
Observe that for all ¢ € [0, 1],

2||L 4/3
sup ‘g(tyzl')"'7zn1)_g(t7zla"'7Zi—lazgazi+17"'7zn)‘§ H 1H00: )
2157 3 Zn, n n
z;
that is, if we change the ith variable z; of g while keeping all the others fixed, then the value
of the function does not change by more than 41/3/n. Then, by McDiarmid’s Inequality, we

get Ve >0
(w (g( W v, ,<U7§,1%7U§%)) _E(g(m(Ul(l)’Ul@))))‘ . 6)

<2 e/ ),

n—oo
It implies that
(25) B3 = 02(1),
and we conclude that By ,, = oP(n_l/ 2). The same result occurs for Bo ,,.

(2)

Finally, by symmetry we obtain By, = op(n~'/2), which proves the theorem.

Proof of Proposition 1. Let us define

o

3\*—‘

where

Wi=Li(U) L (US) +2v3 / / (1(xY <2) - FV (@) L1 (FP () dF (2, y)

123 / / (X? <y) - FP () L (FO (@))dF (2, y).

By construction Wy, W, --- |, W, are iid and we have

(26) ii(Wi—W)Qim?(Lz)).
=1
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According to Slusky’s Lemma and (26), the proof is completed by showing that

1 N2
=3 (Waa W) =5%(1,2) 0.
We have
1 — —\2
fxxmfw)fﬁmm
Lt
1 — 2 1 —\2
(e LS ()
n n
i=1 i=1
1 < 1 &
- (Wi—MZ) <WZ+MZ) ——Z(W M)(M+W>
nia et
1 n
_ f§:(wg M)(w’+mf M- wj
n
i=1
From (??), there exists a constant x > 0 such that, foralln >0 and forallt=1,--- ,n,

max(|Wil, [Mi]) < &,
which implies that

1 — — 4K
- Wi—W) —52(1,2)| < 2537 Wi — Myl
2 L) <) Wi

It remains to prove that W; — M; i> 0. We have
27 Wiy — My =11 +2V3L 2+ 2V3I 3,

where

Lin= LU L (US) - L@ L0,

L= / Xﬁ <)~ F{ (@) Lu(F2 () dF (2.3).

Since L (t) = v/3(2t — 1) we get
B = 2VBL ) (0 5 + 2030 (01D~ 50)

<6(5Y + 5
=op(1)
Next, we remark that [; o = By, ,, where By 1, ,, is defined in (22). Then I; » = op(1) and

similarly I; 3 = op(1). It follows that W; — M; 2, 0 which completes the proof.
|
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Proof of Corollary 2.3. The proof is immediate.

Proof of Theorem 3. 1. [ ]

Proof of Theorem 4.1. We give the proof for the case k > 1, the particular case k =1
being similar. We first show that P(s(n) > k) tends to 1. Under H;(k), we have for all
K < k:

P(s(n) <k)<P (Vk —kpn <V — k’pn)
=1-P ((Vk — ka) Z (k — k/)pn)

lm

k' <ranky (£,m)<k

=1-P oo > ") = (k= Kpa

k'<ranky (¢,m)<k jeH(D(n))

lm
<1-P ]I{Tankv(ﬁ,m):k:} n Z (T“]( ))2 > (k - k,)pn
JEH(D(ne,nm))
When ranky(¢,m) = k, under H;(k), since X (©) n X (M) there exists Jjo such that p;, #
O 5m) that is, 5™ # 0. We can write

Pio)Pho(2) o
lm
P H{’/‘ank\; (£;m)=k}T Z (TJ( ))2 > (k - k,)pn
JEH(D(n))
lm
(28) >P (H{ranky(f,m)zk}nﬂjoEH(D(n)) (T§0 )>2 > (k - k/)pn)
and we can decompose rj(f’m) as follows

m) _ o~ [ (0 @ O (Am) _ (m) L ® (m
"o = (o = Pio) (f’j @) (pj (1) f’joa))*ﬂjo(l) (Pjo 2) = P, 2>>>+<% Pio(1)P; <2>>

According to lemma 8, we get
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