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Introduction

Consider a d-random vector X = (X 1 , • • • , X d ) T with joint distribution function H and marginal distribution functions F 1 , • • • , F d , that we assumed to be continuous. According to Sklar's Theorem [START_REF] Sklar | Fonction de répartition dont les marges sont données[END_REF]), there exists a unique d-variate function C such that

H(x 1 , • • • , x d ) = C(F 1 (x 1 ), • • • , F d (x d )).
(1)

The function C is called the copula (function) associated to X. The copula is a joint distribution function on I d = [0, 1] d with uniform margins and satisfying

C(u 1 , • • • , u d ) = H(F -1 1 (u 1 ), • • • , F -1 d (u d ))
, where, for j = 1, • • • , d, F -1 j (u) = inf{x; F j (x) ≥ u}, is the quantile function of F j . Assuming that for j = 1, • • • , d, F j is differentiable, we can express the joint density h of X as

h(x 1 , • • • , x d ) = c (F 1 (x 1 ), • • • , F d (x d )) d j=1 f j (x j ), (2) 
where for j = 1, • • • , d, f j is the marginal density of X j and where

c = ∂ d C ∂x 1 • • • ∂x d , (3) 
is called the copula density of X. Copulas and density copulas have a large spectra of applications as described for instance in [START_REF] Joe | Dependence modeling with copulas[END_REF]. For a general account on copulas, see, e.g. [START_REF] Roger | An introduction to copulas[END_REF]. Several copula families or classes are based on the Sklar's Theorem and have been derived from certain families of multivariate distribution. Various constructions have been proposed, such as, for instance, Archimedean copulas (see [START_REF] Hofert | Archimedean copulas in high dimensions: Estimators and numerical challenges motivated by financial applications[END_REF]), Vines (see [START_REF] Aas | Paircopula constructions of multiple dependence[END_REF]), Elliptical copulas (see [START_REF] Frahm | Elliptical copulas: applicability and limitations[END_REF]) which are simply the distribution functions of componentwise transformed elliptically distributed random vectors, or the Extreme-value copulas (see [START_REF] Gudendorf | Extreme-value copulas[END_REF]) which relies to the copulas of random vectors distributed according to multivariate extreme value distributions.

In this paper we propose a novel copula class called Lancaster copulas. This class is based on the class of distributions satisfying an orthogonality condition involving orthogonal polynomials with respect to their marginal laws. That is the copula of random vectors whose joint distributions are in the class of Lancaster distributions. The reader is referred to Lancaster [START_REF] Ho Lancaster | The structure of bivariate distributions[END_REF][START_REF] Ho Lancaster | Correlations and canonical forms of bivariate distributions[END_REF][START_REF] Oliver | Joint probability distributions in the meixner classes[END_REF]) the synthesis by [START_REF] Efoevi | Problèmes de marges et familles exponentielles naturelles[END_REF][START_REF] Efoévi | Probabilités de lancaster[END_REF] and the characterization by [START_REF] Pommeret | A characterization of lancaster probabilities with margins in a multivariate additive class[END_REF]; [START_REF] Koudou | Theory & methods: A construction of lancaster probabilities with margins in the multidimensional meixner class[END_REF] for more details. To recapitulate this class of Lancaster distributions we generally follow the standard notation in that area, as given by these authors.

If X and Y are two random variables with probability measures µ and ν, and if (P n ) n∈N (respectively (Q n ) n∈N ) is a µ (respectively ν) complete orthonormal basis of polynomials, the the joint density of (X, Y ), says Consider bivariate distributions σ(dx, dy) with margins µ and ν defined on spaces X and Y respectively. Also, we denote by (X, Y ) a random vector with distribution σ. If there exists bi-orthonormal polynomials, (P n ) n∈N and (Q n ) n∈N , associated to µ and ν, respectively, such that

E (P n (X)P k (X)) = δ n,k ; E (Q n (Y )Q k (Y )) = δ n,k and E (P n (X)P k (Y )) = ρ n δ n,k ,
for n, k ≥ 0, then the class of bivariate distributions σ are known as Lancaster probabilities and the sequence ρ n = E (P n (X)P k (Y )) is known as the Lancaster sequence of σ.

These types of distributions are widely used in various areas of probability and statistics. For instance we find them in the literature concerning stationary Markov processes ( see [START_REF] Jakob | Crosscorrelation functions of amplitude-distorted gaussian signals[END_REF], [START_REF] Barrett | An expansion for some second-order probability distributions and its application to noise problems[END_REF]Lampard (1955), Brown (1958), [START_REF] Wong | On polynomial expansions of second-order distributions[END_REF], [START_REF] Wong | The construction of a class of stationary markoff processes[END_REF], etc.) and also in canonical analysis (see [START_REF] Dauxois | Une extension de l'analyse canonique. quelques applications[END_REF]Pousse (1975) andBuja (1990)).

They are also use for disjunctive kriging in geostatistics (see [START_REF] Droesbeke | Méthodes bayésiennes en statistique[END_REF] and the reference given there). There are also a few more recent references: [START_REF] Griffiths | Stochastic processes with orthogonal polynomial eigenfunctions[END_REF] on reversible Markov processes whose proper functions are orthogonal polynomials, [START_REF] Diaconis | Gibbs sampling, exponential families and orthogonal polynomials[END_REF] where new techniques are proposed to calculate convergence speeds to stationary measurement in the context of bivariate Gibbs sampling and where it is shown that these techniques give good results if the target measurements are Lancaster distributions. In the area of discrete probabilities, [START_REF] Diaconis | Exchangeable pairs of bernoulli random variables, krawtchouck polynomials, and ehrenfest urns[END_REF] provide an interpretation of Lancaster probabilities of binomial margins using the generalized Ehrenfest ballot box model and [START_REF] Robert | Orthogonal polynomial kernels and canonical correlations for dirichlet measures[END_REF] for Dirichlet measurements.

The plan of the paper is as follows: Section 2 introduces the Lancaster copula and their densities. Some examples of these functions are presented in 3. Non-parametric estimators are proposed in Section 4. provides an extension to the multivariate case. The proofs and some mathematical and statistical properties are given in Appendix.

Lancaster copulas and their densities

Bivariate case

Let µ and ν be two probability measures on X and Y with density f X and f Y with respect to Lebesgue such that there exists an open set Θ satisfying e θx µ(dx) < ∞ and e θy ν(dy) < ∞, for all θ ∈ Θ, respectively.

Assume that (X, Y ) is a random vector with margins µ and ν and with joint distribution σ. We say that σ is a Lancaster probability with margins µ and ν if it satisfies the following decomposition:

σ(dx, dy) = n∈N ρ n P n (x)Q n (y)µ(dx)ν(dy),
where (P n ) n and (Q k ) k are orthonormal polynomials sequences with respect to µ and ν. Here we assume that µ, ν and σ are absolutely continuous and σ has density h. This yields the expansion,

h(x, y) = f X (x)f Y (y) n∈N ρ n P n (x)Q n (y) (4) 
Identifying this expression ( 12) with (2) from Sklar's Theorem ??, we obtain the Lancaster copula density given by

c(u, v) = n∈N ρ n P n (F - X (u))Q n (F - Y (v)), (5) 
where F -denotes the pseudo inverse of F . By integration, we get the Lancaster copula function as follows

C(u, v) = n∈N ρ n F -1 X (u) 0 P n (x)µ(dx) F -1 Y (v) 0 Q n (y)ν(dy) (6)
Remark 1. The Lancaster copula function ( 6) and the Lancaster copula density function ( 5) are completely specified by their marginal measures and the correlations ρ n between P n (X) and Q n (X). In terms of canonical analysis, the variables P n (X) and Q n (Y ) are the canonical variables. So, is is important to note that this Lancaster sequence (ρ n ) n∈N characterizes the copula and contains the polynomial correlations between all the marginal random variables.

Examples of Lancaster Copulas

Bivariate normal Lancaster copula

Let (X, Y ) ∼ N (0, Σ) follow a bivariate normal distribution with mean vector 0 and covariance Σ = 1 ρ ρ 1 . For n ∈ N, let

H n (x) = (-1) n n! √ 2π exp 1 2 x 2 d dx n exp - 1 2 x 2 , x ∈ R
denote the nth Hermite polynomial. It is well-known that the polynomials {H n : n ∈ N} are orthonormal with respect to the standard normal distribution µ and form a complete orthonormal basis for the Hilbert space L 2 (µ). [START_REF] Ov Sarmanov | Probabilistic properties of bilinear expansions of hermite polynomials[END_REF] consider series expansions of the form

ϕ X,Y (x, y) = ϕ X (x)ϕ Y (y) ∞ n=0 ρ n n! H n (x)H n (y), (x, y) ∈ R 2 (7)
as the Lancaster expansion of (X, Y ) where the sequence of real numbers

(ρ n ) n∈N satisfies ∞ n=0 ρ 2 n < ∞; ϕ X,Y denoted the density function of (X, Y )
and ϕ X , ϕ X their marginal densities. We also denote by Φ the probability distribution function and ϕ -1 the associated quantile function. [START_REF] Ov Sarmanov | Probabilistic properties of bilinear expansions of hermite polynomials[END_REF] proved that for the expansion (7) to be nonnegative, and therefore to be a valid probability density function, it is necessary and sufficient that the sequence (ρ n ) n∈N be the moment sequence of a random variable supported on the interval [-1, 1] and set ρ n = ρ n , if n even 0, otherwise Thereby, the Lancaster copula density associated to (X, Y ) is given by

c(u, v) = ∞ n=0 ρ n n! H n Φ -1 X (u) H n Φ -1 Y (v) , (u, v) ∈ I 2
and its Lancaster copula function is as follows

C(u, v) = n∈N ρ n n! Φ -1 X (u) 0 H n (x)µ(dx) Φ -1 Y (v) 0
H n (y)ν(dy)

Bivariate gamma Lancaster copula

The Lancaster expansion for a bivariate gamma distribution, which was derived by Sarmanov (1970a,b) can be stated as follows (see [START_REF] Kotz | Continuous multivariate distributions[END_REF], page 437 -438). Let α > -1 and for n ∈ N, the classical Laguerre polynomial is defined by

L (α) n (x) = x -α e -x n! d n dx n e -x x n+α = (α + 1) n n! n k=0 (-n) k (α + 1) k x k k! , x > 0 where (α) j = Γ(α+n) Γ(α) = α(α + 1) • • • (α + j -1
) denotes the rising factorial. By standardizing the classical Laguerre polynomial, we obtain the orthonormal version

L (α) n (x) = L (α) n (x)/q k where q 2 k = L (α) n 2 = (α + 1) n n!
Let λ ∈ (0, 1) and let α and β satisfy α ≥ β > 0. Sarmanov (1970a,b) derived for certain bivariate gamma random variables (X, Y ) the joint probability density function,

f XY = f X (x)f Y (y) ∞ n=0 a n L (α-1) n (x)L (β-1) n (y), x, y > 0 where a n = (β) n (α) n 1/2 λ n (8)
The corresponding marginal density functions are

f X (x) = 1 Γ(α) x α-1 exp(-x) and f Y (y) = 1 Γ(β) y β exp(-y),
which we recognize as the density functions of one-dimensional gamma random variables with index parameters α and β respectively. [START_REF] Kotz | Continuous multivariate distributions[END_REF] proved that if α = β then the density function ( 8) reduces to the Kibble-Moran bivariate gamma density function with Corr(X, Y ) = λ and ( 8) represents the Lancaster expansion for (X, Y ). Therefore, the Lancaster copula density associated to the bivariate gamma distribution (X, Y ) as follows

c(u, v) = ∞ n=0 λ n L (α) n F -1 X (u) L (α) n F -1 Y (v) , (u, v) ∈ I 2 , α > 1
and its Lancaster copula function is given by

C(u, v) = n∈N λ n F -1 X (u) 0 L (α) n (x)µ(dx) F -1 Y (v) 0 L (α) n (y)(dy), (u, v) ∈ I 2 , α > 1
where µ is the gamma measure.

Bivariate beta Lancaster copulas

Let considering the triangular bivariate beta distribution (X, Y ) with

σ(dx, dy) = a + b B(a, b) x a-1 y b-1 1 A (x, y) where A = {(x, y) : x, y ≥ 0, x+y ≤ 1, 1 ≤ a, b < ∞}
and B the beta function. This of joint distribution can be found in [START_REF] Buja | Remarks on functional canonical variates, alternating least squares methods and ace[END_REF], page 1049. The marginal distribution of X is β a,b+1 i.e µ(dx) ∝ β a,b+1 (dx) which has the Jacobi polynomials with paramter p = a + b and q = a on the interval (0, 1) as orthogonal polynomials where β is the univariate beta distribution. Similarly, ν(dy) ∝ β a+1,b (dy). Thus, the Lancaster sequence is given by

ρ n = (-1) n √ ab (a + n)(b + n)
and so an explicit expression of ( 5) and ( 6) follows without difficulty. Bivariate quadratic natural exponential families Lancaster proposed a construction of Lancaster distributions associated to natural eponential families.

An estimation procedure

For any positive integer N we can define the following N -th order approximations

c [N ] (u, v) = N n ρ n P n (F -1 X (u))Q n (F -1 Y (v))
and

C [N ] (u, v) = N n ρ n F -1 X (u) 0 P n (x)µ(dx) F -1 Y (v) 0 Q n (y)ν(dy) If we observe an m-sample (X 1 , Y 1 ), • • • , (X m , Y m )
, of iid random data, having joint distribution function F XY and joint density f XY of (X, Y ), we can estimate the ρ n by

ρ n = 1 m m i=1 P n (X i )Q n (Y i ).
Therefore, a N -th order non-parametric estimator of the Lancaster copula density c is given by

c [N ] (u, v) = N n ρ n P n ( F -1 X (u))Q n ( F -1 Y (v)) (9) 
where F -1 Z is the empirical quantile estimation of the random variable Z. By integration, we get a non-parametric estimator of the Lancaster copula function as follows

C [N ] (u, v) = N n ρ n F -1 X (u) 0 P n (x)µ(dx) F -1 Y (v) 0 Q n (y)ν(dy) (10) 
Remark 1.

• Marginal quantiles can be estimate through kernel method in the following way

F -1 Z (t) = inf{z : F Z (z) ≥ t} with F Z (z) = 1 m m i=1 K( z -Z i h m )
where k is a kernel on R, that is, a symmetric density function, K(z) = z -∞ k(s)ds and h m is a sequence of strictly positive smoothing parameter which controls the smoothness of the estimator, with lim m→∞ h m = 0 and lim m→∞ mh m = ∞.

• The estimator of C and c have the same simple form whether the margins are known or not.

Properties of such estmators are summarized in Appendix. In particular, we have a truncation parameter selection, asymptotic properties and minimax results in the bi-orthogonal case.

Multivariate extensions

To extend the definition of the Lancaster copula in multivariate case, we introduce the following multivariate notations. Given

x = (x 1 , • • • , x d ) ∈ R d and n = (n 1 , • • • , n d ) ∈ N d , we write x n = x n 1 1 × • • • × x n d
d and we call the integer |n| = n 1 + • • • + n d the order of n. A |n|th degree polynomial, say P n , has the following form

P n (x) = k∈N d |k|≤|n| α k x k ,
where at least one real α k is non null for |k| = |n|. Let X and Y be two random variables on R d with probability measures µ and ν respectively. Let (P n ) n∈N d and (Q n ) n∈N d be two basis of orthonormal polynomials with respect to the distributions of X and Y , respectively.

Here and subsequently, P n and Q n denote the polynomials of the |n|th and |k|th degrees.

The joint distribution σ is called a Lancaster probability if

E (P n (X)Q k (Y )) vanishes for n ̸ = k.
that is

P n (x)Q k (Y )σ(dx, dy) = ρ n δ n,k
where δ nk is the Kronecker's delta and σ the joint distribution of (X, Y ). ρ n is called a Lancaster sequence. It is well known that the joint probability measure σ has a polynomial expansion under the condition that a belongs to the Hilbert space L 2 (µ ν). Then we can write

σ(dx, dy) = n∈N d ρ n P n (x)Q n (y)µ(dx)ν(dy) (11) 
We assume that µ, ν and σ are absolutely continuous with respect to Lebesgue measure and we denote their corresponding probability density functions by f X ,f Y and f XY respectively. This yields the expansion,

f XY (x, y) = f X (x)f Y (y) n∈N d ρ n P n (x)Q n (y) (12) 
Identifying ( 2) and ( 12) we obtain the relation

c(u, v) = n∈N d ρ n P n F -1 X (u) Q n F -1 Y (v) , (13) 
where

u = (u 1 , • • • , u d ), v = (v 1 , • • • , v d ) ∈ I d = [0, 1] d and F -1 Z (z) = (F -1 Z 1 (z 1 ), • • • , F -1 Z d (z d ))
We deduce an expression of the copula C, as follows The lancaster copula density can be approximated by the following truncated sum

C(u, v)) = n∈N d ρ n F -1 X 1 (u 1 ) 0 • • • F -1 X d (u d ) 0 P n (x)µ(dx) F -1 Y 1 (v 1 ) 0 • • • F -1 Y d (v d ) 0 Q n (
c [N ] (u, v) = |n|≤N ρ n P n F -1 X (u) Q n F -1 Y (v) ,
where N is an arbitrary integer. The square norm of the error of such approximation can be easily expressing using the orthogonality of the polynomials. We obtain

(c -c [N ] ) 2 (dx, dy) = |n|>N ρ 2 n .
We can also the estimate the Lancaster sequence ρ n by the following empirical correlations

ρ n = 1 m m i=1 P n (X(i)) Q n (Y (i)) .
Hence, we get the following unbiased estimation of c c [N ] (u, v)

= |n|≤N ρ n P n F -1 X (u) Q n F -1 Y (v) ,
The same reasoning makes it possible to obtain an analog result for the Lancaster copula function. All properties in bivariate case can also be extended in the multivariate case.

Discussion

  y)ν(dy)5.1. EstimationLet assume ((X(1),Y (1)) , • • • , ((X(m), Y (m)) are i.i.d with Lancaster distribution such that ((X(k), Y (k)) are distributed as (X, Y ). X(k) denote the vector (X 1 (k), • • • , X d (k)) and Y (k) denote the vector (Y 1 (k), • • • , Y d (k)).