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Lancaster copulas

Angelo Koudou, Yves Ngounou, Denys Pommeret

Abstract

This paper introduces a new class of copulas called Lancaster copula based on
the orthogonal expansion of continuous Lancaster probability measures. We
also define the associated densiy. We derive their estimators and investigate
the asymptotic properties and performances. Monte Carlo simulation and
real data are studied.

Keywords: Copula, Lancaster distributions, Maxiset theory, Minimax
theory, Non-parametric estimation, Orthogonal polynomials

1. Introduction

Consider a d-random vector X = (X1, · · · , Xd)
T with joint distribution

function H and marginal distribution functions F1, · · · , Fd, that we assumed
to be continuous. According to Sklar’s Theorem (Sklar (1959)), there exists
a unique d-variate function C such that

H(x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)). (1)

The function C is called the copula (function) associated to X. The copula
is a joint distribution function on Id = [0, 1]d with uniform margins and sat-
isfying C(u1, · · · , ud) = H(F−1

1 (u1), · · · , F−1
d (ud)), where, for j = 1, · · · , d,

F−1
j (u) = inf{x;Fj(x) ≥ u}, is the quantile function of Fj. Assuming that

for j = 1, · · · , d, Fj is differentiable, we can express the joint density h of X
as

h(x1, · · · , xd) = c (F1(x1), · · · , Fd(xd))
d∏

j=1

fj(xj), (2)

where for j = 1, · · · , d, fj is the marginal density of Xj and where

c =
∂dC

∂x1 · · · ∂xd

, (3)
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is called the copula density of X. Copulas and density copulas have a large
spectra of applications as described for instance in Joe (2014). For a general
account on copulas, see, e.g. Nelsen (2007). Several copula families or classes
are based on the Sklar’s Theorem and have been derived from certain families
of multivariate distribution. Various constructions have been proposed, such
as, for instance, Archimedean copulas (see Hofert et al. (2013)), Vines (see
Aas et al. (2009)), Elliptical copulas (see Frahm et al. (2003)) which are
simply the distribution functions of componentwise transformed elliptically
distributed random vectors, or the Extreme-value copulas (see Gudendorf
and Segers (2010)) which relies to the copulas of random vectors distributed
according to multivariate extreme value distributions.

In this paper we propose a novel copula class called Lancaster copulas.
This class is based on the class of distributions satisfying an orthogonality
condition involving orthogonal polynomials with respect to their marginal
laws. That is the copula of random vectors whose joint distributions are
in the class of Lancaster distributions. The reader is referred to Lancaster
(Lancaster (1958, 1963, 1975)) the synthesis by Koudou (1995, 1996) and
the characterization by Pommeret (2004); Koudou and Pommeret (2000)
for more details. To recapitulate this class of Lancaster distributions we
generally follow the standard notation in that area, as given by these authors.

If X and Y are two random variables with probability measures µ and
ν, and if (Pn)n∈N (respectively (Qn)n∈N) is a µ (respectively ν) complete
orthonormal basis of polynomials, the the joint density of (X, Y ), says

Consider bivariate distributions σ(dx, dy) with margins µ and ν defined
on spaces X and Y respectively. Also, we denote by (X, Y ) a random vector
with distribution σ. If there exists bi-orthonormal polynomials, (Pn)n∈N and
(Qn)n∈N, associated to µ and ν, respectively, such that

E (Pn(X)Pk(X)) = δn,k;E (Qn(Y )Qk(Y )) = δn,k and E (Pn(X)Pk(Y )) = ρnδn,k,

for n, k ≥ 0, then the class of bivariate distributions σ are known as Lan-
caster probabilities and the sequence ρn = E (Pn(X)Pk(Y )) is known as the
Lancaster sequence of σ.

These types of distributions are widely used in various areas of proba-
bility and statistics. For instance we find them in the literature concerning
stationary Markov processes ( see Bussgang (1952), Barrett and Lampard
(1955), Brown (1958), Wong and Thomas (1962), Wong (1964), etc.) and
also in canonical analysis (see Dauxois and Pousse (1975) andBuja (1990)).
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They are also use for disjunctive kriging in geostatistics (see Droesbeke et al.
(2002) and the reference given there). There are also a few more recent ref-
erences: Griffiths (2009) on reversible Markov processes whose proper func-
tions are orthogonal polynomials, Diaconis et al. (2008) where new techniques
are proposed to calculate convergence speeds to stationary measurement in
the context of bivariate Gibbs sampling and where it is shown that these
techniques give good results if the target measurements are Lancaster distri-
butions. In the area of discrete probabilities, Diaconis and Griffiths (2012)
provide an interpretation of Lancaster probabilities of binomial margins us-
ing the generalized Ehrenfest ballot box model and (Griffiths and Spanò,
2013) for Dirichlet measurements.

The plan of the paper is as follows: Section 2 introduces the Lancaster
copula and their densities. Some examples of these functions are presented
in 3. Non-parametric estimators are proposed in Section 4. provides an
extension to the multivariate case. The proofs and some mathematical and
statistical properties are given in Appendix.

2. Lancaster copulas and their densities

2.1. Bivariate case

Let µ and ν be two probability measures on X and Y with density fX
and fY with respect to Lebesgue such that there exists an open set Θ sat-

isfying

∫
eθxµ(dx) < ∞ and

∫
eθyν(dy) < ∞, for all θ ∈ Θ, respectively.

Assume that (X, Y ) is a random vector with margins µ and ν and with joint
distribution σ. We say that σ is a Lancaster probability with margins µ and
ν if it satisfies the following decomposition:

σ(dx, dy) =
∑
n∈N

ρnPn(x)Qn(y)µ(dx)ν(dy),

where (Pn)n and (Qk)k are orthonormal polynomials sequences with respect
to µ and ν. Here we assume that µ, ν and σ are absolutely continuous and
σ has density h. This yields the expansion,

h(x, y) = fX(x)fY (y)
∑
n∈N

ρnPn(x)Qn(y) (4)
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Identifying this expression (12) with (2) from Sklar’s Theorem ??, we
obtain the Lancaster copula density given by

c(u, v) =
∑
n∈N

ρnPn(F
−
X (u))Qn(F

−
Y (v)), (5)

where F− denotes the pseudo inverse of F . By integration, we get the Lan-
caster copula function as follows

C(u, v) =
∑
n∈N

ρn

∫ F−1
X (u)

0

Pn(x)µ(dx)

∫ F−1
Y (v)

0

Qn(y)ν(dy) (6)

Remark 1. The Lancaster copula function (6) and the Lancaster copula
density function (5) are completely specified by their marginal measures and
the correlations ρn between Pn(X) and Qn(X). In terms of canonical anal-
ysis, the variables Pn(X) and Qn(Y ) are the canonical variables. So, is is
important to note that this Lancaster sequence (ρn)n∈N characterizes the cop-
ula and contains the polynomial correlations between all the marginal random
variables.

3. Examples of Lancaster Copulas

3.1. Bivariate normal Lancaster copula

Let (X, Y ) ∼ N (0,Σ) follow a bivariate normal distribution with mean

vector 0 and covariance Σ =

(
1 ρ
ρ 1

)
. For n ∈ N, let

Hn(x) =
(−1)n√
n!
√
2π

exp
1

2
x2

(
d

dx

)n

exp−1

2
x2, x ∈ R

denote the nth Hermite polynomial. It is well-known that the polynomials
{Hn : n ∈ N} are orthonormal with respect to the standard normal distribu-
tion µ and form a complete orthonormal basis for the Hilbert space L2(µ).
Sarmanov and Bratoeva (1967) consider series expansions of the form

ϕX,Y (x, y) = ϕX(x)ϕY (y)
∞∑
n=0

ρn
n!

Hn(x)Hn(y), (x, y) ∈ R2 (7)
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as the Lancaster expansion of (X, Y ) where the sequence of real numbers

(ρn)n∈N satisfies
∞∑
n=0

ρ2n < ∞; ϕX,Y denoted the density function of (X, Y )

and ϕX , ϕX their marginal densities. We also denote by Φ the probability
distribution function and ϕ−1 the associated quantile function. Sarmanov
and Bratoeva (1967) proved that for the expansion (7) to be nonnegative,
and therefore to be a valid probability density function, it is necessary and
sufficient that the sequence (ρn)n∈N be the moment sequence of a random

variable supported on the interval [−1, 1] and set ρn =

{
ρn, if n even

0, otherwise

Thereby, the Lancaster copula density associated to (X, Y ) is given by

c(u, v) =
∞∑
n=0

ρn

n!
Hn

(
Φ−1

X (u)
)
Hn

(
Φ−1

Y (v)
)
, (u, v) ∈ I2

and its Lancaster copula function is as follows

C(u, v) =
∑
n∈N

ρn

n!

∫ Φ−1
X (u)

0

Hn(x)µ(dx)

∫ Φ−1
Y (v)

0

Hn(y)ν(dy)

3.2. Bivariate gamma Lancaster copula

The Lancaster expansion for a bivariate gamma distribution, which was
derived by Sarmanov (1970a,b) can be stated as follows (see Kotz et al.
(2004), page 437 − 438). Let α > −1 and for n ∈ N, the classical Laguerre
polynomial is defined by

L̃(α)
n (x) =

x−αe−x

n!

dn

dxn

(
e−xxn+α

)
=

(α + 1)n
n!

n∑
k=0

(−n)k
(α + 1)k

xk

k!
, x > 0

where (α)j =
Γ(α+n)
Γ(α)

= α(α+1) · · · (α+j−1) denotes the rising factorial. By
standardizing the classical Laguerre polynomial, we obtain the orthonormal
version

L(α)
n (x) = L̃(α)

n (x)/qk where q2k = L̃(α)
n

2 =
(α + 1)n

n!
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Let λ ∈ (0, 1) and let α and β satisfy α ≥ β > 0. Sarmanov (1970a,b)
derived for certain bivariate gamma random variables (X, Y ) the joint prob-
ability density function,

fXY = fX(x)fY (y)
∞∑
n=0

anL(α−1)
n (x)L(β−1)

n (y), x, y > 0 where an =

(
(β)n
(α)n

)1/2

λn (8)

The corresponding marginal density functions are

fX(x) =
1

Γ(α)
xα−1 exp(−x) and fY (y) =

1

Γ(β)
yβ exp(−y),

which we recognize as the density functions of one-dimensional gamma ran-
dom variables with index parameters α and β respectively. Kotz et al. (2004)
proved that if α = β then the density function (8) reduces to the Kibble-
Moran bivariate gamma density function with Corr(X, Y ) = λ and (8) rep-
resents the Lancaster expansion for (X, Y ). Therefore, the Lancaster copula
density associated to the bivariate gamma distribution (X, Y ) as follows

c(u, v) =
∞∑
n=0

λnL(α)
n

(
F−1
X (u)

)
L(α)

n

(
F−1
Y (v)

)
, (u, v) ∈ I2, α > 1

and its Lancaster copula function is given by

C(u, v) =
∑
n∈N

λn

∫ F−1
X (u)

0

L(α)
n (x)µ(dx)

∫ F−1
Y (v)

0

L(α)
n (y)(dy), (u, v) ∈ I2, α > 1

where µ is the gamma measure.

3.3. Bivariate beta Lancaster copulas

Let considering the triangular bivariate beta distribution (X, Y ) with

σ(dx, dy) =
a+ b

B(a, b)
xa−1yb−11A(x, y) where A = {(x, y) : x, y ≥ 0, x+y ≤ 1, 1 ≤ a, b < ∞}

and B the beta function. This of joint distribution can be found in Buja
(1990), page 1049.

The marginal distribution of X is βa,b+1 i.e µ(dx) ∝ βa,b+1(dx) which has
the Jacobi polynomials with paramter p = a + b and q = a on the interval
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(0, 1) as orthogonal polynomials where β is the univariate beta distribution.
Similarly, ν(dy) ∝ βa+1,b(dy). Thus, the Lancaster sequence is given by

ρn =
(−1)n

√
ab√

(a+ n)(b+ n)

and so an explicit expression of (5) and (6) follows without difficulty. Bivari-
ate quadratic natural exponential families

Lancaster proposed a construction of Lancaster distributions associated
to natural eponential families.

4. An estimation procedure

For any positive integer N we can define the following N−th order ap-
proximations

c[N ](u, v) =
N∑
n

ρnPn(F
−1
X (u))Qn(F

−1
Y (v))

and

C [N ](u, v) =
N∑
n

ρn

∫ F−1
X (u)

0

Pn(x)µ(dx)

∫ F−1
Y (v)

0

Qn(y)ν(dy)

If we observe an m-sample (X1, Y1), · · · , (Xm, Ym), of iid random data,
having joint distribution function FXY and joint density fXY of (X, Y ), we
can estimate the ρn by

ρ̂n =
1

m

m∑
i=1

Pn(Xi)Qn(Yi).

Therefore, a N -th order non-parametric estimator of the Lancaster copula
density c is given by

ĉ[N ](u, v) =
N∑
n

ρ̂nPn(F̂
−1
X (u))Qn(F̂

−1
Y (v)) (9)
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where F̂−1
Z is the empirical quantile estimation of the random variable Z.

By integration, we get a non-parametric estimator of the Lancaster copula
function as follows

Ĉ [N ](u, v) =
N∑
n

ρ̂n

∫ F̂−1
X (u)

0

Pn(x)µ(dx)

∫ F̂−1
Y (v)

0

Qn(y)ν(dy) (10)

Remark 1. • Marginal quantiles can be estimate through kernel method
in the following way

F̂−1
Z (t) = inf{z : F̂Z(z) ≥ t} with F̂Z(z) =

1

m

m∑
i=1

K(
z − Zi

hm

)

where k is a kernel on R, that is, a symmetric density function, K(z) =∫ z

−∞ k(s)ds and hm is a sequence of strictly positive smoothing param-
eter which controls the smoothness of the estimator, with lim

m→∞
hm = 0

and limm→∞mhm = ∞.

• The estimator of C and c have the same simple form whether the mar-
gins are known or not.

Properties of such estmators are summarized in Appendix. In partic-
ular, we have a truncation parameter selection, asymptotic properties and
minimax results in the bi-orthogonal case.

5. Multivariate extensions

To extend the definition of the Lancaster copula in multivariate case, we
introduce the following multivariate notations. Given x = (x1, · · · , xd) ∈ Rd

and n = (n1, · · · , nd) ∈ Nd, we write xn = xn1
1 × · · · × xnd

d and we call the
integer |n| = n1+ · · ·+nd the order of n. A |n|th degree polynomial, say Pn,
has the following form

Pn(x) =
∑
k∈Nd

|k|≤|n|

αkx
k,

where at least one real αk is non null for |k| = |n|. Let X and Y be two
random variables on Rd with probability measures µ and ν respectively. Let
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(Pn)n∈Nd and (Qn)n∈Nd be two basis of orthonormal polynomials with respect
to the distributions of X and Y , respectively.

Here and subsequently, Pn and Qn denote the polynomials of the |n|th
and |k|th degrees.

The joint distribution σ is called a Lancaster probability if

E (Pn(X)Qk(Y )) vanishes for n ̸= k.

that is ∫
Pn(x)Qk(Y )σ(dx, dy) = ρnδn,k

where δnk is the Kronecker’s delta and σ the joint distribution of (X,Y ).
ρn is called a Lancaster sequence. It is well known that the joint probability
measure σ has a polynomial expansion under the condition that a belongs to
the Hilbert space L2(µ

⊗
ν). Then we can write

σ(dx, dy) =
∑
n∈Nd

ρnPn(x)Qn(y)µ(dx)ν(dy) (11)

We assume that µ, ν and σ are absolutely continuous with respect to Lebesgue
measure and we denote their corresponding probability density functions by
fX ,fY and fXY respectively. This yields the expansion,

fXY (x, y) = fX(x)fY (y)
∑
n∈Nd

ρnPn(x)Qn(y) (12)

Identifying (2) and (12) we obtain the relation

c(u,v) =
∑
n∈Nd

ρnPn

(
F−1

X (u)
)
Qn

(
F−1
Y (v)

)
, (13)

where u = (u1, · · · , ud),v = (v1, · · · , vd) ∈ Id = [0, 1]d and F−1
Z (z) =

(F−1
Z1

(z1), · · · ,F−1
Zd

(zd))
We deduce an expression of the copula C, as follows

C(u,v)) =
∑
n∈Nd

ρn

(∫ F−1
X1

(u1)

0

· · ·
∫ F−1

Xd
(ud)

0

Pn(x)µ(dx)

)(∫ F−1
Y1

(v1)

0

· · ·
∫ F−1

Yd
(vd)

0

Qn(y)ν(dy)

)
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5.1. Estimation

Let assume ((X(1), Y (1)) , · · · , ((X(m), Y (m)) are i.i.d with Lancaster
distribution such that ((X(k), Y (k)) are distributed as (X,Y ). X(k) denote
the vector (X1(k), · · · , Xd(k)) and Y (k) denote the vector (Y1(k), · · · , Yd(k)).

The lancaster copula density can be approximated by the following trun-
cated sum

c[N ](u,v) =
∑
|n|≤N

ρnPn

(
F−1

X (u)
)
Qn

(
F−1
Y (v)

)
,

where N is an arbitrary integer. The square norm of the error of such approx-
imation can be easily expressing using the orthogonality of the polynomials.
We obtain ∫

(c− c[N ])2(dx, dy) =
∑
|n|>N

ρ2n.

We can also the estimate the Lancaster sequence ρn by the following empirical
correlations

ρ̂n =
1

m

m∑
i=1

Pn (X(i))Qn (Y (i)) .

Hence, we get the following unbiased estimation of c

ĉ[N ](u,v) =
∑
|n|≤N

ρ̂nPn

(
F−1

X (u)
)
Qn

(
F−1
Y (v)

)
,

The same reasoning makes it possible to obtain an analog result for the Lan-
caster copula function. All properties in bivariate case can also be extended
in the multivariate case.

6. Discussion
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