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Abstract. We provide a justification, via the thermodynamic limit, of the modular formula for entropy production
in two-times measurement proposed in [BBJ*23]. We consider the cases of open quantum systems in which all
thermal reservoirs are either (discrete) quantum spin systems or free Fermi gases.
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1 Introduction

This work is a direct continuation of [BBJ723], and we assume that the reader is familiar with the
conceptual framework, notation, and results of this reference.

Let (O, 7, w) be a modular C*-dynamical system satisfying the regularity assumptions (Reg1) and (Reg2)
of [BBJT23]. Then, by Theorem 1.3 in this reference, for all v € N, ¢t € R and « € iR, the limit

1 R
si(@) == lim — 9 ([Dw_; : Dwly) ) dé 1.1
uste) = fim & [ v (& (1Dunr s D) (L.

R—o00

exists, and there exists unique Borel probability measure (), ; on R such that
Sui(@) = / e M dQu(s). (1.2)
R

The family (Q,+);cr describes the statistics of the two-times measurement entropy production! of
(O, 7,w) with respect to v. We recall that A denotes the set of all w-normal states on O, g, is the
modular group of w, w; = wo 7!, and [Dw_; : Dw],, is the Connes cocycle of the pair of states (w_¢, w).

In the special case of a finite quantum system, (), ; is indeed the law of the entropy production of the
system as defined by the two-times measurement protocol of the entropic observable — log w, assuming
that at the instant of the first measurement the system was in the state v; see Section 1.3 in [BBJT23].
The formulas (1.1)—(1.2) arise through the customary route of modular generalization. As repeatedly
emphasized in [BBJ 23], this generalization requires the underlying thermodynamic limit? to be justified
on solid physical grounds. In this work, we carry out this justification for two paradigmatic classes

! Abbreviated 2TMEP in the sequel.
2In the sequel abbreviated TDL.



On thermodynamic limit of two-times measurement entropy production

of open quantum systems describing a finite quantum system coupled to several independent thermal
reservoirs.

Our starting point is an abstract TDL scheme described in Section 2. This scheme is motivated by the
specific models we will consider and has its roots in Araki’s results on the continuity of the modular
structure obtained in [AI74, Section 2], and in the specific form of the Araki—Wyss GNS-representation
of CAR-algebras induced by a quasi-free state [AW64] 3. One novel aspect of this scheme is the spectral
assumption on the modular operators that, in our specific settings, forces the dynamical ergodicity as-
sumption on thermal reservoirs. We remark that the same ergodicity assumption is required in the main
stability result of [BBJT23].

The two specific settings to which we will apply our abstract TDL scheme are Open Quantum Spin
Systems, abbreviated OQ2S, and Electronic Black Box Models, abbreviated EBBM. We comment on
them separately.

0Q2S were introduced in [Rue01], in the study of entropy production in non-equilibrium quantum sta-
tistical mechanics. It is in this setting that we will make use of Araki’s continuity results [Al74]. As
emphasized in [RueO1], the fully interacting nature of the lattice spin thermal reservoirs brings to the
forefront the role of the so-called "boundary terms" in the characterization of the KMS-states by the
Araki—Gibbs Condition. Due to our current lack of understanding of the effect of these boundary terms,
our results in the OQ2S setting are incomplete and a number of important questions touching on founda-
tions of quantum statistical mechanics remain open. We will comment on some of them in Section 3.4.

EBBM describe open quantum systems consisting of an electronic gas in the tight binding approximation,
interacting only in a finite subset of its countably infinite set of particle sites. Each thermal reservoir is
a free Fermi gas and the local nature of the interaction makes the model amenable to rigorous analysis.
Boundary terms play no role in free Fermi gas reservoirs and our results for the EBBM are complete.
The above mentioned Araki—Wyss representation of a free Fermi gas plays a central role in our analysis
and allows for a relatively effortless verification of the assumptions of our abstract TDL scheme. The
literature on the EBMM and related models is vast, and an incomplete list of mathematically rigorous
works on the subject is [Dav74, SL78, BMS§3, JP02a, JP02b, FMSU03, FMUO03, AJPP06, JKP06, JOPO6,
JOPO7, JPO7, JOPP10, CMP14].

The paper is organized as follows. Our abstract TDL scheme is described in Section 2. In Section 3 this
scheme is applied to OQ2S and in Section 4 to EBBM. The proofs follow the statements of the results.
Sections 3.4 and 4.4, where we comment on the obtained results, are an important part of this work.

Acknowledgments The work of CAP and VJ was partly funded by the CY Initiative grant "Investisse-
ments d’Avenir”, grant number ANR-16-IDEX-0008. The work of TB was funded by the ANR project
“ESQuisses”, grant number ANR-20-CE47-0014-01, and by the ANR project “Quantum Trajectories”,
grant number ANR-20-CE40-0024-01. VJ acknowledges the support of NSERC. A part of this work
was done during long term visits of LB and AP to McGill and CRM-CNRS International Research Lab-
oratory IRL 3457 at University of Montreal. The LB visit was funded by the CNRS and AP visits by the
CRM Simons and FRQNT-CRM-CNRS programs.

3See [DG13, JOPP10] for pedagogical introductions to this topic.
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2 An abstract TDL scheme

2.1 A general scheme

We denote by (H,,2) the GNS representation of the C*-algebra O induced by the modular state w
and write A for m(A) whenever the meaning is clear within the context. 2t = ()" is the enveloping
von Neumann algebra and we denote by % and .J the natural cone and the modular conjugation of the
pair (901,€2). The set N of w-normal states is identified with the set of density matrices on # and the
state w with the vector state (2, - Q). A, denotes the modular operator of v € N, A, the relative
modular operator of a pair (v, u) of w-normal states. Whenever both v and p are faithful on 901, the

associated Connes cocycle is given by [Dv : Dulis = AfmA;iS e M.

Let Ny be the set of states of the form vp(-) = (B, - BQ) where B € M and || BQ|| = 1. Since Q2
is a cyclic vector for the von Neumann algebra 9, Ny is norm-dense in . Our abstract approximation
scheme concerns the justification of the formula (1.1)—(1.2) for v = vg € Ny by a themodynamic limit.
Under a mild regularity assumption, the time-evolved reference states ws = w o 7° are in Nj.

Proposition 2.1 Suppose that for some s € R the map
iR 3 z — [Dws : Dw],

has an analytic continuation to the vertical strip 0 < Rez < % that is continuous and bounded on its
closure. Then ws = vp, € Ny, with

Bs = J[Dws : Dw]1J € M.

N[

Proof. Let €, be the vector representative of wy in the natural cone H*. Then

A?

ws|w

0=,

and so the function
Roz—=A? QcH

ws|w
has an analytic continuation to the strip 0 < Rez < % that is continuous and bounded on its closure; see
[Ara73, Lemma 3]. Note that for z € iR,
[Dws : Dwl],Q = AZ? | Q, (2.1

ws|w

and so by the Privalov theorem, see [Ko098, Section III.D], (2.1) holds for 0 < Rez < % In particular,

1
Q=A% Q=QQ,.

1
3 ws|w

[Dws : Dw]

Since JQ = Q and JQ, = Qg,

J[Dw, : Dw]1JQ = Q,

1
b
and the statement follows. O

Proposition 2.1 motivates our first assumption.

4
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(TDL1) For all s € R the map
iR 3 2+ [Dws : Dw],

has an analytic continuation to the vertical strip 0 < Rez < % that is continuous and
bounded on its closure.

We consider a net of finite-dimensional quantum dynamical systems (Op, 7a,wa)aez, Where Z is a
directed set endowed with the order relation C. We denote by (H, ma, 24 )aez the associated net of
GNS-representations. We further write wp ; = wp o 74 and make the following assumptions:

(TDL2)

(1) Forall A € Z, Op € O and wp > 0.
(2) If A C A/, then Op C Op/. Moreover,

Oloc 1= U Oz

is dense in O.
(3) Forall A € Ojo¢, limp wp(A) = w(A).
(4) For all A € Oy, s—limy 74 (A) = 7¢(A), locally uniformly for ¢ € R.A
(5) Forall A € Z, Hy € H,and Qp = Q.
(6) Forallt € Rand «a € iR,

s—lim [Dwp 4 : Dwpla = [Dwy @ Dw)q.
A

We denote by A,,, and J, the modular operator and the modular conjugation of the pair (7w (On)”, ),
and extend them to # by setting A, to be the identity on ’Hk and J an arbitrary anti-unitary involution
on ’Hk Our next assumption is

(TDL3)

(1) s-limy A = Al forall § € R, and s—limp J = J.
(2) Forall A € Z, kerlog A,, C kerlog A, .

This assumption requires a comment. As we shall see, (TDL3)(2) holds automatically for open quantum
systems in which each thermal reservoir is an ergodic quantum dynamical system. Regarding (TDL3)(1),
the following set of results is established in [AI74, Section 2].°

*Here and in the following s—lim, denotes a strong limit, i.e., lima 74 (A)¥ = 7' (A)¥ for all ¥ € H.
SFor an erratum, see [Ara76, Section 5, Remark 2].



Benoist, Bruneau, Jaksi¢, Panati, Pillet

Theorem 2.2 Suppose that (TDL2)(1-2) hold, and that for all A € T,
wA:w‘OA, WA:W‘OA, Qp =Q,

where ( - )| N denotes the restriction from O to Ox. Then the following hold.:

@
(1) w(A) =wa(A) for A € Ox.

(2) s-limp AY = A locally uniformly for 6 € R.

3) slimp Jp = J.

(4) Let (Qp)rez with Qp € Op be such that, for some Q € O,
SAmQy =@, slmQh =@,

Then,
li/{n A, QA = AL QQ,
locally uniformly for z in the vertical strip 0 < Rez < %

We note in particular that (TDL2)(3) and (TDL3)(1) hold under the assumptions of Theorem 2.2.

The final assumption in this section is:

(TDL4) (TDL1) holds and for all s € R,

s—lim [Dwp s : Dwp)1 = [Dws : Dw]1,
A 2 2

s—lim [Dwp s : Dwplt = [Dws : Dw]7.
A 2

o= *

For each vp € Ny we set vp p 1= I/B’OA. The 2TMEP of (Oy, Ta,wa ) With respect to vp 5 is defined
by the formulas (1.1)—(1.2),

1R
SVB,AJ(O‘) = lim R/ VBA (ng ([Dw/\,_t : DwA]a)> de,
0

R—o0

SVB,A,?f(O‘) :/e_asdQVB,A,t(S)'
R

Of course, in this case Q,, , + is just the law of the 2TMEP of wy, the system being in the state vp A at
the instant of the first measurement; see Section 1.3 in [BBJ123]. If v, is replaced with wp s = wp o7y,
then §,, At and @, At describe the 2TMEP of w,, the system being in the state wp , at the instant of
the first measurement. This second case is of importance for our study of a quantum Gallavotti—-Cohen
Fluctuation Theorem in [BBJ"]. Note that, except in trivial cases, w; ! on # WA 5.

The main result in this section is :
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Theorem 2.3 Suppose that (TDL2) and (TDL3) hold. Then,

(1) Given any state vg € Ny, for allt € R and o € iR one has
h}\n SUB’A,t(a) = %VB,t(a)v (22)

and limp Quy t = Quy,t weakly.
(2) Suppose in addition that (TDL4) holds. Then for all s,t € R and o € iR one has

li/{n%'w/\ys,t(a) = S'ws,t(a)a (2.3)

and limp Q) At = Qu, t weakly.

Proof. (1) Central to the argument are the formulas

Svpt(a) = (B*BQ, P[Dw_; : Dw], ),
3,,B,A,t(a) = (B*BQ, PA\[Dwp ¢ : Dwp]af2),

(2.4)

where P and P, denote the orthogonal projections onto kerlog A, and kerlog A,,, respectively. The
formulas (2.4) hold for all vg € Ny and are easy consequences of the fact that B € 9U'; see the proof of
Theorem 1.3 in [BBJ*23]. By (TDL2)(6) and the polarization identity, to prove (2.2) it suffices to show
that for all ¥ € H,

lijr\n<\Il,PA\I/> = (U, PU). (2.5)

Assumption (TDL3)(2) gives that (¥, PAW) > (¥, PWU) for all A € Z, and so

limnf (¥, PAY) > (¥, PU). (2.6)
Theorem 2.2(2) gives that, for ¢t € R,

lij{n(\I!,AifA\IU = (U, Allp),

By Lévy’s continuity theorem, the spectral measure pup A of log A, for the vector ¥ converges weakly
to the spectral measure puy of log Ay, for the same vector V. By the Portmanteau Theorem [Bog(7,
Theorem 8.2.3], this convergence gives

limAsup pw A ({0}) < pw({0}),

and so
limsup(V, PAVY) < (U, PU). (2.7)
A

The inequalities (2.6) and (2.7) yield (2.5). The second claim follows from (2.2) and Lévy’s continuity
theorem.
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(2) Writing Cp = [Dwy s : Dwh|
that

and C' = [Dw; : Dw]1, it follows from (2.4) and Proposition 2.1
2

1
2

Buwn ot (@) = (JACRCOAQ, PA[Dwa,—¢ : Dwa o),
Swet(a) = (JC*CQ, P[Dw_; : Dw]a2).

By (TDL3)(1), the isometric modular conjugations are strongly convergent, and by (TDL4) and the
uniform boundedness principle, one has sup, ||Ca|| < co. Thus, it follows from the telescopic expansion

JACLONQ — JC*CQ = (Jp — J)C*CQ + Jp(C% — C*)CQ + JAC5(Ch — O),

that
li/r\n JACRCAQ = JC*CA,
while by (TDL2)(6),
lil{n [Dwp ¢ : Dwpla = [Dw_¢ : Dw]aS.
Invoking (2.5) again gives (2.3) and Lévy’s continuity theorem yields the second claim. |

2.2 Thermodynamic limit of Connes’ cocycles

In this section we introduce more structure to the dynamical system (O, 7,w). The purpose of these
new elements is to allow us to exploit the structural stability of KMS states, as embodied in Araki’s
perturbation theory, see [BR81, Section 5.4]. Quite unexpectedly, this part of the algebraic theory of
equilibrium quantum statistical mechanics developed in the 70’, is also at the hearth of some more recent
advances in nonequilibrium quantum statistical mechanics. The next two sets of assumptions will allow
us to use the concept of entropy production in nonequilibrium processes to gain control on the Connes
cocycles. This will lead us to check the corresponding Assumptions (TDL1), (TDL2)(6) and (TDLA4).

We denote by §,, the x-derivation generating the modular group ,: ¢¢ = %% Our next assumption is:

(TDLS)

(1) ¢, commutes with a “free” C*-dynamics Tftr = !9 which leaves the state w invariant:

6 t t 6 t
Sw O T = Tfr O Suys WoThH =W,

forall 0,t € R.
(2) 7 is alocal perturbation of T¢:

Tt:et(sv 5:6fl‘+1[‘/5]7

where V is a self-adjoint element of O.

(3) V € dom(é,,), and we define
o=0,(V).
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(4) The map
R360—c(0)c0O

has an analytic continuation to the horizontal strip |Im 6| < % that is bounded and
continuous on its closure.

Starting with the works [JPO1, Rue(O1], the operator ¢ has played an important role in many develop-
ments in non-equilibrium quantum statistical mechanics as the entropy production observable of the C*-
dynamical system (O, 7,w). In the sequel, we denote by L (respectively Ly, ) the standard Liouvillean of
the dynamics 7 (respectively 7¢), i.e., the unique self-adjoint operator on H such that

’/T(Tt(-)) :eiﬂ:ﬂ(-)e_itﬁ, e—it£H+ C 7_[-&-7
for all t € R (and similarly for the free dynamics).

Lemma 2.4 Under the assumptions (TDL5)(1-3), one has

S
log Aws|w =log A, + Qs, Qs = / T_t(a)dt7
0
forany s € R.

Proof. A proof of the statement is implicit in [JPO3]. For the reader’s convenience and later references,
we sketch the argument. Let (I's)scr be the cocycle associated to the local perturbation V' of the free
dynamics 7y, i.e., the solution of the Cauchy problem

0, = ilsri(V), T'op=1. (2.8)
I's is a unitary element of O with the norm convergent expansion
Do=1+) i" / V)i (V)dsy - - dsp, (2.9)
nzl s <ii<sn<s
and such that, as a consequence of (TDL5)(2),
() = Lo ()T, (2.10)
see, e.g., [BR81, Section 5.4.1]. From the perspective of the associated W*-dynamics, one has
L=Lyx+7(V)—Jn(V)J,

and . .
et = Jr(Dy)Jm(T)e e

Taking (TDL5)(1) into account, we have elsLe() = ), so that the vector representative of the state wy in
the natural cone H 7 is .
Qs = e Q= Jr(T_y)Jr(T_,)N. (2.11)
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For some arbitrary but fixed s € R and any 6 € R, set
Ty =T_2(T*,). (2.12)

It follows from (TDL5)(3) and the expansion (2.9) that I'_s € dom(d,,). Using (2.8), one easily checks
that

9 Th = iTys2 (Qs), Ty =1,

where Qs = 10,(I'_s)I'", = QF € O. Thus, (Th)per is the unitary cocycle associated to the local
perturbation @), of the modular group

o (+) = 0t 1) = Tpc0 ()T

Recalling that
7T(§f,( . )) — el@logAwﬂ_( X )6—1910gAw7

we derive
m(0?()) = m(Ty)e? 8 Bem( - o 0108 e (Ty).

Thus, « extends to a W*-dynamics on 9t which we also denote by «,
Oﬁ( )= eif(log Aw"‘Qs)( ) e~ 10(log AW+Q5)7 oif(log Au+Qs) _ o (Tp) lflog Aus
Using (2.12) we obtain, for any A € O and 0 € R,
el0og Bt Q) (A)) = 7(Tp)el? 108 Ao (A)Q = m(D_,)el? 08 Ao (T* L A)Q.
Since the right-hand side has an analytic continuation to § = —i/2, we further get
o108 80t Q)/2 1 A)) = (T ) AZ (T, A)Q = w(T_y) Jr(AT_0)Q,
and multiplication on the left by J yields, taking (2.11) into account,
Jelo8 8wt 20(A)Q = Jr(T_g)Jm(AT_)Q = m(A")J7(D_s) Jm(T_)Q = m(A"),

which shows that log A, + Qs = log A
using (2.8) yields

To finish the proof, we note that a simple calculation

ws|w*

ast =77 (U)a

so that

Proposition 2.5 Assumption (TDLS) implies (TDL1).

10
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Proof. We shall use the notation and intermediate results from the previous proof. By Lemma 2.4, the
cocycle
[Dws . Dw]z _ ezlogAws‘WszlogAw

has, for z € iR, the norm convergent expansion

[Dws: Dw], = 1+ 2" / Q) -5 (Qy)db) - - - b, (2.13)

n2l o 0<h<<0,<1

Using (2.10), we have for 6 € R,

$(Qe) = /O (o))t = /O (Tt ()T )t

and since the modular group commutes with the free dynamics, we can write
S
L) = [ L (LNl at. @.14)
0

By Assumption (TDL5)(4), 6 — <& (o) is analytic in the strip [Im | < 3, and bounded and continuous
on its closure. Since dyps? (V) = <% (o), the same is true for

1
0—d(V)=V+ 9/ (o) dt.
0

That the same is also true for 6 — ¢%(I"_;) is a consequence of the expansion (2.9), since the latter
implies

ST =1+ (-it)" / 5 PG (V)) e B (L (V) dsy - - - ds. (2.15)

= 0<s1 < <sp<1

Invoking (2.14), we conclude that the function 6 — ¢%(Q,) is analytic in the strip |[Im 6| < %,

bounded and continuous on its closure. Finally, from the expansion (2.13) we conclude that the map

and

z > [Dws : Dw],
is analytic on the strip |Re z| < %, and bounded and continuous on its closure. a

In a similar spirit, we will assume the following additional properties of the approximation scheme we
have introduced in Section 2.

(TDL6) (TDL2)(5) and (TDL5) hold. Moreover, for all A € Z:

(1) <, commutes with a “free” C*-dynamics 7§ , = eta.i which leaves the state wy
invariant:

6 t t 0 t
Swp © TAfr = TAfr © Swy o WA OTA fr = WA,

forall 0,t € R.

11
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(2) 7 is a local perturbation of T :
T/t\ == et6A7 6/\ = 5A,fl‘ + I[VA7 : ])
where V} is a self-adjoint element of O such that
li =
11{11 Va=V

holds in O.

(3) Extending the standard Liouvillean L ¢ of the free dynamics 7 f to H by setting it

to 0 on Hy, one has

S—}\im eitﬁA,fr — eitﬂfr7

locally uniformly for ¢ € R.

(4) The entropy production observable of the C*-dynamical system (Op, 7p,wx ),
OA = 5WA (VA)7

satisfies
s—lim oulon) =<h(0)

locally uniformly for [Im 6| < .

Proposition 2.6 Assumption (TDL6) implies (TDL2)(6) and (TDL4).

Proof. Since (TDL6)(1-2) imply that the C*-dynamical system (Op, 7a,wp ) satisfies the assumptions
of Lemma 2.4, we can start, as in the proof of Proposition 2.5, with the expansions

[Dwps: Dwpl =1+ Y 2" / ol F(Qps) ol F(Qa,s)d0y -+ By,

nzl << <0,<1

(2.16)
Dy : Daplt =1+ 37 / G(Qas)  SDF(Qn )0y - B,

n2l << <0,<1

where Qs = fos Tgt(aA)dt. O\ being finite dimensional, the relations (2.16) hold for all z € C. We
again write

O (Qas) = /O 0 (Ca )7 ty(<0, (oa))s? (T _)dt, @.17)

where

O Ta¢) =1+ (—it)” / Tan (D (VA)) - ma i (e, (Va))dst -+ dsn. (2.18)

nzl 0<s1 <<y <1

12
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Since

1
LV =<, (V) =V = Va0 [ (€(0) = < (on))ds,
0
it follows from (TDL6)(2)+(4) that

s—lim G (Va) =8V,

locally uniformly for |Im 6| < % The group property and the isometric nature of the modular dynamics,
together with the uniform boundedness principle yield

0 0
sup |log, (Va)[l < o0, sup oy, (an)| < o0,
A,[Im]<1/2 A,[Im|<1/2
and since e"“A.f is unitary, a telescopic expansion yields, as in the proof of Theorem 2.3(2),

slim e, (Tar) = <4(T-),

for [Im 4| < % By the same argument, (2.17) yields
: 0 _ 0
S_km gw,A(QAﬂS) - gw(QS)v

and in particular

sup [|sf, (Qa.s) < oo.
AIm 6]<1/2

Finally, we deduce from the expansion (2.16) that

z)

s—lim[Dwp s : Dwpl, = [Dws : Dw], s—lim[Dwp s : Dwyl; = [Dws : Dw]?
A A

hold for all z in the closed strip [Im z| < 3. O

3 Open Quantum Spin Systems

3.1 Quantum spin systems

We follow [BR81]; see also [Isr79, Sim93, Rue69].

The C*-algebra. Let GG be a countably infinite set. At this point, no further structure on G is assumed.
The collection of all finite subsets of G is denoted by Gg,,. Let h be the finite dimensional Hilbert space
of a single spin. To each x € GG we associate a copy b, of b, and to each A € By, the Hilbert space

Ka =) ba-

TEA

13
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Op denotes the C*-algebra of all linear operators on /Cp. Its elements describe observables of the spins
localized in the region A. For A C A’ one naturally identifies Oy with a C*-subalgebra of Oy,. The
x-algebra of local observables is

Oloc: U Ox.
Ae@ﬁn

Finally, the C*-algebra of the spin system over G is the norm closure Og of Q.. The algebra O is
unital, simple, and separable. For any Go C G one has a natural identification Og = Og, ® OG8.6
Whenever G is understood, we write O for Og.

Dynamics. An interaction is a map
DBz — O

such that ®(X) is a self-adjoint element of Ox. The Hamiltonian of a region A € &g, is the local
observable defined by

XCA
It generates a local C*-dynamics 74 A on O, where

T(%7A(A) — eitHA((D)Ae_itHA((l)).

To control 7¢ 4 in the thermodynamic limit A T G, one needs a suitable regularity assumption. We settle
for

(SR) For some A > 0,

®||y = su O(X)||MXID) < oo
(K315 pZII (X))l 7
IGGXBLB

where | X | denotes the cardinality of the set X.

Theorem 6.2.4 in [BR81] and its proof give the following.

Theorem 3.1 Suppose that (SR) holds. Then:

(1) Forall A € O the limit
TE(A) = li/{n TéA(A)

exists in norm, locally uniformly fort € R.
(2) 76 = {7k | t € R} is a C*-dynamics on O. We denote by b4 its generator.

) Oic is a core of 0, and for A € Oy,

Sp(A) = Y i[®(X),A]

XNA#Q

SWe will write A for A ® 1, 1 ® A whenever the meaning is clear within the context.

14
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@) For Ae Opandn > 1,
2TL

n! \a
< e MR |Af.

166 (A)]

In particular, for all A € Oy, the map

R3St 7h(A) €O

A

has an analytic extension to the strip |Im z| < SToT

Until the end of this section we assume that (SR) holds. We will make frequent use of the fact that,
whenever A = )" A, is a norm convergent series with A, € O and ), [|da(Ay)|| < oo, then
Property (3) implies that A € dom(dg) with dp(A) = ), da(An).

KMS-states. For A € &g, the local Gibbs state on Oy, at inverse temperature 5 > 0, is defined by the
density matrix
e~ BHA(®)

Using the identification O = Oj ® Oj¢, one extends wg A (in an arbitrary way) to a state on 0. Denoting
this extension by g 4, any weak™-limit point of the net (W A ) acey, is a (7o, 3)-KMS state on O [BR81,
Theorem 6.2.15]. Any (79, §)-KMS states that arises in this way is called a thermodynamic limit KMS
state. This construction in particular gives that the set S, 3 of all (73, 3)-KMS states is non-empty.

If it happens that S, g is a singleton, then the net (g a)ace,, converges to the unique (7, 5)-KMS
state. This is known to be the case in the high-temperature regime, i.e., for 3||®||, small enough. For
some concrete estimates, see [BR81, Proposition 6.2.45], or [FU15] for more recent results.

If S, s is not a singleton, one needs to supply boundary conditions to the local Gibbs states in order to
reach all (7g, 5)-KMS states by the thermodynamic limit. That is our next topic.

The Araki-Gibbs Condition. For any A € &g, the so-called surface energies

Wa(®) = > &(X)

XNA#D

XNAC#D
are self-adjoint elements of O. Let § > 0 and V) = SW,(®P). Suppose that w is a modular state
on O and let §, be the generator of its modular C*-dynamics ,. Consider the perturbed dynamics
Sw,v, generated by o, + i[Va, - ], and let wy, be the (v, , —1)-KMS state associated to w by Araki’s
perturbation theory [BR81, Theorem 5.4.4]. We say that w satisfies the (3, ®) Araki-Gibbs condition
if, for all A € &gy, the restriction of wy, to Oy is given by (3.1). The Araki—Gibbs condition is the
quantum extension of the DLR equation in equilibrium theory of classical spin systems. It has been
introduced in [AI74], see also [Ara76, BR81, Sim93].

Theorem 3.2 Suppose that w is a modular state on O and > 0. Then the following statements are
equivalent.

1) wisa (1e,)-KMS state.

(2) w satisfies the (3, ®) Araki-Gibbs condition.

15
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3.2 The OQ2S setting

Following [RueO1], we consider a quantum spin system over a set G with interaction ® satisfying:

(DEC)
(1) G is the disjoint union
M
G=Su|||R
j=1
of a finite set S' and finitely many countably infinite sets Ry, ..., Rys.

(2) &g, is the set of finite subsets of GG, and the indexing set is
IT={Ae®Bs |ADS}

(3) Besides satisfying Assumption (SR), the interaction ® : &g, — g is such that
®(X) = 0 whenever there exist ¢ # j with X N R; # @ and X N R; # 0.

Assumption (DEC) implies
M
OG = OS & ® ORJ )
j=1
where Og pertains to the small systems S, and O, to the j th reservoir R;.
For each j € {1,..., M}, we define the interaction
¢(X) if X CRy;

®;(X) = _ (3.2)
0 otherwise,

which clearly satisfies ||®;|x < ||®[[x. We denote by 7¢; the associated C*-dynamics on Op; and by
do, its generator. We further define

M
V= Yoo eX), V=>V, (3.3)
XCSUR; j=1

XNS#0D,XNR;#0

which are self-adjoint elements of O. The “free” C*-dynamics 7¢ on Og is generated by
M
Op =05+ Y da,,
j=1

where dg = i[Hg(®), - |. Obviously,
0p = O —i—i[V, . ]

16
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The model is completed by the choice of a (73, 3;)-KMS state wg. on O, for each j € {1,..., M},
and by taking

M
w=ws® ®w5j (3.4)
j=1

for the reference state of (O, 73 ), where, for convenience, wg is taken to be the tracial state on 047,

_ tr(A4)
- dimKg'

ws(A)

Obviously, (O, 7¢,w) is an example of open quantum system as discussed in [BBJ*23, Section 1.1] with
reservoirs I?; described by the C*-quantum dynamical systems (Og;, 7o,,ws; ). The modular group of
the state w is

=10 ogy M (3.5)
and its generator is 6, = — Y | j Bj 5¢,j. It follows from the definitions (3.3) that
M M
o=0,(V)==> Bide,(Vj) ==> B; Y. s, (2(X)) (3.6)
j=1 j=1 XCSUR,

XmS;éw,Xij#(Z)

From Theorem 3.1(4) and the definition (3.2), we further deduce that
2
160, (2(X))[| < XII‘PHAeA'X'II‘P(X)H,

so that
M

2/5le} e
B> Y e, (XD < TS BIR D 6.
1

z€S X2z j=1

o]l <
J

and in particular V' € dom(d,).

We now describe our thermodynamic limit scheme. We write A € 7 as the disjoint union

M
A=SU |_|A] R Aj€®ﬁnij’

=1
and use the identification

M
Op=05® ®0A]‘
j=1
Let

WA 3.7

j :wﬂj‘OAj’

"None of our results depend on the choice of wg as long as wg > 0.

17
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and, identifying wx ; with a density matrix on KCy ,

~

1
anA]. = —E logwy,; - (3.8)
J

The finite volume dynamics 7, is generated by the Hamiltonian

Hp = Hyp + Vi, (3.9)
where
M
Hyn = Hs(®) + Z fr,A
j=1
and

M
Va=> Via,  Via= > ®X).
j=1 XCSUA;

XNS#0, XNA;#0

Finally, we observe that

M
wr=ws @ | Quwn, | =wlo, - (3.10)
j=1

The net (Op, TA,wa )aez defines our TDL scheme. The finite volume entropy production observable is

M

oA = 0,y (Va) = iflogwp, Va] = ) iflogwy,, Vi. (3.11)
j=1

We denote by (Hs, s, 2s) the GNS-representation of Og induced by ws® and by (H;,7;, ;) the
GNS-representation of Op; associated to wg;. For the GNS-representation of O¢ associated to w we
then take (#, 7, 2) where

M M
Q=052 (R | eH=Hso | QM ],
j=1 =1

and
M
T=7Tg & ® Uy
j=1

We have a similar product structure for the TDL scheme, where besides (Hg, g, 2s) we take, for
JE {17 : 'aM}, (HAjaﬂ-Ajngj) to be

TA; = Wj’OAj, QAj = Qj, HAj = Wj(OAj)Qj C Hj.

8As in [BBJT23], we take Hs = Ks ® Ks, ms(A) = AR 1, Qs = ﬁ >, i ® 1y, where {1);} is an orthonormal basis
of Ks and N = dimKs.

18
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Other choices for 74 and wy are possible. An arguably simpler choice is to take in (3.10)

o Pitn; (®5)

VR 3.12
A tr(efﬂjH"j ((I’j)) ( )

and for 75 the dynamics 74 A generated by

M
Ha(®) = Hg(®) + Y Hp, (D) + Vi (3.13)
j=1

However, our proofs do not work for this choice and we will comment more on this point in Sections 3.4
and 4.4.

3.3 TDL of 2TMEP

Besides Assumption (DEC), we will also need

(SE) Each reservoir system (Og;, T@J,,wﬁj) is ergodic, i.e., for any wg,-normal state v on
OR]- and any Ae ORJ-,

1T
lim T/o VOTéj(A)dtZng(A).

T—o0

(SE) will be used only to verify (TDL3)(2). We set

By i= @]y max 3.
Theorem 3.3 Suppose that (DEC) and (SE) hold with BA < A Then Assumptions (TDL1)—(TDL3)
hold. In particular, Proposition 2.1 and Theorem 2.3(1) hold for OQ2S.

The rest of this section is devoted to the proof of Theorem 3.3 through a sequence of Lemmata. The road
map from (DEC)+(SE) to (TDL1)—(TDL3) is summarized in the following chart.

(DEC) with A > 3,  lemma34 (TDLS5) Proposition 23 (TDL1)

(DEC) kemma3>  (TDL2)(1-5) (TDL6)(1-3)
(DEC) with A > §, Memma37  (TDL2)(6)

——

(DEC)(SE) Lemma 3.8 (TDL3)

—
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Lemma 3.4 Suppose that (DEC) holds. Then,

(1) The map
R360—d(V)eO

A

has an analytic continuation to the horizontal strip [Im 0| < 25
A

(2) The map
R30—¢’c)ec0

A

has an analytic continuation to the horizontal strip |Im 6| < R
A

(3) Forall s € R the map
iR 3> z — [Dws : Dw],

A

has an analytic continuation to the vertical strip |Re z| < TN
A

Each of these maps is bounded on any closed substrip of the respective strip. In particular, if (SR) holds
with A > B/\, then Assumptions (TDL1) and (TDLS) hold.

Proof. (1) By Relations (3.3) and (3.5), one has

M
SV =3 7).

j=1
Hence, it suffices to show that for any j € {1,..., M}, the function

R 3t~ 7g,(Vj) (3.14)

has an analytic continuation to the strip |Im z| < ﬁ. By Theorem 3.1(4) and the definition (3.2), for
any positive integer n one has

vl Y @)

XCSUR;
Xms;é(o,XmRﬁéQ)

2| 2[\" 2@\ \"
<33 (AR ey < sl (21T
z€S X3z

so that the radius of convergence of the Taylor series of the function (3.14) is A/2||®|| . The result then
follows from the group property of 7.

(2) Follows from (1) by differentiation.

(3) Follows from (2) and the proof of Proposition 2.5.

It is an immediate consequence of the group property and the isometric nature of ¢, that the three maps
are uniformly bounded on any closed substrip of their respective strip of analyticity. ]
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Lemma 3.5 Assumption (DEC) implies (TDL2)(1-5) and (TDL6)(1-3).

Proof. Parts (1-3) and (5) of (TDL2) as well as Part (1) of (TDL6) are immediate consequences of
the definition of the TDL scheme and do not depend on (SR). The same is true for the first statement

of (TDL6)(2), while (SR) implies the second statement, namely that
limVy =
1/1\11 A=V

holds in the norm of O.

(TDL6)(3) is an immediate consequence of Theorem 2.2(2). Indeed,
M .
QltLe — H A;;fjt7
j=1
where Awﬁj is the modular operator of w;, and similarly
. M iB:t
oo = T

These two observations and Theorem 2.2(2) give that

. LA & AL
s—lim e"*~Afr = et~

A
locally uniformly for ¢t € R.
To prove Part (4) of (TDL2), consider the Dyson expansion

et (LamtVA) — GIELA 1

+ Z in eitlLA’fr VAei(t2_t1)£A’fr VA L eit(tn—tn—l)ﬁmfr VAei(t_tn)ﬁA’frdtl .

nzl o< <<t <t

Invoking (3.15) and (3.16) gives that

s—lim et (£au+Va)
A

— otEntV)

locally uniformly for ¢ € R. Finally, for A € Oy,.°,

s—lim TR(A) — s—lim e!(£atVa) go—it(La,utVa)
A A

— eit(ﬁfr+V)Ae*it(£fr+V) — Tt(A)

locally uniformly for ¢ € R. Note that for this argument it is sufficient that s—limy V) = V.

One can take here any A € Og.

(3.15)

(3.16)

-dity,.

(3.17)
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Lemma 3.6 Suppose that (DEC) holds with X\ > 3. Then,
s-lim (Vi) = <o(V),

locally uniformly for [Im 6] < %

Proof. For A € Z, let us define the interaction ¢ by

O(X) if X CA;
Pp(X) = ,
0 otherwise,

so that
lim ||® — ]|\ = lim sup d(X)||MXI=D = g,
g | | A ey E |2 (X)|

X>z
XNAC#D

Since, for j € {1,..., M},

XQSURJ-
XnS;ﬁ@#Xr‘uAg

the estimate of Theorem 3.1(4) gives

(3.18)

1 212" AIX|-1) 212"
o, 0] < 1516 ap 30 o0 < (56 (22 o g,

A

z€ X>z

XNAC£D

which, by the argument in the proof of Lemma 3.4, implies that
lim 65 (Va) = s5(V)

2

in norm, locally uniformly for [Im 6| < 25
A

(3.19)

Since 25 = Q and mp = 7, for any A € O,, the definition of the modular operator and conjugation

gives
1 1
JAAZ,T(A)Q = JAZT(A)Q.

Since (O) )2 = H,, we have that, as operators on H,

ol

1 _1 _1
A2, = JAJAZ,  AL2 =AL2 Iy,

and so
1 1 _1 1 _1
Goa(Va) = A2, VaALS = JIANJASVAAL? Ty,
1

_1 _1 1 _1 1
Gt (Va) = ALZVAAZ, = JAJALEVAAR T,

22
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on Hp. By Theorem 2.2(2-3), the relations (3.19)—(3.20) and the group property give that

s=lim e (Vi) = slim AZEPTn TG (Va) JIAAL B0 = G(V),

locally uniformly for [Im 6| = % Applying Hadamard’s three lines theorem to the function

F(0) = (G(V) =<, (V) ¥

with ¥ € H yields the convergence (3.18) with the required uniformity. ]

Lemma 3.7 Suppose that (DEC) holds with X > B/\. Then (TDL2)(6) holds.

Proof. By Relations (3.6) and (3.11) and Lemma 3.4(1), we have

0sly (V) = <y (0n),  9psl(V) = (o),
for [Im 6| < % Thus, Lemma 3.6 and Weierstrass’ convergence theorem allow us to conclude that
s, (o) = (), (3:21)

locally uniformly for [Im 6| < % In particular,

s—limop = o,
A
and, invoking the uniform boundedness principle, sup, ||oa|| < co. Hence, using (3.17), we get,

s—lim / 73 H(oa)dt = / 7 (o)dt. (3.22)
A Jo 0

By Lemma 2.4, we further have

log Ay, Llwa = 1og Au, +/ Tgt(oA)dt,
0

log A, 1w = log Ay +/ 7 (o)dt,
0

for all s € R. By Theorem 2.2(2) and Trotter’s theorem [RS80, Theorem VIIL.21], these two relations
and (3.22) allow us to conclude that, for all s € R,

lij{n log Ay, Llws =108 Ay, 1w
holds in the strong resolvent sense. By Trotter’s theorem again
: i0 i0
S_}le A‘loUA,s‘WA = Ai}s'“”

holds for all 8, s € R, and together with Theorem 2.2(2),
A—i@ Aig A;i@

: i0 _
5 }\lmAwA’skuA wAr T Tws|w )

which is (TDL2)(6). O

Finally, we complete the proof of Theorem 3.3 with
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Lemma 3.8 Assumption (SE) implies (TDL3).

Proof. (TDL3)(1) follows from Theorem 2.2(2). Given the product structure (3.4) of the reference state
w, one has

M M
log Ay, =05 @ @ log Ay, | =0s@ | — @ BiLli |,
j=1 =1

where Og denotes the zero operator on H g and L; is the standard Liouvillean of the C*-dynamics To,. By
the quantum Koopman lemma [Pil06, Section 4.7], the C* dynamical system (Or;, 7o, wpg, ) is ergodic
iff ker £; = C(2;. Thus, Assumption (SE) gives that

kerlog A, =Hs @0 @ --- @ Q.

By the definition (3.10) of wj,

M
log AWA = OS & @log AUJAJ- 9
7j=1

and since ker log A, A, 50 A = €2, one has
Hs @ @@ Q) C kerlog Ay, .
This gives that (TDL3)(2) follows. O

3.4 Remarks

1. On the choice of w and 75. The proof of Theorem 3.3 combines fairly standard thermodynamic limit
arguments with Araki’s continuity Theorem 2.2. The definitions (3.7)—(3.9) of wp and 7, take into the
account the interaction “boundary terms” in a way that ensures the necessary continuity of the modular
structure that is behind our TDL scheme. This continuity is broken with choice (3.12) and (3.13), and in
this case it is likely that a completely new strategy of the proof is needed.

We remark that for the choice (3.12)—(3.13) it is not difficult to show that for all £ € R and « € iR,

lim &, ([Dwp,—t : Dwpla) = & ([Dw_y : Dwa) (3.23)

in norm, locally uniformly for 6 € IR. Hence, if w is a thermodynamic limit KMS-state and wy , is subnet
such that limy_ Wa, = w, we have

llixmgf,Av([DwA%_t : Dwp o) = G ([Dw_s : Dwla),
vy

providing the desired thermodynamic justification of (1.1)—(1.2) in the case v = w that is much simpler
than the proof of Theorem 3.3. The convergence (3.23) also gives that

lim liml RVA <§9 ([Dwp —¢ : Dwy] )) df = lim 1 /Rl/ <§9 ([Dw—; : Dw] )) dé
R WA ,—t « o w —t - a
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if vA — v weakly. Thus, the TDL justification of (1.1)—(1.2) is equivalent to the justification of the
exchange limits

1R T e
ng%o hl{n— ; VA <§5A ([Dwa —¢ - DwA]a)> do = h/I\nRh—I)réo R/o VA (ggA ([Dwn,—t DwA]a)) deé.
It remains an open question whether this holds for the choice (3.12)—(3.13). For the choice (3.7)—(3.8)
and the special class of v’s this question is resolved in Theorem 3.3 by a strategy that invokes Araki’s
continuity results and the reservoir ergodicity assumptions.

2. On the ergodicity assumption. The reservoir ergodicity assumption plays an important role in the
2TMEP stability result established in [BBJ™23, Theorem 1.5]. However, its emergence in the study of
TDL of 2TMEP perhaps comes as a surprise. Although the need for (SE) is clear given our strategy
of the proof, its role in the TDL of 2TMEP remains to be understood better. Needless to say, although
(SE) is believed to hold for generic spin interactions, there are very few examples for which it has been
established. The case of EBBM is very different and there the respective reservoir ergodicity assumption
follows from a simple natural criterion.

3. On the assumption \ > 3,. This high-temperature assumption also appeared in the recent work [JPT23,
Theorem 2.11] and ensures that the reservoirs states wg; are weak Gibbs, although we did not make use
of this fact. The problem of TDL justification of the 2TMEP for OQ2S for arbitrary 3;’s remains open.

4. TDL of the entropy balance equation. We recall that the relative entropy of two density matrices p
and v is

Ent(v|p) = tr(v(log p — logv)). (3.24)
Its basic property is that Ent(v|p) < 0 with equality iff p = v.

In the general setting of algebraic statistical mechanics, the relative entropy of a pair (v, p) of normal
states has been introduced by Araki in the seminal papers [Ara76, Ara77]. With the sign and ordering
convention of [JPO1], Araki’s definition reads

Ent(v|p) = (Q,,log A ,€,).

plv

It shares the above mentioned basic property with (3.24) and reduces to (3.24) in the finite dimensional
setting.

For additional information about relative entropy we refer the reader to [OP93].

Returning to our OQ2S, Lemma 2.4 gives that
S
Ent(ws|lw) = — / w(o)dt, (3.25)
0
and similarly, for either of the choices (3.7)—(3.9)/(3.12)—(3.13),
S
Ent(wh slwa) = — / wat(op)dt, (3.26)
0
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with oy = d,,(Va). The identities (3.25)—(3.26) are the entropy balance equations of [Rue01, JPO1].
Note that for the choice (3.12)—(3.13),

M M
oA =0y (VA) = =D BjilHa,(®5), Val = Y _ B5i[HA(®), Ha, (25)], (3.27)
st =1

which is Ruelle’s original definition of the entropy production observable in [Rue01].

For the choice (3.12)—(3.13), assuming (SR), Theorem 3.1(1+4) ensures that for A € Oy, and locally
uniformly for ¢t € R,
lil{n oA = 0, lil{n Th(A) = 71(A),

hold in norm. Given € > 0, there is A’ € Z such that ||c — /|| < €. Let wy be an arbitrary extension of
wp to a state on O such that w is the weak*-limit of the subnet WA, Then, we have

[(w — WA, (0)] < [(we — W, ) (oar)] + [(we — @, 1) (0 — op)]

IN

[(we — Wayt)(oar)| + 2€

t

< |(w —EAW) o Tt(aA/)] + |w/\~/ o(r" — T/t\w)(O'A/)| + 2e,

so that
limsup |(w; — @a,.¢)(0)| < 2,
Y

from which we can conclude that limy_, @y, ¢(0) = wi(o) and hence that

lim |w (o) — wA%t(UAWN < lim |w (o) — EAW(UH + lim |wA%t(a - 0A7)| =0.
A A A

Thus, (3.25)-(3.26) give
lli\m Ent(wAws\wAw) = Ent(ws|w),
v

for all s € R. Similarly, for the choice (3.7)—(3.9) and assuming that (SR) holds with A > B,\,
li[{n Ent(wh slwa) = Ent(ws|w)

for all s € R.

To connect further with the work [Rue01], one can consider an intermediate scenario where the state wp
is chosen by (3.7) and 75 and o by (3.13) and (3.27). The average entropy production over the time
interval [0, s] is then

— /S WA (T4 (op))dt.
0

This entropy production cannot be directly linked to the relative entropy and does not need to be non-
negative. However, since

—li[{n/o WA (T (op))dt = —/0 wy(0)dt = Ent(ws|w),
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the basic properties of the averaged entropy production are restored in the thermodynamic limit. Note
that for this choice our TDL proofs for 2TMEP do not work due to the lack of commutativity of the
groups 7a fr and ¢, Ay Attempts to control this non-commutativity fail for reasons we will discuss in the
next and final remark.

In summary, the TDL of the averaged entropy production of OQ2S is robust and does not exhibit the
same subtleties as the TDL of 2TMEP.

5. On the Araki-Gibbs Condition. The reader may have noticed that our failure to establish (TDL6)(4)
stems from the restriction |Im 6| < % in Lemma 3.6 that is forced by the identities (3.20). This restriction
allows us to establish (3.21) only for [Im 0| < % and we cannot reach (TDL6)(4) due to the lack of control
on the line Im 0 = % One can attempt a different approach by using directly (3.20) with o, instead of
VA or by using Theorem 2.2(4), and indeed for the choice (3.12)—(3.13) where o, is given by (3.27)
this works relatively effortlessly. However, for the choice (3.7)—(3.8) one faces perennial difficulties
in controlling logw, on the basis of the Araki—Gibbs Condition; see [JPT23, Section 2.2] for related
discussion and references. Comparing with Remark 1, one arrives at the following dual problems that
must be understood better before further progress is made:

(a) The lack of continuity of modular structure, in the spirit of Theorem 2.2, for the choice (3.12)—(3.13).

(b) The lack of control of log wp and oy, on the basis of the Araki—Gibbs condition, for the choice (3.7)—
(3.8).

These problems are absent in the EBBM and related models that involve non-interacting ideal reservoirs.

4 The Electronic Black Box Model

4.1 The free Fermi gas

Let b and h be the single fermion Hilbert space and Hamiltonian. We denote by CAR () the CAR algebra
over b, and by a*(f)/a(f)/(f) the creation/annihilation/field operator associated to f € h. a™ stands
for either a or a*, and we recall that ||a™ (f)|| = ||f||. The group 7 of Bogoliubov *-automorphisms of
CAR(h) generated by h is uniquely specified by 7(a? (f)) = a™ (¢! f). The C*-dynamical system
(CAR(b), 7) describes the free Fermi gas over (f, ). We denote by CAR,(h) the gauge-invariant C*-
subalgebra of CAR(f) generated by {a*(f)a(g) | f,g € b} U{1}. The dynamics 7 obviously preserves
CARy(b). For a given distribution operator 0 < 7" < 1 on h, wr denotes the quasi-free state on CAR(b)
generated by 7". The same letter will be used for the restriction of wy to CAR,4(h). wr is faithful iff
ker T is trivial, which we assume to hold in what follows. Of particular importance is the Fermi-Dirac

distribution 1

Tou = T opGry
where 8 > 0 and p1 € R. We write wg,, for wr, , and remark that wg,, is a (7, 3)-KMS state on CAR(h).
The C*-quantum dynamical system (CAR(h), 7, wg,,) describes a free Fermi gas in thermal equilibrium
at inverse temperature 5 and chemical potential p. The subsystem (CARy(h),7,ws,) describes its
gauge-invariant part, and will be the focus of this section. The full system (CAR(h), 7, wg,) will be
discussed in Section 4.4.
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We recall the following well-known fact, see [Pil06] for a pedagogical discussion.

Theorem 4.1 Suppose that h commutes with T' and has purely absolutely continuous spectrum. Then
the quantum dynamical systems (CAR(h), 7,wr) and (CAR4(h), 7,wr) are mixing, and in particular
ergodic.

We will make use of the Araki—-Wyss GNS-representation (Haw, maw, 2aw) of CAR(h) associated to
wr. This representation was constructed in [AW64]; see [DG13, JOPP10] for pedagogical introductions
to the topic. We assume that the reader is familiar with the fermionic second quantization, and for
definiteness we will use the same notation as in [JPO2b]. We fix a complex conjugation ~ on f and
assume that it commutes with 70 and h. The Araki—Wyss representation is given by

Haw =T-(h) @ T_(b),
maw(a(f)) = a((1=T)Y2f) @ 1 + 9 @ a*(T?F),
maw (a*(f)) = a (L =T)"2f) @ 1+9 © a(TV2f),
Qaw = Q @ U,

where I'_(h) is the fermionic Fock space over b, ¥ = I'(—1) = ¢™ where N is the number operator,
and Q) is the Fock vacuum on I'_ (). The standard Liouvillean of 7 is

£=d0(h) ®1- 1 dl(h),
and
log A, = dT(kp) @ 1 — 1® dT'(kr),
where k7 = log(T(1 — T)~!). Note that if T = Tj,,, then ky = —3(h — p1) and

A = e—ﬁ(ﬁ—u/\/)’

Sem

where = N ® 1 — 1 ® N. The chosen complex conjugation on h naturally extends to I'_(h) and we
denote it by the same symbol ¥ > W. The modular conjugation acts as

J(@RV) =ul®ud, 4.1)
where y = ™V (V-1)/2

The Araki—Wyss representation of CAR, () associated to wy is obtained by the obvious restriction.

4.2 The EBBM setting

Let G be a countably infinite set satisfying Assumption (DEC)(1) of Section 3.2. Let i be a bounded
self-adjoint operator on the Hilbert space ¢*(G). We denote by (6, ).c the standard basis of £2(G) and

"%In the case of T}, this is the same as assuming that it commutes with A
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set h(z,y) = (05, hdy).!! Obviously,
M
e =25 e | PAR)
j=1
Let hg and h; be the compressions of & to ¢2(.S) and ¢2(R;)!2, and

M
hie =hs+ | Ph;
j=1

The C*-algebra of the EBBM is O = CAR,(¢*(G)) and its free C*-dynamics 73, is the group of
Bogoliubov x-automorphisms generated by hg. The C*-algebra of the small system S and the j-th
reservoir R; are Og = CARy((?(S)) and Or, = CAR,(¢*(R;)). Their dynamics 7g and 7; are the
groups of Bogoliubov *-automorphisms generated by hg and h;.

We write h = hg + v and, besides (DEC)(1), we assume

(DEC)
(4) No direct coupling between reservoirs
(x,y) € Ri x Rjfori#j = w(z,y)=0.
(5) w is finite rank, i.e., for some finite Gy C G containing .S,
(z,y) € Go x Gg = wv(z,y)=0.
(6) &g, is the set of finite subsets of G and the indexing set is

T ={A€ & |A>DGo).

Note that v = Z]Ni | v;, where v; denotes the compression of v to ¢2(S U R;). The coupling between S

and R; is given by the “hopping” term

Vi=dl(v) = Y vz, y)aiay,
x,yESURj

where aff = a#(3,). Note that since v; is finite rank, V; € CAR(¢2(S U R;)).

Finally, the self-interaction, restricted to the small system .5, is described by a self-adjoint element W of
CAR,(¢*(S)). The interacting C*-dynamics 7 on O is generated by § = &g, +i[V, - | where

M
V=wW+)V
j=1

""'We use the corresponding notation for matrix elements of bounded operators on £2(G).
2Whenever the meaning is clear within the context, we denote with the same letters the extensions of these operators to
£*(G) by setting them to zero on £2(S)* and £2(R;)*. Analogous extensions will be used without further saying.
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is a self-adjoint element of O.

The reference state of the coupled system is the quasi-free state w generated by

M
T=1s9 @Tﬁjua‘ ’
j=1
where $; > 0 and p; € R are the inverse temperature and chemical potential of the R, and'?

1
1+ &Phi—#slr;)

T3, =

is the corresponding density operator on EZ(R]-). The EBBM is described by the quantum dynamical
system (O, 7, w). Note that w|OR = wg, u, is the (75, B;)-KMS state on O, .
; :

Due to the fermionic statistics, the open quantum system S + R; + - - - + Ry does not have the tensor
product structure with respect to its subsystems, as postulated in [BBJ™23, Section 1.1]. This however
does not affect any of the results of [BBJ*23], the proof of Theorem 1.5 in [BBJ"23] requiring only
notational changes. We note in particular that disjointedly supported elements of O commute, i.e., if
A€ Op,BeOp withT, T C G suchthat T NT" = (), then [A, B] = 0.

We now describe the TDL approximation scheme. We start with A € 7 and write it as

M
j=1
where A; C R;. Let
Oa, = CARy(£2(A))), O = CAR,(¢*(A)).

The free dynamics 7, A is the group of Bogoliubov *-automorphisms generated by

M
hiep = hg & @ ha; |
j=1

where hy, denotes the compression of A; to KQ(Aj). By Assumption (DEC)(5-6), V € O,, and the
dynamics 7, is generated by 65 = g A + i[V, - ]. The reference state w) is the quasi-free state on Oy
with density

1

1+ i ha; —hilag)” 42)

M
Ty =15® @TAj,ﬂjuj ) TAjzﬁjﬂj =
j=1

Our TDL scheme is defined by the net (Op, 7a,wp ).

Other approximation schemes are of course possible, and we will comment on them in Section 4.4.

4.3 TDL of 2TMEP

We start with assumption

3We denote by 1, 1g, , etc, the orthogonal projection onto £%(5), £*(R;), etc.
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(FE) The reservoir’s one-fermion Hamiltonians h;, 1 < j < M, have purely absolutely
continuous spectrum.

This assumption ensures that all reservoir subsystems (O, 7;, wg, ;) are mixing, and hence ergodic, and
is used only for the verification of Assumption (TDL3)(2).

Theorem 4.2 Suppose that (FE) holds. Then Assumptions (TDL1)—(TDL6) hold. In particular, Propo-
sition 2.1 and Theorem 2.3 hold for the EBBM.

In the process of the proof we will establish regularity properties of the EBBM that are much stronger
than needed for the verification of (TDL1)-(TDL6).

Lemma 4.3 (1) s—limAj hAj = h;.
(2) s—limp hp g = hee
(3) s-limy AY =AY forall € R.

@) Forany A € Oy,
lij{n TA(A) = 7%(A)

in norm, locally uniformly for z € C.

(5) Forany A € O,
h/Ixn Th(A) = 7'(A)

in norm, locally uniformly for t € R.

(6) Forall A € T one has op = 0., (V') = 0. Moreover,
limcl, (0) = <5(0)

in norm, locally uniformly for z € C. In particular, the function z — (o) is entire.

(7) Forall s € R the map
iR > z+— [Dws : Dw], € O

extends to an entire function. Moreover, for s € R,
li/{n[DwA,s : Dwyp), = [Dws : Dw),, li/{n[DwAﬁ : Dwp): = [Dws : Dwl},
in norm, locally uniformly for z € C.
Proof. (1) Since h A = ]lAjh]l Ajs with s—limp 1 A = 1 R;> ONE has the estimate
[(hy = By ) fIL < | (Mry — Tay)Af || + R (TR; — a,) f1I,
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ha

which yields the statement. We observe that this implies, in particular, that s—limy e*"% = e*", locally

uniformly for z € C.

(2) Writing
M

has = hee = hs © | @ (ha, = hy) |,
j=1

the result follows directly from (1). Here again, we note that this implies s—lim e?has — ezhir locally
uniformly for z € C.

3) Let ¢ = — Z]Ail Bj(hj — pj) and £y = — Z]Ail Bj(ha; — p5). By the final remark in the proof
of Part (1), we have s—limp e/ = e, locally uniformly for z € C. We identify T'_(¢*(A)) with
a subspace of I'_(/?(G)) and denote by ) (/2(G)) the N-particle sector of the latter. Then, the
respective Araki-Wyss representations give that, for any N, N’ € N, § € Rand ¥ € ™ (2(G) ®
r®e ).

. . QN . N’
AL = (") g () T,
ALw = () e (e7) My,

and the result follows from a simple telescopic expansion of the difference AifA\I/ — A%y,

(4) Consider first A = a}a, for some z,y € G. Since
T n(4) = 0 (s, Ja(ehans,),
8 (A) = a* (75, )a(er6,),
one has
177 1 (A) = T (A)]| < [la* (e — e*Pm)5,) || [la(e® 26, )| + [la* (€8, [[la((e*"4 — e*)5, )|
< (et — @) g, |||t gy || 4 [|(e2P A — e*Pir) g, | [ b |,

and it follows from (2) that
Ii/I\n Tru(A) = 5 (4) (4.3)

in norm, locally uniformly for z € C. Since any A € Oy, is a finite linear combination of finite products
of factors of the form aja,, (4.3) holds for all A € Oy, with the required uniformity. Since V' € O,
(4) follows from the expansions

TA(A) = 75 5 (A) + Z z”/ i[Tifﬁ(V), | ifflr(V), Tig(A)] - ]dty - dty,
n>1 0<t; <--<tn<1
T (A) =7 (A) + Z Zn/ i[Tét"(V), e ,i[Tertl(V),Ter(A)] co]dty - - diy,
n>1 0<t1<--<tp<1
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and a telescopic expansion of their difference.

(5) Since fo and 7! are isometric for real ¢, the result follows from Part (4) and the dense inclusion
Oloc C O by an elementary €/3 argument.

(6) Let c be a finite rank operator on ¢?(G), with singular value decomposition ¢ = >3 ; sk fx(gk, - )-
Then, dT'(c) = >"}"; spa™(fr)a(gr) € O, and one easily checks that

lar (o)l < llell =D sill filllgnll
k=1

where || - ||1 denotes the trace norm. Since finite rank operators are dense in the Banach space of trace
class operators, one has dI'(c) € O for trace class ¢, with the same inequality.

By assumption, v is finite rank and V' = W + dI'(v) with W € Og. It follows that

[dl“(é), W] = Z E(x, y) [a;aw W] =0,
z,yeG\S

which gives

gfﬂ(V) — AT (O)17o—i0d0(0) _ (i6dT(O) g7 —i0dT(0) 4 g <ei%ve7i9£> W 4 dr (e ve lee> (4.4

0 = 8u(V) = S368(V)],q = DG ZBJdF 6), o5 =1l ) =ilh ).

Similarly, recalling that V' € O, for all A € Z, we get

on = 0y, (V) = dL(i[ly, v] Zﬁ]dr Pin);  bia =iy, hyal =i[vg, byl = @5,
7j=1

which shows that op = o.

For A € 7 and z € C, we have

oal0) =dl(Pa(2)),  <5(o) = dT ((2)),

where . . . .
¢A(Z) — elZqube—lZKA’ ¢(z) — e1z€¢e—1z£
and ¢ = Z;‘i 1 Bj®; is finite rank. It follows from the initial remark in the proof of Part (3) that

lim ¢a(2) = ¢(2)
holds in trace norm, locally uniformly for z € C, and the result follows from the estimate

1554 (0) = G (@) < [T (A (2) = d(2)I| < [[0a(2) = &(2)]1-
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(7) We follow the proofs of Propositions 2.5 and 2.6. Relation (4.4) gives that 6 +— gﬁ(V) is entire, from
which (2.15) shows that the same is true of 8 +—> gg (I'_¢). It then follows from (2.14) that (2.13) holds
for all z € C and gives the first part of the statement.

With (2.16), (2.17), and (2.18), to get the second assertion it is sufficient to prove that
lim 74 (65, (V) = (V).
lim 74 1.(<5, (0)) = T (2(0)),

locally uniformly for ¢t € R and 6 € C. This follows from (5) and (6). O

Proof of Theorem 4.2.
(TDL1)+(TDL4) Follow from Lemma 4.3(7).

(TDL2) Parts (1-2) are obvious consequences of our setup. Part (3) follows from the definition (4.2)
of T, Lemma 4.3(1) and limy ]lA]. = 1; which ensure that s—lim 7 = T'. The general formula for
quasi-free states

wr(a*(fn) - a*(fi)algr) - algm)) = dnm det({(gi, Tf;)})

then implies the weak™ convergence wr, — wr. Part (4) follows from Lemma 4.3(4). As in the proof
of Lemma 4.3(3), we identify T'_(¢2(A)) with a subspace of I'_(¢?(G)). Then the respective Araki—
Wyss representations give that Part (5) holds with Q) = Qaw = Q¢ ® Qp.'* Part (6) follows from
Lemma 4.3(7).

(TDL3) Part (1) follows from Lemma 4.3(3) and Formula (4.1) that allow us to take Jy = J. Regarding
Part (2), setting R = Uinle and invoking the fermionic exponential law [BSZ92, Theorem 3.2], we
may identify

I_((@)) =T (2(S) @ T_(*(R)),

and the corresponding Fock vacua
Qf = Q¢ 5 @ Qs .

Considering the operators £ and £, defined in the proof of Lemma 4.3(3) as acting on ¢?(R), we have

Af.z _ (I ® einF(é)) ® (I ® eindF(E)),

and
6 i6dI (¢ —igdI' (¢
A = (I @) g (I®e W),

Since dI'(45 )2, g = 0, we have
(T_(£%(S)) ® Ot r) @ (T_(£2(S)) ® Ut r) C kerlog A, .
Assumption (FE) implies that

kerlog A, = (I (£*(S)) ® Q) ® (T (£*(5)) @ Q)

Note, however, that ma # 7 on Oy since Ty # T|€2(A).

34



On thermodynamic limit of two-times measurement entropy production

which gives Part (2).
(TDLS) Parts (1-3) follow from our setup, Part (4) from Lemma 4.3(6).
(TDL6) Parts (1-2) follow from the setup and Parts (3—4) from Lemma 4.3(2+6). O

4.4 Remarks

1.The Spin—-Fermion Model. This open quantum system was studied in the early seminal works [Dav74,
SL78] and has remained one of the paradigmatic models of quantum statistical mechanics. The transfer
operator techniques of [JP02b, JOPP10] are applicable to this model, and we will return to it in the
continuation of this paper [BBJ™]. Just like OQ2S, the Spin—Fermion Model (in the sequel abbreviated
SFM) has the tensor product structure of open quantum systems discussed in Section 1.2 of [BBJ"23].
The reservoirs are free Fermi gasses over (h;, h;) described by (CAR(b;), 75, wg; ), where wg; is a quasi-
free state generated by Tj3,0. The interaction of S with R; is described by a self-adjoint V; which is a
finite sum of terms

Q@ p;(f1) - ¢i(fn), (4.5)

where () is a self-adjoint element of Og and ¢; denotes the fermionic field operator in CAR(h;). If
h; = ¢%(R;) for some countably infinite R;, the TDL of the 2TMEP is carried out in the same way as for
the EBMM. The continuous reservoir case b; = L? (R?, dz) and hj = — %A is of particular importance
in connection to the transfer operator techniques of [JP02b, JOPP10]. The TDL scheme is carried out by
considering subspaces L*([—L, L]%, dz) and by restricting —5-A to [—L, L] with periodic (or Dirich-
let, or Neumann...) boundary condition. To define a finite dimensional TDL scheme, one also introduces
a high energy cut-off £ > 0, and so the scheme is indexed by (E, L) g>0,1,~0. The details are the same
as in [JOPP10, Exercise 6.4], and we leave them to an interested reader. Assumptions (TDL1)-(TDL6)
hold if the test functions fj, in (4.5) are in dom(ei"s) for some Aj > By

2. The Spin-Boson Model. This model has the same general structure as the SFM upon replacing CAR
with CCR. The model cannot be defined on the C*-level and the interacting dynamics is introduced
only in the GNS-representation. For technical reasons due to the unboundedness of the bosonic fields
operators, in (4.5) one always takes n < 2. In spite of the relatively large literature on the Spin—Boson
Model, its TDL has rarely been discussed. Although it is likely that the TDL justification of the 2TMEP
for the Spin—Boson Model can be carried out along similar lines as for the SFM model, the technical
details remain to be worked out.

3. Other TDL schemes. Just like in the OQ2S case (3.7)—(3.8), one can also consider the TDL scheme
where
WA; = Wg; ‘(’)A,' (4.6)
J

Note that wy; is quasi-free state on Oy ; generated by the compression of T}, on the subspace 72 (Aj),
which we denote by [T}3,,,,]a,. Obviously, [Tj5;,,.]a, differs from T, g,,,. given by (4.2). One then takes

_ 1 _
hAj = _EIOg([Tﬁjuj]Aj(]lAj - [Tﬁj,uj]/\j) 1) + Ky,
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so that
1

1+ eﬁj(EAj _Mj]lAj)'

(Ts;0;18; =
EAJ. is also obviously not equal to the compression /iy ; of i to ﬁz(Aj), but we still have that

s—/&m hAj = h;.

This gives that Lemma 4.3 holds as formulated with the same proof, and that the same holds for Theo-
rem 4.2.

Finally, one can consider a combined TDL scheme where w A; is given by (4.6) and h A; is the restriction
of h; to Aj. The proof now requires a slight modification since the groups 75,  and ¢, - do not commute
J

anymore. However, since s—limj [h A EAJ.] = 0, the required changes of the argument are minor.

4. On the role of free reservoirs. Free reservoirs play a distinguished role in both experimental and
theoretical studies of open quantum systems. The free reservoir structure brings to the focus interaction
processes involving the small system. In OQ2S, the study of these interaction processes is affected by
the reservoir complexity, and the respective open quantum system remains poorly understood simply
because its reservoirs are poorly understood. From a mathematical perspective, free Fermi (and Bose)
gas reservoirs allow for a simple implementation of the TDL with respect to its explicitly identifiable
modular structure given by the Araki—Wyss (or Araki—-Woods [AW63]) GNS-representation. They also
allow for simple criteria ensuring the reservoirs’ ergodicity, a question which remains poorly understood
for quantum spin systems.

This being said, the study of OQ2S brings to the forefront some foundational problems of quantum
statistical mechanics that stem from the pioneering works of Araki, Haag, Ruelle, and many others in
1960’s and 70’s.'> Although relatively little progress has been made in the last forty years, these problems
remain at the core of quantum statistical mechanics and are a challenge for future generations.
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