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The Non-Zero-Sum Game of Steganography
in Heterogeneous Environments

Quentin Giboulot , Tomáš Pevný, and Andrew D. Ker , Senior Member, IEEE

Abstract— The highly heterogeneous nature of images found
in real-world environments, such as online sharing platforms,
has been one of the long-standing obstacles to the transition of
steganalysis techniques outside the laboratory. Recent advances
in identifying the properties of images relevant to steganalysis
as well as the effectiveness of deep neural networks on highly
heterogeneous datasets have laid some groundwork for resolving
this problem. Despite this progress, we argue that the way the
game played between the steganographer and the steganalyst
is currently modeled lacks some important features expected
in a real-world environment: 1) the steganographer can adapt
her cover source choice to the environment and/or to the
steganalyst’s classifier, 2) the distribution of cover sources in the
environment impacts the optimal threshold for a given classifier,
and 3) the steganalyst and steganographer have different goals,
hence different utilities. We propose to take these facts into
account using a two-player non-zero-sum game constrained by
an environment composed of multiple cover sources. We then
show how to convert this non-zero-sum game into an equivalent
zero-sum game, allowing us to propose two methods to find
Nash equilibria for this game: a standard method using the
double oracle algorithm and a minimum regret method based
on approximating a set of atomistic classifiers. Applying these
methods to contemporary steganography and steganalysis in a
realistic environment, we show that classifiers which do not
adapt to the environment severely underperform when the
steganographer is allowed to select into which cover source to
embed.

Index Terms— Steganalysis, steganography, game theory.

I. INTRODUCTION

IMAGE steganalysis has started its transition from deal-
ing purely with laboratory settings to trying to model

the real-world in order to tackle the difficult problem of
designing classifiers that can provide performance guarantees
in a realistic environment. An illustration is the success
of recent steganalysis methodologies during the ALASKA2
competition [1]. Contestants were asked to classify cover and
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stego images on a highly heterogeneous dataset containing
images coming from many different sources – that is, taken
with different cameras, ISO settings and, most importantly,
developed with different processing pipelines. The main lesson
from this competition was that the use of off-the-shelf state-of-
the-art neural network architectures pre-trained on ImageNet
and refined on a diverse cover source corpus leads to excellent
performance with respect to the metrics that defined the
contest [2], [3]. Despite this success, the model under which
steganalysis is currently evaluated, even in the case of the
ALASKA2 competition, still lacks several features that would
be expected when confronting a rational steganographer in a
real-world environment.

As a first observation, even though research on cover source
mismatch has clearly shown that some cover sources are
far more difficult to steganalyze than others [4], [5], the
steganographer is never assumed to be able to strategize about
the choice of cover source to embed into. In this sense, the
steganographer is not considered rational since she will never
try to adapt to the environment in order to increase the chances
of evasion from the steganalyst. A consequence of this point of
view is that the holistic strategy in steganalysis, consisting in
training a detector on as many sources as possible, is currently
considered the state-of-the-art in steganalysis when dealing
with heterogeneous environments, due to its immense success
during both ALASKA competitions [1], [6]. One major con-
clusion of this present work is that such a holistic approach is
highly insufficient when facing a rational steganographer.

A realistic model of the game played between the steganog-
rapher and the steganalyst should take the environment
information into account in order to inform how a rational
steganographer should distribute stego objects among the
different cover sources. Furthermore, knowledge of the cover
source environment is also extremely important to the ste-
ganalyst since the proportion of the different sources directly
influence the probability of false alarm for a given classifier.
For example, a rare cover source will have a very low contri-
bution to the false alarm rate since, irrespective of the strategy
of the steganographer, very few innocent users actually use it.
As such, the steganalyst should design their classifiers and
assign their detection thresholds differently depending on the
cover sources distribution in the environment in order to mini-
mize their probability of error. Finally, it should be pointed out
that both steganographic algorithms and steganalysis methods
are usually evaluated using the same metric. Most often, this
metric is chosen to be the minimum probability of error
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under equal priors, PE . Other metrics have been proposed
in [7] such as the probability of false alarm at 50% missed
detection which is starting to get adoption in the community.
However, it is questionable whether both the steganalyst and
the steganographer want to minimize the same metric. Indeed,
it is not directly obvious why the steganographer should care
about the probability of false alarm of the steganalyst since
she is only trying to evade detection.

To take these features into account we propose to cast
the steganalyst detection problem into a new game theoretic
framework. In our setting, the steganalyst tries to minimize
both their probability of false alarm and probability of missed
detection by selecting from a fixed but possibly infinite set of
classifiers. On the other hand, the steganographer has access
to a set of cover sources distributed according to a fixed
distribution and can choose how to distribute stego objects
using these cover sources. In contrast, the steganalyst only
wants to maximize the probability of missed detection of the
steganalyst and is indifferent to the probability of false alarm.

A. Related Works

The use of a game theoretic framework in steganography is
not new, though its use has been mostly focused on designing
better distortion functions for the steganographer. In [8], the
authors cast the problem of the steganographer as a zero-sum
game played with the steganalyst and show how to formulate
a distortion function accordingly in order to reach an equilib-
rium. In a similar vein, the authors in [9] provide conditions
under which adaptivity of the cost function is an optimal
strategy in a suitably defined zero-sum game. Finally, and most
recently, the Backpack protocol presented in [10], formulates
a zero-sum game played between the steganographer and the
steganalyst in order to iteratively design a cost function that
is optimal for a given dataset of covers. The optimization is
performed through the use of an algorithm reminiscent of the
classic double oracle algorithm [11] used to iteratively solve
minimax optimization problems.

To the best of our knowledge, few prior works in ste-
ganalysis have applied game theoretic techniques in order to
determine the optimal strategy of the steganalyst for the design
of a classifier. We can highlight the insights of [8] and [9]
which justified the use of selection-channel aware steganalyz-
ers [12] using game theoretic techniques. On the other hand,
there exists some works that address this question outside of
steganography such as [13] which studied how a defender
should select their classifier thresholds when the attacker can
choose to deliver attacks at a given operating point of the
ROC curve. Another relevant work is the monograph [14]
from Barni and Tondi which fully addressed the question of
a game where the attacker selected a function modifying a
sequence of objects to evade the defender. In particular they
provided a condition in [15, Eq. (3.9)] for the probability
distribution of the modified sequence of objects to attain an
equilibrium. However, these works are not directly applicable
to our problem: in our setting the steganographer does not
explicitly control either the probability distributions or the
performance of the steganalyst’s classifiers. She can only select

which cover sources among a fixed set for embedding which
is a more restrictive setting than the one used in these previous
works.

The closest work which has tried to integrate the knowledge
of the cover source environment into the design of the classifier
itself is the recent work of Šepák [16] proposing a formaliza-
tion of the problem of cover source mismatch. In this work, the
authors propose to minimize the maximum regret of a classifier
over all cover sources in a given cover source environment.
The regret over a source is defined as the difference in PE
of the classifier with the PE of an atomistic classifier, that
is, a classifier trained exclusively on the source of interest.
The min-regret classifier iteratively minimizes the maximum
regret by selecting at each optimization step the cover source
leading to the highest regret. This implicitly assumes that the
steganographer always selects only the worst – in the sense
of the hardest to detect with the steganalyst’s specific detector
– cover source possible. The advantage of this construction is
that it does not necessitates knowledge of the proportion of
each cover source in the environment. However, we show in
Section IV that this definition of the regret cannot guarantee
a Nash equilibrium against a rational steganographer.

The ultimate goal of this paper is to leverage our the-
oretical analysis in order to design steganalysis detectors
which can still guarantee strong performance against a rational
steganographer.

B. Contributions and Organizations

In order to address the problems mentioned in the intro-
duction we propose the following contributions, in order of
appearance in the paper:
• We formulate a realistic and general game theoretic

non-zero-sum model of the game played between the
steganographer and the steganalyst taking into account
the environment of available cover sources – Section II,

• We then show the equivalence of this non-zero-sum
game to a more amenable zero-sum game, thus allowing
one to find Nash equilibria using standard techniques –
Section III,

• We provide an explicit solution of the zero-sum game
in the case where the steganalyst is able to perfectly
identify the cover source of all images and has access
to an atomistic classifier for each of these cover sources.
This result, which is of general interest, also allows us to
bound the utility for the more general case where such
identification is not possible – Section IV-A,

• We design a fast alternative to standard techniques
for finding ϵ-Nash equilibria using a minimum regret
classifier which tries to match the performance of
atomistic classifiers in the perfect identification case –
Section IV-C,

• We finally apply the proposed methods to an heteroge-
neous dataset, using state-of-the-art steganography and
steganalysis and compare it to the standard holistic strat-
egy which does not assume a rational steganographer –
Section V.

We summarize each of these contributions and their link to
each other in Figure 1.
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Fig. 1. Summary of the theoretical analysis of this paper as well as its application for the design of classifiers. We start in Section II by formulating the game
between the steganographer and the steganalyst as a non-zero-sum game. We then prove in Section III-A that this game is equivalent to a zero-sum game,
in the sense that it possesses the same Nash equilibria. We then formulate an approximate version of this game, the atomistic game, in Section IV-A which
lower bounds the utility of the zero-sum game at the equilibrium. We provide a Nash equilibrium for this atomistic game and finally, we show in Section IV-C
how to leverage this equilibrium to design a classifier which is guaranteed to be an ϵ-best response for the steganalyst in the original non-zero-sum game.

II. GAME FORMULATION

The goal of this section is to provide a formulation of the
non-zero-sum game that is played between the steganalyst and
the steganographer. We first define the environment in which
the game is played as the distribution of cover sources. We then
go on to define the strategy set of both the steganographer and
steganalyst. Finally, we explain how the game is played and
provide a formal definition of the utility function for each
player.

A. The Environment

Outside the laboratory, both the steganographer and the
steganalyst have access to a large number of platforms where
innocent users share cover objects. The probability distribution
of these covers can depend on many parameters. In the case of
image steganography, three significant parameters have been
identified: the camera and ISO setting used to capture the
RAW image and the processing pipeline used to obtain the
final cover image [5].

Different combinations of these parameters lead to different
probability distributions of covers which we call cover sources.
We assume that the set Pc of cover sources is finite. Even
though this might seem unintuitive since the parameters of
some image processing algorithms take values in compact
subsets of R, we follow the recent work of [17] which shows
how to find a finite set of representative sources among a
possibly infinite set of cover sources.

We finally assume that innocent users draw covers randomly
from this finite set of cover sources. However, cover sources
are not uniformly distributed in the real-world, hence we
follow the work of [16] and model the possible environments
as a convex closure of probability distributions in Pc:

E ≜

{ N∑
i=1

nci Pc
i |

N∑
i=1

nci = 1, nci ≥ 0, Pc
i ∈ P

c

}
. (1)

At the start of the game, the environment is fixed to one of
the member of E .

B. The Steganographer

The goal of the steganographer is to evade the steganalyst as
much as possible, in other words, to maximize the probability

of missed detection of the steganalyst. In this paper, we assume
a simplified model of the steganographer where she uses a
single steganographic algorithm with a single payload for each
source. As a consequence, the steganographer has access to N
stego-sources Ps

i , once again defined as probability distribu-
tions. Available strategies consist in choosing the probabilities
nsi of sampling a stego object from each of these distributions.

Consequently the set of strategies Rs of the steganographer
is defined by a convex set Rs of vectors ns :

Rs ≜

{
(nsi )1≤i≤N |

N∑
i=1

nsi = 1, nsi ≥ 0

}
. (2)

Note that under this formulation, the steganographer is
assumed to use mixed strategies since she is expected to select
cover sources randomly.

C. The Steganalyst

Informally, the goal of the steganalyst is to detect as many
stego objects as possible while minimizing the probability
of false alarms. To do so, they have access to a (possibly
infinite) compact set K of classifiers. This set can be thought
of as a class of classifiers parameterized by a finite number of
continuous and bounded parameters.

Let us define the probability of false alarm α j and probabil-
ity of missed detection β j of a classifier f for the j-th source
as:

α
f
j (τ ) ≜ Ex∼Pc

j

[
f (x) > τ

]
, (3)

β
f
j (τ ) ≜ Ex∼Ps

j

[
f (x) ≤ τ

]
, (4)

where τ ∈ R̄ = R ∪ {−∞,∞} is a threshold chosen by the
steganalyst. The strategy of the steganalyst R f is thus defined
as classifier f and a threshold τ :

R f ≜ K × R̄. (5)

It is important to understand that the steganalyst is only
allowed to use a single classifier with a single threshold.
However, this classifier can itself work in two stages, where the
first stage tries to estimate the cover source and a second stage
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which uses the best available classifier for the estimated cover
source. Nevertheless, the steganalyst does not possess any
apriori knowledge about an image cover source, an assumption
we relax in Section IV-A.

D. The Game

The game is played first with each player choosing their
strategies. These choices are fixed until the end of the game.

We assume a repeated game where each round is played by
sampling one cover and one stego according to the environ-
ment’s distribution and the steganographer’s strategy. One of
these two objects, which we will denote as x , is then given
to the steganalyst at random with equal probabilities. The
steganalyst then applies their chosen classifier to this object to
decide if it is a cover or a stego. Importantly, the steganalyst
only sees a single image from an unknown actor at each round.
The final utility for each player is the average utility after
an infinite number of rounds. We will now define the utility
function for each player.

As we have discussed, the steganographer wants to max-
imize the probability of missed detection of the steganalyst.
Note that in this version of the game, the steganographer does
not control how many stego images is produced. This leads
to the following utility formulation for the steganographer
(attacker):

uatk ( f, τ, ns) ≜ lim
n→∞

1
n

n∑
i=1

1
[

f (xi ) ≤ τ ∧ xi ∼ Ps] ,
=

1
2

Ex∼Ps
[

f (x) ≤ τ
]

=
1
2

N∑
j=1

β
f
j (τ ) ns j , (6)

where Ps can be any stego-source.
On the other hand, the steganalyst not only wants to maxi-

mize their probability of correctly detecting a stego image, but
they also want to minimize their probability of false alarm.
Furthermore, they might weight the cost of a false alarm
differently than the cost of a missed detection or we might
want to model a case where there is an unequal number
of cover and stego objects. We reflect this by introducing a
weighting parameter λ ∈ [0, 1] and its complement λ̄ = 1−λ.
This leads us to the following utility formulation for the
steganalyst (defender):

udef( f, τ, ns) ≜ lim
n→∞

λ

n

n∑
i=1

1
[

f (xi ) ≤ τ ∧ xi ∼ Pc]
+ lim

n→∞

λ̄

n

n∑
i=1

1
[

f (xi ) > τ ∧ xi ∼ Ps]
=

λ

2
Ex∼Pc

[
f (x) ≤ τ

]
+

λ̄

2
Ex∼Ps

[
f (x) > τ

]
=

1
2
−

λ

2

N∑
j=1

α
f
j (τ ) nc j −

λ̄

2

N∑
j=1

β
f
j (τ ) ns j .

(7)

This general formulation of the utility clearly shows that
the game played between the steganalyzer and the steganog-
rapher is not a zero-sum game: the steganographer’s utility
only depends on the probability of missed detection whereas
the steganalyst has a supplementary term depending on
the probability of false alarm and each term is weighted
differently.

III. GAME SOLUTIONS

Non-zero-sum games are notoriously difficult to solve.
In particular, we loose the property of zero-sum games that
minmax solutions, where both players are allowed to random-
ize their strategies, lead to a Nash equilibrium and that all Nash
Equilibria have an identical utility. Thankfully, some non-zero-
sum games have a special structure which can be leveraged to
convert them to an equivalent zero-sum game with the same
equilibria. This is the case for our game, and recasting it as
an equivalent zero-sum game allows us, in the rest of paper,
to use standard game theoretic techniques to efficiently find
its Nash Equilibria.

A. Equivalence to a Zero-Sum Game

In our case, the utility of each player can be rewritten as a
utility term shared between the two players, denoted as u,
plus a term that is only a function of the strategy of the
opposite player. The shared component of the utility can be
seen as defining a zero-sum game. By expressing the utility
as such, we can show that the best response of each player
only depends on the shared component u. This allows us
to conclude that the set of Nash equilibria of the original
non-zero-sum game is identical to that of the zero-sum game
defined by u.

Let us now start by defining each component of the non-
zero-sum game utility:

u′def ( f, τ ) ≜
1
2
−

λ

2

N∑
j=1

α
f
j (τ ) nc j , (8)

u ( f, τ, ns) ≜ λ̄uatk ( f, τ, ns)− u′def ( f, τ ) . (9)

We can then rewrite the utility of both players in Eq. (6-7):

uatk ( f, τ, ns) =
(
u ( f, τ, ns)+ u′def ( f, τ )

)
λ̄−1, (10)

udef ( f, τ, ns) = −u ( f, τ, ns) . (11)

Observe that both players share the same utility function u
which depends on the strategy of both players. Furthermore,
the other term in the utility of the steganographer only depends
on the strategy of steganalyst.

Now let
(

f ∗, τ ∗, n∗s
)

be a Nash equilibrium for the zero-sum
game defined by u. By definition, we then have that n∗s is a
best response to ( f ∗, τ ∗) in the zero-sum game defined by u.
Hence we have that for all ns ∈ Rs:

u
(

f ∗, τ ∗, n∗s
)
≥ u

(
f ∗, τ ∗, ns

)
. (12)

Using this inequality, we can upper bound the utility
of the steganographer for the original non-zero-sum game uatk.
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For all ns ∈ Rs, we have that:

uatk
(

f ∗, τ ∗, n∗s
)
=
(
u
(

f ∗, τ ∗, n∗s
)
+ u′def

(
f ∗, τ ∗

))
λ̄−1

≥
(
u
(

f ∗, τ ∗, ns
)
+ u′def

(
f ∗, τ ∗

))
λ̄−1

= uatk
(

f ∗, τ ∗, ns
)
. (13)

The key step is the inequality of the second line which is made
possible by the fact that the second term of Eq (9), u′def, does
not depend on ns and thus is constant whatever the strategy
of the steganographer is.

In the case of the steganalyst, the proof is trivial since the
utility udef only depends on u. Thus, for all ( f, τ ) ∈ R f :

udef
(

f ∗, τ ∗, n∗s
)
= −u

(
f ∗, τ ∗, n∗s

)
≤ −u

(
f, τ, n∗s

)
= udef ( f, τ, ns) (14)

Since we have that both n∗s and ( f ∗, τ ∗) are still best
responses in the original non-zero-sum game, we have that(

f ∗, τ ∗, n∗s
)

is a Nash equilibrium in this non-zero-sum game.
Consequently, instead of solving the original game, we can
instead find Nash Equilibria in the zero-sum game defined
by u. We emphasize that this is not an approximation: every
Nash equilibrium of the zero-sum game defined by u is
equivalent to a Nash equilibrium of the non-zero sum game
defined by udef and uatk, hence computing one equilibrium in
one game is equivalent to computing one in the other.

For the rest of the paper, we will drop the −1 constant and
the 1

2 factor of Eq (9) since they do not affect the equilibrium.
The steganography game can then finally be defined by a
single utility, denoted as u, which is expressed as:

u ( f, τ, ns) ≜ λ

N∑
j=1

α
f
j (τ ) nc j + λ̄

N∑
j=1

β
f
j (τ ) ns j . (15)

Notice that u, which the steganographer aims to maximize
and the steganalyst to minimize, equals the probability of error
over the whole environment. In particular, it is a more general
expression of the commonly used PE . Note that it is equal
to the PE when λ = 0.5 and when the steganalyst chooses τ

such that it minimizes the sum of errors.

B. Double Oracle Solutions for the Zero-Sum Game

A general method to solve large zero-sum games effi-
ciently is to use the double oracle algorithm. This algorithm
exists for both finite [11] and continuous [18] games. In the
case of finite games, the algorithm is guaranteed to con-
verge to a Nash equilibrium in finitely many iterations
[18, Theorem 1.1]. For continuous games, the algorithm is
guaranteed to converge to an ϵ-equilibrium in finitely many
iterations as long as ϵ > 0 [18, Theorem 1.3] and if we can
find the best-response for each player at each iteration. It is
important to note that double oracle algorithms output mixed
strategies for both players. In our case, this means that the
steganalyst’s strategy under the double oracle solution will not
consist in choosing a single classifier but in randomizing the
chosen classifier at each round of the game.

In our setting, we cannot rely on computing the complete
payoff matrix of the game, due to the possibly infinite size

of the steganalyst strategy set. The use of the double oracle
algorithm allows bypassing this limitation by iteratively com-
puting a payoff matrix while also improving upon the strategy
of both players at each iteration.

Our game is continuous due to the fact that the steganalyst
needs to select a classifier within a compact set and set its
threshold. We can thus use the continuous version of the
double oracle algorithm as presented in Algorithm 1. The
basic idea of the algorithm is to augment, at each iteration,
a finite set of pure strategies for both the steganographer and
steganalyst. A Nash equilibrium is computed on this finite set
using the standard linear programming method. Finally, the
best responses for both the steganographer and the steganalyst
are found in the original set of strategies R f and Rs against
this equilibrium. Since a pure strategy always belongs to the
best response set for each player, we can augment the set of
strategies of each player only with pure strategies and repeat
until an ϵ-Nash equilibrium is reached. From [18, Eq (4),
Proposition 2.2], the terminating condition which guarantees
an ϵ-Nash equilibrium has been reached is that:

u
(

f ∗j , τ ∗j , (ns) j+1

)
− u

(
f j+1, τ j+1, (n∗s ) j

)
≤ ϵ. (16)

In words, this means that if, at the j-th iteration, the best
responses of each player – (ns) j+1 and

(
f j+1, τ j+1

)
– against

the equilibrium response of the other player – ( f ∗j , τ ∗j ) and
(n∗s ) j – lead to utilities that do not differ more than ϵ, then
we have reached an ϵ-Nash equilibrium.

The only difficulty in the implementation of this algorithm
is finding the best responses for both players at each iteration.
In the case of the steganographer, this is actually trivial since
her number of pure strategies is equal to the number of sources
– they are the strategies consisting in setting all nsi to zero
except for one source. Since the steganographer can restrict
the search of best responses to pure strategies, she can simply
perform an exhaustive search to find the source leading to
the highest probability of missed detection against the current
equilibrium strategy of the steganalyst ( f ∗j , τ ∗j ).

Regarding the steganalyst’s best response, it has to be found
by finding the classifier which leads to the smallest utility.
In practice, this amounts to finding the global minimum for
a chosen class of classifier. Since the current state of the art
relies on neural networks, for which there is no guarantee
to find such a global minimum, the steganalyst will resort to
a heuristic that consists of training a classifier on a dataset
built using the environment nc as well as the steganographer’s
strategy under the equilibrium strategy for the restricted set
of pure strategies at the current iteration (n∗s ) j . We will then
consider that the trained classifier is a close approximation to a
best response to the equilibrium strategy of the steganographer.
The major consequence of this heuristic is that we lose the
convergence guarantee of the double oracle algorithm, as the
algorithm is only guaranteed to converge if we compute an
exact best response for both players at each stage.

IV. ϵ-REGRET SOLUTIONS

Despite the relative efficiency of the double oracle algorithm
compared to the standard method of linear programming for
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Algorithm 1 Double Oracle Algorithm
Data:
nc: Distribution of cover sources
X: Pure strategies of the steganographer,
Y1: ( f1, τ1) ∈ R f ,
ϵ > 0
Result:

(
f ∗, τ ∗, n∗s

)
: ϵ-Nash equilibrium

repeat
Compute

(
f ∗j , τ ∗j , (n

∗
s ) j

)
, equilibrium of(

X, Y j , u
)
;

Compute (ns) j+1 = arg maxns∈X u
(

f ∗j , τ ∗j , ns

)
;

Train f j+1 using a training set with the proportion
of cover and stego sources given by nc and (n∗s ) j
;

Compute τ j+1 = arg min τ∈R̄ u
(

f j+1, τ, (n∗s ) j
)

Y j+1 ← Y j ∩
(

f j+1, τ j+1
)

until u
(

f ∗j , τ ∗j , (ns) j+1

)
− u

(
f j+1, τ j+1, (n∗s ) j

)
≤ ϵ;

solving large two-player zero-sum games, it is still very costly
in practice since it requires training a new classifier at each
iteration. Furthermore, since the number of iterations is not
known a priori, the total number of classifiers that will need
to be trained to obtain an acceptable solution is also unknown,
and likely quite large. To solve this problem, we construct
a class of so-called “ϵ-regret” classifiers and show sufficient
conditions under which they lead to an ϵ-Nash equilibrium
while also being guaranteed to necessitate only to train as
many classifiers as cover sources plus one.

The basic idea of this section is to construct a classifier
which is an ϵ-best response to the best strategy of the
steganographer. One way to do this is to find a dominant
strategy, unavailable to the steganalyst in practice. This strat-
egy will allow us to find a lower-bound to the game’s utility
u that the steganalyst will try to approximate. Note that the
steganalyst wants to construct a single classifier in order to
ensure lower computational complexity than the double oracle
algorithm. This means that only pure strategies are allowed for
the steganalyst, contrary to the double oracle which leverages
mixed strategies by randomizing many classifiers.

A. Nash Equilibrium With Perfect Source Identification

In our case, the most natural way to find a dominant strategy
for the game defined by u is to assume that the steganalyst is
able to perfectly identify each source. We will thus construct
a lower-bound on the utility u by finding a Nash equilibrium
in a game where the steganalyst is able to select a different
classifier for each cover source.

To facilitate the discussion we assume the following:
• For each source i , there is a unique classifier f ∗i which,

for all thresholds τ ∈ R̄, is most powerful with respect
to every other f ∈ K when discriminating between
Pc

i and Ps
i . Such a classifier can be thought of as a

likelihood ratio test or more practically a classifier trained
specifically on a target source.

• The ROC curve of each classifier f ∈ K is concave and
continuously differentiable on [0, 1].

• The output distributions of f ∗i (x) has the same support
when x ∼ Pc

i and x ∼ Ps
i .

Since the best classifier for each source is known, the goal
of the steganalyst is simpler: they only have to find the thresh-
old τi for each source in order to minimize the utility of the
steganographer. Indeed, since there is a single most powerful
classifier for each source, and since the steganalyst can choose
a different classifier for each source, the false alarms and
missed detection errors are minimized by choosing f ∗i .1

To ease the presentation, we assume that, for a given
classifier f ∗i , the steganalyst selects a probability of missed
detection β f ∗i and obtains the corresponding minimum prob-
ability of false alarm for this β f ∗i :

α
f

i (x) = min
τ∈R̄
{α

f
i (τ ) | β

f
i (τ ) = x}. (17)

Note that we will drop the (x) from α
f

i (x) when it is clear
from context.

This game, which we will refer to as the atomistic game,
is characterized by a utility u A which we define as:

u A(β, ns) ≜
N∑

i=1

λ α
f *
i

i nci + λ̄ β
f *
i

i nsi . (18)

Consequently, if there exists a pure strategy equilibrium for
the steganalyst, it is a minimax strategy solving:

max
ns∈Rs

min
β∈[0,1]N

u A(β, ns)

s.t
N∑

i=1

ns = 1. (19)

Notice that u(β, ns) is convex in β (by concavity of the
ROC curve) and concave (linear) in ns . Hence, if a feasible
solution exists, it obtained by finding the stationary point of
the Lagrangian:

L = u A(β, ns)+ η

( N∑
i=1

nsi − 1

)
, (20)

where η is the Lagrange multiplier. We have:

∂L
∂βi
= 0⇔ nsi = −

∂αi

∂βi
nci λλ̄−1, (21)

∂L
∂nsi

= 0⇔ β
f *
i

i = ηλ̄−1. (22)

Observe that at the equilibrium, Eq. (21) tells us that, the
steganalyst should select a threshold such that every classifier
has the same probability of missed detection. This is expected
since such a choice guarantees that any convex sum of the
probabilities of missed detection will always have the same
value. Therefore, the steganographer is guaranteed to be unable

1Except in the case where an LRT is available, different classifiers might
be optimal at different regimes. For example, at very low false-alarm rates,
specific classifiers might have to be trained to obtain good results. Our
abstraction still holds in this case as we can construct a function which
associates to each threshold the “optimal classifier” for this threshold.
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to increase her utility. Regarding the steganographer’s strategy
at the equilibrium, the probability that the steganographer
embeds in the i-th source, nsi , not only depends on the
environment through the probability of drawing a cover from
the i-th source, nci , but also on the classifiers available to
the steganalyst through the slope of the ROC curve ∂αi

∂βi
.

Therefore the intuition that a steganographer should try to
imitate the environment is not valid in the case where the
steganographer has complete information over the steganalyst
available strategies. Also, note that if we assume bounded ∂αi

∂βi
,

we have that if nci = 0 then nsi = 0 at the equilibrium.
This reflects the fact that if a cover source is absent from the
environment, then the steganalyst can set their probability of
false alarm to 1 on this cover source, thus being guaranteed
to always detect any stego images coming from this source
without incurring any cost in terms of false-alarm. On the other
hand, under the hypothesis that the support of the cover and
stego distribution is equal, it is impossible for the derivative
∂αi
∂βi

to be equal to zero. Thus, as long as nci > 0, the
steganographer should always set nsi to be strictly positive,
no matter how easy the corresponding cover source is to
steganalyze.

The system in Eq (19) is easily solved by a bisection search
on β. However, this system might not have a feasible solution
in the first place, which would imply that there is no pure
strategy for the steganalyst which leads to a Nash equilibrium.

The following proposition provides a sufficient condition
for the existence (and uniqueness) of a solution to Eq (19):

Proposition 1: Let λ∗ = min
(
λ, λ̄

)
. Under the assump-

tions of this subsection, if we have that for all atomistic
classifiers f ∗i :

α
f ∗i

i
(
λ∗
)
≤ λ∗, (23)

then the constrained optimization problem defined in Eq (19),
admits a solution

(
β∗, n∗s

)
. In particular it is always the case

for λ = 0.5.
Proof: See Appendix A. □

In the rest of the paper, we assume an equilibrium solution
exists and denote it as

(
β∗, n∗s

)
. It is important to note that the

atomistic utility u A(β∗, n∗s ) is a lower-bound of any utility of
the original game where the cover sources cannot be identified
perfectly:

∀ ( f, τ ) ∈ R f , u A(β∗, n∗s ) ≤ u
(

f, τ, n∗s
)
. (24)

Atomistic game with two sources: We end the discussion
of the perfect source identification case by studying a sim-
ple example of a game containing only two cover sources.
We assume that λ = 0.5 and that the output of each optimal
classifier f ∗i is Gaussian such that:

x ∼ Pc
i ⇒ f ∗i (x) ∼ N (0, 1) , (25)

x ∼ Ps
i ⇒ f ∗i (x) ∼ N (µi , 1) , (26)

where µi is the mean shift due to the embedding for source i .
We want to note that such a setting closely matches the
asymptotic distributions of the output of a likelihood ratio
test in a simple hypothesis test such as the one found in
MiPOD [19].

In such a case, a Nash equilibrium is found by solving the
following system for β: nsi = exp

(
−Q−1 (β) µi −

µ2
i

2

)
nci

1 = ns1 + ns2 .

(27)

where Q−1 is the inverse of the tail function of the standard
Gaussian distribution. We show in Figure 2 how the solution
of the game changes for different environments and source
difficulties.

First of all, observe that in the case where the cover source
environments are balanced – nc = (0.5, 0.5) – the figure are
symmetrical as expected. Indeed, this symmetry means that
neither the steganographer nor the steganalyst favor one source
over the other if they are identical. Furthermore, the behavior
of each player is intuitive in this balanced environment. For the
steganographer, the easier a source is relative to the other the
less she will use it to create stego objects, i.e if µ1 > µ2 then
ns1∗ < ns2∗. Similarly, for the steganalyst, each cover source
contributes equally to a change in β∗.

In the case of an unbalanced environments, the behavior of
the steganographer is less intuitive. Indeed, the steganographer
will distribute most of the stego images in a cover source
which is far easier to steganalyze than the other if this cover
source is more prevalent. For example, look at the case where
nc = (0.8, 0.2), that is where 80% of the environment consists
of the first cover source. We observe that only when embed-
ding in the first cover source becomes highly detectable –
around µ1 = 4 – and only when embedding in the second
source is relatively safe – around µ2 = 1.5, then, and only
then, will the steganographer prefer the second source over the
first. Similarly, we can also observe that the less prevalent a
source is, the less it impacts the choice of probability of missed
detection β∗ for the steganalyst – see that for nc = (0.9, 0.1),
the contours are almost independent of µ2.

B. Minimizing PE Over Atomistic Classifiers

We are in a position where we know how to construct
a Nash equilibrium (up to the existence of a pure feasible
solution) in the case where the steganalyst is able to perfectly
identify the cover source of images. We can now go back to
the original problem which does not assume access to such
information. To solve this problem without incurring the high
cost of the double oracle algorithm, we propose to train a
single classifier which tries to match the lower-bound found
in Section IV-A.

In order to design this classifier, we must find a suitable
loss function to minimize. As a first step, we will review the
loss function proposed in [16] and show why it is not suitable
for our purpose. The idea of the classifier in [16], which we
will denote f ϵ , is to minimize the maximum regret over all
sources, the regret being computed with respect to the PE of
each f ∗i . Let:

β
PE
i ≜ arg min

β∈[0,1]
λα

f ∗i
i (β)+ λ̄β, (28)
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Fig. 2. Solutions
(
β∗, n∗s

)
of the two-sources game as a function of the sources’ “difficulty” given by the distribution shift (µ1, µ2). The higher µi , the

easier the source is to steganalyze. The stego-source distribution of the first source n∗s1
is displayed at the top and the probability of missed detection of the

classifier at the equilibrium β∗ at the bottom. For the top figures, a blue color means the steganographer favors the second cover source whereas a red color
means she favors the first one.

be the probability of missed detection corresponding to the
PE for each atomistic classifier .2

The regret of [16] can then be defined as:

ϵ ≜ min
f ∈K

max
1≤i≤N

Regret ( f, i) , (29)

Regret ( f, i) = λ
(
α

f
i −α

f ∗i
i

(
β

PE
i

))
+ λ̄

(
β

f
i −β

PE
i

)
.

and thus f ϵ ≜ arg min f ∈Kmax1≤i≤N Regret ( f, i).
In other words, the min-regret classifier proposed in [16]

tries to match the PE of each atomistic classifier f ∗i with a
single classifier and a single threshold. Note that, in order to
ease the notation, we assume the threshold of each f to always
be set to the optimal one and thus omit it in the notation.

Using the knowledge of Section IV-A, we can first question
the choice of using the PE as a score to match. Indeed, if we
reach a regret of 0 under the definition of Eq (29), we would
not be guaranteed to reach a strategy that leads to a Nash
equilibrium in the atomistic case. Indeed, Eq (22) tells us that
we need each β

PE
i to be equal to the same value, which is

highly unlikely except in the trivial case where all sources are
identical. Consequently, in general, there does not exist a β∗

such that β
PE
i = β∗ for all sources, which would mean that

β
PE
i is not an equilibrium strategy for the steganalyst in the

atomistic case, hence not a dominant strategy in our current
setting.

Nevertheless, it is simple to fix this design choice by

matching the atomistic equilibrium error λ α
f *
i

i
(
β*

i
)
+λ̄ β*

i for

2Note that to ease the presentation, we still call this quantity PE even
though we might have λ ̸= 0.5.

each f ∗i instead of the PE . This leads us to the following
re-definition of the regret:

ϵ ≜ min
f ∈K

max
1≤i≤N

Regret ( f, i) , (30)

Regret ( f, i) = λ

(
α

f
i −α

f *
i

i

(
β*

i

))
+ λ̄

(
β

f
i −β*

i

)
.

We will now show that even by matching the atomistic
equilibrium error of each atomistic classifier f ∗i , we are still
not guaranteed to reach an ϵ-Nash equilibrium.

Let us first define the differences of false-alarms and missed
detections between the min-regret classifier and the atomistic
classifiers as:

ϵαi = λ

(
α

f ϵ

i −α
f *
i

i

(
β*

i

))
, (31)

ϵβi = λ̄
(
β

f ϵ

i −β*
i

)
. (32)

We can now compare the performance of the min-regret
classifier f ϵ to f ∗:

u( f ϵ, n∗s )− u A(τ ∗, n∗s ) =
N∑

i=1

ϵαi nci +

N∑
i=1

ϵβi n
∗
si
.

(33)

It is straightforward to construct examples where the
min-regret classifier is not guaranteed to lead to an ϵ-best
response to n∗s . For example, assuming that for all i , n∗si

̸= 0
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and nci ̸= 0, let us fix ϵαi as:

ϵαi =


−

ϵ

nci n∗si

if n∗si
≥ nci

ϵ

nci n∗si

if n∗si
< nci

(34)

and similarly for ϵβi :

ϵβi =


ϵ +

ϵ

nci n∗si

if n∗si
≥ nci

ϵ −
ϵ

nci n∗si

if n∗si
< nci

(35)

Then we indeed have for all i that ϵαi + ϵβi = ϵ, yet we
also have:

ϵαi nci + ϵβi n
∗
si
=


ϵn∗si
+

ϵ

nci

−
ϵ

n∗si

if n∗si
≥ nci

ϵn∗si
+

ϵ

n∗si

−
ϵ

nci

if n∗si
< nci

≜ ϵn∗si
+ ϵ′i , (36)

where ϵ′i ≥ 0, with equality only when nci = n∗si
.

This leads us to the actual utility difference:
N∑

i=1

ϵαi nci + ϵβi n
∗
si
= ϵ +

N∑
i=1

ϵ′i ≥ ϵ. (37)

Therefore, the min-regret classifier f ϵ is not, in general,
guaranteed to be an ϵ-best response to the equilibrium strategy
of the steganographer n∗s . Note here that even if we replaced
atomistic classifier f ∗i by the actual best response to n∗s
available to the steganalyst in R f , we could construct a
counter-example using the same method to show that this
definition of regret does not lead to an ϵ-best response.

Now we also need to know when n∗s is an ϵ-best-response
to f ϵ . We know that if the steganalyst plays the min-regret
classifier f ϵ , then the best response of the steganographer is
to set nsi = 1 where i = arg maxi β

f ϵ

i . Hence for n∗s to be an
ϵ-best-response to f ϵ we need:( N∑

i=1

λ̄ β
f ϵ

i n∗si

)
−max

i
λ̄ β

f ϵ

i ≥ −ϵ, (38)

which is, once again, not true in general.
In summary, the naive definition of regret as minimizing

the bound on the PE individually for each atomistic classifier
fails to provide a ϵ-Nash equilibrium. More generally, even
minimizing such a bound on the “correct” sum of errors does
not provide any guarantees. The next subsection’s goal is to
provide another definition that guarantees such an equilibrium
while still being simple to compute in practice.

C. Min ϵ-Regret Classifier

As we have seen, minimizing the maximum sum of errors
individually over sources is too weak to actually guarantee an
ϵ-Nash equilibrium. In particular, we have seen that we need
to take into account:
• The impact of the environment on the sum of ϵα and

ϵβ – c.f Eq (33),

• The maximum β
f ϵ

i in order to control the steganogra-
pher’s best response – c.f Eq (38)

For all classifiers f ∈ K, we can define the regret of the
steganalyst using Eq (33) and the regret of the steganographer
using Eq (38):

Rdef ( f ) =

N∑
i=1

ϵαi nci + ϵβi n
∗
si
, (39)

Ratk ( f ) = max
i

λ̄β
f

i −

( N∑
i=1

λ̄β
f

i n∗si

)
. (40)

This leads us to a natural redefinition of our min-regret
classifier f ϵ in the case of our game:

ϵ ≜ min
f ∈K

Regret ( f ) , (41)

Regret ( f ) = max (Rdef, Ratk) . (42)

Following Eq (33) and Eq (38), the min-regret classifier f ϵ

is guaranteed to be an ϵ-Nash equilibrium.
In order to avoid the complexity of the double-oracle

algorithm, we can thus train a single classifier using regret
as defined in (41) as a loss function. In particular, such a loss
can be used by any deep neural network. However, it is not
directly usable since the computation of both the probabilities
of false-alarm α

f
i and of the probabilities of missed detection

β
f

i are non-differentiable due to the thresholding operation.3

This is a well-known problem in the literature and is usually
solved by replacing the step function with a surrogate function
which is differentiable and sometimes convex [20]. In our case,
we will simply use a sigmoid function on the soft outputs of
our neural net:

σ (x) =
er(x−0.5)

1+ er(x−0.5)
. (43)

In order to make the optimization efficient we also need
good estimates of the probabilities of missed detection β

f
i

at each step in order to select the correct maximum. This
can be accomplished by using a large batch size but this
strategy would not scale with the number of sources. In order
to make our method scalable, we retain the soft outputs of
each mini-batch and use them to compute the β

f
i at each

optimization step.

V. EXPERIMENTS

We now end the paper by studying the performance of
the three proposed methods: the atomistic strategy, the dou-
ble oracle strategy and the min-regret strategy. In particular,
we provide a comparison against the the standard holistic
classifier which does not assume a rational steganographer in
order to show the importance of this assumption.

A. Experimental Core Settings

All experiments were performed using a dataset of
1150 RAW images from the ALASKA dataset [6]. These
images were all taken by a Canon EOS 100D camera with

3The max operation is itself not differentiable but modern machine learning
packages such as Pytorch solve this problem automatically by using the sub-
gradient instead.
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Fig. 3. PE and source inconsistency for the 9 sources used in the paper.
Steganography performed using JMiPOD at 0.2 bpc and steganalysis using
EfficientNet-b3. Rows correspond to the source used in the training set while
columns correspond to the testing set. The “holistic” row corresponds to
the classifier trained on a dataset composed of all 9 sources. The diagonal,
in green, corresponds to the PE where there is no cover-source mismatch
(intrinsinc difficulty). The off-diagonal elements correspond to the difference
of the PE of the mismatched classifier with the PE of the matched classifier
in the same column (source inconsistency).

ISO ranging from 1000 to 6400. From these RAW images,
a cropping operation was performed to obtain 13, 380 non-
overlapping images of size 264×264. Finally, the dataset was
processed with different processing pipelines using the method
described in [17, Fig. 1] leading to 243 cover source image
sets, of which 9 were selected as representatives using the
method given in Section III from the same work. This led to
9 cover source image sets of 264×264 JPEG images at quality
factor 98. Each of them was split as 10380/1000/2000 for
training/validation/testing.

All steganography was performed using JMiPOD [21]
which is the current state-of-the art of non side-informed JPEG
steganography.

Steganalysis was always performed using a pretrained
EfficientNet-b3 [22] which is the current state-of-the-art in
steganalysis as shown during the ALASKA2 competition [1]
as well as in the study of Yousfi et al. [2], [3]. Atomistic
classifiers, which will be considered as our f ∗i , were trained
using curriculum learning starting at 0.4 bpc for 30 epochs
directly down to 0.2 bpc for 15 epochs. The learning rate
was set to 0.5 and divided by two on loss plateau and the
batch-size set to 64. Holistic detectors were also trained by
using a training set containing 10380 images with an equal
number of image per source. The best models for all classifiers
was selected by taking the model with the lowest loss on the
validation set.

We present the performance of the atomistic and holistic
classifiers in Figure 3. As expected, sources have highly
different intrinsic difficulties – the PE in the ideal case when
the source of the test set matches the source of the atomistic
classifier – going from 1.6% up to 43%. This demonstrates
the diversity of the cover source environment as would be
expected in a real-world environment. Furthermore, the incon-
sistency between sources – the difference of PE when the
source of the testing set does not match the source of the
atomistic classifier – goes from 0.5% to 27% with an average
of 6.5% for each column. On the other hand, notice that the
PE of the holistic classifier is almost always very close to the
PE of the atomistic classifiers with an average of only 0.8%
of difference. This begs the question: is the holistic classifier

TABLE I
AVERAGE GAME VALUES AND CLOSENESS TO A NASH EQUILIBRIUM

FOR JMIPOD AT 0.2 BPC AND EFFICIENTNET-B3

itself sufficient to obtain a good approximation of the best
response of the steganalyst when perfect source identification
is available? We will answer this question by comparing this
holistic classifier to the different method we have presented in
the paper.

B. Comparison of Proposed Solutions

In order to evaluate the performance of our proposed
solutions we compare the utility of the game when using:
• The atomistic optimal strategy as defined in Section IV-A,

denoted as ( f ∗, β∗),
• The holistic classifier, denoted f hol , serving as the state-

of-the-art baseline since it is the current strategy of choice
for heterogeneous environments [1], [5], [6],

• The double oracle solution as defined in Section III-B,
denoted f DO ,

• The minimum regret solution as defined in Section IV-C,
denoted f ϵ .

When using the double oracle algorithm, we compute the
steganalyst best-response by first initializing the weights of
EfficientNet to those of the holistic classifier in order to speed
up convergence. The training is then run only for 5 epochs for
each step of the double oracle algorithm. The double oracle
algorithm was always run for 25 steps.

We perform the same initialization when computing the
min-regret solution and run the training for 15 epochs as
no gain was observed beyond this point. The best model is
selected as the model with lowest regret on the validation set.
The sigmoid parameter was set to r = 25. This value was
selected by a simple grid search between 1 and 50 minimizing
the regret on a random environment of cover sources. It should
be noted that the exact value of r did not significantly impact
the convergence during the training step – see Figure 5.

Finally, all experiments were performed assuming λ = 0.5
in order to guarantee the existence of a solution for the case
when sources can be perfectly identified. We would like to
emphasize that this means that the probability of false alarm
and of missed detection are equally weighted, which makes
the zeros-sum game utility, u, close to the usual PE metric
used to evaluate steganography and steganalysis.

The evaluation was performed by sampling randomly 10 dif-
ferent cover source environments distributions nc. We provide
the average probability of error u

(
f, τ, n∗s

)
for each classifier

and how close they are to Nash equilibrium in Table I.
Note that in the case of the original holistic classifier f hol ,
we assume that the steganographer plays the best response
against it.
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Fig. 4. Probability of false alarm (α) and probability of missed detection (β) for each source depending on the classifier used. The PE is computed using
the atomistic classifier f ∗i for individual sources. When computing the PE for the dataset containing all sources, we assume a balanced dataset in terms of
sources. f hol corresponds to the holistic classifier trained on all sources, f ϵ to the min ϵ-regret solution and f DO to the double oracle solution. Note that
nDO

s corresponds to the ϵ-best response of the steganographer when f DO is played. Note that for computing β f hol
and β f ϵ

for the dataset containing all
sources, we assume the steganographer plays a best response against these classifiers and not n∗s – optimal only for f ∗.
The sources are sorted by PE in ascending order. Blue cells correspond to environments, white cells to the optimal performance on the atomistic game. Cells
are red (resp. green) when the performance of the classifier is worse (resp. better) than the performance of the solution for the atomistic game.

As a first observation, note that simply using the holistic
classifier is not a good response for the steganalyst: the
absolute difference with respect to the atomistic game value
is on average equal to 8.7%. This means that either the
steganographer can choose a cover source to significantly
degrade the steganalyst’s performance.It demonstrates that a
classifier with PE close to the atomistic classifiers for every
source is not guaranteed to be close to a best response for the
steganalyst.

This leads us to the proposed methods, both the min-regret
method and the double oracle algorithm provide solutions with
values close to the game where perfect identification of sources
is possible while also being close to a Nash equilibrium.
From the results, it is clear that the double oracle algorithm
provides far better guarantees than the min-regret method with
a solution guaranteed to be within 0.1% of a Nash equilibrium
whereas our method only guarantees the solution to be at
worst 2.2% from a Nash equilibrium. However it should be
understood that the closeness to a Nash equilibrium, denoted
as ϵ, is computed differently for the double oracle and the
min-regret. In the case of the double oracle, ϵ is computed
as u

(
f ∗j , τ ∗j , (ns) j+1

)
− u

(
f j+1, τ j+1, (n∗s ) j

)
at each step,

hence providing a guarantee without reference to the atomistic
game u A. On the other hand, the ϵ of the min-regret solution
is computed by comparing it to the atomistic game solution
as u

(
f ϵ, τ, n∗s

)
− u A

(
β∗, n∗s

)
. However, this solution only

provides a lower-bound for the steganalyst – and hence an
upper-bound on the lost utility – which might not be achievable
since perfect identification of the sources is not available.

It might then be possible that the min-regret solution is actually
a lot closer to the available pure best-response than what the
regret is actually guaranteeing. Once again, it should also be
noted that despite slightly better solutions, the double oracle
algorithm is far more costly with the need to compute a
new classifier at each iteration, without any knowledge of
how many iterations will allow to reach a suitable solution.
On the other hand, the min-regret method needs only as many
classifiers as sources – to compute the equilibrium for the
atomistic game – plus one – the min-regret classifier itself.
Nevertheless, both methods allow us to outperform the naive
holistic classifier by at least 5.2% in the worst case, showing
the importance of taking the cover source environment into
account when the steganographer is assumed to be a rational
adversary.

For a more precise evaluation of the different solutions,
we present the detailed performance of each classifier for a
single environment in Figure 4. First of all, observe that for
both the double oracle and the atomistic case, the strategy
of the steganographer follows the same trend. The leftmost
sources, which are the easiest to steganalyse are almost not
used, despite Source 1 making up 21% of cover environment.
The weight of these “easy sources” is then transferred to more
difficult sources. In particular, in the atomistic case, the stegan-
alyst strategy n∗s transfers these weights to the most difficult
sources whereas the sources with intermediate difficulty keep
the same proportion as for the covers. Another observation
is that both the double oracle and min-regret solution trade-
off higher probabilities of false-alarm for lower probabilities
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Fig. 5. Regret as a function of the softmax parameter r for JMiPOD at
0.2bpp on a random environment composed of 9 sources and steganalyzed
with the min-regret classifier using EfficientNet-b3. The red marker indicates
the minimum regret obtained at r = 25.

of missed detection. Finally notice that the atomistic strategy
leads to a constant probability of false missed detection,
as constrained by Eq (22). The double oracle solution also
has an almost constant probability of missed detection across
sources for the same reason.

Finally, regarding the training time of both algorithms, the
computational complexity is in both cases dominated by the
training of deep neural network. Under our hardware setting,
using a single NVIDIA Tesla V100 32GB, a single epoch takes
on average 5 min in both cases, leading to an average training
time of 625 min for the double-oracle algorithm and only
75 min for the min-regret classifier. However, these results
hold because of the fixed number of training steps we have
set for both methods. If instead, we measure the training time
such that the double-oracle reaches the best regret for the
min-regret method, we measure a training time of 320 min
for the double-oracle detector and 34 min for the min-regret
detector. For both types of measurement, we thus observe that
the min-regret method is approximately 10 times faster than
the double oracle algorithm.

VI. CONCLUSION

In this paper, we have proposed a formulation of the game
played between the steganographer and the steganalyst as a
two-player non-zero-sum game. This formulation naturally
takes into account the presence of different cover sources
and how it impacts the strategies of both the steganalyst and
steganographer. We showed how to convert this non-zero-
sum game into an equivalent zero-sum game. This allowed
us to propose methods to compute solutions leading to a Nash
equilibrium.

We showed that under the assumption that the steganalyst
and the steganographer are both rational, the steganalyst
should select a threshold such that the classifier has identical
probability of missed detection on every cover source. On the
other hand, the steganographer should still use “easy to ste-
ganalyze” cover sources if they are prevalent. In particular,
she should never forego using a cover source – i.e nci > 0⇒
nsi > 0. Furthermore, we have shown that both the double
oracle algorithm and our min-regret classifier allowed reaching
solutions close to a Nash equilibrium. The advantage of the

min-regret classifier being its extremely low computational
complexity compared to the double oracle algorithm, at the
cost of slightly weaker guarantees in terms of closeness to a
Nash equilibrium. Finally, the standard holistic classifier was
shown to be extremely vulnerable to a rational steganographer:
chasing only the performance of atomistic classifiers in a
realistic context should thus be considered a mistake for the
steganalyst. We emphasize that our min-regret method can be
applied to any detector based on loss function in order to make
it robust to a rational steganographer.

The model we used in this work could be extended in several
directions. In particular, we assumed that the steganographer
uses only a single stego algorithm with a fixed payload.
Furthermore, we have assumed both players to be fully rational
and to have complete knowledge of the environment. However,
it can be argued that the steganalyst has more resources than
the steganographer and thus should be able to obtain better
estimates of the environment. Future works should integrate
these variables into the model to obtain a truly complete
representation of the steganography game.

APPENDIX

A. Proof of Proposition 1

We will only treat the case where λ ≤ 0.5, that is, when
λ∗ = λ, the other case is symmetrical.

Let g be a function defined as:

g : [0, 1]→ R

β ↣
N∑

i=1

αi (β) nci . (44)

We have that:

g(0) =

N∑
i=1

nci = 1, g(1) = 0, g (λ) ≤ λ,

(45)

with the last inequality given by Eq (23).
By concavity of the ROC curves, g is convex, hence:

dg
dβ

(1) ≥ −1 ≥ −λ̄λ−1, (46)

dg
dβ

(0) ≤
g (λ)− g (0)

λ
≤

λ− 1
λ
= −λ̄λ−1. (47)

Using the fact that the ROC curves are continuously dif-
ferentiable on [0, 1], dg

dβ
is continuous on [0, 1], hence by the

intermediate value theorem we have that:

∃β∗ ∈ (0, 1) ,
dg
dβ

(
β∗
)
=

N∑
i=1

∂αi

∂βi

(
β∗
)

nci = −λ̄λ−1. (48)

Now, if we set
(
β∗, n∗s

)
such that, for all i :

β∗i = β∗,

n∗si
= −

∂αi

∂βi

(
β∗i
)

nci λλ̄−1. (49)
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Then, we obtain a sufficient condition for the existence of
a solution:

N∑
i=1

n∗si
= 1 ⇐⇒

dg
dβ

(
β∗
)
= λ̄λ−1

⇐ λ ≤ 0.5. (50)
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