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On the boundary controlled wave equation

The HUM (Hilbert Uniqueness Method) is the method to find the boundary control satisfying the exact controllability of a partial differential equation such as heat equation, wave equation and Navier-Stoke equation. We study discretization of the one dimensional boundary controlled wave equation with finite difference method. Under appropriate assumption, we prove some theorems relating to the controllability of the discrete system as well as the observability inequality with some cure methods.

Introduction

The HUM (Hilbert Uniqueness Method) is firstly introduced by J.L.Lions [START_REF] Lions | Exact Controllability, Stabilization and Perturbations for distributed systems[END_REF] and explained rigorously in [START_REF] Lions | On the controllability of distributed systems[END_REF] and in his book [START_REF] Glowinski | Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach[END_REF] with R.Glowinski and J.He. R. Glowinski, C-H-Li and J.L.Lions [START_REF] Glowinski | A Numerical Approach to the Exact Boundary Controllability of Wave Equation (I) Dirichlet Controls: Description of the Numerical Methods[END_REF] gave theoretical and numerical implementation of this method for two dimensional wave equation. Enrique Zuazua [START_REF] Zuazua | Propagation, Observation, and Control of Wave Approximated by Finite Difference Methods[END_REF] make a summary of optimal control results with one dimension wave system. The research about optimal control of wave equation and other equation has became active with some remarkable papers of M.Asch and G.Lebeau [START_REF] Asch | Geometrical aspects of exact boundary controllability for the wave equation -a numerical study[END_REF] in 1998, J.A.Infante and E.zuazua [START_REF] Zuazua | Boundary observation for the spacediscretizations of 1-d wave equation[END_REF] in 1999, L.León and E.Zuazua [START_REF] Le Ón | Boundary controllability of the finite difference space semidiscretizations of the beam equation[END_REF] in 2002, M.Negreanu and E.Zuazua [START_REF] Negreanu | Convergence of a multigrid method for the controllability of a 1-d wave equation[END_REF] in 2004, P.Loreti and M.Mehrenberger [START_REF] Loreti | An Ingham type proof for a two-grid observability theorem[END_REF] in 2008 and S.Ervedoza and E.Zuazua [START_REF] Ervedoza | The Wave Equation: Control and Numerics[END_REF] in 2011. In this paper, we study the boundary controlled wave equation together with fully discrete scheme and finite difference method. We also prove some theorems related to this scheme compared to continuous controlled wave equation. Furthermore, we indicate the efficiency of some cure methods namely Tikhonov regularization theoretically and numerically.

Model description and HUM

Similarly in [START_REF] Zuazua | Propagation, Observation, and Control of Wave Approximated by Finite Difference Methods[END_REF], we consider the one dimensional controlled wave equation. For any (w 0 , w 1 ) ∈ L 2 (0, 1) × H -1 (0, 1), find control v(t) ∈ L 2 (0, T ) such that      w tt -w xx = 0, 0 < x < 1, 0 < t < T, w(0, t) = 0, w(1, t) = v(t), 0 < t < T, w(x, 0) = w 0 (x), w t (x, 0) = w 1 (x), 0 < x < 1, [START_REF] Brezis | Functional Analysis, Sobolev spaces and Partial Differential Equations[END_REF] satisfies null-controllability w(x, T ) = w t (x, T ) = 0. Wave equation with zero bounday condition.

     u tt -u xx = 0 0 < x < 1, 0 < t < T u(0, t) = u(1, t) = 0 0 < t < T u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) 0 < x < 1, (2) 
where (u 0 (x), u 1 (x)) ∈ H 1 0 (0, 1) × L 2 (0, 1). The total energy is defined as

E(t) = 1 2 1 0 |u x (x, t)| 2 + |u t (x, t)| 2 dx = E(0). (3) 
The null-controllability of ( 1) is equivalent to the observability of (2).

Definition 2.1. System (2) is said to be observable if there exists a constant C(T ) such that

E(0) ≤ C(T ) T 0 |u x (1, t)| 2 dt. (4) 
There is a fundamental result indicating that we have the observability as well as null-controllability when T ≥ 2.

Proposition 2.1 ([14]

). For an arbitrary T ≥ 2, system (2) is observable. Otherwise, when T < 2, we have

sup u E(0) T 0 |u x (1, t)| 2 dt = ∞, (5) 
where sup takes over all solutions u of (2).

The Hilbert Uniqueness Method is decribed in detail in [START_REF] Glowinski | A Numerical Approach to the Exact Boundary Controllability of Wave Equation (I) Dirichlet Controls: Description of the Numerical Methods[END_REF].

3 Fully discrete scheme and some related results

Given two integers M and N , we define mesh point

{x i } N +1 i=0 and {t j } M +1 j=0 . Set ∆x = 1 N + 1 and ∆t = T M + 1
. We obtain the fully discrete system of ( 1) and (2) (change the notation of initial data (1) to e 0 (x), e 1 (x) and replace the initial data of (2) by zero final data).

           u k+1 j -2u k j + u k-1 j |∆t| 2 - u k j+1 -2u k j + u k j-1 |∆x| 2 = 0, k = 1, M , j = 1, N , u k 0 = 0, u k N +1 = 0, k = 0, M + 1, u 0 j = e 0 j , u 1 j -u 0 j ∆t = e 1 j , j = 0, N + 1, (6) 
where (e 0 j , e 1 j ) ∈ H 1 0,∆x (0, 1) × L 2 ∆x (0, 1), and the backward equation

               w k+1 j -2w k j + w k-1 j |∆t| 2 - w k j+1 -2w k j + w k j-1 |∆x| 2 = 0, k = 1, M , j = 1, N , w k 0 = 0, w k N +1 = - u k N ∆x , k = 0, M + 1, w M +1 j = 0, w M +1 j -w M j ∆t = 0, j = 0, N + 1. (7) 
The energy and norm of the control are defined as

E n ∆x,∆t = ∆x 2 N j=1 u n+1 j -u n j ∆t 2 + ∆x 2 N +1 j=1 u n+1 j -u n+1 j-1 |∆x| u n j -u n j-1 |∆x| , (8) 
and

| |u N /∆x|| 2 l 2 (0,T ) = M +1 k=0 u k N ∆x 2 .|∆t|. (9) 
3.1 Discrete nonuniform observability Proposition 3.1. The energy defined as

(8) is preserved in time, i.e E n+1 ∆x,∆t = E n ∆x,∆t ∀n ∈ N.
The energy in ( 8) is non-negative, which is crucial for proving nonuniform observability with fully discrete scheme.

Lemma 3.1 ([15]

). The energy [START_REF] Marthedal | Boundary Control of Linear Evolution PDEs -Continuous and Discrete[END_REF] satisfies inequality

E n ∆x,∆t ≥ ∆x 2 1 - ∆t ∆x 2 N j=1 u n+1 j -u n j ∆t 2 . ( 10 
)
Lemma 3.2 ([5]). For any ∆x > 0 and any eigenvalue λ of discrete laplacian operator and eigenvector w, we derive the formula

(∆x) N j=0 w j+1 -w j ∆x 2 = 2 4 -λ(∆x) 2 w N ∆x 2 . ( 11 
)
For continous case, we know that we have the observability when T ≥ 2 (propostion (1)). However, with fully discrete scheme, we obtain the nonuniform observability for all T .

Theorem 3.1. Given a number 0 < α < 1, under assumption ∆t = α∆x, we derive for any T > 0, when ∆x → 0

sup u E n ∆x,∆t | |u N /∆x|| 2 l 2 (0,T ) → ∞, ( 12 
)
where u is solution of (6).

Proof. We shall construct a solution to the scheme (6) using the separation of variables. More specifically, we look for a solution u k j of the form u k j = a k w ∆x N,j where w ∆x N,j is defined in

u k+1 j -2u k j + u k-1 j (∆t) 2 + λ ∆x N u k j = 0. ( 13 
)
Then, we see that a k satisfies the following recurrence equation

a k+1 + (∆t 2 λ ∆x N -2)a k + a k-1 = 0, (14) 
whose associated characteristic equation is

y 2 + (∆t 2 λ ∆x N -2)y + 1 = 0. ( 15 
)
We compute the delta for this quadratic equation

∆ = 4α 2 sin 2 N π∆x 2 -2 2 -4, = 4 2 α 2 sin 2 N π∆x 2 α 2 sin 2 N π∆x 2 -1
We can see that the ∆ < 0. Hence, we derive two roots as follow.

     y 1 = 2 -∆t 2 λ ∆x N + i √ -∆ 2 , y 2 = 2 -∆t 2 λ ∆x N -i √ -∆ 2 (16)
From that, we can obtain the formula a k as follow.

a k = e ( 2-∆t 2 λ ∆x N 2 )k∆t C 1 cos √ -∆ 2 k∆t + C 2 sin √ -∆ 2 k∆t , (17) 
where C 1 and C 2 are real numbers (independence on k).

In this proof, we choose C 1 = 1 and C 2 = 0. We get

a k = e ( 2-∆t 2 λ ∆x N 2 )k∆t cos √ -∆ 2 k∆t . (18) 
We consider the u k = a k w ∆x N . From this formula, we tend to compute the energy E n ∆x,∆t and | |u N /∆x||2 . From (10), we have

E n ∆x,∆t ≥ ∆x 2 1 - ∆t ∆x 2 N j=1 a 1 -a 0 ∆t 2 |w N,j | 2 (19) 
and

| |u N (t)/∆x|| 2 = M +1 k=0 a k ∆x
Remind that, we have identity

- w ∆x N,j+1 -2w ∆x N,j + w ∆x N,j-1 (∆x) 2 = λ ∆x N w ∆x N,j , ∀j = 1, N. (21) 
Multiplying both side by w ∆x N,j and summing from j = 1, N , we derive

- N j=1 w ∆x N,j+1 -w ∆x N,j (∆x) 2 w ∆x N,j + N j=1 w ∆x N,j -w ∆x N,j-1 (∆x) 2 w ∆x N,j = λ ∆x N N j=1 |w ∆x N,j | 2 . ( 22 
)
Changing index of the left side, we indicate that

N j=0 w ∆x N,j+1 -w ∆x N,j ∆x 2 = λ ∆x N N j=1 |w ∆x N,j | 2 . ( 23 
)
From the identity (24) and lemma 3.1, we derive

(∆x) N j=1 |w ∆x N,j | 2 = 2 (∆x) 2 λ ∆x N (4 -λ ∆x N (∆x) 2 ) |w ∆x N,N | 2 . ( 24 
)
From ( 19) and (24), we have

E n ∆x,∆t ≥ 1 - ∆t ∆x 2 a 1 -a 0 ∆t 2 1 λ ∆x N (∆x) 2 (4 -λ ∆x N (∆x) 2 ) |w ∆x N,N | 2 . (25) 
We imply

E n ∆x,∆t | |u N (t)/∆x|| 2 ≥ 1 - ∆t ∆x 2 a 1 -a 0 ∆t 2 1 |∆x| 2 λ ∆x N (4 -λ ∆x N (∆x) 2 )|∆t| M +1 k=0 a k ∆x 2 (26) or E n ∆x,∆t | |u N (t)/∆x|| 2 ≥ 1 α 2 1 -α 2 (a 1 -a 0 ) 2 1 |∆x| 2 λ ∆x N (4 -λ ∆x N (∆x) 2 )|∆t| M +1 k=0 (a k ) 2 (27) 
From here, we need to indicate that lim

∆t→0 |∆t| M +1 k=0 (a k ) 2 < +∞. ( 28 
)
Indeed, for any k ≥ 0 and k ≤ M + 1, we have

|a k | = e ( 2-∆t 2 λ ∆x N 2 )k∆t cos √ -∆ 2 k∆t ≤ e, (29) 
which implies

|∆t| M +1 k=0 (a k ) 2 ≤ M + 2 M + 1 e. (30) 
Hence, left side of (27) tends to +∞ when N tends to +∞ (|∆x| 2 λ ∆x N → 4 -).

Remark 3.1. We might not prove the nonuniform observability when ∆t = ∆x. In practice, when ∆t = ∆x, the algorithm is stable.

Property of operator Λ in discrete Hilbert Uniqueness Method

With fully discrete scheme, we consider the corresponding HUM. We have fully discrete operator Λ ∆t,∆x : H 1 0,∆x (0, 1) × L 2 ∆x (0, 1) → L 2 ∆x (0, 1) × H -1 ∆x (0, 1) as follow.

Λ ∆t,∆x (e 0 j , e 1 j ) =

w 1 j -w 0 j ∆t , -w 0 j ( 31 
)
Lemma 3.3. Λ ∆t,∆x defined in (31) is positive semidefinite and symmetric.

Proof. For two data (e 0 j , e 1 j ) and (e 0 j , e 1 j ) corresponding to solution (u, w) and (u, w).

< Λ ∆t,∆x (e 0 , e 1 ), (e 0 , e 1 ) >=

N +1 j=0 w 1 j -w 0 j ∆t u 0 j -w 0 j u 1 j -u 0 j ∆t . ( 32 
)
We introduce the following identity

w i+1 -w i ∆t u i+1 -w i+1 u i+1 -u i ∆t = w j+1 -w j ∆t u j -w j u j+1 -u j ∆t , + ∆t j k=i+1 u k+1 + u k-1 -2u k |∆t| 2 w k - w k+1 + w k-1 -2w k |∆t| 2 u k .
We have < Λ ∆t,∆x (e 0 , e 1 ), (e 0 , e 1 ) >=

N +1 j=0 w 1 j -w 0 j ∆t u 1 j -w 1 j u 1 j -u 0 j ∆t . ( 33 
)
Applying the identity, we derive < Λ ∆t,∆x (e 0 , e 1 ), (e 0 , e 1 ) > = ∆t

N j=1 M k=1 u k+1 j + u k-1 j -2u k j |∆t| 2 w k j - w k+1 j + w k-1 j -2w k j |∆t| 2 u k j , = ∆t M k=1 M j=1 u k j+1 -u k j |∆x| 2 w k j - w k j+1 -w k j |∆x| 2 u k j - M -1 j=0 u k j+1 -u k j |∆x| 2 w k j+1 - w k j+1 -w k j |∆x| 2 u k j+1 , = ∆t M k=1 u k N +1 -u k N |∆x| 2 w k N - w k N +1 -w k N |∆x| 2 u k N - u k 1 -u k 0 |∆x| 2 w k 1 + w k 1 -w k 0 |∆x| 2 u k 1
Using the changing index technique, we obtain < Λ ∆t,∆x (e 0 , e 1 ), (e 0 , e 1 ) >= ∆t ∆x

M k=1 w k N +1 .w k N +1 (34) 
From that, we imply the positive semidefinite < Λ ∆t,∆x (e 0 , e 1 ), (e 0 , e 1 ) >= ∆t ∆x

M k=1 (w k N +1 ) 2 . ( 35 
)
Remark 3.2. With this property of discrete Λ ∆t,∆x , the conjugate gradient method might be applied to compute the discrete control (see [START_REF] Glowinski | A Numerical Approach to the Exact Boundary Controllability of Wave Equation (I) Dirichlet Controls: Description of the Numerical Methods[END_REF]).

Observability inequality with Tikhonov regularization

There are some possibilities to eliminate the oscillations of discrete control. We mention here two methods which is discribed in [START_REF] Glowinski | A Numerical Approach to the Exact Boundary Controllability of Wave Equation (I) Dirichlet Controls: Description of the Numerical Methods[END_REF]. Theorem 3.2. For T > 4 + 2∆t, there exists a C(T, ∆t) > 0 such that

E 0 ∆x,∆t ≤ C(T, ∆t) (∆t) M k=1 u k N ∆x 2 +(∆x) 3 (∆t) M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j (∆x)(∆t) 2 + (∆x)(∆t) 3 4 M k=0 N j=0 u k+1 j+1 -u k+1 j -u k j+1 + u k j (∆x)(∆t) +(∆x)(∆t) 2 M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j (∆x)(∆t) 2   . (36)
Furthermore, lim ∆t→0 C(T, ∆t) = c(T ).

Proof. We have the following identity

|∆t| M k=1 N j=1 j u k+1 j -2u k j + u k-1 j |∆t| 2 u k j+1 -u k j-1 2 = |∆t| M k=1 N j=1 j u k j+1 -2u k j + u k j-1 |∆x| 2 u k j+1 -u k j-1 2 (37)
We have

M k=1 N j=1 j u k+1 j -2u k j + u k-1 j |∆t| 2 u k j+1 -u k j-1 2 = M k=1 N j=1 j u k+1 j -u k j |∆t| 2 - u k j -u k-1 j |∆t| 2 u k j+1 -u k j-1 2 , = N j=1 j M k=1 u k+1 j -u k j |∆t| 2 u k j+1 -u k j-1 2 - M -1 k=0 u k+1 j -u k j |∆t| 2 u k+1 j+1 -u k+1 j-1 2 , = N j=1 j M k=1 u k+1 j -u k j |∆t| 2 u k j+1 -u k j-1 2 - M -1 k=0 u k+1 j -u k j |∆t| 2 u k+1 j+1 -u k+1 j-1 2 , = N j=1 j M k=0 u k+1 j -u k j |∆t| 2 u k j+1 -u k j-1 2 - u k+1 j+1 -u k+1 j-1 2 + X ∆x , = M k=0 N j=1 u k+1 j -u k j |∆t| 2 u k+1 j+1 -u k j+1 2 + X ∆x ,
where

X ∆x = N j=1 j u M +1 j -u M j |∆t| u M +1 j+1 -u M +1 j-1 2|∆t| - u 1 j -u 0 j |∆t| u 0 j+1 -u 0 j-1 2|∆t| .
Moreover, we derive

M k=1 N j=1 j u k j+1 -2u k j + u k j-1 |∆x| 2 u k j+1 -u k j-1 2 = M k=1 N j=1 j (u k j+1 ) 2 -2u k j u k j+1 + 2u k j u k j-1 -(u k j-1 ) 2 |∆x| 2 , = M k=1 N j=1 j (u k j+1 ) -u k j ) 2 -(u k j -u k j-1 ) 2 2|∆x| 2 , = - 1 2 M k=1 N j=0 u k j+1 -u k j ∆x 2 + 1 2|∆x| M k=1 u k N ∆x 2 .
Hence, we derive the following identity

|∆x||∆t| M k=0 N j=1 u k+1 j -u k j |∆t| 2 u k+1 j+1 -u k j+1 2 + |∆x||∆t| 2 M k=1 N j=0 u k j+1 -u k j ∆x 2 + |∆x||∆t|X ∆x , = |∆t| 2 M k=1 u k N ∆x 2 .
We imply

T E 0 ∆x,∆t + |∆x||∆t| 2 M k=0 N j=0 (u k+1 j+1 -u k j+1 -u k+1 j + u k j ) u k+1 j -u k j |∆t| 2 - u k j+1 -u k j |∆x| 2 + |∆x||∆t|X ∆x = |∆t| 2 M k=1 u k N ∆x 2 + |∆x||∆t| 2 N j=0 u 0 j+1 -u 0 j ∆x 2 .
which is equivalent to

T E 0 ∆x,∆t + |∆x||∆t| 2 M k=0 N j=0 (u k+1 j+1 -u k j+1 -u k+1 j + u k j ) u k+1 j+1 -u k j+1 |∆t| 2 - u k j+1 -u k j |∆x| 2 + |∆x||∆t|X ∆x = |∆t| 2 M k=1 u k N ∆x 2 + |∆x||∆t| 2 N j=0 u 0 j+1 -u 0 j ∆x 2 + |∆x||∆t| 2 M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j |∆t| 2 .
Moreover,

|∆x||∆t| 2 M k=0 N j=0 (u k+1 j+1 -u k j+1 -u k+1 j + u k j ) u k+1 j+1 -u k j+1 |∆t| 2 - u k j+1 -u k j |∆x| 2 = |∆x||∆t| 2 M k=0 N j=0 u k+1 j+1 -u k j+1 |∆t| 2 - |∆x||∆t| 2 M k=0 N j=0 u k+1 j -u k j |∆t| u k+1 j+1 -u k j+1 |∆t| - |∆x||∆t| 2 M k=0 N j=0 u k+1 j+1 -u k+1 j |∆x| u k j+1 -u k j |∆x| + |∆x||∆t| 2 M k=0 N j=0 u k j+1 -u k j |∆x| 2
Applying Cauchy-Schwarz inequality, we have 

u k+1 j+1 -u k+1 j |∆x| u k j+1 -u k j |∆x| + |∆x||∆t| 2 M k=0 N j=0 u k j+1 -u k j |∆x| 2 ≥ |∆x||∆t| 4 N j=0 u 0 j+1 -u 0 j ∆x 2 - |∆x||∆t| 4 N j=0 u M +1 j+1 -u M +1 j ∆x 2 
Hence, we get the following inequality

T E 0 ∆x,∆t +|∆x||∆t|X ∆x - |∆x||∆t| 4 N j=0 u 0 j+1 -u 0 j ∆x 2 + |∆x||∆t| 4 N j=0 u M +1 j+1 -u M +1 j ∆x 2 ≤ |∆t| 2 M k=1 u k N ∆x 2 + (∆x) 3 (∆t) 2 M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j (∆x)(∆t) 2 (38) 
We have

(∆x)(∆t)|X ∆x | ≤ 4E n ∆x,∆t + (∆x)(∆t) 2 2 M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j (∆x)(∆t) 2 (39) 
Furthermore, (∆x)(∆t) 4

u 0 j+1 -u 0 j ∆x 2 = (∆x)(∆t) 3 4 u 0 j+1 -u 0 j -u 1 j+1 + u 1 j (∆x)(∆t) 2 + (∆x)(∆t) 2 (u 0 j+1 -u 0 j ) ∆x u 1 j+1 -u 1 j ∆x - u 1 j -u 1 j+1 ∆x 2 , ≤ (∆x)(∆t) 3 4 N j=0 u 0 j+1 -u 0 j -u 1 j+1 + u 1 j ∆x 2 + (∆t)E 0 ∆t,∆x . (40) Similarly, (∆x)(∆t) 4 
N j=0 u M +1 j+1 -u M +1 j (∆x) 2 ≤ (∆x)(∆t) 3 4 N j=0 u M +1 j+1 -u M +1 j -u M j+1 + u M j (∆x)(∆t) 2 +(∆t)E M ∆t,∆x . ( 41 
From ( 40) and (41),

- (∆x)(∆t) 4 N j=0 u 0 j+1 -u 0 j ∆x 2 + (∆x)(∆t) 4 N j=0 u M +1 j+1 -u M +1 j ∆x 2 ≤ M k=0 N j=0 (∆x)(∆t) 3 4 u k+1 j+1 -u k+1 j -u k j+1 + u k j ∆x 2 + 2(∆t)E 0 ∆t,∆x (42) 
From ( 38), (39) and (42), we have

(T -4-2∆t)E 0 ∆x,∆t ≤ |∆t| 2 M k=1 u k N ∆x 2 + (∆x) 3 (∆t) 2 M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j (∆x)(∆t) 2 + (∆x)(∆t) 3 4 M k=0 N j=0 u k+1 j+1 -u k+1 j -u k j+1 + u k j (∆x)(∆t) 2 + (∆x)(∆t) 2 2 M k=0 N j=0 u k+1 j+1 -u k j+1 -u k+1 j + u k j (∆x)(∆t) 2 (43) 
From (43), we obtain C(T, ∆t) = 1 2(T -4 -2∆t)

. When ∆t → 0, C(T, ∆t) → 1 2(T -4) .

With bigrid algorithm, we predict that the observability inequality satisfies when T > 2 √ 2 (see [START_REF] Loreti | An Ingham type proof for a two-grid observability theorem[END_REF]).

Conjecture 1. For N is an odd number and T > 2 √ 2, there exists a constant C(T ) such that

E n ∆x,∆t ≤ C(T )| |u N /∆x|| 2 l 2 (0,T ) . (44) 
for all solution u obtained by bigrid algorithm with system (6) and (7).

Numerical experiment

We consider two numerical examples. Numerical experiment 1: We take y 0 is a piecewise constant function and y 1 is a zero function. With the mesh size in space N = 41, 81, 101, 121, we have We observe that when N is increased, there are more and more oscillations with discrete control and it seems that they will blow up.

With Tikhonov regularization, the discrete control convergences to the exact control. From this example, we predict that with continous data (u 0 (x), u 1 (x)) or (y 0 (x), y 1 (x)), there are not many oscillations and they do not blow up.

Conclusion

We use the finite difference scheme to discretize wave equation and compute the discrete control. Theoretically, we prove that the discrete observability inequality does not hold for any value T > 0, which is similar to [START_REF] Zuazua | Propagation, Observation, and Control of Wave Approximated by Finite Difference Methods[END_REF]. Furthermore, we also have the symmetry and positive defined properties of discrete operator Λ ∆x,∆t which is claimed by R.Glowinski, C-H.Li and J.L.Lions in [START_REF] Glowinski | A Numerical Approach to the Exact Boundary Controllability of Wave Equation (I) Dirichlet Controls: Description of the Numerical Methods[END_REF]. With conjugate gradient method, we compute the discrete control with blowup oscillations when we have nonsmooth data. This phenomenon is not occured with smooth data. Furthermore, we implement the Tikhonov regularization to eliminate the oscillations when T = 3. However, theoretical results show that this cure method works efficiently when T > 4.
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