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RECIPROCITY THEOREMS FOR BETTIN-CONREY SUMS

JUAN S. AULI, ABDELMEJID BAYAD, AND MATTHIAS BECK

Dedicated to the memory of Tom M. Apostol

ABSTRACT. Recent work of Bettin and Conrey on the period functions of
Eisenstein series naturally gave rise to the Dedekindslika

k-1
o(}) - () ()
mM=1

wherea € C, h andk are positive coprime integers, agda, x) denotes the
Hurwitz zeta function. We derive a new reciprocity theoremtheseBettin—
Conrey sumswhich in the case of an odd negative integaran be explicitly
given in terms of Bernoulli numbers. This, in turn, impliegpécit formulas for
the period functions appearing in Bettin—Conrey’s work. $iely generaliza-
tions of Bettin—Conrey sums involving zeta derivatives endtiple cotangent
factors and relate these to special values of the Esternetariunction.

1. INTRODUCTION AND STATEMENT OF RESULTS

Our point of departure is recent work of Bettin and Conre@] on the period
functions of Eisenstein series. Their initial motivatioasmthe derivation of an
exact formula for the second moments of the Riemann zetaitumdut their
work naturally gave rise to a family of finite arithmetic suofghe form

k—1
Ca (E) = k? Z cot(anh) 4 <—a, %),
m=1
wherea € C, h andk are positive coprime integers, agda, x) denotes thélur-
witz zeta function
> 1
{(a,x) = n;m ;

initially defined forJ (a) > 1 and meromorphically continued to theplane. We
call ca(E) and its natural generalizations appearing beBattin—Conrey sums

There are two major motivations to study these sums. Theiiimlatco(E)
is essentially a/asyunin sumwhich in turn makes a critical appearance in the
Nyman-Beurling—Baez-Duarte approach to the Riemannthgsas through the
twisted mean-square of the Riemann zeta function on thealrline (see, e.g.,
Mnuary 2017.

2010Mathematics Subject ClassificatioRrimary 11F20; Secondary 11L03, 11M35.

Key words and phrasededekind sum, cotangent sum, Bettin—Conrey sum, recigyrtoe-

orem, Hurwitz zeta function, period function, quantum mladéorm, Estermann zeta function.
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[5//16]). Bettin—Conrey’s work, foa= 0, implies that there is a hidden symmetry
of this mean-square.

The second motivation, and the central theme of our paptraighe Bettin—
Conrey sums satisfy i@ciprocity theorem

()-()"(3)- 24

extends from its initiation domai@ to an (explicit) analytic function o€\ R<o,
makingc, nearly an example of gquantum modular fornm the sense of Zagier
[18]. In fact, Zagier’'s “Example 0” is thBedekind sum

1k h
s(h,k) = E(mzlcot(an) cot(%),

which is, up to a trivial factorc_l(E). Dedekind sums first appeared in the trans-
formation properties of the Dedekind eta function and gatiee reciprocity the-

orem [10,11]
1 1/h 1 Kk
We now recall the precise form of Bettin—Conrey’s reciptptiheorem.

Theorem 1.1(Bettin—Conrey![7]) If h and k are positive coprime integers then

()" 2 - o)

where
i {(1-a) i ma . 9a(2)
Ya(z) = = i-a _21+aC0t7+IZ(—a)

and
n B n n
%2 =2 3 (Vg da-2n-aem
1 cos’® s
= (7%72'\/')Z(S)Z(s—a)r(s)sinn%(an) ds.

Here B denotes the'k Bernoulli number, M is any integer —%min(O, O(a)),
and the integral notation indicates that our integrationtipas over the vertical
line O(s) = —3 — 2M.

We note that Bettin and Conrey initially defingd(z) through

1 1
Ya(z2) = Ear1(2) — A+l Ear1 <_E) )
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in other words,5(2) is the period functionof the Eisenstein seriesf weight
a+1,

2 minz
Eat1(2) = 1+mn§10a(n)92 ;

where ga(n) = yqnd? and then showed thap,(2) satisfies the properties of
Theoren 1.1.

We have several goals. We start by showing that the righttisate of Theo-
rem[1.1 can be simplified by employing an integration techeifipr Dedekind-
like sums that goes back to Rademacher [11]. This yields minmfiain result:

Theorem 1.2.Let(a) > 1 and suppose h and k are positive coprime integers.
Then forany0 < e < min{#, ¢},

_a h a k\ al(a+1) (hk'?2  cot(nhz) cotrk)
ht C_a<E)+k1 C—a<ﬁ)_ 3 /(8) = dz.

Theorem 1R implies that the function
F(a) — /()cot(nhz)cot(nkz)dZ
&

Vi
has a holomorphic continuation to the whole complex plamealticular, in this
sense Theorem 1.2 can be extended to all corrgolex
Second, we employ Theorem 1.2 to show that in the caseatimfin odd
negative integer, the right-hand side of the reciprocigotiem can be explicitly
given in terms of Bernoulli numbers.

Theorem 1.3.Let n> 1 be an odd integer and suppose h and k are positive
coprime integers. Then

h k
h'"c_, (E) +k"c_, (ﬁ) =

2\ " 1 Ml /g o
(W) i(n+1)! (nB”“Jr > ( m )BmBnHmh K ,

m=0

Our third main result is, in turn, a consequence of Thedre@nit.conjunc-
tion with Theoreni_1]1, it implies the following explicit fowulas fory,(z) and
0a(z) whenais an odd negative integer.

Theorem 1.4.1f n > 1is an odd integer then for alle C\ R<g

B (2m)n n+1 n+1 .
Yon(2) = mé(( m )BmBn+1mZm 1

and

(2m)" 2 (n+1

9-n(2) = i(n+1)!mZO m+1) Bin+1Bn-mZ"
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In [7, Theorem 2], Bettin and Conrey computed the Tayloresedfga(2)
and remarked that, @ is a negative integev;rggm)(l) is a rational polynomial
in 2. Theoreni LK generalizes this remark. We will prove Thesf&@+1.4 in
Section 2. We note that both Theorém]1.3 1.4 can also beedetirectly
from Theoreni 111.

Our next goal is to study natural generalizationsacﬁﬁk). Taking a leaf from
Zagier’s generalization af(h, k) to higher-dimensional Dedekind suifi] and
its variation involving cotangent derivatives [9], ket Ky, . . ., kn be positive inte-
gers such thatko,kj) =1 for j =1,2,...,n, letmg,my,...,m, be nonnegative
integers,a # —1 a complex number, and define tgeneralized Bettin—Conrey
sum

o100 k) _ g5 (L)l ()
Ca<n-b‘m1 m,]) - kolglznb _a,% Jljlcot( ) (W .

Here {(™)(a,z) denotes therll! derivative of the Hurwitz zeta function with
respect ta.
This notation mimics that of Dedekind cotangent sums; rdeé t

() -=(58)

In Sectior 8, we will prove reciprocity theorems for genized Bettin—Conrey
sums, paralleling Theorerhs 1.2 1.3, as well as moreap=ses that give,
we think, interesting identities.
Our final goal is to relate the particular generalized Betfianrey sum
g-1

S cot(mx) g (—a, %‘)
=1

m

with evaluations of thé&stermann zeta functiofi,~1 ga(n) $ at integerss,
see Sectiohl4.

2. PROOFsS OFMAIN RESULTS

In order to prove Theorem 1.2, we need two lemmas.

Lemma 2.1. Let m be a nonnegative integer. Then

{ﬂ if m=0,

lim cot™ m(x+iy) = 0 im0

y—o

Furthermore, this convergence is uniform with respect to = ifixed bounded
interval.
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Proof. Since cogz = i(jzzf::,izz), we may estimate
i+ cotrix+iy)| = 2 < 2 _ 2
V= (gem —em| = [[dem)]—|e@m|| ~ [1—&m|

Given that the rightmost term in this inequality vanisheg as , we see that
Jmocotn(xﬂy) = —i.
Similarly, the inequality

2 _ 2 2
@Cmogmy _ 1] = [[é@mem| 1] |2V 1]

implies that liny_,, cotrr(x—iy) = i. Since

|—i+cotr(x—iy)| =

esenx b iy)| = 20 o2 2
@™ —e | T ||@™| — e e[| [1-e|
it follows that limy_,., cscr(x+iy) = 0. Similarly,
lcscr(x—iy)| = — 2e7 — < — 2e™y — = ad
e ey —e ™| T |lem™e?| — e ™| | -1

implies that liny_,. cscr(x—iy) = 0. We remark thaﬁz(cotz) = —cs@zand
d (cscz) = —cscezeotz

dz N ’

so all the derivatives of cathave a cse factor, and therefore,

lim cot™ m(x+iy) = i I.f m=0,
y— 0 ifm>0.

Since the convergence above is independextttie limit is uniform with respect
to x in a fixed bounded interval. O

Lemmd 2.1 implies that

Ti ifm=0,
0 ifm>0,

y—eo

lim cot™ mth(x+iy) = Jim cot™ mk(x+iy) = {

uniformly with respect t in a fixed bounded interval.
The proof of the following lemma is hinted at by Apostol [3].

Lemma 2.2. If O(a) > 1 and R> 0, then{(a,x+iy) vanishes uniformly with
respect to x [0,R] as y— +.

Proof. We begin by showing thaf (a, z) vanishes asl(z) — + if 0(z) > 0.
Since(a) > 1 andd(z) > 0, we have the integral representation [14, eq. 25.11.25]
1 0 tafleth

(@2 =Ff 1T-e

dt,
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which may be written as

1 0 tafleft D(Z) 0
e u (Z)
2.1) (@2 = 7 /0 et

Note that for fixed1(z),
w ta—1g-t0(2)
| erdt = C@i@)r@
and

)
so the Riemann—-Lebesgue lemma (see, for example, [13, dineb8]) implies

that .
oo ta—1—t0(z
/O t 1_ee—t efltIZI(z)dt

vanishes al(z) — +e. By (2.1), this means that fat (z) fixed, { (a, z) vanishes
asl(z) — %o. In other words{ (a,x+iy) — O pointwise with respect te > 0
asy — too.

Moreover, the vanishing af (a,x-+iy) asy — +oo is uniform with respect to
x € [0,R]. Indeed, denotg(t) = %t— then [2.1) implies that

| et = r@¢@ry

ta—le—t O(2)

w0 +0(a)—1n-t0(2)
C o= [ = (0@, 0@)ro@),

l1-et

and
| lgvldt = rO@)<O@)R.

It then follows from the Riemann-Lebesgue lemma thagling, fo° g(t)e Zdt=
0. If x € (0,R], we may write

oota 1 7tX

FaZ(axty) = [ o eftygt — / g(t) e tE-ix-R)gy

0 1-et

Sinceg(t) does not depend ox the speed at whiclf (a,x £ iy) vanishes
depends omR andy? + (x— R)2. However, we know that & |[x— R| < R, so the
speed of the vanishing depends onlyRin

Finally, note that

> 1 i 1 1 1

{(ajy) = — = . + — = {(a,1+1y)++—,

@) = 2 yrne -~ Zlryene (e @Y TR
so{(a,iy) — 0 asy — +o, and the speed at whicfi(s,iy) vanishes depends
on that of{ (s,1+1iy). Thus,{(s,x+iy) — 0 uniformly asy — +c, as long as
x € [O,R. O
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Proof of Theorerh_1]2The idea is to use Cauchy’s residue theorem to integrate
the function

f(z) = cot(nhz) cot(nkz) {(a, z)

alongC(M, ) asM — o, whereC(M, €) denotes the positively oriented rectan-
gle with vertices 1€ +iM, € +iM, € —iM and 1+ ¢ —iM, for M > 0 and
0<e<min{f, £} (see Figuréll).

C(M.
iM n (M €)

V3 V4

®
®
®
[
®
\

o1 171‘ 1 |14¢€

o] =
=
=
B

—iM

V2

FIGURE 1. The closed conto®(M,¢).

Hencefortha € C is such thatl(a) > 1, (h, k) is a pair of coprime positive in-
tergers, and (z) andC(M, €) are as above, unless otherwise stated. Sfrieez)
is analytic insideC(M, ), the only poles off (z) are those of the cotangent fac-
tors. Thus, the fact thdt andk are coprime implies that a complete list of the
possible poles of (z) insideC(M, €) is

1 h—11 k—1
E:{ﬁ,...,T,E,...,T,l}



8 JUAN S. AULI, ABDELMEJID BAYAD, AND MATTHIAS BECK
and each of these poles is (at most) simple, with the exaepfid, which is (at
most) double. Fome {1,2,...,h—1},

Tk 1
Resf(@ = COt(Tm) cosrm) ¢ (a, ) R Ssin(h2)

)

Of course, an analogous result is true for Resf (z) forallme {1,2,... . k—1},
and therefore

Resf(z) =

Z0€
1 ht rikm my , 1< nhm m
I;z:elsf( +—Zcot( H ) ( ) zcot( ) ( E)
or, equivalently,
(2.2)

hl~3c_, (E) o (E) = m(hk)'2 (( 5305“ )> Resf( >>
%¢E B

We now determine Res; f(z). The Laurent series of the cotangent function
about 0 is given by

cotz = %—}z— A2 py

3 945
so, by the periodicity of ca for z# 1 in a small neighborhood af= 1
_ (1) 1 7k (1k)° 3 2(7k)° 5

and, similarly,

3 5
cot(rthz) = (i)i_n_h(z_l)_(z‘r;) (z—1)3—2<972h5) (z—1)°+

Since{(a,z) is analytic in a small neighborhood of 1, Taylor's theorem im

plies that
Z(a,Z) = %bI’I(Z_ 1)n7

whereb, = (a Y forn= 0,1,2,... (derivatives relative t@). Thus, the expan-
sion of f(2) about lis of the form

Do (1 2+ D i+(ana| tic par}
m?hk \ z—1 m?hk ) z—1 yHe paix
Giventhata+# 0,1, we know thatl%Z(a, z)=-al(a+1,2)[14, eq. 25.11.17],

sob; =—-a{(a+1,1) = —a(a+1). We conclude that Rgs; f(z) = —azéfrﬁ(l)
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and it then follows from[{Z2]2) that

-a h -a K\ ad(a+1) T
(2.3) ht ca<E)+kl Ca(ﬁ) = “hia +(hk)a_1zoe ZR:%sf(z).

We now turn to the computation OEEZR_esf(z) via Cauchy’s residue theo-

rem, which together with (21 3) will provide the reciprocity are after. Note that
the functionf (z) is analytic on any two closed contou®$Ms, £) andC(Ma, €)
and since the poles inside these two contours are the samegyapply Cauchy’s
residue theorem to both contours and deduce that

/ f(z)dz = / f(z)dz.
C(My,€) C(Mz,¢)

In particular, this implies that

(2.4) lim f(z)dz = 2m § Resf(2).

M= /C(M.¢) N )

Let 1 be the path alon@(M, ) from 1+ £ +iM to € +iM. Similarly, define
Yo from e —iM to 1+ € — M, y3 from € +iM to € —iM, andy, from 14 & —iM
to 1+ &+iM (see Figuréll). Sincg(a) > 1,
o¢] l o]
az+1) = S — —
¢ ) n; (n+z+1)2 n; (n+2z)2

and so the periodicity of catimplies that
- / f(2)dz+ / corthz) cotimka)
v v z

Lemmag 21l and 2.2 imply thd{z) vanishes uniformly aM — oo (uniformity
with respect tdJ(z) € [e,1+ €]) so

lim [ f(zdz= 0= Ilm [ f(zdz
M—c0 Vi M—c0 Vo

This means that

lim f(z)dz = lim (/f dz+ | 12 )dz)
M— /C(M,¢)

and it follows from [(2.8) and_(214) that

h k
1-a 1-a
h™ca <k> K Ca <h)

al(a+1) (hkl2 /Si°° cot( 7thz) cot(rk2) d
mi(hk)2 2 Jetio
This completes the proof of Theorém11.2. O

To prove Theoremn 113, we now turn to the particular case irchvéi=n > 1
is an odd integer and study Bettin—Conrey sums of the form
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Let W (2) denote thén+ 2)-th polygamma function (see, for example,[14,
Sec. 5.15]). It is well known that far a positive integer,

(_1>n+1q}(n)(z>
n!
whenever(z) > O (see, for instance, [14, eq. 25.11.12]), sorfor 1, we may

write -
o§) - s Ze (3o )

m=

{(n+12) =

By the reflection formula for the polygamma functions![14, 84 5.6],
W (1-2) 4+ (—1)" 9 (z) = (—1)"mrcot™ (m2),
we know that ifn is odd, then

W(n-1) <1_ %) _ (-1 <%) — eof™ <%)

foreachme {1,2,... ,k—1}. Therefore,
k—1 k-1
2 T () - (T (3
m=1 m=1
k1 (k—m)h - m
+ cot(i)w(” Di1-2),
3 oot (:-%)
which implies that
k-1 nmh m
2 w1 (I
2 3 cor( ) ¥ ()
k1 nmh) m m
= cot| —— | (wir-1 () _wp-1) (1 _ "
5 cor( ) (v () et (1)

k—1 m m
_ h n—1)
= —nmzlcot<7) cot (T)
This means that fon > 1 odd,c_, is essentially a Dedekind cotangent sum.

Indeed, using the notation in/[9],
k—1

cn(%) = apoan %) et ()

k |h 1
T
= ¢ n-=1|/0 n-1 |.

Thus Theorenh 113 is an instance of Theofem 1.2. Its signifieds a reci-
procity instance for Bettin—Conrey sums of the foeny, in terms of Bernoulli
numbers. For this reason we give the details of its proof.
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Proof of Theoreri 1]3We consider the closed contoG(M, ¢) defined as the
positively oriented rectangle with verticestliM, iM, —iM and 1— iM, with
indentations (to the right) of radius 9 € < min{%,%} around 0 and 1 (see
Figurel2).

iM m C(M,e)

—iM

72

FIGURE 2. The closed conto(M, ).

SinceC(M, £) contains the same poles ¢fz) = cot(nthz) cot(1kz) { (n, 2)
as the closed conto@(M, ¢) in Figure[l used to prove TheorémIl.2, we may
apply Cauchy’s residue theorem, lettikg— o, and we only need to determine
iMoo fé(lvl,e) f(z)dzin order to deduce a reciprocity law for the sums.

As in the case o€(M, €), the integrals along the horizontal paths vanish, so
using the periodicity of the cotangent to add integrals glparallel paths, as we
did when considerin@(M, €), we obtain
25) lim [ f(zdz= lim ( 92 dz+ /'M 9(2) dz) +/ 9(2)dz,

M—e0 JC(M,¢) M—eo \ JiM —ig ¥
whereys denotes the indented path around 0 and
o(2) = cot( nkz)zr::ot(nh )
Given thatg(z) is an odd function, the vertical integrals cancel and we npgpjya
Cauchy’s residue theorem to integrgte) along the positively oriented circle of
radiuse and centered at 0, to deduce that

lim f(z)dz = —niRex(2).
M e (@ Resy(?)
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This is the main reason to use the cont@(M, ¢) instead ofC(M, £). Indeed,
integration ann@(M,s) exploits the parity of the functiog(z), allowing us to
cancel the vertical integrals in (2.5).

The expansion of the cotangent function is

[ \m
mzcot(mz) = ZO%Z”‘,

with the convention thaB; must be redefined to be zero. Thus, we have the
expansion

cot(rkz) = m;il (Zi)((zr:;‘:)l??mlzm

and of course, an analogous result holddiddence,

2i)(2m)" " /n4-1 _
(2.6) Re@( 2) = % > ( )BmBn+1mhmkn+1 m
and given that{ (n+ 1) = (2(’;21; Bni1 [14, eq. 25.6.2], the Cauchy residue
theorem and.(2]3) yield

2m\" 1 lntl o nedom
(2.7) (m) m( Bni1+ Z < )BmBn+1_mh K1 )

h K
= ht"c_, (E) +k e, (H) .

Finally, note that the conventidBy := 0O is irrelevant in[(2.]7), sincBj in this
sum is always multiplied by a Bernoulli number with odd indeeger than 1. [J

Note that Theorer 11.3 is essentially the same as the redipdeduced by
Apostol for Dedekind—Apostol sums![2]. This is a conseqeeoicthe fact that
for n > 1 an odd integerg_n, (E) is a multiple of the Dedekind—Apostol sum
sn(h,Kk). Indeed, for sucim [3, Theorem 1]

sa(h,k) = int(2mi)"c_p, (E)
It is worth mentioning that although the Dedekind—Apostohs, (h, k) is trivial
for neven|[2, eq. (4.13)], in the sense tlgth, k) is independent df, the Bettin—
Conrey sunt_, () is not.

The following corollary is an immediate consequence of Taew 1.2 and 113.

Corollary 2.3. Let n> 1 be an odd integer and suppose h and k are positive
coprime integers, then for afy< & < min{,%},

/Si°° cot(7thz) cot( rk2)

2(2m)" "1 /nya B
- z” dz = (n+ ] Z ( )BmBnH_mhmk”+l m.
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Proof of Theorerh 1]4Given thatc_j (*—hk) =—C_ n( ), it follows from Theo-
remd 1.1l anfd 113 that

n+1 m-1
@8 n(g) =z 2 (o JBenan()

The function

2 n+1 1
¢P-n(2) = ( 7:—>|—1' Z <n+ )Bm|3n+1—mzm1

is analytic onC\R<p and, by [7, Theorem 1], so i§_. Let
S = {ze C\R<o | Y-n(2) = @-n(2)}.

Since all positive rationals can be written in reduced faitrfgllows from (2.8)
thatQ-o C S,. Thus,S, is not a discrete set and given that bgth, andg_, are
analytic on the connected open §8fR o, Theorem 1.24() in [12, p. 90] implies
thaty_n = ¢@_n onC\R<o. That is,

2 n+1 1
Wnld) = sl 3 (”+ )Buria "

for all ze C\R<o. Now

Y-n(2) = | Z<1+”)—iz“1cot< 2 )+.9 n(2)

i
mz ()

and sincenis odd, co =) =0 and{(n+1) = Bn+1 [14, eq. 25.6.2],

SO

(n+1

902 = TV (1) 12w

27-" n n+1l n+1 .
( Z ( )BmBnJrlmZm !

(n+ 1)'
—i@m)" & (n+1
(I’H—l)' Z <m+1) Bm+1anmZm~ O

Clearly, Theorem 114 is a particular case of Bettin—Corsr§¥, Theorem 3].
However, the proofs are independent, so Thedrein 1.4 isgardin the partic-
ular casea = —n, with n > 1 an odd integer), because it completely determines
0-n and shows thag_ is a polynomial. In particular, it becomes obvious that if
a€ Z<1 is odd anda, m) # (0,0), thenngém)(l) is a rational polynomial i,
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3. GENERALIZATIONS OF BETTIN-CONREY SUMS
Now we study generalized Bettin—-Conrey sum
ca< nk% ‘ rl;ll nk; ) = kgljo;lf("b) (—a,%) J]jcot(mi) (%)
Henceforth B,, denotes th@-th Bernoulli number with the conventiddy := 0.
The following reciprocity theorem generalizes Theofen 1.2

Theorem 3.1.Let d > 2 and suppose thatk. .., Ky is a list of pairwise coprime
positive integers and gnmy, ..., My are nonnegative integers. [f(a) > 1 and

0 < & < MiM<j<q {k—lj} then

d =4 m - ly | a1 AR
jzl & 'o+“‘+l];+ld—mj <I0""vﬁ7-..,|d) (n(nkt) )ki C-a(j) =

|0 ..... G,...,|d20 t#]
<m1+--~+zmd+d—1 d ) (—1)Mog(mo) re—ieo H?:lcot(mj)(nka)d
: a )+ ™ e .
lo=0 |1+"'+dzz|olj= : 27 €l za+mo
where X" = ["_3(x-+1) is the rising factorial,
_ ki k ki
cal) =ca 9 | M K o)
Mo+lo | M+ly - mj+l; -+ mg+lg
and for j=0,1,...,d, we define
(
<—1|)”b+'0:1<”b|+0'!0>5(a+m:+lo> . if j=0andlo >0,
(2i) it Bl +m, +1(71K;j) i (Ij+1) m .
= - i (|j1+mj+1)! if j #0andl; >0,
~1)Mim;! o
( T)Tkjm’ if j#0andlj=—(mj+1),
0 otherwise.

The proof of this theorem is analogous to that of Theorer Hehceforth,
O(a) > 1,ky,...,Kq is a list of pairwise coprime positive integers an& & <
Ming<j<d {k_l,} In addition,mg, my, ..., my is a list of nonnegative integers,

d
f(2) = '™ (a2) [ cot™ (k;2
J=1
and, as beforeC(M, €) denotes the positively oriented rectangle with vertices

1+ e+1iM, e+iM, € —iM and 14 € —iM, whereM > 0 (see Figuréll).

Proof of Theoreri 3]1For eachj, we know that cof7ik;z) is analytic on and in-
sideC(M, ¢), with the exception of the polqlgj‘, e k'k—:l This means that except
for the aforementioned poles, €8t (1k;2) is analytic on and insid€(M, €), so
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the analyticity ofZ (™) (a,z) on and insid€ (M, £) implies that a complete list of
(possible) poles of is

1 ki —1 1 kg—1 }
E == TP
{kl ki Kd Kd

Letje{1,2,...d}andqe {1,2,...,kj—1}, thenthe Laurent series of ¢ak;z)
q ; 1) 1 - q
aboutk—j is of the form(m> ZT% + (analytic par}, so hear,

\Mim. | —(mj+1)
COt(mj)(T[kj 7) = (=D)™m;! (z— ﬂ) + (analytic part).
K] Ki

Since(kj, k) = 1 fort # j, it follows from Taylor’s theorem that for # j the
expansion

Cot(mt)(nktz) = éo(nlktti!)lt cofm-+lt) (%) (Z_kﬂj)h

is valid nearkﬂj. Taylor’s theorem also yields that

w Z(Motlo) q 0
(™) (a,z) = S ¢ (a, ki) <z—ﬂ)l

| .

nearkﬂj. Hence, we may write Resa f(z) as
]

Cammt s e (@) 7 T gogm (7

nk] |O+...+|/j+...+|d:mj IO t= It k]

A t#]
|O7"'7|j seeslg>0

Thereforez(l;":_l1 Res_q f(z) is given by
J

(=™ m; d t
m '0+"'+G;~+ld—mj <|0""7ﬁj"'~7|d) (ﬂ(nkt)l)

- t]
|07m7|j ..... 1g>0
ki—1 d
1% g 1k
X — Z(n‘kﬁ”lO) <a7 _) Cot(m+|t) < )
K; qzl Ki D K;
t#]
(=)™ ( m, ) d A .
- N (rike)™ | ki "c_al])-
n I0+~»+I1+Z~+Id—mj |07 ey I J IR ld t!;]l J

IO"""Ij ....,|d20
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Given that this holds for alj, we conclude that

(3.1
Res f(z) =
2eET {1} {220
> 3 () ([ st
=1 |O+"'+|Aj+"'+|d:mj 055 ljy---yld g;
|O7...7|].m.,|dzo '

We now compute Res; f(z). For eachj € {1,2,...,d}, we know that cdtrik;z)
has an expansion about 1 of the form

00 iyn+1 N ki )" 0
cot(nka):m-l—n;(z) (nB++11)<! ) (z—1)",

so the Laurent expansion of €8¢ (1ik;z) about 1 is given by

cot™ (nkjz) = DML g (2i>lj+mj+1B|j+mj+l(nkj)|j+mj(|j+1>(mj)(2—1)|j
iz S (i +m + D)
=y a1,

where

(Zi)lﬁmﬁlBl-+m-+1(7‘lkj)|i+mj(|j+1)(mj) ‘

. J (I,-]+m,-+1)! if 15 >0,
a; = % 1= (m 1),
0 otherwise

Now, Taylor’s theorem implies that the expansior@® (a, z) about 1 is of the
form

{™(az) =Y a,z-1,
1o=0
where
(Mot (g 1) (—1)Motlog(Motlo) 7 (a4 my+ o)

Fo= T, = N '

Therefore,
my+--+my+d—1

d
Resf(z) = Z a;.
z=1 IOZO = lo- 110

SinceZ {(a,2) = —al(a+1,2),

™) (a,z+1) = (—1)™¢ (a+mo,z+1)a™ = (—1)™a™) % — jl)am
—1)Mog(Mo)
= (—1)Mog(M) (Z(a-l- Mo, 2) — Za+rrb) = (M) (a,z)— ( 121‘”':
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This means that
Lte+iM e—iM e-iM 9., cot™) (7ik;2)
f(z)dz+ f(z)dz= (-1 rlrba(”rb)/ 1=
/1+siM @ £-+iM @ (=1) £-+iM Z8+tMo
As in the proof of Theorern 1.2, it follows from Lemmasi2.1 and that the
integrals along the horizontal segment€0M, €) vanish, so the Cauchy residue
theorem implies that

dz.

dz.

(—1)™a(m) /sioo M4 cot ™) (71k;2)

Resf(z) = i o

LT 2m
The result then follows from_(3.1) and the computation of Re$(z). O

An analogue Theorem 1.3 is valid for generalized Bettin+€psums.

Theorem 3.2.Let d> 2 and suppose thatk. .., Ky is a list of pairwise coprime
positive integers and gnmy, ..., My are nonnegative integers. Ifxx 1is an inte-
gerand ng+n+d -+ z‘jj:l m;j is odd, then

d mj . d
-1 m )
S 3 (e ) e e =
=1 |O+"'+G+"'+Id:mj 05---sljy---yld ;:é
|OA,M,|AJ- ..... Ig>0 !
My 4+ My+d—1 d (—1)mo+1n(mo) d
_ Z Z I_La|j + 5 I_l a;
lo=0 lit+Hg=—lo—1]= l1+-+Hg=n+mo—1 =1
where
. ki k Ki
C-n(j) = C-n : . 1 ka
mo+lo | my+1ly -+ mj+lj -+ mg+lg
and
( (A o o P 24Tl if j =0 andly> 0,
(20) 1My g () T D)™
a = o T+ m 1! if j #0andlj >0,
— if j 0 andl; = —(m; +1),
\O otherwise.

Proof. As in the proof of Theoreri 1.3, the conto@tM, ¢) is defined as the
positively oriented rectangle with verticestliM, iM, —iM and 1— iM, with
indentations (to the right) of radiusQ & < min;<j<q {k_l,} around 0 and 1 (see
Figure[2). Since this closed contour contains the same flésasC(M,¢),
we may apply Cauchy’s residue theorem, lettMg— o, and we only need to
determine liny—,o fé(M,s) f(z)dzin order to deduce a reciprocity law for the
generalized Bettin—Conrey sums of the focny,.



18 JUAN S. AULI, ABDELMEJID BAYAD, AND MATTHIAS BECK
Given thatmp+n+d+ Z?:l m;j is odd, the function
(=1)™n(™) (¢, cot™) (1ik;2)

9(2) = o
is odd:
d m d+39 m
(_1)mO+d+ZI 1mJn(rrb) d ) <_1) j=1"
Let y(M, €) be the indentation around zero alaBgM, €), then
&i —iM
lim [ f(zydz = lim ( g(z)dz+/ g(z)dz) -|-/ 9(z)dz
M— JC(M,¢) M— \ JiM —&i y(M,¢)
= / d(z)dz.
y(M,é)

Given thatg is odd, the Cauchy residue theorem implies that
/ g(2)dz = —miResy(2)
y(M.¢) z=0

and it follows that

1
PRSI

For eachj € {1,2,...,d} we have an expansion of the form

cot™)(1k;z) = i a2,

|]-:700

where
(20)' 7By (k) M (4™
N (= if 1j >0,
&, = (*l})Tk:mj! 1= —(my 1),
0 otherwise

Thus Reg_¢9(z) is given by

d
(—1)Mon(mo) Z I—l a,.
l1+-+lg=n+mp—1j=1

Therefore,
—1)Mo+1p(mo) d
Resf(z) = i L a;,
2cE 2 2 I+l g=n+mo—1 =
which concludes our proof. O

From Theorems 311 and 3.2, we deduce a computation of thgraite
/fs—ioo M°_; cot™) (11k;2)
&

+ioo Z Mo dz
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in terms of the sequenc&mj)“, wheneven € Z-1 andmg+n+d + z?zl m;
is odd, which generalizes Corolldry 2.3:

Corollary 3.3. Let d > 2 and suppose thatik... kg is a list of pairwise co-
prime positive integers andgmm, ..., My are nonnegative integers. If v 1is

an integer and m+n-+d—+ z‘jj:l m; is odd, then for alD < &€ < miny<j<q {k_l,}

/S‘“ 151 cot™) (1k;2)

d
21+ dz=—7i > Jljla‘i’

Fioo l1+-+lg=n+mp—1

where the sequencgs; } are as in Theoren 3.2, for5 1,2,...,d.

The consideration of the cagg = m; = --- = m, = 0 leads to the definition
of higher-dimensional Bettin—Conrey syms

Ky - koot m\ = 7l m
calkorkt, .- k) = ca( ol - ta ) - kSméZ(—a,%) ﬂcot(T),
fora# —1 complexandko,ky, ..., ks alist of positive numbers such thib, kj) =
1 for eachj # 0.

Of course, higher-dimensional Bettin—Conrey sums salisBorems 3]1 and

[3.2. In particular, if 0< € < min<j<qg {%} O(a) > 1 andky, ..., kq is a list of
pairwise coprime positive integers, then

d
Zk?_lc—a(kj;kl,...,kj,...,kd) —
=1

d—1 e—ioo 9. cot( Tk Z
1/ [Mj=1 (TIKj )dZ,
€

- Aoy, -y + o
|oZOI1+--~+dZ:|01 o 2 Jetico 7

p

where

M%}M if j =0 andlp >0,
(20)I7By 1 (7))
alj — (Ij+1)!

1
T
0

if j #0andlj >0,
if jZ0andlj = -1,

otherwise

\

4. DERIVATIVE COTANGENT SUMS AND CRITICAL VALUES OF
ESTERMANN ZETA

As usual, fora,x€ C, letoa(n) = 3 4o d* ande(x) = e?™ _ For a given rational
numberx, theEstermann zeta functida defined through the Dirichlet series

4.1) E(sx,a) = > ga(n)e(ny) n-s,
=1
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initially defined forJ(s) > max(1,(a) + 1) and analytically continued to the
whole s-plane with possible poles at=1, a+ 1. Forx = g with (p,q) =1 and
q>1,

E(s,x,8) — a2 (s—a){(9)

is an entire function o$. By use of the Hurwitz zeta function we observe that

(4.2) E(sx,a) = ¢ % % e(mnx { (s—a, %)Z (s,g).

mn=1

We consider the sums
q-1

(43)  Clasx) = ¢y emyd(-s1emx)¢ (-a D),
=1

where®(s,zA) = ano(zi—:gs is Lerch’s transcendent functipdefined forz #
0,-1,-2,...,|A| <1;0(s) > 1,|]A| = 1, and analytically continued ih.

The purpose of this section is to establish relationshipsdenC(a, s, x) and
values of the Estermann zeta function at integel/e start with some prelimi-
nary results.

Lemma 4.1. Let k be a nonnegative integer. Then

(4.4) AD(s,z2+1,1) = d(s,2A)—2°
(4.5) ®(—k,z7) = —%
1 1 :
_ | zeot(nx) — 3 if k=1,
(4.6) Bi(0:e(x)) = {%Ecot(kl)(nx) if k> 1.

Proof. Equation [(4.4) follows from the special case= 1 in [14, (25.14.4)].
Equation[(4.5) can be found inl[4, p.164]. Equation](4.6pfek from [1, Lemma
2.1] and[6, Theorem 4]. O

Lemmd 4.1 implies that for a positive integet k, the sunC(a, k, x) defined
in @.3) is, up to a constant factor, tk8-derivative cotangent sum

1 aq_1 Kk
C(a,k,x) = ~ @t q Zlcot( ) (rmx) (—a, %)

Lemma 4.2. Let p g be coprime positive integers and:xg. For any ne Z and
ze CwithO(2) > 0,

g-1 m .
@.7) éoe<mnw(s,z+a) _ (s aze(ny).
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Proof. Writing m= kq+ j with j =0,...,g— 1, we have
> e(nmy ot 2 1
Co(sgze(ny) = ¢ Y ———= = > enjx) Yy ———.
n;o (m+q2)s J;) kZO (k—l—Z—l—é)s
Proposition 4.3. Let p,q be coprime positive integers and:xg. Then

—1
E(_S7 X,a— S) = qa qz e(mX) Z <_a7 %1) @(—S, 17 E(mX)) + qaZ(_S) Z<_a)
m=1

g-1
E(-sxa-s) = oy e (-s2) d(-a 1)+ (-a) {(-9).
n=1

Theorem 4.4. Let a k be nonnegative integers. Then
E(—kx,a—k) = C(a,k,x)+¢*{(—k){(-a) ifk>1
E(—kx,a—k) = C(k,a,x)+0¢(—k){(—-a) ifa>1,

and

Corollary 4.5. Let a k be nonnegative integers. For any rational numbef ,
0 if k=0ora=0,
(of— qk) {(—k){(—a) otherwise
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