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RECIPROCITY THEOREMS FOR BETTIN–CONREY SUMS

JUAN S. AULI, ABDELMEJID BAYAD, AND MATTHIAS BECK

Dedicated to the memory of Tom M. Apostol

ABSTRACT. Recent work of Bettin and Conrey on the period functions of
Eisenstein series naturally gave rise to the Dedekind-likesum

ca

(
h
k

)
= ka

k−1

∑
m=1

cot

(
πmh

k

)
ζ
(
−a,

m
k

)
,

wherea ∈ C, h andk are positive coprime integers, andζ (a,x) denotes the
Hurwitz zeta function. We derive a new reciprocity theorem for theseBettin–
Conrey sums, which in the case of an odd negative integera can be explicitly
given in terms of Bernoulli numbers. This, in turn, implies explicit formulas for
the period functions appearing in Bettin–Conrey’s work. Westudy generaliza-
tions of Bettin–Conrey sums involving zeta derivatives andmultiple cotangent
factors and relate these to special values of the Estermann zeta function.

1. INTRODUCTION AND STATEMENT OF RESULTS

Our point of departure is recent work of Bettin and Conrey [7,8] on the period

functions of Eisenstein series. Their initial motivation was the derivation of an

exact formula for the second moments of the Riemann zeta function, but their

work naturally gave rise to a family of finite arithmetic sumsof the form

ca

(
h
k

)
= ka

k−1

∑
m=1

cot

(
πmh

k

)
ζ
(
−a,

m
k

)
,

wherea∈ C, h andk are positive coprime integers, andζ (a,x) denotes theHur-

witz zeta function

ζ (a,x) =
∞

∑
n=0

1
(n+x)a ,

initially defined forℜ(a)> 1 and meromorphically continued to thea-plane. We

call ca(
h
k) and its natural generalizations appearing belowBettin–Conrey sums.

There are two major motivations to study these sums. The firstis thatc0(
h
k)

is essentially aVasyunin sum, which in turn makes a critical appearance in the

Nyman–Beurling–Báez-Duarte approach to the Riemann hypothesis through the

twisted mean-square of the Riemann zeta function on the critical line (see, e.g.,
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[5,16]). Bettin–Conrey’s work, fora= 0, implies that there is a hidden symmetry

of this mean-square.

The second motivation, and the central theme of our paper, isthat the Bettin–

Conrey sums satisfy areciprocity theorem:

ca

(
h
k

)
−

(
k
h

)1+a

ca

(
−k
h

)
+

kaaζ (1−a)
πh

extends from its initiation domainQ to an (explicit) analytic function onC\R≤0,

makingca nearly an example of aquantum modular formin the sense of Zagier

[18]. In fact, Zagier’s “Example 0” is theDedekind sum

s(h,k) =
1
4k

k−1

∑
m=1

cot

(
πmh

k

)
cot
(πm

k

)
,

which is, up to a trivial factor,c−1(
h
k). Dedekind sums first appeared in the trans-

formation properties of the Dedekind eta function and satisfy the reciprocity the-

orem [10,11]

s(h,k)+s(k,h) = −
1
4
+

1
12

(
h
k
+

1
hk

+
k
h

)
.

We now recall the precise form of Bettin–Conrey’s reciprocity theorem.

Theorem 1.1(Bettin–Conrey [7]). If h and k are positive coprime integers then

ca

(
h
k

)
−

(
k
h

)1+a

ca

(
−k
h

)
+

kaaζ (1−a)
πh

= −i ζ (−a)ψa

(
h
k

)

where

ψa(z) =
i

πz
ζ (1−a)
ζ (−a)

−
i

z1+a cot
πa
2

+ i
ga(z)

ζ (−a)

and

ga(z) = −2 ∑
1≤n≤M

(−1)n B2n

(2n)!
ζ (1−2n−a)(2πz)2n−1

+
1
π i

∫

(− 1
2−2M)

ζ (s)ζ (s−a)Γ(s)
cosπa

2

sinπ s−a
2

(2πz)−sds.

Here Bk denotes the kth Bernoulli number, M is any integer≥ −1
2 min(0,ℜ(a)),

and the integral notation indicates that our integration path is over the vertical

line ℜ(s) =−1
2 −2M.

We note that Bettin and Conrey initially definedψa(z) through

ψa(z) = Ea+1(z)−
1

za+1 Ea+1

(
−

1
z

)
,
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in other words,ψa(z) is theperiod functionof the Eisenstein seriesof weight

a+1,

Ea+1(z) = 1+
2

ζ (−a) ∑
n≥1

σa(n)e2π inz
,

whereσa(n) = ∑d|nda, and then showed thatψa(z) satisfies the properties of

Theorem 1.1.

We have several goals. We start by showing that the right-hand side of Theo-

rem 1.1 can be simplified by employing an integration technique for Dedekind-

like sums that goes back to Rademacher [11]. This yields our first main result:

Theorem 1.2. Let ℜ(a) > 1 and suppose h and k are positive coprime integers.

Then for any0< ε < min
{

1
h,

1
k

}
,

h1−ac−a

(
h
k

)
+k1−a c−a

(
k
h

)
=

aζ (a+1)
π(hk)a −

(hk)1−a

2i

∫

(ε)

cot(πhz)cot(πkz)
za dz.

Theorem 1.2 implies that the function

F(a) =

∫

(ε)

cot(πhz)cot(πkz)
za dz

has a holomorphic continuation to the whole complex plane. In particular, in this

sense Theorem 1.2 can be extended to all complexa.

Second, we employ Theorem 1.2 to show that in the case thata is an odd

negative integer, the right-hand side of the reciprocity theorem can be explicitly

given in terms of Bernoulli numbers.

Theorem 1.3. Let n> 1 be an odd integer and suppose h and k are positive

coprime integers. Then

h1−nc−n

(
h
k

)
+k1−nc−n

(
k
h

)
=

(
2π i
hk

)n 1
i(n+1)!

(
nBn+1+

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mhmkn+1−m

)
.

Our third main result is, in turn, a consequence of Theorem 1.3: in conjunc-

tion with Theorem 1.1, it implies the following explicit formulas forψa(z) and

ga(z) whena is an odd negative integer.

Theorem 1.4. If n > 1 is an odd integer then for all z∈ C\R≤0

ψ−n(z) =
(2π i)n

ζ (n)(n+1)!

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mzm−1

and

g−n(z) =
(2π i)n

i(n+1)!

n

∑
m=0

(
n+1
m+1

)
Bm+1Bn−mzm

.
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In [7, Theorem 2], Bettin and Conrey computed the Taylor series ofga(z)

and remarked that, ifa is a negative integer,π g(m)
a (1) is a rational polynomial

in π2. Theorem 1.4 generalizes this remark. We will prove Theorems 1.2–1.4 in

Section 2. We note that both Theorem 1.3 and 1.4 can also be derived directly

from Theorem 1.1.

Our next goal is to study natural generalizations ofca(
h
k). Taking a leaf from

Zagier’s generalization ofs(h,k) to higher-dimensional Dedekind sums[17] and

its variation involving cotangent derivatives [9], letk0,k1, . . . ,kn be positive inte-

gers such that(k0,k j) = 1 for j = 1,2, . . . ,n, let m0,m1, . . . ,mn be nonnegative

integers,a 6= −1 a complex number, and define thegeneralized Bettin–Conrey

sum

ca

(
k0 k1 · · · kn
m0 m1 · · · mn

)
= ka

0

k0−1

∑
l=1

ζ (m0)

(
−a,

l
k0

) n

∏
j=1

cot(mj )

(
πk j l

k0

)
.

Here ζ (m0)(a,z) denotes themth
0 derivative of the Hurwitz zeta function with

respect toz.

This notation mimics that of Dedekind cotangent sums; note that

cs

(
h
k

)
= cs

(
k h
0 0

)
.

In Section 3, we will prove reciprocity theorems for generalized Bettin–Conrey

sums, paralleling Theorems 1.2 and 1.3, as well as more special cases that give,

we think, interesting identities.

Our final goal is to relate the particular generalized Bettin–Conrey sum

q−1

∑
m=1

cot(k)(πmx)ζ
(
−a, m

q

)

with evaluations of theEstermann zeta function∑n≥1 σa(n)
e2π inx

ns at integerss;

see Section 4.

2. PROOFS OFMAIN RESULTS

In order to prove Theorem 1.2, we need two lemmas.

Lemma 2.1. Let m be a nonnegative integer. Then

lim
y→∞

cot(m)π(x± iy) =

{
∓i if m= 0,

0 if m> 0.

Furthermore, this convergence is uniform with respect to x in a fixed bounded

interval.
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Proof. Since cotz= i(eiz+e−iz)
eiz−e−iz , we may estimate

|i +cotπ(x+ iy)| =
2∣∣ei(2πx)−e2πy

∣∣ ≤
2∣∣∣∣ei(2πx)
∣∣−|e2πy|

∣∣ =
2

|1−e2πy|
.

Given that the rightmost term in this inequality vanishes asy→ ∞, we see that

lim
y→∞

cotπ(x+ iy) = −i .

Similarly, the inequality

|−i +cotπ(x− iy)| =
2∣∣ei(2πx)e2πy−1

∣∣ ≤
2∣∣∣∣ei(2πx)e2πy
∣∣−1

∣∣ =
2

|e2πy−1|

implies that limy→∞ cotπ(x− iy) = i. Since

|cscπ(x+ iy)| =
2eπy

|eiπx−e−iπxe2πy|
≤

2eπy

||eiπx|− |e−iπxe2πy||
=

2eπy

|1−e2πy|
,

it follows that limy→∞ cscπ(x+ iy) = 0. Similarly,

|cscπ(x− iy)| =
2eπy

|eiπxe2πy−e−iπx|
≤

2eπy

||eiπxe2πy|− |e−iπx||
=

2eπy

|e2πy−1|

implies that limy→∞ cscπ(x− iy) = 0. We remark thatddz(cotz) =−csc2zand

d
dz

(cscz) = −csczcotz,

so all the derivatives of cotz have a cscz factor, and therefore,

lim
y→∞

cot(m) π(x± iy) =

{
∓i if m= 0,

0 if m> 0.

Since the convergence above is independent ofx, the limit is uniform with respect

to x in a fixed bounded interval. �

Lemma 2.1 implies that

lim
y→∞

cot(m) πh(x± iy) = lim
y→∞

cot(m) πk(x± iy) =

{
∓i if m= 0,

0 if m> 0,

uniformly with respect tox in a fixed bounded interval.

The proof of the following lemma is hinted at by Apostol [3].

Lemma 2.2. If ℜ(a) > 1 and R> 0, thenζ (a,x+ iy) vanishes uniformly with

respect to x∈ [0,R] as y→±∞.

Proof. We begin by showing thatζ (a,z) vanishes asℑ(z) → ±∞ if ℜ(z) > 0.

Sinceℜ(a)>1 andℜ(z)>0, we have the integral representation [14, eq. 25.11.25]

ζ (a,z) =
1

Γ(a)

∫ ∞

0

ta−1e−zt

1−e−t dt,
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which may be written as

(2.1) ζ (a,z) =
1

Γ(a)

∫ ∞

0

ta−1e−t ℜ(z)

1−e−t e−itℑ(z)dt.

Note that for fixedℜ(z),
∫ ∞

0

ta−1e−tℜ(z)

1−e−t dt = ζ (a,ℜ(z))Γ(a)

and
∫ ∞

0

∣∣∣∣∣
ta−1e−t ℜ(z)

1−e−t

∣∣∣∣∣dt =

∫ ∞

0

tℜ(a)−1e−t ℜ(z)

1−e−t dt = ζ (ℜ(a),ℜ(z))Γ(ℜ(a)) ,

so the Riemann–Lebesgue lemma (see, for example, [13, Theorem 16]) implies

that
∫ ∞

0

ta−1e−tℜ(z)

1−e−t e−itℑ(z)dt

vanishes asℑ(z)→±∞. By (2.1), this means that forℜ(z) fixed,ζ (a,z) vanishes

asℑ(z)→±∞. In other words,ζ (a,x+ iy)→ 0 pointwise with respect tox> 0

asy→±∞.

Moreover, the vanishing ofζ (a,x+ iy) asy→±∞ is uniform with respect to

x∈ [0,R]. Indeed, denoteg(t) = ta−1e−tR

1−e−t , then (2.1) implies that
∫ ∞

0
g(t)dt = Γ(a)ζ (a,R)

and ∫ ∞

0
|g(t)|dt = Γ(ℜ(a))ζ (ℜ(a),R) .

It then follows from the Riemann–Lebesgue lemma that lim|z|→∞
∫ ∞

0 g(t)e−itzdt=

0. If x∈ (0,R], we may write

Γ(a)ζ (a,x± iy) =

∫ ∞

0

ta−1e−tx

1−e−t e∓itydt =

∫ ∞

0
g(t)e−it (±y−i(x−R))dt.

Sinceg(t) does not depend onx, the speed at whichζ (a,x± iy) vanishes

depends onR andy2+(x−R)2. However, we know that 0≤ |x−R| < R, so the

speed of the vanishing depends only onR.

Finally, note that

ζ (a, iy) =
∞

∑
n=0

1
(iy+n)a =

∞

∑
n=0

1
(1+ iy+n)a +

1
(iy)a = ζ (a,1+ iy)+

1
(iy)a ,

so ζ (a, iy) → 0 asy → ±∞, and the speed at whichζ (s, iy) vanishes depends

on that ofζ (s,1+ iy). Thus,ζ (s,x+ iy)→ 0 uniformly asy→ ±∞, as long as

x∈ [0,R]. �
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Proof of Theorem 1.2.The idea is to use Cauchy’s residue theorem to integrate

the function

f (z) = cot(πhz)cot(πkz)ζ (a,z)

alongC(M,ε) asM → ∞, whereC(M,ε) denotes the positively oriented rectan-

gle with vertices 1+ ε + iM , ε + iM , ε − iM and 1+ ε − iM , for M > 0 and

0< ε < min
{

1
h,

1
k

}
(see Figure 1).

FIGURE 1. The closed contourC(M,ε).

Henceforth,a∈C is such thatℜ(a)> 1, (h,k) is a pair of coprime positive in-

tergers, andf (z) andC(M,ε) are as above, unless otherwise stated. Sinceζ (a,z)
is analytic insideC(M,ε), the only poles off (z) are those of the cotangent fac-

tors. Thus, the fact thath andk are coprime implies that a complete list of the

possible poles off (z) insideC(M,ε) is

E =

{
1
h
, . . . ,

h−1
h

,
1
k
, . . . ,

k−1
k

,1

}
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and each of these poles is (at most) simple, with the exception of 1, which is (at

most) double. Form∈ {1,2, . . . ,h−1},

Res
z=m

h

f (z) = cot

(
πkm

h

)
cos(πm)ζ

(
a,

m
h

)
Res
z=m

h

1
sin(πhz)

=
1

πh
cot

(
πkm

h

)
ζ
(

a,
m
h

)
.

Of course, an analogous result is true for Resz=m
k

f (z) for all m∈ {1,2, . . . ,k−1},

and therefore

∑
z0∈E

Res
z=z0

f (z) =

Res
z=1

f (z)+
1

πh

h−1

∑
m=1

cot

(
πkm

h

)
ζ
(

a,
m
h

)
+

1
πk

k−1

∑
m=1

cot

(
πhm

k

)
ζ
(

a,
m
k

)

or, equivalently,

(2.2)

h1−ac−a

(
h
k

)
+k1−ac−a

(
k
h

)
= π(hk)1−a

((

∑
z0∈E

Res
z=z0

f (z)

)
−Res

z=1
f (z)

)
.

We now determine Resz=1 f (z). The Laurent series of the cotangent function

about 0 is given by

cotz =
1
z
−

1
3

z−
1
45

z3−
2

945
z5+ · · · ,

so, by the periodicity of cotz, for z 6= 1 in a small neighborhood ofz= 1,

cot(πkz) =

(
1

πk

)
1

z−1
−

πk
3
(z−1)−

(πk)3

45
(z−1)3−

2(πk)5

945
(z−1)5+ · · ·

and, similarly,

cot(πhz) =

(
1

πh

)
1

z−1
−

πh
3
(z−1)−

(πh)3

45
(z−1)3−

2(πh)5

945
(z−1)5+ · · · .

Sinceζ (a,z) is analytic in a small neighborhood of 1, Taylor’s theorem im-

plies that

ζ (a,z) =
∞

∑
n=0

bn(z−1)n
,

wherebn =
ζ (n)(a,1)

n! for n= 0,1,2, . . . (derivatives relative toz). Thus, the expan-

sion of f (z) about 1 is of the form

b0

π2hk

(
1

z−1

)2

+

(
b1

π2hk

)
1

z−1
+(analytic part).

Given thata 6=0,1, we know that∂∂zζ (a,z)=−aζ (a+1,z) [14, eq. 25.11.17],

sob1 =−aζ (a+1,1) =−aζ (a+1). We conclude that Resz=1 f (z) =−
aζ (a+1)

π2hk



RECIPROCITY THEOREMS FOR BETTIN–CONREY SUMS 9

and it then follows from (2.2) that

(2.3) h1−ac−a

(
h
k

)
+k1−ac−a

(
k
h

)
=

aζ (a+1)
π(hk)a +

π
(hk)a−1 ∑

z0∈E
Res
z=z0

f (z).

We now turn to the computation of∑
z0∈E

Res
z=z0

f (z) via Cauchy’s residue theo-

rem, which together with (2.3) will provide the reciprocitywe are after. Note that

the function f (z) is analytic on any two closed contoursC(M1,ε) andC(M2,ε)
and since the poles inside these two contours are the same, wemay apply Cauchy’s

residue theorem to both contours and deduce that
∫

C(M1,ε)
f (z)dz =

∫

C(M2,ε)
f (z)dz.

In particular, this implies that

(2.4) lim
M→∞

∫

C(M,ε)
f (z)dz = 2π i ∑

z0∈E
Res
z=z0

f (z) .

Let γ1 be the path alongC(M,ε) from 1+ε + iM to ε + iM . Similarly, define

γ2 from ε − iM to 1+ ε − iM , γ3 from ε + iM to ε − iM , andγ4 from 1+ ε − iM

to 1+ ε + iM (see Figure 1). Sinceℜ(a)> 1,

ζ (a,z+1) =
∞

∑
n=0

1
(n+z+1)a =

∞

∑
n=1

1
(n+z)a = ζ (a,z)−

1
za ,

and so the periodicity of cotz implies that
∫

γ4

f (z)dz = −

∫

γ3

f (z)dz+
∫

γ3

cot(πhz)cot(πkz)
za dz.

Lemmas 2.1 and 2.2 imply thatf (z) vanishes uniformly asM → ∞ (uniformity

with respect toℜ(z) ∈ [ε,1+ ε]) so

lim
M→∞

∫

γ1

f (z)dz = 0 = lim
M→∞

∫

γ2

f (z)dz.

This means that

lim
M→∞

∫

C(M,ε)
f (z)dz = lim

M→∞

(∫

γ3

f (z)dz+
∫

γ4

f (z)dz

)

and it follows from (2.3) and (2.4) that

h1−ac−a

(
h
k

)
+k1−ac−a

(
k
h

)
=

aζ (a+1)
π(hk)a +

(hk)1−a

2i

∫ ε−i∞

ε+i∞

cot(πhz)cot(πkz)
za dz.

This completes the proof of Theorem 1.2. �

To prove Theorem 1.3, we now turn to the particular case in whicha= n> 1

is an odd integer and study Bettin–Conrey sums of the formc−n.
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Let Ψ(n)(z) denote the(n+2)-th polygamma function (see, for example, [14,

Sec. 5.15]). It is well known that forn a positive integer,

ζ (n+1,z) =
(−1)n+1Ψ(n)(z)

n!

wheneverℜ(z) > 0 (see, for instance, [14, eq. 25.11.12]), so forn> 1, we may

write

c−n

(
h
k

)
=

(−1)n

kn(n−1)!

k−1

∑
m=1

cot

(
πmh

k

)
Ψ(n−1)

(m
k

)
.

By the reflection formula for the polygamma functions [14, eq. 5.15.6],

Ψ(n)(1−z)+(−1)n+1Ψ(n)(z) = (−1)nπ cot(n)(πz),

we know that ifn is odd, then

Ψ(n−1)
(

1−
m
k

)
−Ψ(n−1)

(m
k

)
= π cot(n−1)

(πm
k

)

for eachm∈ {1,2, . . . ,k−1}. Therefore,

2
k−1

∑
m=1

cot

(
πmh

k

)
Ψ(n−1)

(m
k

)
=

k−1

∑
m=1

cot

(
πmh

k

)
Ψ(n−1)

(m
k

)

+
k−1

∑
m=1

cot

(
π(k−m)h

k

)
Ψ(n−1)

(
1−

m
k

)
,

which implies that

2
k−1

∑
m=1

cot

(
πmh

k

)
Ψ(n−1)

(m
k

)

=
k−1

∑
m=1

cot

(
πmh

k

)(
Ψ(n−1)

(m
k

)
−Ψ(n−1)

(
1−

m
k

))

= −π
k−1

∑
m=1

cot

(
πmh

k

)
cot(n−1)

(πm
k

)
.

This means that forn > 1 odd,c−n is essentially a Dedekind cotangent sum.

Indeed, using the notation in [9],

c−n

(
h
k

)
=

π
2kn(n−1)!

k−1

∑
m=1

cot

(
πmh

k

)
cot(n−1)

(πm
k

)

=
π

2(n−1)!
c




k h 1
n−1 0 n−1

0 0 0


 .

Thus Theorem 1.3 is an instance of Theorem 1.2. Its significance is a reci-

procity instance for Bettin–Conrey sums of the formc−n in terms of Bernoulli

numbers. For this reason we give the details of its proof.
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Proof of Theorem 1.3.We consider the closed contour̃C(M,ε) defined as the

positively oriented rectangle with vertices 1+ iM , iM , −iM and 1− iM , with

indentations (to the right) of radius 0< ε < min
{

1
h,

1
k

}
around 0 and 1 (see

Figure 2).

FIGURE 2. The closed contour̃C(M,ε).

SinceC̃(M,ε) contains the same poles off (z) = cot(πhz)cot(πkz)ζ (n,z)
as the closed contourC(M,ε) in Figure 1 used to prove Theorem 1.2, we may

apply Cauchy’s residue theorem, lettingM → ∞, and we only need to determine

limM→∞
∫
C̃(M,ε) f (z)dz in order to deduce a reciprocity law for the sumsc−n.

As in the case ofC(M,ε), the integrals along the horizontal paths vanish, so

using the periodicity of the cotangent to add integrals along parallel paths, as we

did when consideringC(M,ε), we obtain

(2.5) lim
M→∞

∫

C̃(M,ε)
f (z)dz = lim

M→∞

(∫ iε

iM
g(z)dz+

∫ −iM

−iε
g(z)dz

)
+
∫

γ3

g(z)dz,

whereγ3 denotes the indented path around 0 and

g(z) =
cot(πkz)cot(πhz)

zn .

Given thatg(z) is an odd function, the vertical integrals cancel and we may apply

Cauchy’s residue theorem to integrateg(z) along the positively oriented circle of

radiusε and centered at 0, to deduce that

lim
M→∞

∫

C̃(M,ε)
f (z)dz = −π i Res

z=0
g(z) .
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This is the main reason to use the contourC̃(M,ε) instead ofC(M,ε). Indeed,

integration along̃C(M,ε) exploits the parity of the functiong(z), allowing us to

cancel the vertical integrals in (2.5).

The expansion of the cotangent function is

πzcot(πz) =
∞

∑
m=0

(2π i)mBm

m!
zm
,

with the convention thatB1 must be redefined to be zero. Thus, we have the

expansion

cot(πkz) =
∞

∑
m=−1

(2i)(2π ik)mBm+1

(m+1)!
zm

and of course, an analogous result holds forh. Hence,

(2.6) Res
z=0

g(z) =
(2i)(2π i)n

πhk(n+1)!

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mhmkn+1−m

,

and given thatζ (n+ 1) = − (2π i)n+1

2(n+1)! Bn+1 [14, eq. 25.6.2], the Cauchy residue

theorem and (2.3) yield
(

2π i
hk

)n 1
i(n+1)!

(
nBn+1+

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mhmkn+1−m

)
(2.7)

= h1−nc−n

(
h
k

)
+k1−nc−n

(
k
h

)
.

Finally, note that the conventionB1 := 0 is irrelevant in (2.7), sinceB1 in this

sum is always multiplied by a Bernoulli number with odd indexlarger than 1. �

Note that Theorem 1.3 is essentially the same as the reciprocity deduced by

Apostol for Dedekind–Apostol sums [2]. This is a consequence of the fact that

for n > 1 an odd integer,c−n
(

h
k

)
is a multiple of the Dedekind–Apostol sum

sn(h,k). Indeed, for suchn [3, Theorem 1]

sn(h,k) = in! (2π i)−nc−n

(
h
k

)
.

It is worth mentioning that although the Dedekind–Apostol sumsn(h,k) is trivial

for n even [2, eq. (4.13)], in the sense thatsn(h,k) is independent ofh, the Bettin–

Conrey sumc−n
(h

k

)
is not.

The following corollary is an immediate consequence of Theorems 1.2 and 1.3.

Corollary 2.3. Let n> 1 be an odd integer and suppose h and k are positive

coprime integers, then for any0< ε < min
{

1
h,

1
k

}
,

∫ ε−i∞

ε+i∞

cot(πhz)cot(πkz)
zn dz =

2(2π i)n

hk(n+1)!

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mhmkn+1−m

.
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Proof of Theorem 1.4.Given thatc−n
(
−k
h

)
= −c−n

(
k
h

)
, it follows from Theo-

rems 1.1 and 1.3 that

(2.8) ψ−n

(
h
k

)
=

(2π i)n

ζ (n)(n+1)!

n+1

∑
m=0

(
n+1

m

)
BmBn+1−m

(
h
k

)m−1

.

The function

φ−n(z) =
(2π i)n

ζ (n)(n+1)!

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mzm−1

is analytic onC\R≤0 and, by [7, Theorem 1], so isψ−n. Let

Sn = {z∈ C\R≤0 | ψ−n(z) = φ−n(z)} .

Since all positive rationals can be written in reduced form,it follows from (2.8)

thatQ>0 ⊆ Sn. Thus,Sn is not a discrete set and given that bothψ−n andφ−n are

analytic on the connected open setC\R≤0, Theorem 1.2(ii ) in [12, p. 90] implies

thatψ−n = φ−n onC\R≤0. That is,

ψ−n(z) =
(2π i)n

ζ (n)(n+1)!

n+1

∑
m=0

(
n+1

m

)
BmBn+1−mzm−1

for all z∈ C\R≤0. Now

ψ−n(z) =
i

πz
ζ (1+n)

ζ (n)
− izn−1cot

(
−πn

2

)
+ i

g−n(z)
ζ (n)

,

and sincen is odd, cot
(
−πn

2

)
= 0 andζ (n+1) =− (2π i)n+1

2(n+1)! Bn+1 [14, eq. 25.6.2],

so

g−n(z) =
i(2π i)nBn+1

(n+1)!

(
1
z

)
− i ζ (n)ψ−n(z)

=
−i(2π i)n

(n+1)!

n+1

∑
m=1

(
n+1

m

)
BmBn+1−mzm−1

=
−i(2π i)n

(n+1)!

n

∑
m=0

(
n+1
m+1

)
Bm+1Bn−mzm

. �

Clearly, Theorem 1.4 is a particular case of Bettin–Conrey’s [7, Theorem 3].

However, the proofs are independent, so Theorem 1.4 is stronger (in the partic-

ular casea= −n, with n> 1 an odd integer), because it completely determines

g−n and shows thatg−n is a polynomial. In particular, it becomes obvious that if

a∈ Z≤1 is odd and(a,m) 6= (0,0), thenπg(m)
a (1) is a rational polynomial inπ2.



14 JUAN S. AULI, ABDELMEJID BAYAD, AND MATTHIAS BECK

3. GENERALIZATIONS OF BETTIN–CONREY SUMS

Now we study generalized Bettin–Conrey sum

ca

(
k0 k1 · · · kn
m0 m1 · · · mn

)
= ka

0

k0−1

∑
l=1

ζ (m0)

(
−a,

l
k0

) n

∏
j=1

cot(mj )

(
πk j l

k0

)
.

Henceforth,Bn denotes then-th Bernoulli number with the conventionB1 := 0.

The following reciprocity theorem generalizes Theorem 1.2.

Theorem 3.1.Let d≥ 2 and suppose that k1, . . . ,kd is a list of pairwise coprime

positive integers and m0,m1, . . . ,md are nonnegative integers. Ifℜ(a) > 1 and

0< ε < min1≤ j≤d

{
1
k j

}
then

d

∑
j=1

(−1)mj

π ∑
l0+···+l̂ j+···+ld=mj

l0,...,l̂ j ,...,ld≥0

(
mj

l0, . . . , l̂ j , . . . , ld

)


d

∏
t=1
t 6= j

(πkt)
lt


ka−1

j c−a( j) =

−

(
m1+···+md+d−1

∑
l0=0

∑
l1+···+ld=−l0−1

d

∏
j=0

al j

)
+
(−1)m0a(m0)

2π i

∫ ε−i∞

ε+i∞

∏d
j=1cot(mj)(πk jz)

za+m0
dz.

where x(n) = ∏n−1
l=0 (x+ l) is the rising factorial,

c−a( j) = c−a

(
k j k1 · · · k̂ j · · · kd

m0+ l0 m1+ l1 · · · m̂j + l j · · · md+ ld

)
,

and for j= 0,1, . . . ,d, we define

al j =





(−1)m0+l0a(m0+l0)ζ (a+m0+l0)
l0! if j = 0 andl0 ≥ 0,

(2i)l j+mj+1Bl j+mj+1(πk j)
l j+mj (l j+1)(mj )

(l j+mj+1)! if j 6= 0 andl j ≥ 0,
(−1)mj mj !

πk j
if j 6= 0 andl j =−(mj +1),

0 otherwise.

The proof of this theorem is analogous to that of Theorem 1.2.Henceforth,

ℜ(a) > 1, k1, . . . ,kd is a list of pairwise coprime positive integers and 0< ε <

min1≤ j≤d

{
1
k j

}
. In addition,m0,m1, . . . ,md is a list of nonnegative integers,

f (z) = ζ (m0)(a,z)
d

∏
j=1

cot(mj )(πk jz)

and, as before,C(M,ε) denotes the positively oriented rectangle with vertices

1+ ε + iM , ε + iM , ε − iM and 1+ ε − iM , whereM > 0 (see Figure 1).

Proof of Theorem 3.1.For eachj, we know that cot
(
πk jz

)
is analytic on and in-

sideC(M,ε), with the exception of the poles1k j
, . . . ,

k j−1
k j

. This means that except

for the aforementioned poles, cot(mj)(πk jz) is analytic on and insideC(M,ε), so
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the analyticity ofζ (m0)(a,z) on and insideC(M,ε) implies that a complete list of

(possible) poles off is

E =

{
1
k1
, . . . ,

k1−1
k1

, . . .
1
kd

, . . . ,
kd−1

kd
,1

}
.

Let j ∈{1,2, . . .d} andq∈{1,2, . . . ,k j −1}, then the Laurent series of cot(πk jz)

about q
k j

is of the form
(

1
πk j

)
1

z− q
kj

+(analytic part), so nearq
k j

,

cot(mj)(πk jz) =
(−1)mj mj !

πk j

(
z−

q
k j

)−(mj+1)

+ (analytic part).

Since(k j ,kt) = 1 for t 6= j, it follows from Taylor’s theorem that fort 6= j the

expansion

cot(mt)(πktz) =
∞

∑
lt=0

(πkt)
lt

lt !
cot(mt+lt)

(
πktq
k j

)(
z−

q
k j

)lt

is valid nearq
k j

. Taylor’s theorem also yields that

ζ (m0)(a,z) =
∞

∑
l0=0

ζ (m0+l0)
(

a, q
k j

)

l0!

(
z−

q
k j

)l0

near q
k j

. Hence, we may write Resz= q
kj

f (z) as

(−1)mj mj !
πk j

∑
l0+···+l̂ j+···+ld=mj

l0,...,l̂ j ,...,ld≥0

ζ (m0+l0)
(

a, q
k j

)

l0!

d

∏
t=1
t 6= j

(πkt)
lt

lt !
cot(mt+lt)

(
πktq
k j

)
.

Therefore∑
k j−1
q=1 Resz= q

kj
f (z) is given by

(−1)mj

π ∑
l0+···+l̂ j+···+ld=mj

l0,...,l̂ j ,..., ld≥0

(
mj

l0, . . . , l̂ j , . . . , ld

)


d

∏
t=1
t 6= j

(πkt)
lt




×
1
k j

k j−1

∑
q=1

ζ (m0+l0)
(

a,
q
k j

) d

∏
t=1
t 6= j

cot(mt+lt)
(

πktq
k j

)

=
(−1)mj

π ∑
l0+···+l̂ j+···+ld=mj

l0,...,l̂ j ,...,ld≥0

(
mj

l0, . . . , l̂ j , . . . , ld

)


d

∏
t=1
t 6= j

(πkt)
lt


ka−1

j c−a( j) .
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Given that this holds for allj, we conclude that

∑
z0∈E\{1}

Res
{z=z0}

f (z) =

(3.1)

d

∑
j=1

(−1)mj

π ∑
l0+···+l̂ j+···+ld=mj

l0,...,l̂ j ,...,ld≥0

(
mj

l0, . . . , l̂ j , . . . , ld

)


d

∏
t=1
t 6= j

(πkt)
lt


ka−1

j c−a( j) .

We now compute Resz=1 f (z). For eachj ∈ {1,2, . . . ,d}, we know that cot(πk jz)

has an expansion about 1 of the form

cot(πk jz) =
1

πk j(z−1)
+

∞

∑
n=0

(2i)n+1Bn+1(πk j)
n

(n+1)!
(z−1)n

,

so the Laurent expansion of cot(mj)(πk jz) about 1 is given by

cot(mj)(πk jz) =
(−1)mj mj !

πk j(z−1)mj+1 +
∞

∑
l j=0

(2i)l j+mj+1Bl j+mj+1(πk j)
l j+mj (l j +1)(mj)

(l j +mj +1)!
(z−1)l j

=
∞

∑
l j=−∞

al j (z−1)l j ,

where

al j =





(2i)l j+mj+1Bl j+mj+1(πk j )
l j+mj (l j+1)(mj )

(l j+mj+1)! if l j ≥ 0,
(−1)mj mj !

πk j
if l j =−(mj +1),

0 otherwise.

Now, Taylor’s theorem implies that the expansion ofζ (m0)(a,z) about 1 is of the

form

ζ (m0)(a,z) =
∞

∑
l0=0

al0(z−1)l0,

where

al0 =
ζ (m0+l0)(a,1)

l0!
=

(−1)m0+l0a(m0+l0)ζ (a+m0+ l0)
l0!

.

Therefore,

Res
z=1

f (z) =
m1+···+md+d−1

∑
l0=0

∑
l1+···+ld=−l0−1

d

∏
j=0

al j .

Since ∂
∂z ζ (a,z) =−aζ (a+1,z),

ζ (m0)(a,z+1) = (−1)m0ζ (a+m0,z+1)a(m0) = (−1)m0a(m0)
∞

∑
n=0

1
(n+z+1)a+m0

= (−1)m0a(m0)

(
ζ (a+m0,z)−

1
za+m0

)
= ζ (m0)(a,z)−

(−1)m0a(m0)

za+m0
.
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This means that
∫ 1+ε+iM

1+ε−iM
f (z)dz+

∫ ε−iM

ε+iM
f (z)dz= (−1)m0a(m0)

∫ ε−iM

ε+iM

∏d
j=1cot(mj )(πk jz)

za+m0
dz.

As in the proof of Theorem 1.2, it follows from Lemmas 2.1 and 2.2 that the

integrals along the horizontal segments ofC(M,ε) vanish, so the Cauchy residue

theorem implies that

∑
z0∈E

Res
z=z0

f (z) =
(−1)m0a(m0)

2π i

∫ ε−i∞

ε+i∞

∏d
j=1cot(mj)(πk jz)

za+m0
dz.

The result then follows from (3.1) and the computation of Resz=1 f (z). �

An analogue Theorem 1.3 is valid for generalized Bettin–Conrey sums.

Theorem 3.2.Let d≥ 2 and suppose that k1, . . . ,kd is a list of pairwise coprime

positive integers and m0,m1, . . . ,md are nonnegative integers. If n> 1 is an inte-

ger and m0+n+d+∑d
j=1mj is odd, then

d

∑
j=1

(−1)mj

π ∑
l0+···+l̂ j+···+ld=mj

l0,...,l̂ j ,...,ld≥0

(
mj

l0, . . . , l̂ j , . . . , ld

)


d

∏
t=1
t 6= j

(πkt)
lt


kn−1

j c−n( j) =

−

(
m1+···+md+d−1

∑
l0=0

∑
l1+···+ld=−l0−1

d

∏
j=0

al j

)
+

(−1)m0+1n(m0)

2 ∑
l1+···+ld=n+m0−1

d

∏
j=1

al j

where

c−n( j) = c−n

(
k j k1 · · · k̂ j · · · kd

m0+ l0 m1+ l1 · · · m̂j + l j · · · md+ ld

)

and

al j =





(−1)m0+l0n(m0+l0)ζ (n+m0+l0)
l0! if j = 0 andl0 ≥ 0,

(2i)l j+mj+1Bl j+mj+1(πk j)
l j+mj (l j+1)(mj )

(l j+mj+1)! if j 6= 0 andl j ≥ 0,
(−1)mj mj !

πk j
if j 6= 0 andl j =−(mj +1),

0 otherwise.

Proof. As in the proof of Theorem 1.3, the contourC̃(M,ε) is defined as the

positively oriented rectangle with vertices 1+ iM , iM , −iM and 1− iM , with

indentations (to the right) of radius 0< ε < min1≤ j≤d

{
1
k j

}
around 0 and 1 (see

Figure 2). Since this closed contour contains the same polesof f asC(M,ε),
we may apply Cauchy’s residue theorem, lettingM → ∞, and we only need to

determine limM→∞
∫
C̃(M,ε) f (z)dz in order to deduce a reciprocity law for the

generalized Bettin–Conrey sums of the formc−n.
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Given thatm0+n+d+∑d
j=1mj is odd, the function

g(z) =
(−1)m0n(m0)∏d

j=1cot(mj )(πk jz)

zn+m0

is odd:

g(−z) =
(−1)m0+d+∑d

j=1 mj n(m0)

(−1)n+m0zn+m0

d

∏
j=1

cot(mj)(πk jz) =
(−1)d+∑d

j=1 mj

(−1)n+m0
g(z) = −g(z) .

Let γ(M,ε) be the indentation around zero alongC̃(M,ε), then

lim
M→∞

∫

C̃(M,ε)
f (z)dz = lim

M→∞

(∫ ε i

iM
g(z)dz+

∫ −iM

−ε i
g(z)dz

)
+
∫

γ(M,ε)
g(z)dz

=
∫

γ(M,ε)
g(z)dz.

Given thatg is odd, the Cauchy residue theorem implies that
∫

γ(M,ε)
g(z)dz = −π i Res

z=0
g(z)

and it follows that

∑
z0∈E

Res
z=z0

f (z) = −
1
2

Res
z=0

g(z) .

For eachj ∈ {1,2, . . . ,d} we have an expansion of the form

cot(mj )(πk jz) =
∞

∑
l j=−∞

al j z
l j ,

where

al j =





(2i)l j+mj+1Bl j+mj+1(πk j )
l j+mj (l j+1)(mj )

(l j+mj+1)! if l j ≥ 0,
(−1)mj mj !

πk j
if l j =−(mj +1),

0 otherwise.

Thus Resz=0g(z) is given by

(−1)m0n(m0) ∑
l1+···+ld=n+m0−1

d

∏
j=1

al j .

Therefore,

∑
z0∈E

Res
z=z0

f (z) =
(−1)m0+1n(m0)

2 ∑
l1+···+ld=n+m0−1

d

∏
j=1

al j ,

which concludes our proof. �

From Theorems 3.1 and 3.2, we deduce a computation of the integral
∫ ε−i∞

ε+i∞

∏d
j=1cot(mj )(πk jz)

zn+m0
dz
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in terms of the sequencesB(mj)l j , whenevern∈ Z>1 andm0+n+d+∑d
j=1mj

is odd, which generalizes Corollary 2.3:

Corollary 3.3. Let d≥ 2 and suppose that k1, . . . ,kd is a list of pairwise co-

prime positive integers and m0,m1, . . . ,md are nonnegative integers. If n> 1 is

an integer and m0+n+d+∑d
j=1mj is odd, then for all0< ε < min1≤ j≤d

{
1
k j

}
,

∫ ε−i∞

ε+i∞

∏d
j=1cot(mj )(πk jz)

zn+m0
dz=−π i ∑

l1+···+ld=n+m0−1

d

∏
j=1

al j ,

where the sequences{al j} are as in Theorem 3.2, for j= 1,2, . . . ,d.

The consideration of the casem0 = m1 = · · ·= mn = 0 leads to the definition

of higher-dimensional Bettin–Conrey sums,

ca(k0;k1, . . . ,kn) = ca

(
k0 k1 · · · kn
0 0 · · · 0

)
= ka

0

k0−1

∑
m=1

ζ
(
−a,

m
k0

) n

∏
l=1

cot

(
πklm

k0

)
,

for a 6=−1 complex andk0,k1, . . . ,kn a list of positive numbers such that(k0,k j)=

1 for eachj 6= 0.

Of course, higher-dimensional Bettin–Conrey sums satisfyTheorems 3.1 and

3.2. In particular, if 0< ε < min1≤l≤d

{
1
kl

}
, ℜ(a) > 1 andk1, . . . ,kd is a list of

pairwise coprime positive integers, then

d

∑
j=1

ka−1
j c−a(k j ;k1, . . . , k̂ j , . . . ,kd) =

−π
d−1

∑
l0=0

∑
l1+···+ld=−l0−1

al0al1 · · ·ald +
1
2i

∫ ε−i∞

ε+i∞

∏d
j=1cot(πk jz)

za dz,

where

al j =





(−1)l0a(l0)ζ (a+l0)
l0! if j = 0 andl0 ≥ 0,

(2i)l j+1Bl j+1(πk j )
l j

(l j+1)! if j 6= 0 andl j ≥ 0,
1

πkj
if j 6= 0 andl j =−1,

0 otherwise.

4. DERIVATIVE COTANGENT SUMS AND CRITICAL VALUES OF

ESTERMANN ZETA

As usual, fora,x∈C, letσa(n)=∑d|nda ande(x)=e2π ix. For a given rational

numberx, theEstermann zeta functionis defined through the Dirichlet series

E(s,x,a) = ∑
n≥1

σa(n)e(nx)n−s
,(4.1)



20 JUAN S. AULI, ABDELMEJID BAYAD, AND MATTHIAS BECK

initially defined forℜ(s) > max(1,ℜ(a)+1) and analytically continued to the

wholes-plane with possible poles ats= 1, a+1. Forx= p
q with (p,q) = 1 and

q> 1,

E(s,x,a)−q1+a−2sζ (s−a)ζ (s)

is an entire function ofs. By use of the Hurwitz zeta function we observe that

E(s,x,a) = qa−2s
q

∑
m,n=1

e(mnx)ζ
(

s−a, m
q

)
ζ
(

s, n
q

)
.(4.2)

We consider the sums

C(a,s,x) = qa
q−1

∑
m=1

e(mx)Φ(−s,1,e(mx))ζ
(
−a, m

q

)
,(4.3)

whereΦ(s,z,λ ) = ∑n≥0
λ n

(z+n)s is Lerch’s transcendent function, defined forz 6=

0,−1,−2, . . . , |λ |< 1;ℜ(s)> 1, |λ |= 1, and analytically continued inλ .

The purpose of this section is to establish relationships betweenC(a,s,x) and

values of the Estermann zeta function at integerss. We start with some prelimi-

nary results.

Lemma 4.1. Let k be a nonnegative integer. Then

λΦ(s,z+1,λ ) = Φ(s,z,λ )−z−s(4.4)

Φ(−k,z,λ ) = −
Bk+1(z;λ )

k+1
(4.5)

Bk(0;e(x)) =

{
1
2i cot(πx)− 1

2 if k= 1,
k

(2i)k
cot(k−1)(πx) if k> 1.

(4.6)

Proof. Equation (4.4) follows from the special casem= 1 in [14, (25.14.4)].

Equation (4.5) can be found in [4, p.164]. Equation (4.6) follows from [1, Lemma

2.1] and [6, Theorem 4]. �

Lemma 4.1 implies that for a positive integers= k, the sumC(a,k,x) defined

in (4.3) is, up to a constant factor, thekth-derivative cotangent sum

C(a,k,x) = −
1

(2i)k+1 qa
q−1

∑
m=1

cot(k)(πmx)ζ
(
−a, m

q

)
.

Lemma 4.2. Let p,q be coprime positive integers and x= p
q . For any n∈ Z and

z∈ C with ℜ(z)> 0,

q−1

∑
m=0

e(mnx)ζ
(

s,z+
m
q

)
= qsΦ(s,qz,e(nx)) .(4.7)
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Proof. Writing m= kq+ j with j = 0, . . . ,q−1, we have

qsΦ(s,qz,e(nx)) = qs
∞

∑
m=0

e(nmx)
(m+qz)s =

q−1

∑
j=0

e(n jx)
∞

∑
k=0

1

(k+z+ j
q)

s
. �

Proposition 4.3. Let p,q be coprime positive integers and x= p
q . Then

E(−s,x,a−s) = qa
q−1

∑
m=1

e(mx)ζ
(
−a, m

q

)
Φ(−s,1,e(mx))+qaζ (−s)ζ (−a)

E(−s,x,a−s) = qs
q−1

∑
n=1

e(nx)ζ
(
−s, n

q

)
Φ(−a,1,e(nx))+qsζ (−a)ζ (−s) .

Theorem 4.4.Let a,k be nonnegative integers. Then

E (−k,x,a−k) = C(a,k,x)+qaζ (−k)ζ (−a) if k ≥ 1,

E (−k,x,a−k) = C(k,a,x)+qkζ (−k)ζ (−a) if a ≥ 1,

and

E (0,x,a) = C(a,0,x)− 1
2ζ (−a)

E (0,x,a) = C(0,a,x)− 1
2ζ (−a) with a≥ 1.

Corollary 4.5. Let a,k be nonnegative integers. For any rational number x6= 0,

C(a,k,x)−C(k,a,x) =

{
0 if k= 0 ora= 0,(
qa−qk

)
ζ (−k)ζ (−a) otherwise.
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ET MODÉLISATION D’ ÉVRY (CNRS-UMR 8071), I.B.G.B.I., 23 BD. DE FRANCE, 91037
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