In silico avatars of cells to predict cell migration on travelling waves

Jean-Louis Milan

Maxime Vassaux, Laurent Pieuchot, Karine Anselme, Ian Manifacier Aix Marseille Université, CNRS, ISM, France

Curvature = topological attribute of the cell's surrounding

Brain, lungs, intestins, ... = wavy structures with lot of folds

Curvature may impact

- Multi cell organisation [Nelson2016].
- adherent cell morphology [Callens2020]

-> mechanisms involved ?

-> mechanical signals ?

How do cells feel curvature ?

-> Development of idealized **sinusoidal surfaces**

In vitro observations Karine Anselme & Laurent Pieuchot Mulhouse IS2M

In vitro observations Karine Anselme & Laurent Pieuchot Mulhouse IS2M

Cell trajectories

S3/30, 30 min-20 h

-> called « Curvotaxis »

(gravity is not involved !)

Cell proliferation

120 h, S10/100, 90% confluency

Pieuchot et al. Nature Comm. 2018 Groupe de Karine Anselme IS2M Mulhouse

Understanding curvatoxis by modeling cell mechanics

Cytoskeleton represented as **contractile network** attached to substrate connected to the nucleus

Divided Medium Mechanics using LMGC90 (Fred Dubois, LMGC, Montpellier)

Simulation of adhesion on Sinus Surfaces

Post-Doc Maxime Vassaux CR CNRS 2022

Results -> Decentering of the nucleus toward concave area

Explanation Cytoskeleton (Cortex) skeezes nucleus and pushes it toward concave regions

<u>Hypothesis on curvotaxis</u>: Nucleus decentering = Migration bias ≈ « ball and chain » which limits cell migration in other directions

Simulation of cell migration following nucleus motion

Trajectories of the cell model for different initial locations

Curvotaxis

allows cells to reach a relaxed mechanical state

Key parameters of curvotaxis identified in silico

- 1) Curvotaxis possible for waves lengths ranging between 10µm to 200µm larger than nucleus size & smaller than cell size
 -> verified in vitro
- 2) Curvotaxis needs a contractile cytoskeleton and rigid nucleus
 -> verified in vitro (inhibitors)

Up to now,

- static curvature -> only limits migration in concave areas
- How to guide migration in a given direction & over long distances ?
 - -> Dynamic curvature ?

during embryogenesis :

Cells migrate on adjacent cell layers that ondulate dynamically [Harmand 2021]

Guide cell migration via Dynamic Curvotaxis -> generate travelling waves

Migration et déplacement nets

Advantage of the model

Simulate what we can't do experimentally

Guide cell migration via Dynamic Curvotaxis -> gener

-> generate travelling waves

lan Manifacier (Post- Doc)

Ian Manifacier (Post- Doc)

lan Manifacier (Post- Doc)

speed 2 μm/it & height 10 μm

speed 8 µm/it & height 40 µm

With our **cell model** we propose:

- 1st « proof of concept » of **dynamic cuvotaxis**
- Design for **future dynamic substrates**

that generate waves for long distance & directed cell migration