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Andrey Dymov, Sergei Kuksin , Alberto Maiocchi and Sergei Vlăduţ4

Abstract. We consider the damped/driven cubic NLS equation on the5

torus of a large period L with a small nonlinearity of size λ, a properly6

scaled random forcing and dissipation. We examine its solutions under7

the subsequent limit when first λ → 0 and then L → ∞. The first limit,8

called the limit of discrete turbulence, is known to exist, and in this9

work we study the second limit L → ∞ for solutions to the equations10

of discrete turbulence. Namely, we decompose the solutions to formal11

series in amplitude and study the second-order truncation of this series.12

We prove that the energy spectrum of the truncated solutions becomes13

close to solutions of a damped/driven nonlinear wave kinetic equation.14

Kinetic nonlinearity of the latter is similar to that which usually appears15

in works on wave turbulence, but is different from it (in particular, it is16

non-autonomous). Apart from tools from analysis and stochastic analysis,17

our work uses two powerful results from the number theory.18

1. Introduction19

1.1. The Setting20

In this paper we continue the study of the Zakharov–L’vov stochastic model21

for wave turbulence (WT), initiated in [7,8]; see also a survey [9]. We start by22

recalling the classical and the Zakharov–L’vov stochastic settings of WT. See23

the introduction to [7] for more detailed discussions of the two models.24

Classical setting. Let T
d
L = R

d/(LZ
d) be the d-dimensional torus, d ≥ 2, of25

period L ≥ 2. We denote by ‖u‖ the normalized L2-norm of a complex function26

u on T
d
L, ‖u‖2 = L−d

∫
T

d
L

|u(x)|2 dx , and write the Fourier series of u in the27

form28
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u(x) = L−d/2
∑

s∈Z
d
L

vse
2πis·x, Z

d
L = L−1

Z
d. (1.1)29

Here the vector of Fourier coefficients v = (vs)s∈Z
d
L

is given by the Fourier30

transform of u(x),31

v = F(u), vs = L−d/2

∫

T
d
L

u(x)e−2πis·x dx for s ∈ Z
d
L,32

so the Parseval identity takes form ‖u‖2 = L−d
∑

s∈Z
d
L
|vs|2. We will study33

solutions u(t, x) whose norms satisfy ‖u(t, ·)‖ ∼ 1 as L → ∞. This makes the34

chosen in (1.1) scaling of Fourier series convenient for our purposes.35

We consider the cubic NLS equation with modified nonlinearity36

∂

∂t
u + iΔu − iλ

(
|u|2 − 2‖u‖2

)
u = 0, x ∈ T

d
L, (1.2)37

where u = u(t, x), Δ = (2π)−2
∑d

j=1(∂
2/∂x2

j ) and λ ∈ (0, 1] is a small pa-38

rameter. The modification of the nonlinearity by the term 2iλ‖u‖2u keeps the39

main features of the standard cubic NLS equation, reducing some non-crucial40

technicalities; see the introduction to [7].41

The objective of WT is to study solutions of (1.2) under the limit L → ∞42

and λ → 0 on long time intervals. There are plenty of physical works containing43

some different (but consistent) approaches to the limit; many references may be44

found in [25,26,30]. Despite the strong interest in physical and mathematical45

communities to the addressed questions, significant progress in the rigorous46

justification of the physical predictions was achieved only recently [1–6,15,47

16,23]. See, for example, the introductions to [3,6,7] for discussions of the48

obtained results.49

Zakharov–L’vov setting. When studying Eq. (1.2), members of the WT com-50

munity talk about “pumping energy to low modes and dissipating it in high51

modes”. To make this rigorous, following Zakharov–L’vov [29], in the present52

paper as well as in [7,8] we consider the NLS equation (1.2) damped by a53

(hyper) viscosity and driven by a random force:54

∂

∂t
u + iΔu − iλ

(
|u|2 − 2‖u‖2

)
u = −νA(u) +

√
ν

∂

∂t
ηω(t, x). (1.3)55

Here ν ∈ (0, 1/2] is another small parameter, which should be properly agreed56

with λ and L. The dissipative linear operator A is defined as57

A(u(x)) = L−d/2
∑

s∈Z
d
L

γsvse
2πis·x, v = F(u), γs = γ0(|s|2), (1.4)58

where |s| stands for the Euclidean norm of a vector s and γ0(y) is a smooth59

real increasing function of y > 0, satisfying 1
60

γ0 ≥ 1 and c(1 + y)r∗ ≤ γ0(y) ≤ C(1 + y)r∗ ∀ y > 0. (1.5)61

1 For example, if γs = (1+ |s|2)r∗, then A = (1−Δ)r∗. In particular, we can take A = 1−Δ.
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The exponents r∗ > 0 and c, C are positive constants. We also assume that62

all derivatives of γ0 have at most polynomial growths at infinity.63

The random noise ηω is given by a Fourier series64

ηω(t, x) = L−d/2
∑

s∈Z
d
L

b(s)βω
s (t)e2πis·x,65

where {βs(t), s ∈ Z
d
L} are standard independent complex Wiener processes 2

66

and b(s) is a Schwartz function on R
d ⊃ Z

d
L.367

Solutions u(τ) of (1.3) are random processes in the space H = L2(Td
L, C),68

equipped with the norm ‖ · ‖. If r∗ is sufficiently big in terms of d, Eq. 1.3 is69

known to be well posed, see Theorem 1.1 below and a discussion after its for-70

mulation. Moreover, Ito’s formula shows that E‖u(τ)‖2 is bounded uniformly71

in τ and L, ν, λ, once E‖u(0)‖2 is bounded uniformly in these parameters, see72

in [7].73

We will study the equation on time intervals of order ν−1. So, it is con-74

venient to pass from t to the slow time τ = νt and write Eq. (1.3) as75

u̇ + iν−1Δu − iρ
(
|u|2 − 2‖u‖2

)
u = −A(u) + η̇ω(τ, x),

ηω(τ, x) = L−d/2
∑

s∈Z
d
L

b(s)βω
s (τ)e2πis·x. (1.6)76

Here ρ = λν−1, the upper dot stands for d/dτ and {βs(τ), s ∈ Z
d
L} is another77

set of standard independent complex Wiener processes. Below we use ρ, ν and78

L as parameters of the equation.79

In the context of Eq. (1.6), the objective of WT is to study its solutions80

u(τ) when81

L → ∞ and ν → 0, (1.7)82

while ρ = ρ(ν, L) is scaled appropriately, mostly paying attention to their83

energy spectra84

Ns(τ) := E|vs(τ)|2, where v(τ) = F(u(τ)). (1.8)85

Exact meaning of the limit (1.7) is unclear since no relation between the pa-86

rameters ν and L is postulated by the theory.87

Motivated by physical works, in the present paper, as in [7,8], we study88

formal decompositions in ρ of solutions to Eq. (1.6) and of their energy spectra89

Ns under the limit (1.7). See the introduction to [7] for a discussion of our90

motivation, and see below Sect. 4. In [7,8] we understand the limit (1.7) as91

first L → ∞ and then ν → 0, or L � ν−2 while ν → 0. (1.9)92

There we have shown that principal terms of the decomposition of Ns in ρ93

have a non-trivial limiting behaviour, provided that ρ is scaled as ρ ∼ ν−1/2,94

2 i.e. βs = β1
s + iβ2

s , where {βj
s , s ∈ Z

d
L, j = 1, 2} are standard independent real Wiener

processes.
3Often it is assumed that the intensity b(s) of the noise ηω is non-negative, but we do not
impose this condition. Note that if b(s) ≡ 0, then our results become trivial since below we
will provide (1.3) with the zero initial conditions.
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governed by a nonlinear wave kinetic equation (WKE) with added dissipation95

and a constant forcing. The WKE coincides with that, arising in physical96

works, so this result agrees well with the predictions of the WT.97

In the present paper we are interested in the opposite order of limits,98

which rarely appears in physical works:99

firstly ν → 0 and then L → ∞. (1.10)100

Roughly speaking, our main result is that under the double limit (1.10) the101

behaviour of principal terms of the decomposition in ρ for the energy spectrum102

Ns is governed by a modified WKE. The latter is similar to the WKE arising103

in [7,8] and physical papers, but is different from them. The scaling of ρ now104

is ρ ∼ Lχd(L), where105

χd(L) ≡ 1 if d ≥ 3 and χd(L) = (lnL)−1/2 if d = 2. (1.11)106

To the best of our knowledge, this WKE did not appear in the literature be-107

fore. For the proof we start with the result obtained in [17,21], where the108

limiting as ν → 0 behaviour of Eq. (1.6) is examined (while L and ρ are kept109

fixed). Then we pass to the limit as L → ∞, following the approach of [7,8]110

and using the developed there tools, such as a specific Feynman diagram pre-111

sentation. Another key ingredient of the proof is an obtained in [10] refinement112

of the Heath–Brown circle method for quadratic forms [14], and certain upper113

bounds for the number of integer points on intersections of quadrics. In the114

next subsections we describe our results and methods in more detail.115

In [20] a similar result concerning the iterated limit (1.10) was found116

heuristically; however, there ρ was scaled as ρ ∼
√

L. The present paper shows117

that the correct scaling is different: ρ ∼ Lχd(L).118

Similar regimes, when L → ∞ slowly while ν > 0 fast decays to zero,119

were studied in [1,16]. However the elegant description of the limit, obtained120

there, is far from the prediction of WT. The works [1,16] should rather be121

regarded as a kind of averaging (similar to that of Krylov–Bogolyubov) since122

the considered there time scale is much shorter than the characteristic time123

scale of WT. Note that in [1] a similar to ours [10] refinement of the Heath–124

Brown method also is crucially used.125

1.2. The Limit of Discrete Turbulence126

We first consider the limit127

ν → 0 while L and ρ stay fixed. (1.12)128

It is known as the limit of discrete turbulence (see [25, Section 10]) and has been129

successfully studied in [17,21]. To explain the result, let us take the Fourier130

transform of Eq. (1.6):131

v̇s − iν−1|s|2vs + γsvs = iρL−d

(
∑

1,2,3

δ′12
3s v1v2v̄3 − |vs|2vs

)

+ b(s)β̇s132

(1.13)133
134
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for s ∈ Z
d
L. Here, as it is common in WT, vj abbreviates vsj

,
∑

1,2,3 stands for135 ∑
s1,s2,s3∈Z

d
L
, and136

δ′12
3s = δ′s1s2

s3s :=
{

1, if s1 + s2 = s3 + s and {s1, s2} �= {s3, s},
0, otherwise. (1.14)137

Note that138

if δ′12
3s = 1, then {s1, s2} ∩ {s3, s} = ∅. (1.15)139

We pass to the interaction representation,140

as(τ) = vs(τ)e−iν−1τ |s|2 , s ∈ Z
d
L, (1.16)141

and denote142

ω12
3s = ωs1s2

s3s := |s1|2 + |s2|2 − |s3|2 − |s|2 = −2(s1 − s) · (s2 − s), (1.17)143

where the last equality holds if δ′12
3s = 1 since then s3 = s1 + s2 − s. Then Eq.144

(1.13) takes the form145

ȧs + γsas = iρYs(a, ν−1τ) + b(s)β̇s, s ∈ Z
d
L,

Ys(a, t) = L−d

(
∑

1,2,3

δ′12
3s a1a2ā3e

itω12
3s − |as|2as

)

,
(1.18)146

where {βs} is yet another set of standard independent complex Wiener pro-147

cesses (and, again aj stands for asj
). Note that the energy spectra of solutions148

to Eqs. (1.13) and (1.18) coincide:149

Ns(τ) = E|vs(τ)|2 = E|as(τ)|2. (1.19)150

Sometimes we will write Ns and as as Ns(τ ; ν, L) and as(τ ; ν, L). The limit-151

ing dynamics in Eq. (1.18) under the limit (1.12) is governed by the effective152

equation of discrete turbulence. The latter has the form (1.18) with the mod-153

ified nonlinearity Y res, in which the sum is taken only over resonant vectors154

s1, s2, s3:155

ȧs + γsas = iρY res
s (a) + b(s)β̇s, s ∈ Z

d
L,

Y res
s (a) = L−d

(
∑

1,2,3

δ′12
3s δ(ω12

3s)a1a2ā3 − |as|2as

)

.
(1.20)156

Here δ(ω12
3s) = 1 if ω12

3s = 0 and δ(ω12
3s) = 0 otherwise. The following result is157

proven in [17,21] (concerning the well posedness of (1.18) also see [28]).158

Theorem 1.1. If A(u) = −Δu + u and d ≤ 3, then Eqs. (1.18) and (1.20) are159

well posed. Under the limit (1.12), on time intervals of order 1,160

(i) A solution aν(τ) of (1.18) converges in distribution to a solution a0(τ)161

of (1.20) once they have the same deterministic initial data at τ = 0;162

(ii) The energy spectrum E|aν
s (τ)|2 = Ns(τ ; ν, L) converges to the energy163

spectrum E|a0
s(τ)|2.164
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It is very likely that the assertions of the theorem stays true with a similar165

proof for any d if A is the operator (1.4, 1.5) with a sufficiently large r∗, and166

in [21] this indeed is proved, provided that Eq. (1.18) is known to be well167

posed. It is also shown in [17,21] that if under the assumptions of Theorem 1.1168

Eqs. (1.18) and (1.20) are mixing, then the stationary measure for the former169

converges to that for the latter as ν → 0. The mixing property for Eq. (1.18)170

is established in [28] for the case when all numbers b(s) are nonzero and d = 1.171

It is plausible that a variation of the argument in [28] allows to establish the172

mixing property for both Eqs. (1.18) and (1.20) if in (1.5) r∗ is big in terms of173

d and b(s) �= 0 for all s.174

1.3. The Main Result175

In view of Theorem 1.1, to understand behaviour of the energy spectrum (1.19)176

of Eq. (1.18) under the limit (1.10), it remains to study that of the energy177

spectrum E|as(τ ;L)|2 of the effective Eq. (1.20) under the limit L → ∞.178

Instead, following the logic of [7], we study the energy spectrum corresponding179

to a principal part of a decomposition in ρ for the solutions as(τ ;L) of Eq.180

(1.20).181

Quasisolutions and their energy spectra. To simplify presentation we assume182

that initially the system was at rest, i.e. supplement Eq. (1.20) with the zero183

initial condition184

as(0) = 0 ∀s ∈ Z
d
L. (1.21)185

We formally decompose the corresponding solution of (1.20) in ρ,186

a(τ) = a(0)(τ) + ρa(1)(τ) + ρ2a(2)(τ) + . . . , a(k)(0) = 0, (1.22)187

a(k)(τ) = a(k)(τ ;L). The process a(0)(τ) satisfies the linear equation188

ȧ(0)
s + γsa

(0)
s = b(s)β̇s, s ∈ Z

d
L.189

So it is Gaussian,190

a(0)
s (τ) = b(s)

∫ τ

0

e−γs(τ−l)dβs(l), (1.23)191

and its components {a
(0)
s } are independent. The process a(1) satisfies192

ȧ(1)
s + γsa

(1)
s = iY res

s (a(0)),193

so that194

a(1)
s (τ) = iL−d

∫ τ

0

e−γs(τ−l)
195

(
∑

1,2,3

δ′12
3s δ(ω12

3s)(a(0)
1 a

(0)
2 ā

(0)
3 ) − |a(0)

s |2a(0)
s

)

(l)dl (1.24)196
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is a Wiener chaos of third order (see [18]). Similar for n ≥ 1,197

a(n)
s (τ) = iL−d

∑

n1+n2+n3=n−1

∫ τ

0

e−γs(τ−l)

×
(
∑

1,2,3

δ′12
3s δ(ω12

3s)
(
a
(n1)
1 a

(n2)
2 ā

(n3)
3

)
− a(n1)

s a(n2)
s ā(n3)

s

)

(l) dl,

198

(1.25)199

is a Wiener chaos of order 2n + 1.200

Next we consider the quadratic truncation of the series (1.22),201

As(τ ;L) = As(τ) = a(0)
s (τ) + ρa(1)

s (τ) + ρ2a(2)
s (τ), (1.26)202

which we call the quasisolution 4 of the effective Eqs. (1.20), 1.21). It is tradi-203

tional in WT to analyse the quasisolution instead of the solution itself, postu-204

lating that the former well approximates the latter; see introduction to [7] for205

a discussion. The goal of the present paper is to study the behaviour of the206

energy spectrum of A(τ),207

ns,L(τ) = E|As(τ ;L)|2, s ∈ Z
d
L, (1.27)208

as L → ∞. Our results, formulated below, show that under this limit the energy209

spectrum ns,L(τ) has a non-trivial behaviour (i.e. stays finite and behaves210

differently from E|a(0)
s |2) only if ρ ∼ Lχd(L), where χd is defined in (1.11).211

Accordingly, from now on we assume that212

ρ = εLχd(L), (1.28)213

where 0 < ε ≤ 1/2 is a small but fixed constant (see a few lines below for its214

discussion). Then the energy spectrum ns,L expands as215

ns,L(τ) = n
(0)
s,L(τ) + ε n

(1)
s,L(τ) + ε2n

(2)
s,L(τ) + ε3n

(3)
s,L(τ) + ε4n

(4)
s,L(τ),216

(1.29)217

s ∈ Z
d
L, where218

n
(k)
s,L(τ) =

(
Lχd(L)

)k ∑

k1+k2=k
0≤k1,k2≤2

Ea(k1)
s (τ)ā(k2)

s (τ). (1.30)219

In particular, by (1.23)220

n
(0)
s,L(τ) = E|a(0)

s (τ ;L)|2 =
b(s)2

γs

(
1 − e−2γsτ

)
, s ∈ Z

d
L, (1.31)221

and a simple computation shows that n
(1)
s,L(τ) ≡ 0. For higher-order terms, we222

prove that223

n
(2)
s,L ∼ 1 and |n(3)

s,L|, |n(4)
s,L| � 1 as L → ∞ uniformly in τ ≥ 0;224

(1.32)225

4By analogy with the quasimodes in the spectral theory of the Shrödinger operator.
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see a discussion in the next subsection. Thus, the parameter ε measures the226

properly scaled amplitude of the solutions, and indeed it should be small for the227

methodology of WT to apply. Then, the term ε2n
(2)
s,L is the crucial non-trivial228

component of the energy spectrum ns,L, while the terms ε3n
(3)
s,L, ε4n

(4)
s,L are229

perturbative. This well agrees with the prediction of physical works concerning230

various models of WT.231

Wave kinetic equation. In view of (1.32), to study the limiting as L → ∞232

behaviour of the energy spectrum ns,L(τ) up to an error of size ε3 it remains233

to investigate the behaviour of its principal component n
(0)
s,L(τ)+ε2n

(2)
s,L(τ). We234

show that the latter is governed by a WKE. To state the result, let us consider235

the resonant quadric236

Σs =
{
(s1, s2) ∈ R

2d : (s1 − s) · (s2 − s) = 0
}

, (1.33)237

cf. (1.17), and a measure μΣs on it, given by238

μΣs(ds1ds2) =
(
|s1 − s|2 + |s2 − s|2

)−1/2
ds1ds2 |Σs

, (1.34)239

where ds1ds2 |Σs
denotes the volume element on Σs, corresponding to the240

standard Euclidean structure on R
2d.241

Let us consider the following non-autonomous cubic wave kinetic integral242

operator K(τ), for any τ ≥ 0 sending a function ys, s ∈ R
d, to the function243

Ks(τ)y, defined as244

Ks(τ)y = 4Cd

∫

Σs

μΣs(ds1ds2)
(
Z4y1y2y3245

+Z3y1y2y4 − Z2y1y3y4 − Z1y2y3y4

)
. (1.35)246

Here yj := ysj
with s4 := s and s3 := s1 + s2 − s, Cd is the constant from247

Theorem B below, the kernels Zj = Zj(τ ; s1, s2, s3, s4) are given by formulas248

(4.14, 4.15) and satisfy 0 ≤ Zj(τ) ≤ 1. When τ → ∞, the operator K(τ)249

exponentially fast converges to a limiting kinetic integral operator K(∞), given250

by (1.35) with Zj replaced by (γs1 + γs2 + γs3 + γs4)
−1 for all j:251

Ks(∞)y = 4Cd

∫

Σs

μΣs(ds1ds2)
γs1 + γs2 + γs3 + γs4

252

(
y1y2y3 + y1y2y4 − y1y3y4 − y2y3y4

)
. (1.36)253

It is similar to the standard four-wave kinetic operator of WT (e.g. see in [25]),254

which has the form (1.35) with Zj ≡ const, but still is different from the latter255

since K(∞) depends on the spectrum {γs} of the dissipation operator A.5256

For r ∈ R we denote by Cr(Rd) a space of continuous complex functions257

on R
d with finite norm258

|f |r = sup
z∈Rd

|f(z)|〈z〉r, where 〈z〉 = max(|z|, 1). (1.37)259

5Earlier the kinetic operator K(∞) was heuristically obtained in [20].
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In Sect. 5, following [7], we show that if r > d, then for any τ the operator K(τ)260

defines a continuous 3-homogeneous mapping K(τ) : Cr(Rd) �→ Cr+1(Rd), and261

for any y ∈ Cr(Rd) the curve τ �→ K(τ)(y) is Hölder continuous in Cr(Rd).262

Now consider the following damped/driven non-autonomous WKE263

żs(τ) = −2γszs + ε2Ks(τ)(z) + 2b(s)2, z(0) = 0, (1.38)264

where τ ≥ 0 and s ∈ R
d. In Sect. 5 we prove that for small ε it has a unique265

solution zs(τ), which can be written as zs(τ) = z0s(τ)+ε2z1s(τ, ε), where z0s, z1s ∼266

1 and z0s solves the linear Eq. (1.38)|ε=0. It is easy to see that z0s equals the267

component n
(0)
s,L of the energy spectrum ns,L, given by (1.31), and we prove268

that z1s is ε4-close to n
(2)
s,L uniformly in τ . Then, in view of (1.32), the energy269

spectrum ns,L is ε3-close to the solution zs(τ).270

Below we denote by C#(s) various positive functions of s which decay as271

|s| → ∞ faster than any negative degree of |s|. These functions never depend on272

L, ε and τ . By C#(s; p) we denote functions C#(s) depending on a parameter273

p.274

Theorem A (Main theorem). Let d ≥ 2. Then, the energy spectrum ns,L(τ) of275

the quasisolution As(τ) of (1.20), 1.21) satisfies the estimate ns,L(τ) ≤ C#(s)276

and is ε3-close to the solution zs(τ) of WKE (1.38). Namely, under the scaling277

ρ = εLχd(L), for any r there exists εr ∈ (0, 1/2] such that for 0 < ε ≤ εr we278

have279

|n·,L(τ) − z·(τ)|r ≤ Crε
3 ∀ τ ≥ 0, (1.39)280

if L ≥ ε−2 for d ≥ 3, and L ≥ eε−1
for d = 2.281

See Theorem 5.9. Since the energy spectrum ns is defined for s ∈ Z
d
L with282

finite L, then the norm in (1.39) is understood as |f |r = supz∈Z
d
L

|f(z)|〈z〉r.283

Remark 1.2. If d = 2, the lower bound L ≥ eε−1
can be relaxed in the following284

sense. In Appendix D we explain that there is a bounded correction f(τ, L)285

which can be written explicitly, such that286

∣
∣
∣n·,L(τ) − z·(τ) − f(τ, L)

ln L

∣
∣
∣
r

≤ Crε
3 ∀ τ ≥ 0, (1.40)287

if L ≥ ε−6.288

In Lemma 5.6 we show that in the vicinity of the unique steady state289

z0s := b(s)2/γs for the linear Eq. (1.38)|ε=0, Eq. (1.38)|τ=∞ with ε � 1 has a290

unique steady state zε ∈ Cr(Rd) and the latter is asymptotically stable. Jointly291

with Theorem A, this result implies the following asymptotic in time behaviour292

of the energy spectrum ns,L(τ):293

|n·,L(τ) − zε
· |r ≤ Cr(e−τ + ε3), ∀ τ ≥ 0, (1.41)294

if L is as in Theorem A, see (5.19).295
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The cases d ≥ 3 and d = 2 are similar, but should be treated separately.296

To shorten the presentation, we give a detailed proof of Theorem A only for297

d ≥ 3, when298

χd = 1 and ρ = εL.299

The proof for d = 2 can be obtained by a simple modification of the argument300

for d ≥ 3. We sketch it in Appendix D. So from now on, except Sect. 2 which301

gives a brief account of the method of Feynman diagrams from [7,8], we assume302

that d ≥ 3.303

In paper [7] we examine the behaviour of the energy spectrum ns,L,ν(τ) of304

a quasisolution to Eq. (1.18) under the limit (1.9), assuming that ρ = εν−1/2. 6
305

We got there a similar result which states that n·,L,ν(τ) is ε4-close to a solution306

of the damped/driven four-wave kinetic equation as in [25, Section 6.9.1] [in307

contrast with Eq. (1.38), the kinetic nonlinearity there does not depend on the308

dissipation A in Eq. (1.3)].309

What next? In this work and in [7] we obtained wave kinetic limits for the310

energy spectra of quasisolutions for the NLS Eq. (1.6) under limit (1.10) with311

the scaling ρ = εLχd(L) and limit (1.9) with the scaling ρ = εν−1/2. Our312

next goal is to show that an exact solution a·(τ) of Eq. (1.18) is ε3-close313

to its quasisolution A·(τ) (uniformly in L ≥ 2 and τ ∈ [0, T ], for any T >314

0). And that a solution of Eq. (1.6) is ε3-close to the quasisolution of the315

equation (uniformly in ν, L and τ ∈ [0, T ], if L ≥ ν−2−γ̄ , γ̄ > 0). This316

would imply that the energy spectra of solutions of Eq. (1.6) under limit (1.10)317

and limit (1.9) are ε3-close to solutions of the two WKE (namely, Eq. (1.38)318

and the WKE from [7]). To prove this, say, for a solution a·(τ) of Eq. (1.18)319

we consider the equation on any fixed time-interval [0, T ] and regard it as a320

nonlinear equation FT (a·(·)) = 0 for the unknown process as(τ). Then the321

quasisolution A satisfies the equation with a disparity � ε3. By analogy with322

some stochastic problems for nonlinear PDEs, recently successfully resolved323

by the KAM-techniques (e.g. see [19]), we believe that KAM also applies to324

the equation FT = 0. Its application would imply that a is ε3-close to A, as325

stated. We also believe that analysis of the KAM-iterations which build a from326

A will show that the energy spectrum of the solution a·(τ) of Eq. (1.18) under327

the limit L → ∞ converges to a solution of the WKE (1.38). A similar logic328

should apply to the energy spectra of solutions for Eq. (1.6) under the limit329

(1.9).330

1.4. Outline of The Proof: Feynman Diagrams and Number Theory331

It is well understood that to write down formulas for the terms n
(k)
s,L of decom-332

positions as (1.29) it is instrumental to use the language of Feynman diagrams.333

In application to similar problems this goes back at least to the works [11,12],334

and then was successfully used for the purposes of WT in [2–6,23] and other335

papers. We use this techniques in the form developed in [8] which gives a con-336

venient presentation of the terms n
(k)
s,L [see (1.30)]. Namely, by iterating the337

6In [7] the notation is slightly different: there we set ρ = ε1/2ν−1/2.
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Duhamel formula (1.25) we express a(n)(τ) in terms of the Gaussian processes338

a
(0)
s , and next evoking the Wick formula for moments of a

(0)
s write the terms339

n
(k)
s,L as multiple sums. Then the just mentioned diagram techniques allows to340

‘integrate’ these sums. That is, to write any n
(k)
s,L as a sum over an intersections341

of k − 1 quadrics in (Zd
L)k in a form, convenient to pass to a limit as L → ∞.342

The term n
(2)
s,L is a sum over a single quadric and may be analysed without the343

diagram’s machinery. This and some other similar terms play a leading role344

in our analysis and dictate the form of the limiting WKE. The terms may be345

written as sums346

Gs(τ, L) = L2(1−d)
∑

z1,z2∈Z
d
L:

z1·z2=0, z1,z2 �=0

Φs(τ ; z1, z2), (1.42)347

well known in works on WT. To study them under the limit L → ∞ we make348

use of the celebrated circle method of Heath–Brown [14]. Since the result of349

[14] does not completely fit our purposes, we specified it in the accompanying350

paper [10] (also see [1, Section 5] for another specification of the Heath–Brown351

method, used for the purposes of WT). This implies352

Theorem B. For any L ≥ 2,353

∣
∣
∣Gs(τ, L) − Cd

∫

Σ0

Φs(τ ; z1, z2)μΣ0(dz1dz2)
∣
∣
∣ ≤ Kd

‖Φs(τ ; ·)‖N1,N2

Ld−5/2
,354

where Σ0 = {z1, z2 ∈ R
d : z1 · z2 = 0}, μΣ0 is the measure on it, defined by355

(1.34) with s = 0, Cd is a number-theoretical constant, satisfying Cd ∈ (1, 1 +356

22−d), the norm ‖ · ‖N1,N2 is defined in (3.3) and the constants N1, N2 ∈ N357

depend only on d.358

In particular, the term n
(2)
s,L(τ) admits a limit when L → ∞.359

The terms n
(3)
s,L and n

(4)
s,L in (1.29) correspond to multiple intersections360

of quadrics, and the Heath–Brown method does not apply to them. Still the361

diagram technique allows to write these terms in a convenient compact form.362

Then next in Sect. 3 and Appendix A we use Theorem B jointly with another363

powerful result from the number theory—Bezout’s theorem for finite fields—to364

prove 7
365

Theorem C. For k = 3, 4, |n(k)
s,L(τ)| ≤ C#(s).366

Theorems B and C imply (1.32). So to establish Theorem A it remains to367

show that the term n≤2
s,L(τ) := n

(0)
s,L(τ) + ε2n

(2)
s,L(τ) (or equivalently its limit as368

L → ∞, provided by Theorem B) can be well approximated by a solution of the369

WKE (1.38). To this end, following the lines of [7] (and the logic of the Krylov–370

Bogolyubov averaging) we consider increments Δn≤2
s,L := n≤2

s,L(τ + θ) − n≤2
s,L(τ)371

and express them through the processes a
(0)
m via the Duhamel formula (1.25)372

7 In fact, in Sect. 3 we prove an abstract result, more general than the theorem below; see
there Theorem 3.2.
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and the Wick theorem. Then the increments approximately take the form373

(1.42), and we use Theorem B to show that they are close to the r.h.s. of the374

WKE, multiplied by θ.375

Although the computation of the increments Δn≤2
s,L is similar to that in376

[7], now a mechanism leading to a WKE is rather different. Namely, in [7] com-377

ponents of the terms n
(k)
s,L are approximated by formulas analogous to (1.42),378

where the summation over the lattice (Zd)k = {z} is replaced by an integra-379

tion over R
dk. The integrals in those formulae involve fast oscillating Gaussian380

kernels. The zero sets of these kernels define quadrics, related to the quadrics381

{(z1, z2) : z1 ·z2 = 0} in (1.42). Due to the fast oscillations a crucial component382

of the increments Δn≤2
s,L is given by the terms, associated with short-range cor-383

relations in τ of the processes a
(0)
m (τ). On the contrary, in the present situation384

a crucial contribution is given by other terms, associated with long-time corre-385

lations of the processes a
(0)
m (τ), while the short-range correlations only give a386

small correction, as it can be seen from computations of Appendix A.4. So, it387

is natural that the kinetic integral in the WKE (1.38) depends on the viscosity388

operator A, while that in the WKE in [7] does not.389

Finally we note that, as we explain in Sect. 3.2, it is plausible that The-390

orem C holds for all k ≥ 3. If so, then for ρ = εL the energy spectrum of391

a solution a(τ), written as (1.22), defines a formal series in ε, uniformly in392

L ≥ 2. Then the partial sums of this series, made by the terms of order εm,393

m ≤ M , with any fixed M ≥ 2, also satisfy Theorem A with the constants Cr,394

depending on M . Cf. Conjecture 3.8.395

2. Series Expansion: Approximating Equation and396

Diagrammatic Representation for Solutions397

In this section, assuming that d ≥ 2, we approximate processes (1.25) by more398

convenient processes a(n), and then obtain a compact and instrumental repre-399

sentation for their correlations in terms of Feynman diagrams (see Lemma 2.2),400

following [8, Sections 3–5]. This representation (as well as its analogy in [7,8])401

is used to estimate various disparity terms, related to quasisolutions A(τ ;L),402

see (1.26), and to their energy spectra.403

Our presentation is sketchy, but missing details may be found in [8]. For404

a general discussion of the language of Feynman diagrams, see [18].405

2.1. Approximate a-Equation406

We start by considering an approximation of the original Eq. (1.20) by an407

equation, where the term L−d|as|2as is removed:408

ȧs + γsas = iρYs(a) + b(s)β̇s, s ∈ Z
d
L,

Ys(a) = L−d
∑

1,2,3

δ′12
3s δ(ω12

3s)a1a2ā3.
(2.1)409
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Similar to processes as, we decompose410

a = a(0) + ρa(1) + . . . . (2.2)411

Here a(0) = a(0) and the processes a
(n)
s (τ) with n ≥ 1 are built by the recur-412

sive formula (1.25) with the term an1
s an2

s ān3
s being dropped. That is, with the413

nonlinearity Y res
s replaced by the Ys above.414

Results of [8] together with Theorem 3.2 below (which is an abstract415

version of Theorem C from the introduction) imply416

Proposition 2.1. For all m,n ≥ 0, satisfying N := m + n ≤ 4,417

∣
∣Ea(m)

s (τ1)ā(n)
s (τ2) − Ea(m)

s (τ1)ā(n)
s (τ2)

∣
∣ ≤ L−N−d+1

χd(L)N−1
C#(s;n,m), (2.3)418

uniformly in τ1, τ2 ≥ 0.419

We prove the proposition in Appendix C for d ≥ 3 and discuss an adap-420

tation of the proof to the case d = 2 in Appendix D. Doing that we use the421

relation N := m+n ≤ 4 only to apply Theorem 3.2 (or Theorem D.2 if d = 2).422

So, if the assertion (3.9) of the latter theorem holds for larger N ’s, then for423

those N ’s estimates (2.3) remains true as well [we believe that (3.9) is fulfilled424

for all N , see in Sect. 3.2].425

Relations (2.3) imply that moments of processes a
(m)
s (τ) well approximate426

those of processes a
(m)
s (τ) as L → ∞. Accordingly, from now on we will mostly427

study processes as(τ) and their decompositions (2.2).428

2.2. Diagrams for Solutions429

For what follows it is convenient to re-write operator Y from (2.1), using a430

fictitious index s4:431

Ys(a) = L−d
∑

1,2,3,4

δ′12
34 δ(ω12

34)δs
4 a1a2ā3,432

where δs
4 is the Kronecker symbol. Then analogous of the expression (1.25) for433

a(m), m ≥ 1, takes the form434

a(m)
s (τ) =

∑

m1+m2+m3=m−1

i

∫ τ

0

dl e−γs(τ−l)

L−d
∑

1,2,3,4

δ′12
34 δ(ω12

34) δs
4

(
a
(m1)
1 a

(m2)
2 ā

(m3)
3

)
(l).

(2.4)435

We will call the objects as those in the r.h.s. of (2.4) sums, despite they involve436

integrating in dl. The r.h.s. of (2.4) contains several sums, corresponding to437

all admissible choices of numbers m1,m2,m3.438

We apply Duhamel’s formula (2.4) to the terms a
(mi)
si (l) in the right-hand439

side of (2.4) with mi > 0, and iterate the procedure till a
(m)
s (τ) is expressed440

through the processes a(0) and ā(0). Then a
(m)
s becomes represented as a finite441

sum of sums; we denote such sums by Is. Below we will associate with each442
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sum Is an appropriately constructed diagram D. Thus, we will write a
(m)
s (τ)443

as444

a(m)
s (τ) =

∑

D∈Dm

Is(D; τ), (2.5)445

where Dm is a set of all diagrams, corresponding to the just explained repre-446

sentation of a(m) via the processes a(0) and ā(0). Similarly by Dn we denote447

the set of diagrams, parametrizing the terms in the sum, representing ā(n)(τ)448

in a form, analogous to (2.5): ā
(n)
s (τ) =

∑
D̄∈Dm

Is(D̄; τ).449

2.2.1. Construction of the Sets of Diagrams Dm and Dn . We start with dis-450

cussing the set D2 and the sums Is(D) with D ∈ D2.451

When iterating the Duhamel formula (2.4) (or its complex conjugation)452

for a j-th time, we will denote the corresponding time l ∈ [0, τ ] by lj and453

will write the set of indices {s1, s2, s3, s4} as {ξ2j−1, ξ2j , σ2j−1, σ2j}, where we454

enumerate by ξi the indices of non-conjugated variables a
(k)
s′ in (2.4) and by455

σi – those of conjugated variables ā
(n)
s′′ . We write the corresponding fictitious456

index s4 as σ2j if we apply (2.4), or as ξ2j if we apply the complex conjugation457

of (2.4). More precisely, when applying (2.4) we denote s1 = ξ2j−1, s2 = ξ2j ,458

s3 = σ2j−1 and s4 = σ2j , and when applying its complex conjugation, we write459

s1 = σ2j−1, s2 = σ2j , s3 = ξ2j−1 and s4 = ξ2j . We will abbreviate460

δj = δ′ξ2j−1ξ2j
σ2j−1σ2j

and ωj = ωξ2j−1ξ2j
σ2j−1σ2j

, j ≥ 1, (2.6)461

[these terms correspond to δ′12
34 and ω12

34 in (2.4)]. We also set462

ξ0 = σ0 := s. (2.7)463

Applying (2.4) to a
(2)
s and using the notation above with j = 1, we find464

a(2)
s (τ) = a

(2)
ξ0

(τ) =
∑

m1+m2+m3=1

i

∫ τ

0

dl1 e−γξ0 (τ−l1)

L−d
∑

ξ1,ξ2,σ1,σ2

δ1 δ(ω1) δξ0
σ2

(
a
(m1)
ξ1

a
(m2)
ξ2

ā(m3)
σ1

)
(l1).

465

(2.8)466

Let us consider the summand with m1 = m2 = 0 and m3 = 1. Applying the467

conjugated formula (2.4) to ā
(1)
σ1 and using the introduced notation with j = 2,468

we get469

ā(1)
σ1

(l1) = −i

∫ l1

0

dl2 e−γσ1 (l1−l2)

L−d
∑

ξ3,ξ4,σ3,σ4

δ2 δ(ω2) δσ1
ξ4

(
a
(0)
ξ3

ā(0)
σ3

ā(0)
σ4

)
(l2).

(2.9)470

Inserting (2.9) into the summand in (2.8) with m1 = m2 = 0 and m3 = 1, we471

get a sum Is(D; τ) which we associate with the diagram D from Fig. 1c; further472

on we will denote this diagram by Dc. The non-conjugated vertices c
(k)
i of the473

diagram are associated with the variables a
(k)
ξi

in (2.8), (2.9); the corresponding474
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Figure 1. The set of diagrams D2

to them indices are ξi. The conjugated vertices c̄
(n)
j are associated with the475

variables ā
(n)
σj and the corresponding indices are σj . In particular, the root c

(2)
0476

is associated with a
(2)
ξ0

= a
(2)
s and the corresponding index is ξ0. In the notation477

c
(k)
i and c̄

(n)
j we sometimes omit the upper indices k and n which we call the478

degrees of the vertices c
(k)
i , c̄

(n)
j . The vertices w̄2 and w4 are called conjugated479

(non-conjugated) virtual vertices, and the corresponding indices are σ2 and ξ4;480

these vertices are associated with the Kronecker symbols δξ0
σ2

and δσ1
ξ4

in (2.8)481

and (2.9). Vertices which are not virtual are called real. Every edge of the482

diagram couples a non-conjugated (conjugated) vertex c
(k)
i (c̄(k)

i ) of positive483

degree k ≥ 1 with a conjugated (non-conjugated) virtual vertex w̄i′ (wi′). It484

is associated with an application of formula (2.4) (or its complex conjugation)485

to the variable a
(k)
ξi

(or ā
(k)
σi ), corresponding to the vertex c

(k)
i (or c̄

(k)
i ).486

The set of four vertices487

c2j−1, c2j , c̄2j−1, w̄2j or c2j−1, w2j , c̄2j−1, c̄2j (2.10)488

(in dependence whether the virtual vertex is conjugated or not) to which corre-489

spond the indices ξ2j−1, ξ2j , σ2j−1, σ2j is called the j-th block ; the diagram Dc
490

has two blocks. The index i of a virtual vertex wi (w̄i) is always pair, i = 2j.491

Each block corresponds to an application of formula (2.4) (or its complex con-492

jugation) to its parent, i.e. to the vertex of positive degree coupled with the493

virtual vertex of the block. The virtual vertex is conjugated if the parent is494

non-conjugated and the other way round. The time variable lj is associated495

with the j-th block.496

The leaves are the vertices of zero degree, that is, the vertices c
(0)
i and497

c̄
(0)
j .498

The diagrams from Fig. 1(a,b) correspond to the summands in (2.8) with499

m1 = 1, m2 = m3 = 0 and m1 = m3 = 0, m2 = 1; they are constructed by the500

same rules as the diagram Dc. The three diagrams from Fig. 1 form the set D2.501

The set of diagrams D2, corresponding to ā
(2)
s (τ), is obtained by conjugating502

the vertices in the three diagrams above and re-ordering the elements of each503

block in such a way that the pair of non-conjugated vertices is followed by the504

pair of conjugated vertices, i.e. the blocks have the form (2.10).505

The sets Dm and Dn with arbitrary m,n ≥ 0 and the diagrams which506

are their elements, are constructed similarly. Namely, the sets D0 and D0507
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are trivial—they contain one diagram each, made by the root c
(0)
0 (or c̄

(0)
0 ).508

The sets D1 and D1 also contain only one diagram each; e.g. the diagram509

in D1 consists of the root c
(0)
1 , joint by an edge with w̄2 in the only block510

B1 = (c(0)
1 , c

(0)
2 , c̄

(0)
1 , w̄2). Arbitrary sets Dm and Dn may be constructed by511

induction. Indeed, consider a process a(m+1)(τ) with m ≥ 1 and apply to it512

(2.4) with m := m + 1. In the r.h.s. of (2.4) the sum in m1,m2,m3 contains513

(m + 2)(m + 1)/2 terms. Consider any one of them,514

i

∫ τ

0

dl e−γs(τ−l)L−d
∑

1,2,3,4

δ′12
34 δ(ω12

34) δs
4

(
a
(m1)
1 a

(m2)
2 ā

(m3)
3

)
(l), (2.11)515

draw the block B1 = (c(m1)
1 , c

(m2)
2 , c̄

(m3)
1 , w̄2), and join w̄2 by an edge with the516

root c
(m+1)
0 . Next consider the sets Dm1 ,Dm2 ,Dm3 and do the following:517

(a) Firstly, take Dm1 . If m1 = 0, do nothing. Otherwise, choose any diagram518

D1 ∈ Dm1 , place it below c
(m1)
1 and identify its root with c

(m1)
1 . Do this519

for each diagram in Dm1 , thus obtaining |Dm1 | diagrams with roots in520

c
(m+1)
0 .521

(b) Then consider the set Dm2 and do the same with the just obtained |Dm1 |522

diagrams, identifying their roots with the vertex c
(m2)
2 , and next—the523

set Dm3 , identifying the roots with c̄
(m3)
3 .524

(c) It remains to convert thus obtained |Dm1 | × |Dm2 | × |Dm3 | diagrams to525

elements of the set Dm+1 by re-numerating properly their blocks and526

accordingly re-numerating the vertices in the blocks as in (2.10). Do this527

by numerating the blocks from top to the bottom and from left to right,528

as in the examples above with m = 2.529

(d) Doing the same for all blocks, corresponding to all possible (m+2)(m+530

1)/2 terms (2.11), get the diagrams, forming the set Dm+1.531

The set Dm+1 is constructed inductively in the same way.532

For further needs we note that due to the factors δ′12
34 and δs

s4
in (2.4),533

the indices ξi, σj entering the formula for the sums Is(D) from (2.5) satisfy534

the relations535

(1) δ′ξ2j−1ξ2j
σ2j−1σ2j

= 1 ∀j,

(2) indices ξi, σj corresponding to adjacent in D vertices are equal.
536

(2.12)537

2.3. Feynmann Diagrams for Expectations538

The main objects we are interested in are the correlations Ea
(m)
s1 (τ1)ā

(n)
s2 (τ2).539

It can be shown that they vanish if s1 �= s2.8 To represent an expectation540

Ea
(m)
s (τ1)ā

(n)
s (τ2), we consider the set of diagrams541

Dm × Dn := {D1 � D̄2 : D1 ∈ Dm, D̄2 ∈ Dn}.542

Here a diagram D1 �D̄2 is obtained by drawing D1 and D̄2 side by side, where543

the blocks of D1 are enumerated from 1 to m, while those of D̄2 together with544

8As well vanish the correlations Ea
(m)
s1 (τ1)a

(n)
s2 (τ2) and Eā

(m)
s1 (τ1)ā

(n)
s2 (τ2) for all s1, s2.

Journal: 23 Article No.: 1366 TYPESET DISK LE CP Disp.:2023/9/13 Pages: 55



R
ev

is
ed

 P
ro

of

The large-period limit for equations

Figure 2. A diagram from the set a D2 × D0 and b D1 × D2

the corresponding time variables lj are enumerated from j = m + 1 to m + n.545

The vertices together with the corresponding indices ξ2j−1, ξ2j , σ2j−1, σ2j are546

enumerated accordingly, see Fig. 2. The diagram D1 � D̄2 has two roots c
(m)
0547

and c̄
(n)
0 . For any D = D1 � D̄2 consider548

Is(D; τ1, τ2) = Is(D1; τ1)Is(D̄2; τ2),549

so that a
(m)
s (τ1)ā

(n)
s (τ2) =

∑
D∈Dm×Dn

Is(D; τ1, τ2). Our next task is to com-550

pute EIs(D) for each D ∈ Dm × Dn.551

Randomness enters the term Is(D) via the random variables a
(0)
ξi

, ā
(0)
σj ,552

corresponding to the leaves of the diagram D = D1 � D̄2. They are Gaussian553

with correlations554

Ea(0)
s (l1)a

(0)
s′ (l2) = 0, Ea(0)

s (l1)ā
(0)
s′ (l2) = δs

s′ Corr(γs, b(s), l1, l2),555

(2.13)556

where557

Corr(γs, b(s), l1, l2) = Bs

(
e−γs|l1−l2| − e−γs(l1+l2)

)
, Bs =

b(s)2

γs
.558

(2.14)559

So, the Wick theorem [18] implies that the expectation EIs(D) is given by a560

sum over all Wick pairings of variables a
(0)
ξi

, corresponding to non-conjugated561

leaves c
(0)
i , with variables ā

(0)
σj corresponding to conjugated leaves c̄

(0)
j . More-562

over, the leaves c
(0)
i and c̄

(0)
j should belong to different blocks since otherwise563

the summand corresponding to such Wick pairing vanishes due to (1.15) and564

item (1) in (2.12). We parametrize the sum over the Wick pairings by the565

defined below set F(D) of Feynman diagrams. Denoting by Js(F) a term (i.e.566

a sum), corresponding to a specific Feynman diagram F, we have:567

EIs(D) =
∑

F∈F(D)

Js(F).568

2.3.1. Definition of Feynman diagrams. To construct the set of Feynman di-569

agrams F(D), corresponding to some diagram D = D1 � D̄2, we consider all570

possible partitions of the set of leaves of D to non-intersecting pairs (c(0)
i , c̄

(0)
j ),571

such that the paired leaves c
(0)
i and c̄

(0)
j do not belong to the same block. To572
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Figure 3. a A Feynman diagram F obtained from the dia-
gram D in Fig. 2(a). b A cycle obtained from the Feynman
diagram F

each such partition, we associate a diagram F obtained from D by joining573

with an edge the two leaves in every pair, see Fig. 3(a). So, in each diagram574

F ∈ F(D) all vertices of D are joint by edges, every edge couples a conjugated575

vertex with a non-conjugated in another block (or with a root), and every576

vertex belongs to exactly one edge.577

Since Ea
(0)
s ā

(0)
s′ = 0 if s �= s′, the indices ξi, σj entering the formulas for578

sums Js(F) satisfy (2.12), where in item (2) the diagram D is replaced by the579

Feynman diagram F; below we denote these relations as (2.12)F. In particular,580

due to the item (2), the vector of indices σ = (σi) is a function of the vector581

ξ = (ξj). Accordingly below we write σ = σF(ξ).582

Let583

Fm,n =
⋃

D∈Dm×Dn

F(D)584

be the set of all Feynman diagrams associated with the product a
(m)
s ā

(n)
s . Each585

diagram F ∈ Fm,n has N := m+n blocks and 4N +2 vertices, including 2N +2586

leaves. Half of edges (and of leaves) are conjugated, while another half is not.587

By construction a diagram F ∈ Fm,n never pairs leaves from the same588

block. This alone does not exclude that F is such that in (2.12)F the assump-589

tions (1) and (2) are incompatible since for some j we may have ξ2j−1, ξ2j =590

σ2j−1 or σ2j once σ = σF(ξ). Analysis shows that this cannot happen if591

m + n ≤ 4, but may happen if m + n ≥ 5. Accordingly, we denote by592

Ftrue
m,n ⊂ Fm,n593

the set of Feynman diagrams for which the set of indices ξi, σj satisfying the594

relations (2.12)F is not empty. For any diagram F /∈ Ftrue
m,n , we have Js(F) = 0595

due to the factors δ′12
34 and δs

s4
in (2.4).596

2.4. Transformation, Resolving Linear Relations on Indices597

Let us take a Feynman diagram F ∈ Fm,n, denote N := m+n ≥ 1 and consider598

the sum Js(F). The relations (2.12)F on indices ξi, σj ∈ Z
d
L, 0 ≤ i, j ≤ 2N , 9

599

9Recall that ξ0 = σ0 = s.
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entering the formula for Js(F) are involved, which makes the sum Js(F) difficult600

for further analysis. In [8] it was found a convenient way to “integrate the sums601

Js(F)”, i.e. to parametrize the indices ξi, σj by N -vector z = (z1, . . . , zN ) from602

a domain in (Zd
L)N , free from any relations on its components. In this section603

we present this parametrization, referring the reader to [8] for a proof.604

Since item (2) of (2.12)F is equivalent to the relation σ = σF(ξ), it suffices605

to parametrize the set of admissible multi-indices ξ, i.e. of those ξ for which606

the multi-indices ξ and σ = σF(ξ) satisfy item (1) in (2.12)F. The construction607

starts with defining for each F ∈ Fm,n a skew-symmetric N × N incidence608

matrix αF = (αF
ij) whose elements are integers from the set {0,+1,−1}. In609

terms of this matrix, we define the set of polyvectors610

Z(F) = {z = (z1, . . . , zN ) ∈ (Zd
L)N : zj �= 0 and (αFz)j �= 0 ∀ j}.611

(2.15)612

Here and below for an M × N -matrix A we denote by Az the polyvector with613

components (Az)j :=
∑

i Ajizi ∈ Z
d. 10 The matrix αF has no zero rows and614

zero columns if and only if F ∈ Ftrue
m,n , and, accordingly, the set Z(F) is non-615

empty if and only if F ∈ Ftrue
m,n . Next, it turns out that the vectors z ∈ Z(F)616

may be used to parametrize the set of admissible indices ξi by means of an617

affine mapping618

ξ(z) = s + AFz, z ∈ Z(F). (2.16)619

Here AF is an (2N + 1) × N -matrix, whose elements again are integers from620

the set {0,+1,−1}. Transformation (2.16) provides a presentation of the terms621

Js(F), forming the correlation Ea
(m)
s (τ1)ā

(n)
s (τ2), and so for the correlation622

itself. The corresponding result is proved in Theorem 5.5 of [8]. In our setting623

its statement, where for the function θ(x, t) is chosen I{0}(x)—the indicator624

function of the point x = 0—takes the following form:625

Lemma 2.2. For any integers m,n ≥ 0 satisfying N = m + n ≥ 1, any s ∈ Z
d
L626

and τ1, τ2 ≥ 0,627

(1) for each F ∈ Ftrue
m,n parametrization (2.16) (depending on s and F) is628

such that the quantity ωj in (2.6), written in the z-coordinates, takes the629

form630

ωF
j (z) = 2zj ·

N∑

i=1

αF
jizi = 2zj · (αFz)j . (2.17)631

(2) We have632

LN
Ea(m)

s (τ1)ā(n)
s (τ2) =

∑

F∈F true
m,n

cFJs(τ1, τ2;F), (2.18)633

10That is, abusing notation we denote by A an operator in (Zd)M with the block-matrix
A ⊗ 1.
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where the constants cF ∈ {±1,±i} and634

Js(τ1, τ2;F) =
∫

RN

dl LN(1−d)
∑

z∈Z(F), ωF
j (z)=0 ∀j

FF
s (τ1, τ2, l, z). (2.19)635

The density FF
s (τ1, τ2, l, z) is a real function, smooth in (s, z) ∈ R

d ×636

R
dN , satisfying637

|∂μ
s ∂κ

z FF
s (τ1, τ2, l, z)| ≤ C#

μ,κ(s)C#
μ,κ(z) e−δ

(∑m
i=1 |τ1−li|+

∑N
i=m+1 |τ2−li|

)
638

(2.20)639

with a suitable δ = δN > 0, for any vectors μ ∈ (N ∪ {0})d, κ ∈ (N ∪640

{0})dN and any s ∈ R
d, z ∈ R

dN , l ∈ R
N .641

Let us briefly explain the way to construct the parametrization (2.16). We642

first add to the Feynman diagram F dashed edges that couple non-conjugated643

vertices with conjugated inside all blocks, as in Fig. 3(b). For each block there644

are two ways of doing that. We prove that there exists a choice (possibly,645

not unique) of a dashed edge in each block such that the diagram becomes646

a cycle, as in Fig. 3b. Then, for each j we set x2j−1 := ξ2j−1 − σ2j−1 and647

x2j := ξ2j − σ2j or x2j−1 = ξ2j−1 − σ2j and x2j := ξ2j − σ2j−1, according to648

the choice of the dashed edges in the j-th block, where we substitute σ = σF(ξ).649

The fact that the Feynman diagram with added dashed edges forms a cycle650

implies that the transformation ξ �→ x is invertible. Item (1) of (2.12)F implies651

that x2j = −x2j−1. Then we set zj := x2j−1 and get (2.16). The incidence652

matrix αF also is constructed in terms of this cycle.653

Since the choice of the dashed edges in general is not unique, the parametri-654

zation z �→ ξ is not unique as well. However, if z′ �→ ξ is another parametriza-655

tion, obtained by the procedure above, and αF ′ is the associated incidence656

matrix, then for each j we have either z′
j(ξ) = zj(ξ) or z′

j(ξ) = (αFz(ξ))j . In657

the latter case we also have the symmetric relation zj(ξ) = (αF ′z′(ξ))j .658

Computing in (2.19) the integral over dl and using estimate (2.20), we659

obtain a form of integrals Js, more convenient for some of the subsequent660

analysis:661

Corollary 2.3. In terms of Lemma 2.2, the integrals Js from (2.18) can be662

written as663

Js(τ1, τ2;F) = LN(1−d)
∑

z∈Z(F), ωF
j (z)=0 ∀j

ΦF
s (τ1, τ2, z), (2.21)664

where the real-valued functions ΦF
s are Schwartz in (s, z) and satisfy665

|∂μ
s ∂κ

z ΦF
s (τ1, τ2, z)| ≤ C#

μ,κ(s)C#
μ,κ(z), (2.22)666

uniformly in τ1, τ2 ≥ 0, for any vectors μ ∈ (N ∪ {0})d and κ ∈ (N ∪ {0})dN .667
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3. Main Estimates for The Sums668

In this section we focus on estimates for the sums (2.21) and on their depen-669

dence on L and N . We recall that d ≥ 3. It is convenient to study the problem670

we consider in the following abstract setting. Let α = (αij), N ≥ 2, be an671

N × N skew-symmetric matrix whose elements belong to the set {−1, 0, 1},672

without zero lines and rows.11 Consider a family of quadratic forms on (Rd)N
673

ωj(z) = zj · (αz)j , 1 ≤ j ≤ N,674

where z is the polyvector (z1, . . . , zN ), zj ∈ R
d, and (αz)j :=

∑N
i=1 αjizi. Let675

us set676

Z = {z ∈ (Zd
L)N : zj �= 0 and (αz)j �= 0 ∀ j}. (3.1)677

Let a function Φ : R
Nd → R be sufficiently smooth and sufficiently fast de-678

caying at infinity (see below for exact assumptions). Our goal is to study679

asymptotic as L → ∞ behaviour of the sum680

SL,N (Φ) := LN(1−d)
∑

z∈Z: ωj(z)=0 ∀j

Φ(z). (3.2)681

For a function f ∈ Ck(Rm), n1 ∈ N ∪ {0} satisfying n1 ≤ k and n2 ∈ R,682

we set683

‖f‖n1,n2 = sup
z∈Rm

max
|α|≤n1

|∂αf(z)|〈z〉n2 , 〈x〉 := max{1, |x|}. (3.3)684

The first crucial result concerns the case N = 2. Then ω1(z) = −ω2(z) =685

α12z1 · z2 and α12 �= 0, so686

SL,2(Φ) = L2(1−d)
∑

z∈Z
2d
L : z1·z2=0

z1 �=0, z2 �=0

Φ(z). (3.4)687

Then we write the sum above as
∑

z1·z2=0 −
∑

z1=0 or z2=0 .688

Since
∣
∣
∣L−d

∑
z∈Z

2d
L : zi=0 Φ(z)

∣
∣
∣ ≤ C‖Φ‖0,d+1 for i = 1, 2, we get689

∣
∣
∣SL,2(Φ) − L2(1−d)

∑

z∈Z
2d
L : z1·z2=0

Φ(z)
∣
∣
∣ ≤ CL2−d‖Φ‖0,d+1. (3.5)690

Now an asymptotic for the sum SL,2(Φ) immediately follows from Theorem 1.3691

in [10] where the dimension is 2d, ε = 1/2 and m = 0, by applying it to the692

sum
∑

z1·z2=0 in (3.5) (we recall that d ≥ 3):693

Theorem 3.1. Let N1(d) := 4d(4d2 + 2d − 1) and N2(d) := N1 + 6d + 4. If694

‖Φ‖N1,N2 < ∞, then there exist constants Cd ∈ (1, 1 + 22−d) and Kd > 0 such695

that696 ∣
∣
∣
∣SL,2(Φ) − Cd

∫

Σ0

Φ(z) μΣ0(dz1dz2)
∣
∣
∣
∣ ≤ Kd

‖Φ‖N1,N2

Ld−5/2
, (3.6)697

11 The theorems below and their proofs remain valid as well for arbitrary skew-symmetric
matrices with integer elements without zero lines and rows, but in this case the notation
used in the proof becomes heavier.
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where Σ0 is the quadric {z ∈ R
2d : z1 · z2 = 0} and the measure μΣ0 is given698

by (1.34) with s = 0.699

In Appendix C of [10] we give the following explicit formula for the700

number-theoretical constants Cd:701

Cd =
ζ(d − 1)ζ(4d − 2)

ζ(d)ζ(2d − 2)
, (3.7)702

where ζ is the Riemann zeta-function. Due to (3.7) Cd satisfies 1 < Cd <703

1 + 22−d, as is stated in the theorem. The integral in (3.6) converges if Φ(z)704

decays at infinity fast enough:705

∣
∣
∣

∫

Σ0

Φ(z) μΣ0(dz1dz2)
∣
∣
∣ ≤ Cr‖Φ‖0,r if r > 2d − 1, (3.8)706

see Proposition 3.5 in [7]. So, it converges under the theorem’s assumptions.707

From Theorem 3.1 another result can be deduced, whose proof is given708

in the next Sect. 3.1:709

Theorem 3.2. For N = 2, 3, 4 there exist constants Cd,N such that710

∣
∣SL,N (Φ)

∣
∣ ≤ Cd,N‖Φ‖0,N̄ , (3.9)711

for N̄ := �N/2�N2(d)+(N −2)(d−1)+1, where N2 is defined in Theorem 3.1.712

Since in view of estimate (2.22) the functions ΦF
s from Corollary 2.3713

satisfy714

‖ΦF
s (τ1, τ2, ·)‖n1,n2 ≤ C#

n1,n2
(s), ∀n1, n2, (3.10)715

then the two theorems above apply to study correlations (2.18) with N =716

m + n ≤ 4. In fact, in the case N = 2 the number of Feynmann diagrams is717

small and the corresponding correlations may be calculated directly without718

the machinery, developed in Sect. 2. In Example 3.4 which illustrates this com-719

putation, as well as in a number of situations below, we apply Theorem 3.1 in720

the following setting:721

Corollary 3.3. Let722

SL,2 = L2(1−d)
∑

1,2,3

δ′12
3s δ(ω12

3s)fs(s1, s2, s3; q),723

where ω12
3s is given by (1.17), q ∈ R

n is a parameter (in applications usually724

this will be the time) and fs(s1, s2, s1 + s2 − s; q)12 is a Schwartz function of725

(s1, s2, s) satisfying |∂μ
(s1,s2,s)fs| ≤ C#

μ (s1)C#
μ (s2)C#

μ (s) uniformly in q, for726

any multi-index μ. Then727

∣
∣
∣
∣SL,2 − Cd

∫

Σs

fs(s1, s2, s1 + s2 − s; q) μΣs(ds1ds2)
∣
∣
∣
∣ ≤

C#(s)
Ld−5/2

, (3.11)728

uniformly in q, where Σs and μΣs are the quadric (1.33) and the measure729

(1.34) on it.730

12The formula for s3 comes from the relation δ′12
3s = 1.
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Proof. In the variables z1 = s1 − s, z2 = s2 − s the quadratic form ω12
3s with731

s3 = s1+s2−s reads ω12
3s = −2z1 ·z2 [see (1.17)]. Then, taking into account that732

the relation δ′12
3s = 1 is equivalent to the relations z1, z2 �= 0 and s3 = s1+s2−s,733

we find that the sum SL,2 takes the form (3.4). Applying next Theorem 3.1734

and changing in (3.6) back to the variables s1, s2, we get (3.11). �735

Example 3.4. Let us calculate the asymptotic as L → ∞ of E|a(1)
s (τ)|2. Ex-736

panding a
(1)
s as in (2.4) and then using (2.13), we get:737

E|a(1)
s (τ)|2 = 2L−2d

∑

1,2,3

δ′12
3s δ(ω12

3s)
∫ τ

0

dl1

∫ τ

0

dl2B123

×
3∏

j=1

(
e−γj |l1−l2| − e−γj(l1+l2)

)
eγs(l1+l2−2τ)

738

with B123 = B1B2B3, where Bs is defined in (2.14). In the case of τ = ∞ the739

formula simplifies since by changing the integration variables as rj := τ − lj740

and passing to the limit we get741

E|a(1)
s (∞)|2 = 2L−2d

∑

1,2,3

δ′12
3s δ(ω12

3s)
∫ ∞

0

dr1

∫ ∞

0

dr2

B123 e−(γ1+γ2+γ3)|r1−r2|e−γs(r1+r2)

=
2L−2d

γs

∑

1,2,3

δ′12
3s δ(ω12

3s)
B123

γ1 + γ2 + γ3 + γs
.

742

Then, by Corollary 3.3,743

∣
∣
∣
∣L

2
E|a(1)

s (∞)|2 − 2Cd

γs

∫

Σs

B123 μΣs(ds1ds2)
γ1 + γ2 + γ3 + γs

∣
∣
∣
∣ ≤

C#(s)
Ld−5/2

, s3 := s1 + s2 − s.744

3.1. Proof of Theorem 3.2745

Let us define the geometric quadrics Qj := {z ∈ (Rd)N : ωj(z) = 0} and746

consider their intersection Q = ∩N
j=1Qj . Note that Q = ∩N−1

j=1 Qj since the747

skew symmetry of the matrix α implies ω1 + . . .+ωN = 0. Denote by BNd
R the748

open cube |z|∞ < R in R
Nd, where by | · |∞ we denote the l∞-norm.749

Proposition 3.5. If w : R
Nd �→ R is such that |w|L∞ < ∞ and supp(w) ⊂ BNd

R ,750

where R ≥ 1, then for N = 2, 3, 4 we have751

∣
∣
∣
∣
∣
∣

∑

z∈Q∩Z
w(z)

∣
∣
∣
∣
∣
∣
≤ C(N, d)R
N/2�N2(d)+(N−2)(d−1)LN(d−1)|w|L∞ . (3.12)752

Here N2 is defined in Theorem 3.1 and Z—in (3.1).753

Proof. Below in this proof for any subset Q ⊂ R
md, we denote754

QL = Q ∩ Z
md
L . (3.13)755
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By suitably rearranging indices i and possibly multiplying ωi by −1, ω1 may756

be assumed to be of the form ω1(z) = z1 ·
∑

i α1izi with α1N = 1. Define757

v =
∑

i α1izi so that758

ω1(z) = z1 · v and zN = α1NzN = v −
∑

1<i<N

α1izi, (3.14)759

since α11 = 0 by the skew symmetry of the matrix α.760

For N > 2, fix (z1, v) ∈ R
2d. Then the remaining quadratic forms ωj with761

1 < j < N as functions of (z2, . . . , zN−1) ∈ R
(N−2)d become polynomials qj of762

degree at most two, with no constant term. Namely763

qj(z2, . . . , zN−1; z1, v) = zj ·
(

αj1z1 + αjNv +
∑

1<i<N

(αji − αjNα1i)zi

)

.764

(3.15)765

For 1 < j < N consider the sets766

Q̃j(z1, v) = {(z2, . . . , zN−1) : qj(z2, . . . , zN−1; z1, v) = 0} ⊂ R
(N−2)d,767

and their intersection Q̃(z1, v) = ∩1<j<N Q̃j(z1, v). We denote Q0
1 = {(z1, v) ∈768

R
2d : z1 · v = 0} (cf. (3.14)) and set769

A2 = {(z1, v) ∈ R
2d : z1 �= 0, v �= 0}. (3.16)770

Since |αij | ≤ 1, then on the support of w we have |(z1, v)|∞ ≤ (N − 1)R. So,771

recalling (3.13), for N > 2 we get772

∣
∣
∣
∣
∣
∣

∑

z∈Z∩Q

w(z)

∣
∣
∣
∣
∣
∣
≤ C(N, d)|w|L∞

∑

(z1,v)∈Q0
1 L∩B2d

(N−1)R

1

× sup
(z1,v)∈Q0

1 L∩A2∩B2d
(N−1)R

∑

(z2,...,zN−1)∈Q̃L(z1,v)∩B
(N−2)d
R

1 .

773

(3.17)774

For N = 2 the same estimate holds with the second line replaced by 1.775

To estimate the sum in the first line, we take any smooth function w0(x) ≥776

0, equal one for x ≤ 1 and vanishing for x ≥ 2. Then777

∑

(z1,v)∈Q0
1 L∩B2d

(N−1)R

1 ≤
∑

(z1,v)∈Q0
1 L

wR(z1, v),778

where wR(z1, v) := w0

(
(|(z1, v)|/(N − 1)R

√
2d
)
. Since for R ≥ 1 and any a ∈779

N∪{0}, b ≥ 0 we have ‖wR‖a,b ≤ C(a, b,N, d)Rb, then in view of Theorem 3.1780

and (3.8),781

∑

(z1,v)∈Q0
1 L∩B2d

(N−1)R

1 ≤ CL2(d−1)
[
R2d + RN2L−d+5/2

]
≤ C ′L2(d−1)RN2 ,782

(3.18)783

where C,C ′ depend on d,N,N1 and N2.784
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To estimate the second line of (3.17), we use the following lemma, proved785

in Appendix A.786

Lemma 3.6. Assume that the matrix α is irreducible. Then for N = 2, 3, 4,787

any R ≥ 1 and any (z1, v) ∈ B2d
(N−1)R satisfying (z1, v) ∈ Q0

1 L ∩ A2 we have:788

∣
∣Q̃L(z1, v) ∩ B

(N−2)d
R

∣
∣ ≤ 2(N−2)d(NRL)(N−2)(d−1). (3.19)789

This completes the proof of Proposition 3.5 in the case of irreducible790

matrix α: indeed, we get791
∣
∣
∣
∣
∣
∣

∑

z∈Z∩Q

w(z)

∣
∣
∣
∣
∣
∣
≤ C(N, d)|w|L∞RN2+(N−2)(d−1)LN(d−1). (3.20)792

If the matrix α is reducible, it can be reduced through permutations to a block793

diagonal matrix with m blocks which are irreducible square matrices of sizes794

Ni satisfying
∑

i Ni = N . Since Ni ≥ 2 (otherwise there would be a zero row795

or column in α), m ≤ �N/2�. Applying estimate (3.20) to each block, we get796

the assertion of the proposition. �797

Now we derive the theorem from the proposition. Let ϕ0(t) = χ(−∞,1](t)798

and for k ≥ 1, ϕk(t) = χ(2k−1,2k](t). Then 1 =
∑

k ϕk(t) and799

Φ =
∞∑

k=0

fk(z), fk(z) = ϕk(|z|∞)Φ(z).800

Then supp fk ⊂ Bk = {|z|∞ ≤ 2k} and ‖fk‖∞ ≤ C2−kN̄‖Φ‖0,N̄ , for any N̄ .801

Therefore, by Proposition 3.5,802

|SL,N (Φ)| ≤ C(N, d)‖Φ‖0,N̄

∞∑

k=0

2k(
N/2�N2+(N−2)(d−1)−N̄),803

which converges if N̄ > �N/2�N2 + (N − 2)(d − 1). This completes the proof804

of Theorem 3.2. �805

Remark 3.7. For any fixed vector (z1, v), Q̃(z1, v) is a real algebraic set in806

R
(N−2)d of codimension (N − 2). If Q̃(z1, v) were a smooth manifold of that807

codimension, then estimate (3.19), modified by a multiplicative constant808

CQ̃(z1,v), would be obvious. But Q̃(z1, v) is a stratified analytic manifold (with809

singularities), and to obtain for it a modified version of the estimate (3.19) as810

above, using analytical tools, seems to be a heavy job since we need a good811

control for the factor CQ̃(z1,v). Instead in Appendix A we prove the lemma,812

using arithmetical tools.813

3.2. On Extension of Theorem 3.2 to any N814

The restriction on N in the statement of Theorem 3.2 comes from estimate815

(3.19) in Lemma 3.6, proved only for N = 3, 4. We know that for every N816

the system of polynomials qj(·; z1, v), 1 < j < N , defining the set Q̃L(z1, v)817

in Lemma 3.6, is linearly independent for any (z1, v) and any irreducible inci-818

dence matrix α. Also we know that all polynomials qj(·; z1, v) are irreducible;819
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see Lemmas A.9 and A.10 in Appendix A (there the independence and re-820

ducibility are understood over some specific algebraically closed field K, but821

the argument also works for K replaced by C). These two facts certainly are822

insufficient to prove Lemma 3.6 for any N , but they naturally lead to823

Conjecture 3.8. Under assumptions of Lemma 3.6, for any N ≥ 2824

∣
∣Q̃L(z1, v) ∩ B

(N−2)d
R

∣
∣ ≤ C(N, d)(RL)(N−2)(d−1).825

One may try to prove this assertion using either arithmetical or analytical826

tools; cf. Appendix A and Remark 3.7. It is straightforward to see that, if the827

conjecture is true, then Theorem 3.2 holds for any N , so in view of Lemma 2.2828

any expected value LN
Ea

(m)
s (τ1)ā

(n)
s (τ2) admits a uniform in L upper bound.829

4. Quasisolutions830

In this section we start to study a quasisolution A(τ) = A(τ ;L) of Eq. (2.1)831

with as(0) = 0, which is the second-order truncations of series (2.2):832

A(τ) = (As(τ), s ∈ Z
d
L), As(τ) = a(0)

s (τ) + ρa(1)
s (τ) + ρ2a(2)

s (τ).833

(4.1)834

We focus on its energy spectrum835

ns,L = ns,L(τ) = E|As(τ)|2, s ∈ Z
d
L, (4.2)836

when L is large and the parameter ρ is chosen to be ρ = εL. Our goal is837

to show that it approximately satisfies a wave kinetic equation (WKE). Using838

Proposition 2.1, we will then show that the same applies to the quantities ns,L,839

considered in the Introduction.840

The energy spectrum ns,L is a polynomial in ε of degree four,841

ns,L = n
(0)
s,L + ε n

(1)
s,L + ε2n

(2)
s,L + ε3n

(3)
s,L + ε4n

(4)
s,L, s ∈ Z

d
L, (4.3)842

where the terms n
(k)
s,L(τ) are defined by843

n
(k)
s,L(τ) = Lk

∑

k1+k2=k
0≤k1,k2≤2

Ea(k1)
s (τ)ā(k2)

s (τ). (4.4)844

By Corollary 2.3,845

the second moments Ea(k1)
s ā(k2)

s

naturally extend to a Schwartz function of s ∈ R
d,

(4.5)846

given by (2.18), (2.21). Accordingly, from now on we always regard the second847

moments and the terms n
(k)
s,L(τ) as Schwartz functions of s ∈ R

d.848

As customary in WT, we aim at considering the limit of ns,L(τ) as L →849

∞, that is, the limits of the terms n
(j)
s,L. The term n

(0)
s,L = n

(0)
s,L is given by (1.31)850

and is L-independent, while by a direct computation we see that851

n
(1)
s,L = 2REā(0)

s a(1)
s = 0, s ∈ R

d, (4.6)852
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[here we use (2.4), the Wick theorem and (1.15)]. Writing explicitly n
(i)
s,L with853

2 ≤ i ≤ 4, we find that854

n
(2)
s,L = L2

E
(
|a(1)

s |2 + 2Rā(0)
s a(2)

s

)
,

n
(3)
s,L = 2L3REā(1)

s a(2)
s , n

(4)
s,L = L4

E|a(2)
s |2.

(4.7)855

The function R
d � s �→ n

(2)
s,L(τ) is made by two terms. By Corollary 2.3 with856

N = 2, Theorem 3.1 applies to the both of them. Since d ≥ 3, we get857

|n(2)
s,L(τ) − n(2)

s (τ)| ≤ C#(s)/L1/2, (4.8)858

where859

n(2)
s (τ) := Cd

(
∑

F∈Ftrue
1,1

+2R
∑

F∈Ftrue
2,0

)

cF

∫

Σ0

μΣ0(dz1dz2)ΦF
s (τ, τ, z),860

and we have used estimate (3.10). Thus, we see that the processes n
(0)
s,L, n

(1)
s,L861

and n
(2)
s,L admit the limits862

n(j)
s (τ) := lim

L→∞
n

(j)
s,L(τ ;L).863

The limits satisfy (4.8), and for all τ864

n(0)
s (τ) = B(s)

(
1 − e−2γs(τ0+τ)

)
, n(1)

s (τ) = 0, |n(2)
s (τ)| ≤ C#(s) ,865

(4.9)866

where the last inequality follows from Theorem 3.2.867

We do not know if the terms n
(3)
s,L, n

(4)
s,L admit limits as L → ∞, but in868

view of Corollary 2.3 both of them may be estimated through Theorem 3.2:869

|n(3)
s,L(τ)| ≤ C#(s), |n(4)

s,L(τ)| ≤ C#(s), (4.10)870

uniformly in L ≥ 2 and τ ≥ 0. We then decompose871

ns,L = n≤2
s,L + n≥3

s,L,872

where873

n≤2
s,L = n

(0)
s,L + εn

(1)
s,L + ε2n

(2)
s,L and n≥3

s,L = ε3n
(3)
s,L + ε4n

(4)
s,L874

(we recall that n
(1)
s,L ≡ 0), and similarly define875

n≤2
s := n(0)

s + ε2n(2)
s .876

Due to (4.8),877

|n≤2
s (τ) − n≤2

s,L(τ)| ≤ C#(s)ε2L−1/2, (4.11)878

so by (4.10),879

|n≤2
s (τ) − ns,L(τ)| ≤ C#(s)ε2(L−1/2 + ε). (4.12)880

Thus, the cut energy spectrum n≤2
s governs the limiting as L → ∞ behaviour881

of the energy spectrum ns,L with precision ε3C#(s), where we regard the882

constant ε ≤ 1/2 (which measures the size of solutions for (1.6) under the883
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proper scaling) as a fixed small parameter. Accordingly, our next goal is to884

show that n≤2
s (τ) approximates the solution of a WKE.885

4.1. Increments of the Energy Spectra n≤2
s886

In this section we will show that the process n≤2
s (τ) approximately satisfies a887

WKE. We denote s4 := s, γj := γsj
and set888

γ1234 = γ1 + γ2 + γ3 + γ4, �s = (s1, s2, s3, s4) ∈ (Rd)4. (4.13)889

Now, for a fixed τ0 ≥ 0 and for j = 1, 2, 3, 4 we define the functions890

Zj(τ0) = Zj(τ0; �s) as891

Zj(τ0; �s) :=
∫ τ0

0

dl e−γj(τ0−l)
∏

m=1,2,3,4
m �=j

sinh(γml)
sinh(γmτ0)

if τ0 > 0, (4.14)892

and Zj(0; �s) = 0. Computing this integral, we get893

Zj(τ0; �s) =

⎛

⎝
∏

l �=j

1
1 − e−2γlτ0

⎞

⎠ ·
[
1 − e−γ1234τ0

γ1234
− e−2(γ1234−γj)τ0 − e−γ1234τ0

2γj − γ1234

+
∑

l �=j

(
e−2(γ1234−γj−γl)τ0 − e−γ1234τ0

2(γj + γl) − γ1234
− e−2γlτ0 − e−γ1234τ0

γ1234 − 2γl

)
⎤

⎦ ,

894

(4.15)895

where each fraction from the square brackets should be substituted by τ0e
−γ1234τ0896

if its denominator vanishes.897

For any real number r let Cr(Rd) be the space of continuous complex898

functions on R
d with the finite norm899

|f |r = |f(z)〈z〉r|L∞ . (4.16)900

We naturally extend this norm to f ∈ L∞(Rd) and set901

L∞,r(Rd) =
{
f ∈ L∞(Rd) : |f |r < ∞

}
. (4.17)902

Consider also the linear operator L, given by903

(Lv)(s) = 2γsv(s), s ∈ R
d. (4.18)904

Below we often write the value v(s) of a function v at s ∈ R
d as vs and the905

function v itself as (vs, s ∈ R
d). Now, for v ∈ Cr(Rd), where r > d, and for906

τ0 ≥ 0, τ ∈ (0, 1], we define the kinetic integral Kτ (τ0)(v) = (Kτ
s (τ0)(v), s ∈907

R
d):908

Kτ (τ0)(v) =
∫ τ

0

e−tLK(τ0)(v)dt. (4.19)909
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Here the operator K(τ0) = K1(τ0)+ · · ·+K4(τ0) sends a function v = (vs, s ∈910

R
d) to the function911

Ks(τ0)(v) = 4Cd

∫

Σs

μΣs(ds1ds2)
(
Z4(τ0; �s)v1v2v3

+ Z3(τ0; �s)v1v2v4 − Z2(τ0; �s)v1v3v4 − Z1(τ0; �s)v2v3v4

)

=: K4
s (τ0)(v) + K3

s (τ0)(v) + K2
s (τ0)(v) + K1

s (τ0)(v)

912

(4.20)913

(note the reversed signs for K2 and K3). Here vj := v(sj), where s4 = s and914

s3 := s1 + s2 − s4 (in view of the factor δ′12
3s ). While μΣs is the measure (1.34)915

on the quadric Σs = {(s1, s2) ∈ R
2d : (s1 − s) · (s2 − s) = 0}. Computing the916

integral in t in (4.19), we find917

Kτ
s (τ0)(v) =

1 − e−2γsτ

2γs
Ks(τ0)(v) =

1 − e−2γsτ

2γs

4∑

j=1

Kj
s(τ0)(v). (4.21)918

We study the kinetic integral Kτ in Sect. 5 while now we formulate a result919

which is the main step in deriving the wave kinetic limit.920

Theorem 4.1. For any 0 < τ ≤ 1 the function (n≤2
s , s ∈ R

d) satisfies921

n≤2(τ0 + τ) = e−τLn≤2(τ0) + 2
∫ τ

0

e−tLb2 dt

+ ε2Kτ (τ0)(n≤2(τ0)) + ε2R,

(4.22)922

where b2 = (b2(s), s ∈ R
d) and the remainder Rs(τ) satisfies923

|R(τ)|r ≤ Crτ (τ + ε2), ∀r. (4.23)924

4.2. Proof of Theorem 4.1925

We first fix a value for L and decompose the processes τ �→ a
(i)
s (τ0 + τ), where926

τ0 ≥ 0 and 0 ≤ τ ≤ 1, as927

a(i)
s (τ0 + τ) = c(i)

s (τ ; τ0) + Δa(i)
s (τ ; τ0), i = 0, 1, 2, s ∈ Z

d
L. (4.24)928

Here929

c(i)
s (τ ; τ0) = e−γsτa(i)

s (τ0)930

and Δa
(i)
s is defined via relation (4.24). Below we write c

(i)
s (τ ; τ0) and Δa

(i)
s (τ ; τ0)931

as c
(i)
s (τ) and Δa

(i)
s (τ) since τ0 is fixed.932

Obviously,933

c(τ) := c(0)(τ) + ρc(1)(τ) + ρ2c(2)(τ)934

with τ ≥ 0 being a solution of the linear equation (2.1)ρ=0,b(s)≡0, equal A(τ0)935

at τ = 0, and Δa(τ) =
∑2

j=0 ρjΔa(j)(τ) equals A(τ0 + τ) − c(τ). By (4.5), for936

0 ≤ i, j ≤ 2937

the functions Ec(i)
s c̄(j)

s , Ec(i)
s Δā(j)

s , EΔa(i)
s Δā(j)

s

naturally extend to Schwartz functions of s ∈ R
d.

(4.25)938
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Due to (4.6) and (4.7),939

e−2γsτn≤2
s,L(τ0) = E|c(0)

s (τ)|2 + ρ2
E
(
|c(1)

s (τ)|2 + 2Rc̄(0)
s (τ)c(2)

s (τ)
)
, ∀ s ∈ R

d.940

Then,941

n≤2
s,L(τ0 + τ) − e−2γsτn≤2

s,L(τ0) = E

(
|a(0)

s (τ0 + τ)|2 − |c(0)
s (τ)|2

+ ρ2
(
|a(1)

s (τ0 + τ)|2 − |c(1)
s (τ)|2

+ 2R
(
a(2)

s ā(0)
s (τ0 + τ) − c(2)

s c̄(0)
s (τ)

))
.

942

(4.26)943

Let us set944

Ys(u, v, w) := L−d
∑

1,2,3

δ′12
3s δ(ω12

3s)u1v2w̄3.945

Writing explicitly the processes Δa
(i)
s (τ), s ∈ Z

d
L, we find946

Δa(0)
s (τ) = b(s)

∫ τ0+τ

τ0

e−γs(τ0+τ−l) dβs(l),

Δa(1)
s (τ) = i

∫ τ0+τ

τ0

e−γs(τ0+τ−l)Ys(a(0)) dl,

Δa(2)
s (τ) = i

∫ τ0+τ

τ0

e−γs(τ0+τ−l)

(

Ys(a(0), a(0), a(1))

+ Ys(a(0), a(1), a(0)) + Ys(a(1), a(0), a(0))

)

dl,

947

(4.27)948

where a(i) = a(i)(l). Note that to get explicit formulas for c
(i)
s (τ), i = 0, 1, 2,949

it suffices to replace in the r.h.s.’s of the relations in (4.27) the range of in-950

tegration from [τ0, τ0 + τ ] to [0, τ0]. For example, c
(0)
s (τ) = e−γsτa

(0)
s (τ0) =951

b(s)
∫ τ0

0
e−γs(τ0+τ−l) dβs(l).952

Using that Ec
(i)
s (τ)Δā

(0)
s (τ) = Ec

(i)
s (τ) EΔā

(0)
s (τ) = 0 for any i and s, we953

obtain954

E
(
a(2)

s ā(0)
s (τ0 + τ) − c(2)

s c̄(0)
s (τ)

)
= EΔa(2)

s (τ)ā(0)
s (τ0 + τ), (4.28)955

and from (4.24) we get that956

|a(1)
s (τ0 + τ)|2 − |c(1)

s (τ)|2 = |Δa(1)
s (τ)|2 + 2RΔa(1)

s c̄(1)
s (τ),

E
(
|a(0)

s (τ0 + τ)|2 − |c(0)
s (τ)|2

)
= E|Δa(0)

s (τ)|2.
(4.29)957

Then, inserting (4.28) and (4.29) into (4.26) and using that ρ = εL, we find958

n≤2
s,L(τ0 + τ) − e−2γsτn≤2

s,L(τ0) = E
∣
∣Δa(0)

s (τ)
∣
∣2 + ε2Qs,L(τ0, τ), s ∈ R

d,959
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where960

Qs,L(τ0, τ) := L2
(
E|Δa(1)

s (τ)|2 + 2RE
[
Δa(1)

s (τ)c̄(1)
s (τ)

+ Δa(2)
s (τ)ā(0)

s (τ0 + τ)
])

,
(4.30)961

and we recall (4.25). Since962

E
∣
∣Δa(0)

s (τ)
∣
∣2 =

b(s)2

γs
(1 − e−2γsτ ) = 2

∫ τ

0

e−tLb2(s) dt,963

then964

n≤2
·,L(τ0 + τ) − e−τLn≤2

·,L(τ0) = 2
∫ τ

0

e−tLb2 dt + ε2Q·,L(τ0, τ),965

for n≤2
·,L = (n≤2

s,L, s ∈ R
d). In order to pass to the limit L → ∞ we recall the966

relation (4.11). Then the desired formula (4.22) is an immediate consequence967

of the assertion below:968

Proposition 4.2. We have969

lim
L→∞

Qs,L(τ0, τ) = Kτ
s (τ0)(n≤2(τ0)) + Rs(τ), s ∈ R

d, (4.31)970

where the remainder R satisfies (4.23).971

Proof. The first step in the proof of (4.31) is the following result, established972

in Appendix B:973

Proposition 4.3. One has974

∣
∣Qs,L(τ0, τ) − Xs,L(τ0, τ)

∣
∣ ≤ C#(s)τ2, s ∈ R

d, (4.32)975

where976

Xs,L(τ0, τ) := 4L2(1−d)τ
∑

1,2,3

δ′12
3s δ(ω12

3s)
(
Z4n

(0)
1 n

(0)
2 n

(0)
3 + Z3n

(0)
1 n

(0)
2 n(0)

s977

− Z1n
(0)
2 n

(0)
3 n(0)

s − Z2n
(0)
1 n

(0)
3 n(0)

s

)
. (4.33)978

979

The terms Zj = Zj(τ0; s1, s2, s3, s) are defined by (4.14) and n
(0)
i := n

(0)
si,L

(τ0),980

n
(0)
s := n

(0)
s,L(τ0).981

By (4.9) n
(0)
i = n

(0)
si are Schwartz functions in si. Besides, the functions982

Zj(τ0, �s) have at most polynomial growth in �s together with their derivatives,983

uniformly in τ0 ≥ 0:984

Lemma 4.4. For any vector μ ∈ (N ∪ {0})4d, uniformly in τ0 ≥ 0, we have985 ∣
∣∂μ

�s Zj(τ0, �s)∣∣ ≤ P (�s;μ) , where P (�s;μ) has at most a polynomial growth in �s.986

By the lemma, which is proven in Sect. B.7, Xs,L satisfies the hypotheses987

of Corollary 3.3. So988

|Xs,L(τ0, τ) − τKs(τ0)(n(0))| ≤ C#(s)L−1/2τ. (4.34)989
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Next, note that |n(0)
s (τ0)−n≤2

s (τ0)| ≤ C#(s)ε2 due to (4.9). Then the estimate990

on the Lipschitz constants of the operators Kj(t), given in (5.4), implies that991

∣
∣K(τ0)(n(0)(τ0)) − K(τ0)(n≤2(τ0))

∣
∣
r

≤ Crε
2 ∀ r.992

Hence,993

|τKs(τ0)(n(0)(τ0)) − τKs(τ0)(n≤2(τ0))| ≤ C#(s)τε2. (4.35)994

On the other hand, on account of the definition (4.21), for 0 ≤ τ ≤ 1 we have995

the bound996

∣
∣τKs(τ0)(n≤2) − Kτ

s (τ0)(n≤2)
∣
∣ ≤ Cγsτ

2|Ks(τ0)(n≤2)| ≤ C#(s)τ2, (4.36)997

where the last inequality follows from the estimate of the norm of the operator998

Kj(t), given in (5.3), and from (4.9).999

Putting together (4.32), (4.34), (4.35), (4.36) and letting L grow to in-1000

finity, we conclude the proof. �1001

5. Kinetic Equation1002

At this section we examine the wave kinetic equation1003

żs(τ) = −(Lz)s + ε2Ks(τ)(z) + 2b(s)2, τ ≥ 0, z(0) = 0 (5.1)1004

(L is defined in (4.18) and the operator K = K1+· · ·+K4 is defined in (4.20)),1005

and next we derive from this analysis and (4.22) the proximity of n≤2
s (τ) to1006

a solution of (5.1). We will need the following result, which is Lemma 4.21007

from [7]:1008

Lemma 5.1. For j, l = 1, . . . , 4 and uj ∈ Cr(Rd) consider the operators1009

Jl(u1, . . . , u4)(s) =
∫

Σs

μΣs(ds1ds2)
∏

i�=l

ui(si)1010

(see (1.34)), where s4 = s and s3 = s1 + s2 − s. Then for each l,1011

|Jl(u1, . . . , u4)|r+1 ≤ Cr

∏

i�=l

|ui|r if r > d. (5.2)1012

5.1. Kinetic Integrals1013

We recall notation (4.13), (4.14).1014

Lemma 5.2. For j = 1, . . . 4, any τ ≥ 0 and any �s = (s1, . . . , s4) ∈ (Rd)4,1015

(i) 0 ≤ Zj(τ ; �s) ≤ min(τ, 1/γsj
) ≤ 1,1016

(ii) |Zj(τ ; �s) − Z(∞; �s)| ≤ Ce−2τ , where Z(∞; �s) = 1/γ1234.1017

Proof. The first assertion follows from (4.14) since sinh(x) is an increasing1018

non-negative function of x ≥ 0, so in the integrand in (4.14) we have 0 ≤1019

sinh(γml)/ sinh(γmτ ′) ≤ 1. For 0 ≤ τ ≤ 1 the second estimate follows from the1020

first one as1021

|Zj(τ ; �s) − Z(∞; �s)| ≤ |Zj(τ ; �s)| + |Z(∞; �s)|,1022

while for τ ≥ 1 it follows from (4.15) since γ123j −γj ≥ 1 and γ1234−γj −γl ≥ 11023

for j, l ∈ {1, 2, 3, 4}, j �= l. �1024
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Since the kernels Zj are non-negative by the first assertion of the lemma1025

above, then denoting κ1 = κ2 = 1, κ3 = κ4 = −1 we achieve that the operators1026

κjK
j , 1 ≤ j ≤ 4, are positive (in the sense that they send positive functions to1027

positive). Due to the first assertion of the lemma and (5.2), for any τ ≥ 0 they1028

define positive 3-homogeneous mappings Cr(Rd) → Cr+1(Rd) if r > d, and1029

|κjK
j(τ)(v)|r+1 = |Kj(τ)(v)|r+1 ≤ Cr min(τ, 1)|v|3r, j = 1, . . . , 4, (5.3)1030

for τ ≥ 0. So, the mappings Kj(τ) are locally Lipschitz:1031

|Kj(τ)(v1) − Kj(τ)(v2)|r+11032

≤ 3Cr min(τ, 1)R2|v1 − v2|r, if |v1|r, |v2|r ≤ R. (5.4)1033

Since for j = 1, . . . , 4 and any s ∈ R
d,1034

• for non-negative functions n,m ∈ L∞,r [see (4.17)] such that m ≤ n we1035

have κjK
j
s(τ)(m) ≤ κjK

j
s(τ)(n) ≤ ∞,1036

• |Kj
s(τ)(v)| ≤ κjK

j
s(τ)(|v|) ≤ ∞ for any complex function v ∈ L∞,1037

• |vs| ≤ |v|r〈s〉−r for all v ∈ L∞,r,1038

then the relations (5.3), (5.4) remain true for functions from L∞,r.1039

Lemma 5.3. If |sl| ≤ R for l = 1, . . . , 4, then1040

∣
∣
∣
∣

∂

∂τ
Zj(τ ; �s)

∣
∣
∣
∣ ≤ Cγ0(R2) (5.5)1041

(see (1.5)).1042

Proof. For any m ∈ {s1, . . . , s4} and 0 ≤ l ≤ τ , we have1043

∣
∣
∣
∣

∂

∂τ

sinh γml

sinh γmτ

∣
∣
∣
∣ ≤ γm

cosh γmτ

sinh γmτ
≤ γmC max(1, 1/(γmτ)).1044

Considering separately the cases τ ≥ 1 and 0 ≤ τ < 1, using (4.14) and the1045

estimate above we get the result. �1046

This lemma implies that for any v ∈ Cr(Rd) and any j the curve τ �→1047

Kj(τ)(v) ∈ Cr(Rd) is Hölder continuous:1048

Lemma 5.4. For any τ0 ≥ 0, 0 ≤ τ ≤ 1, j = 1, . . . , 4 and any r > d + 1,1049

|Kj(τ0 + τ)(v) − Kj(τ0)(v)|r ≤ Cr|v|3rτκ∗ ∀ v ∈ Cr(Rd), (5.6)1050

where κ∗ = 1/(1 + 2r∗).1051

Proof. By the homogeneity we may assume that |v|r = 1. For R ≥ 1 let us set1052

vR(s) = v(s)χ|s|≤R ∈ L∞. Then1053

|vR|r ≤ 1, |v − vR|r−1 ≤ R−1. (5.7)1054

Now let us write the increment Kj(τ0 + τ)(v) − Kj(τ0)(v) as1055

(
Kj(τ0 + τ)(v) − Kj(τ0 + τ)(vR)

)
+
(
Kj(τ0 + τ)(vR) − Kj(τ0)(vR)

)

+
(
Kj(τ0)(vR) − Kj(τ0)(v)

)
=: Δ1 + Δ2 + Δ3.

1056

Recalling that (5.3) and (5.4) hold for functions from L∞,r′ with r′ > d, we get1057

from (5.7) that |Δ1|r+|Δ3|r ≤ CrR
−1. To estimate Δ2, we set ΔR

2 = Δ2χ|s|≤R.1058
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Since by (5.3), |Δ2|r+1 ≤ 2Cr, then |Δ2 − ΔR
2 |r ≤ 2CrR

−1. For |s| > R the1059

function ΔR
2 vanishes, while for |s| ≤ R in view of Lemma 5.3 we have1060

|ΔR
2 s| = |Δ2s| =

∣
∣Kj

s(τ0 + τ)(vR) − Kj
s(τ0)(vR)

∣
∣

≤ Cr

∫

Σs

μs(dv1dv2)
∣
∣Zj(τ0 + τ ; �s) − Zj(τ0; �s)∣∣ |v1| . . . |v4|

|vj |
χ{|sj |≤R ∀j}

≤ C1rγ
0(R2)τ

∫

Σs

μs(dv1dv2)
|v1| . . . |v4|

|vj |
≤ C2r〈s〉−r−1τR2r∗ ,

1061

where to get the last inequality we used (5.2). We have seen that the Cr-norm1062

of the increment is bounded by Cr(R−1 + τR2r∗), for any R ≥ 1. Choosing1063

R = τ−1/(1+2r∗), we achieve (5.6). �1064

5.2. Kinetic Equation1065

Now we will apply the obtained results to the kinetic Eq. (5.1). Since the func-1066

tion b(·)2 := {b(s)2} ∈ Cr(Rd) for all r, since L is the operator of multiplying by1067

the function 2γs as in (1.4), 1.5), and the operator K satisfies (5.3), 5.4), then1068

for small enough ε > 0 Eq. (5.1) has a unique solution, belonging to Cr(Rd) for1069

each r, which in a Lipschitz way depends on the r.h.s. of the equation, when1070

the latter deviates from b(·)2. Namely, the following result, where Xr stands1071

for the space C(0,∞; Cr(Rd)), given the norm |v(·)|Xr = supt≥0 |v(t)|r, may1072

be easily verified (a proof of a similar fact may be found in Section 4 of [7]).1073

Lemma 5.5. For any r > d,1074

(1) There exists ε∗, depending on b(·), r and r∗, such that for 0 ≤ ε ≤ ε∗1075

Eq. (5.1) has a unique solution z(τ), belonging to Xr. It satisfies1076

|z|Xr ≤ Cr|b2|r. (5.8)1077

(2) If z0(τ) is a solution of the linear Eq. (5.1)|ε=0, then |z − z0|Xr ≤ Crε
2.1078

If a curve z′(τ) solves (5.1) with 2b(s)2 replaced by 2b(s)2 + ξs(t), where1079

ξ ∈ Xr and |ξ|Xr ≤ 1, then |z − z′|Xr ≤ Cr|ξ|Xr .1080

The lemma’s assertion holds as well for nonzero initial conditions z(0) ∈1081

Cr(Rd) in (5.1), but we do not need this.1082

Let K(∞) be the operator, obtained from K(τ0) by replacing in (4.20)1083

the kernels Zj(τ0; s), s ∈ R
d, by Z(∞; �s) (see Lemma 5.2). Let r > d and1084

zε ∈ Cr(Rd) be a solution of the limiting stationary equation1085

Lzε − ε2K(∞)(zε) = 2b(·)2 (5.9)1086

in the vicinity of L−1(2b2), existing for small ε by the inverse function theorem.1087

Since b2(·) ∈
⋂

r Cr(Rd) and, as in (5.3), the map K(∞) is one-smoothing, then1088

decreasing ε∗ if needed we achieve that zε ∈
⋂

r Cr(Rd) for ε ≤ ε∗ and1089

|zε − 2L−1(b2)|m ≤ Cmε2 ∀m. (5.10)1090

Here and below the constants depend on b and r∗.1091

Let us consider the curve w(t) = z(t) − zε. It satisfies the equation1092

ẇ + L(w) = ε2
(
K(t)(z) − K(∞)(zε)

)

= ε2
[(

K(t)(z) − K(t)(zε)
)

−
(
K(t)(zε) − K(∞)(zε)

)]1093
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and w(0) = −zε. Denote K(τ)(zε) − K(∞)(zε) =: −η(τ). In view of Lem-1094

mas 5.2 and 5.1, |η(τ)|r ≤ Cre
−2τ for τ ≥ 0. Next, regarding the differ-1095

ence K(τ)(z(τ)) − K(τ)(zε) as an operator, linear in w(τ) = z(τ) − zε and1096

quadratic in (z(τ), zε), we write it as K(τ)(w(τ)). Then by (5.4) and (5.8),1097

|K(τ)w|r+1 ≤ Cr|w|r, ∀r > d. Finally, we substitute1098

w(τ) = v(τ) + y(τ), v(τ) = −e−τLzε,1099

and rewrite the equation on w as an equation on y:1100

ẏ + Ly = ε2K(τ)
(
v(τ) + y(τ)

)
+ ε2η(τ), y(0) = 0.1101

Or1102

y(t) = ε2

∫ t

0

e−(t−s)L[K(s)
(
v(s) + y(s)

)
+ η(s)

]
ds. (5.11)1103

Let Y r be the space of continuous curves y : R+ → Cr(Rd), vanishing at zero,1104

with finite norm |y|Y r = supt≥0 et|y(t)|r.1105

Let B be the linear operator1106

B(y)(t) =
∫ t

0

e−(t−s)LK(s)(y(s)) ds.1107

Then the equation for y may be written as1108

y(t) = ε2
(
B(y)(t) + B(v)(t) +

∫ t

0

e−(t−s)Lη(s)ds
)
. (5.12)1109

If |ỹ|Y r = 1, then1110

|B(ỹ(t))|r+1 ≤
∫ t

0

∣
∣e−(t−s)LK(s)(ỹ(s))

∣
∣
r+1

ds ≤ C ′
r

∫ t

0

e−2(t−s)e−sds < C ′
re

−t.1111

So B : Y r → Y r+1 is a bounded linear operator if r > d, and accordingly the1112

operator (id−ε2B) is a linear isomorphism of Y r if r > d and ε is sufficiently1113

small. It easy to see that B(v) and
∫ t

0
e−(t−s)Lη(s)ds both belong to all spaces1114

Y r. Then in view of (5.12), |y|Y r+1 ≤ Cε2. Since the operator B is 1-smoothing,1115

then by induction we get that y belongs to all spaces Y r. We have proved that1116

Lemma 5.6. The solution z(τ), constructed in Lemma 5.5, may be written as1117

z(τ) = (id − e−τL)zε + y(τ), where |y(τ)|r ≤ Crε
2e−τ ∀ τ ≥ 0, ∀ r.1118

Here zε is the stationary solution, defined in (5.9) and satisfying (5.10).1119

5.3. Energy Spectra of Quasisolutions and Kinetic Equation1120

In this section we prove our main result. Namely, we show that the energy1121

spectrum (4.2) of the quasisolution ns,L(τ) = E|As(τ)|2 of Eq. (2.1) with1122

large L is ε3-close to the solution z(τ) of the WKE (5.1), constructed in Lem-1123

mas 5.5, 5.6. By (4.12), it suffices to prove this for ns,L replaced by n≤2
s . Let1124

us denote ws(τ) = n≤2
s (τ) − zs(τ); then ws(0) = 0. Recall that ε∗ is defined in1125

Lemma 5.5.1126
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Lemma 5.7. If r > d + 1 and ε ≤ C−1
1r ≤ ε∗ for an appropriate constant C1r,1127

then for any τ0 ≥ 0 and 0 < τ ≤ 1/2,1128

|w(τ0 + τ)|r ≤ (1 − τ/2)|w(τ0)|r + C2rτε2(τκ∗ + ε2), (5.13)1129

where κ∗ = 1/(1 + 2r∗).1130

Proof. Since by (5.1)1131

z(τ0 + τ) = e−τLz(τ0) + 2
∫ τ

0

e−tLb2dt + ε2

∫ τ0+τ

τ0

e−(τ0+τ−t)LK(t)(z(t))dt,1132

then in view of (4.22) and (4.19)1133

w(τ + τ0) = e−τLw(τ0) + ε2Δ + R, (5.14)1134

where R is as in (4.22) and1135

Δ =
∫ τ0+τ

τ0

e−(τ0+τ−t)L
(
K(τ0)(n≤2(τ0)) − K(t)(z(t))

)
dt.1136

Note that in view of Lemma 5.5 and estimates (4.9),1137

|n≤2(τ)|r, |z(τ)|r ≤ Cr for all τ and all r, (5.15)1138

with suitable constants Cr. Let us re-write Δ as follows:1139

Δ =
∫ τ0+τ

τ0

e−(τ0+τ−t)L(K(τ0)(n≤2(τ0)) − K(τ0)(z(τ0))
)
dt

+
∫ τ0+τ

τ0

e−(τ0+τ−t)L(K(τ0)(z(τ0)) − K(t)(z(τ0))
)
dt

+
∫ τ0+τ

τ0

e−(τ0+τ−t)L(K(t)(z(τ0)) − K(t)(z(t))
)
dt =: Δ1 + Δ2 + Δ3.

1140

By (5.4) and (5.15), |Δ1|r ≤ Crτ |w(τ0)|r. Similar,1141

|Δ3|r ≤ Crτ sup
τ0≤t≤τ0+τ

|z(t) − z(τ0)|r ≤ Crτ
2

1142

since |z(t)−z(τ0)|r ≤
∫ t

τ0
|−Lz(l)+ε2K(l)(z(l))+2b2|rdl and |z(t)|r+r∗ ≤ C ′

r by1143

(5.15). Now let us consider Δ2. By Lemma 5.4, |K(τ0)(z(τ0))−K(t)(z(τ0))|r ≤1144

Cr(t − τ0)κ∗ . So Δ2 ≤ Cr

∫ τ

0
tκ∗dt = C ′

rτ
1+κ∗ .1145

Since L ≥ 21 and τ ≤ 1/2, then |e−τLw(τ0)|r ≤ (1 − τ)|w(τ0)|r. Now1146

(5.14), (4.23) and the bounds on Δj imply that1147

|w(τ0 + τ)|r ≤ (1 − τ)|w(τ0)|r + Crε
2τ
(
|w(τ0)|r + τ + τκ∗ + (τ + ε2)

)
,1148

and (5.13) follows if C−1
1r � 1. �1149

For any 0 < τ ≤ 1/2, any N and for k = 0, . . . , N let us set wk = |w(kτ)|r.1150

Let the function k → wk attain its maximum at a point k which we write as1151

k := k0 + 1. If k0 + 1 = 0, then wk ≡ 0. Otherwise, in view of (5.13) we have1152

wk0 ≤ wk0+1 ≤ (1 − τ/2)wk0 + C2rτε2(τκ∗ + ε2).1153
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So, wk0 ≤ 2C2rε
2(τκ∗ + ε2) and1154

max
0≤k≤N

|w(kτ)|r = wk0+1 ≤ 3C2rε
2(τκ∗ + ε2)1155

since τ ≤ 1/2. Applying again (5.13) with τ0 = kτ and τ replaced by any1156

τ̄ ∈ (0, τ), and using that in the formula above N is any, we get that |w(t)|r ≤1157

4C2rε
2(τκ∗ + ε2), for any t ≥ 0. Sending τ → 0 (and estimating norms | · |r1158

with r < d + 2 via | · |d+2) and then using (4.12), we finally get1159

Theorem 5.8. For any r there exist positive constants C1r, C2r, C3r such that1160

if ε ≤ C−1
1r , then1161

sup
τ≥0

|n≤2(τ) − z(τ)|r ≤ C2rε
4 (5.16)1162

and if L ≥ ε−2, then1163

sup
τ≥0

|n·,L(τ) − z(τ)|r ≤ C3rε
3. (5.17)1164

Relation (5.17) together with Lemma 5.6 gives a control over the long-1165

time behaviour of the spectra of quasisolutions of (2.1) in terms of the station-1166

ary solution zε of the limiting kinetic equation (see (5.9)):1167

|n·,L(τ) − zε|r ≤ Cr(e−τ + ε3), ∀ τ ≥ 0.1168

By Proposition 2.1 with d ≥ 3 this result and (5.17) extend to the spectra of1169

quasisolutions of (1.20), defined in (1.27), as expressed in1170

Theorem 5.9. For any r there exist positive constants C4r, C5r such that if1171

ε ≤ C−1
4r and L ≥ ε−2, then1172

sup
τ≥0

|n·,L(τ) − z(τ)|r ≤ C4rε
3 , (5.18)1173

|n·,L(τ) − zε|r ≤ C5r(e−τ + ε3), ∀ τ ≥ 0 . (5.19)1174
1175

Relation (5.16) extends to the energy spectra of quasisolutions of (1.20)1176

analogously.1177
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Appendix A. Proof of Lemma 3.61185

In this appendix we suppose that the dimension d satisfies d ≥ 2.1186

A.1. Idea of the Proof and General Setting1187

In Lemma 3.6 (up to an obvious scaling) we have to estimate the number1188

of integer points on a quadric inside a large box. The idea is to embed the1189

integral points of the box in an affine space over a large finite field and then1190

apply powerful algebraic geometry techniques to estimate the needed number1191

(note that this identification of bounded integers with elements of a finite1192

field is ubiquitous in coding theory and combinatorics). It is possible mainly1193

due to the fact that this techniques permits to count points defined over a1194

finite field using some geometric information (essentially the dimension, the1195

degree and irredundant decomposition) on the corresponding algebraic set over1196

the algebraic closure of our finite field. We begin with recalling some basic1197

definitions and results concerning such algebraic sets (see, for example, the1198

first chapter of the book [27]).1199

Affine algebraic sets. Let us fix an algebraically closed field K. Let A
m = Km

1200

be the m-dimensional affine space over K, and let F1, . . . , Fs ∈ K[T1, . . . , Tm]1201

be nonzero polynomials. Then an affine algebraic set (AAS) X is just the set1202

of common zeros of these polynomials:1203

X ={(a1, . . . , am) ∈ Km : F1(a1, . . . , am)= . . .=Fs(a1, . . . , am)=0}.1204

(A.1)1205

Irreducibility. An AAS X is reducible if X = X1 ∪ X2 with two non-empty1206

AAS X1,X2 s.t. X1 �= X,X2 �= X. If it is not the case, X is called irreducible,1207

or an affine algebraic variety (see [27], Section I.3.1).1208

Theorem A.1 (Irredundant decomposition). Any non-empty AAS X can be1209

presented as1210

X = X1 ∪ . . . ∪ Xl (A.2)1211

for irreducible X1, . . . , Xl such that Xi �⊂ Xj for i �= j. The decomposition is1212

unique up to order.1213

This decomposition is especially simple for a hypersurface X, i.e. when1214

in (A.1) s = 1. Then F = F1(T1, . . . Tm) = Πl
j=1Qj for irreducible polynomials1215

Qj which are uniquely defined up to multiplicative constants and permutation1216

since the ring K[T1, . . . , Tm] is a unique factorization domain, see, for example,1217

Chapter IV of [24], and then Xj = {Qj = 0}. This uniqueness is true under the1218

condition which we can and will suppose to hold, namely, that the polynomial1219

P does not have multiple divisors, i.e. all Qj , j = 1, . . . , l are distinct. For1220

further references we formulate a corollary of the unique factorization property1221

(see [27], Section I.3.1)1222

Lemma A.2. (i). If X and Y are hypersurfaces, then X = Y if and only if1223

the corresponding polynomials PX and PY are proportional. Moreover if1224

Y is irreducible and X ⊆ Y , then X = Y.1225
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(ii). If deg PX = 2, then there are exactly two possibilities: either X irre-1226

ducible (in this case it cannot contain a hyperplane), or X = X1 ∪ X21227

for two affine hyperplanes, defined by affine linear polynomials l1 and l2,1228

and PX = l1l2.1229

Dimension. One can define the dimension r = dim X ∈ {0, 1, . . . ,m} as follows:1230

dim X = max{dim Xi, i = 1, . . . , l} for (A.2), and for an irreducible AAS X1231

dim X = max{r : X = X0 ⊃ X1 ⊃ . . . ⊃ Xr �= ∅},1232

where all Xi, i = 0, . . . , r are irreducible AAS and all inclusions are strict. The1233

codimension of X is codim X = m − dim X.1234

In particular, if dimX = m then X = A
m (indeed, if X ⊂ A

m,X �= A
m

1235

the definition implies that dimX < dim A
m = m) and if dimX = 0 then X is1236

a finite set. The codimension of X as in (A.1) is at most s.1237

From the definition we get immediately (see [27], Section I.6.2)1238

Lemma A.3. If Y ⊂ X,Y �= X and X is irreducible, then dim X > dim Y ,1239

codim X < codim Y.1240

Degree. Let X ⊂ A
m be a non-empty AAS, dimX = r. Then its degree deg X1241

is defined as follows:1242

deg X = max{cardinality of X ∩ L : dim
(
X ∩ L

)
= 0},1243

where L ⊂ A
m is an affine plane with dimL = m − r.1244

Lemma A.4. If X is a hypersurface (i.e. in (A.1) s = 1), then codim X = 11245

and deg X = deg F1.1246

The famous Bezout theorem in its the most elementary setting over the1247

field C states that1248

deg X ≤ Πs
i=1 deg Fi.1249

A.2. Finite Fields’ Bezout Theorem1250

From now on the field K is the algebraic closure F̄p of a finite field Fp, where1251

p is a large prime number (see [24], Section V.5).1252

We will use a version of Bezout’s theorem over finite fields which can1253

be deduced from its general form, e.g. [13], and is also explicitly stated and1254

proved in [22, Corollary 2.2].1255

Theorem A.5. Let K = F̄p and the AAS X in (A.1) is such that Fj ∈ Fp[T1,1256

. . . , Tm], deg Fj = dj, j = 1, . . . , s, and dim X = r. Then1257

|X ∩ F
m
p | ≤ prΠs

i=1di.1258
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A.3. Preliminary Result1259

Let q1, . . . , qs, s ≥ 1, be polynomials of degree at most two in m ≥ s vari-1260

ables, qi ∈ Z[X1, . . . , Xm], with qi(0) = 0, i = 1, ..., s. Consider the geometric1261

quadrics Qi = {x ∈ R
m : qi(x) = 0} and their intersection Q = ∩s

i=1Qi. The1262

latter is not empty since 0 ∈ Q.1263

Let Bm
M ⊂ R

m be an open cube {|x|∞ < M} with some M ≥ 1. Consider1264

the set1265

Sm(M,Q) = Q ∩ Z
m ∩ Bm

M .1266

Let p be a prime and q
(p)
i ∈ Fp[X1, . . . , Xm] denote the polynomials qi1267

mod p over the finite field Fp. Consider the sets1268

Q
(p)
i = {x ∈ Km : q

(p)
i (x) = 0}1269

and their intersection Q(p) = ∩s
i=1Q

(p)
i (recall that now K = F̄p is the algebraic1270

closure of Fp). We will be interested mainly in the cardinality of Q(p)(Fp) :=1271

Q(p) ∩ F
m
p as a tool to estimate |Sm(M,Q)|.1272

Proposition A.6. Let M ≥ 1 and suppose that a prime p > 2M satisfies p =1273

2M(1 + r(M)), where r(M) > 0. Suppose also that deg qi ≤ 2 for each i and1274

that the AAS Q(p) is of dimension m − s (and of codimension s, that is, the1275

s quadrics Q
(p)
i intersect properly):1276

dim Q(p) = m − s. (A.3)1277

Then1278

|Sm(M,Q)| ≤ 2m
(
1 + r(M)

)m−s
Mm−s . (A.4)1279

By Bertrand’s postulate, for any M ≥ 1 there is a p satisfying 2M < p <1280

4M , and when applying Proposition A.6 we will always chose1281

r(M) < 1. (A.5)1282

Moreover, by the Prime Number Theorem, for large M one can chose r(M) =1283

o(1).1284

Proof of Proposition A.6. Let Π : Sm(M,Q) −→ F
m
p be defined by1285

Π(x1, . . . , xm) = (x1 mod p, . . . , xm mod p).1286

Then Π is injective and its image is contained in Q(p) ∩ F
m
p ⊂ F

m
p . Indeed, the1287

last assertion is clear and the injectivity is established as follows: if1288

(x′
1 mod p, . . . , x′

m mod p) = (x1 mod p, . . . , xm mod p)1289

but x′ �= x, then for some i ∈ {1, ...,m} we have x′
i mod p = xi mod p, but1290

x′
i �= xi. Consequently, |xi − x′

i| ≥ p > 2M which contradicts the condition1291

xi, x
′
i ∈ Bm

M . Applying then Theorem A.5 to X = Q(p), we get the conclusion1292

since1293

|Sm(M,Q)| ≤ |Q(p)(Fp)| ≤ 2spm−s = 2m
(
1 + r(M)

)m−s
Mm−s.1294

�1295
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A.4. Main Estimate for N = 3 and 41296

Now we pass to the proof of Lemma 3.6 and denote
∣
∣Q̃L(z1, v) ∩ B

(N−2)d
R

∣
∣ =1297

s(R, Q̃, L). Consider the set1298

S′(R, Q̃, L
)

= Q̃ ∩ Z
(N−2)d ∩ B

(N−2)d
RL , Q̃ = Q̃(Lz1, Lv),1299

and denote by s′(R, Q̃, L) its cardinality. Then s′(R, Q̃, L) = s(R, Q̃, L) since1300

the map (z2, . . . , zN−1) �→ (Lz2, . . . , LzN−1) is a bijection between the sets1301

Q̃L(z1, v) ∩ B
(N−2)d
R and S′(R, Q̃, L).1302

Let us estimate s′(R, Q̃, L) through Proposition A.6 with m = (N − 2)d1303

and s = N − 2, where N = 3 or 4. To this end it suffices to find M ≥ RL1304

and p > 2M such that assumption (A.3) is fulfilled for any (z1, v) ∈ B2d
(N−1)R1305

satisfying (z1, v) ∈ Q0
1 L ∩ A2. Lemma A.7 below establishes this for M =1306

NRL/2 and any p > 2M . Then, applying (A.4) with r(M) < 1 (see (A.5)),1307

we conclude the proof of Lemma 3.6.1308

For a prime p and a, b ∈ F
d
p, let us consider algebraic sets Q̃

(p)
j over1309

K = F̄p:1310

Q̃
(p)
j (a, b) := {(z2, . . . , zN−2) ∈ K(N−2)d : q

(p)
j (z2, . . . , zN−2; a, b) = 0},1311

where q
(p)
j (z2, . . . , zN−2; a, b) are the residues modulo p of the polynomials1312

qj(z2, . . . , zN−2; a, b), defined by (3.15). We set Q̃(p) = ∩1<j<N Q̃
(p)
j for the1313

intersection of the algebraic sets.1314

Lemma A.7. Let N ∈ {3, 4}, (z1, v) ∈ Q0
1 L ∩ A2 (see (3.16)) and let p be a1315

prime satisfying p > max(|Lz1|∞, |Lv|∞). Then1316

dim Q̃(p)(Lz1, Lv) = (N − 2)(d − 1). (A.6)1317

The assumption p > max(|Lz1|∞, |Lv|∞) ensures that Lz1 and Lv are1318

different from zero in Kd. In particular, for (z1, v) ∈ B2d
(N−1)R this assumptions1319

is satisfied if p > 2M with M = NRL/2.1320

Proof of Lemma A.7. Let N = 3. Then N − 2 = 1 and Q̃(p) is given by the1321

unique equation q
(p)
2 (z2;Lz1, Lv) = 0, for a fixed (z1, v). By Lemma A.9 the1322

equation is non-trivial, so the conclusion follows from Lemma A.4.1323

N = 4. The codimension of the intersection of two quadrics is at most1324

two. We have to show that it is two (and not one). The result will follow from1325

the next three lemmas.1326

Lemma A.8. Let Q1 = {q̃1 = 0},Q2 = {q̃2 = 0} be two linearly independent1327

quadrics over K. Then the codimension of Q1 ∩Q2 is one if and only if q̃1 and1328

q̃2 have a mutual affine linear factor l(x).1329

Proof. Let the codimension of the intersection be one. In this case if one of1330

Q1,Q2 is irreducible, then Q1 = Q2 by Lemma A.3 with Y = Q1 ∩ Q2. How-1331

ever, this is impossible by Lemma A.2. (i) since q̃1 and q̃2 are independent.1332
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Therefore, by Lemma A.2. (ii) Q1 = H1 ∪ H2 and Q2 = H ′
1 ∪ H ′

2, with hyper-1333

planes H1, . . . , H
′
2. If all Hi ∩ H ′

j are of codimension two, then1334

codim Q1 ∩ Q2 = codim
(
∪(Hi ∩ H ′

j)
)

= min(codim Hi ∩ H ′
j) = 2.1335

Therefore, at least one of Hi ∩ H ′
j is of codimension one and then we have1336

ker(l(x)) = Hi ∩ H ′
j ⊂ Q1 ∩ Q2 for an affine linear l(x). Hence, l(x) divides1337

both q̃1 and q̃2 by Lemma A.2. (ii).1338

The inverse statement is obvious. �1339

Lemma A.9. For any N > 2, if the matrix α is irreducible and (z1, v) ∈ Q0
1 L ∩1340

A2 is such that Lz1, Lv �= 0 in Kd, then the polynomials q
(p)
j (·, Lz1, Lv),1341

1 < j < N are linearly independent over K. In particular, each q
(p)
j is a1342

nonzero polynomial.1343

Proof. Consider a linear combination
∑

1<j<N cjq
(p)
j . By the homogeneity in1344

(z2, . . . , zN−1), it vanishes identically if and only if1345

∑

1<j<N

cjzj · (αj1(Lz1) + αjN (Lv)) ≡ 0,

∑

1<i,j<N

cj(αji − αjNα1i)zj · zi ≡ 0.
(A.7)1346

Arguing by induction and using that the matrix α is irreducible, we construct1347

a partition E0, . . . , EM , M ≥ 1, of the set {1, . . . , N} such that E0 = {1, N}1348

and for n ≥ 1,1349

En = {j : αjl = 0 ∀ l ∈ En′ , n′ ≤ n − 2, and ∃ l′ ∈ En−1 such that αjl′ �= 0}.1350

Since (z1, v) ∈ Q0
1 L and Lz1, Lv �= 0 in Kd, then the term in brackets in the1351

first line of (A.7) is not identically zero for each j ∈ E1, so cj = 0 for every1352

j ∈ E1. Using this in the second line of (A.7), we get:1353

M∑

n=2

M∑

m=n−1

∑

j∈En

∑

i∈Em

cjαjizj · zi ≡ 0.1354

This relation holds if and only if (cj − ci)αji = 0 for all j ∈ En, 2 ≤ n ≤ M ,1355

and i ∈ Em, n − 1 ≤ m ≤ M . We know that cj = 0 if j ∈ E1. Starting from1356

n = 2 and arguing by induction in n, we find that if ci = 0 for all i ∈ En−1,1357

then cj = 0 for all j ∈ En. Indeed, for any j ∈ En there exists at least one1358

i ∈ En−1 such that αji �= 0 by the definition of Ei, so relation (cj − ci)αji = 01359

implies that cj = 0 if j ∈ En. That is, cj ≡ 0. �1360

Lemma A.10. For any N > 2, if the matrix α is irreducible and (z1, v) ∈1361

Q0
1 L∩A2 is such that Lz1, Lv �= 0 in Kd, then the polynomials q

(p)
j (·, Lz1, Lv),1362

1 < j < N , are irreducible.1363

Proof. Each polynomial q
(p)
j has degree one or two. If its degree is one the1364

assertion is obvious. Now let the degree be two. Note that in view of (3.15)1365

q
(p)
j can be written as the scalar products q

(p)
j = zj · lj(z2, . . . , zN−1; z1, v) mod1366
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p, where lj are surjective affine functions lj : Kd(N−2) −→ Kd. But such scalar1367

product cannot vanish for d ≥ 2 > 1 on a hyperplane H ⊂ Kd(N−2) which1368

by Lemma A.2. ii) would be the case for a reducible quadric. Indeed, only two1369

cases can occur:1370

(a) The coefficient α of zj in lj is nonzero, or1371

(b) It is zero but then the coefficient β of some other zi is nonzero.1372

In case (a) take the two-dimensional plane P (x1, x2) in the whole space, gener-1373

ated by two orthogonal vectors from the zj-space, where the first basis vector1374

is parallel to α1jz1 + αNjv �= 0 (this vector is nonzero since (z1, v) ∈ Q0
1 L and1375

Lz1, Lv �= 0 in Kd, and for the case a) we have α1j , αNj �= 0). Then the restric-1376

tion of q
(p)
j = 0 on P is α(x2

1 +x2
2)+ c1x1 = 0 with c1 �= 0, which is isomorphic1377

to x2
1 + x2

2 = C �= 0. This plane quadric in P (x1, x2) cannot contain P (x1, x2)1378

∩ H (a line or the whole P (x1, x2)). Indeed, otherwise, supposing by symme-1379

try that the quadric contains a line x1 = ax2 + b, we would have that the1380

polynomial1381

a2x2
2 + 2abx2 + b2 + x2

2 − C1382

= (a2 + 1)x2
2 + 2abx2 + b2 − C1383

vanishes identically. This implies ab = 0, and if a = 0 then the term1384

(a2 + 1)x2
2 = x2

2 �= 0, while for b = 0 the term b2 − C = −C �= 0.1385

Similarly, in case b) we take the four-dimensional vector subspace P ′
1386

generated by the two first basis vectors in the zj space and the two first basis1387

vectors in the zi space. The restriction of q
(p)
j = 0 on P ′ is then β(x1y1 +1388

x2y2) + c1x1 + c2x2 = 0, isomorphic to x1y1 + x2y2 = C which cannot contain1389

P ′(x1, x2, y1, y2)∩H. Indeed, else, supposing by symmetry that P ′(x1, x2, y1, y2)1390

∩H ⊃ {x1 = a1x2+b1y1+b2y2−c} we get that the following quadratic function1391

of x2, y1, y2:1392

(a1x2 + b1y1 + b2y2 − c) y1 + x2y2 − C1393

= a1x2y1 + b1y
2
1 + b2y1y2 − cy1 + x2y2 − C1394

vanishes identically, which is clearly wrong. �1395

End of the proof of Lemma A.7. Since each q
(p)
j is a nonzero polynomial of de-1396

gree one or two, then to prove Lemma A.7 we have to consider three cases. In1397

the first case both polynomials q
(p)
2 and q

(p)
3 are linear. Then the codimension1398

of the intersection Q̃(p) is two since they are linearly independent. In the sec-1399

ond case both q
(p)
2 and q

(p)
3 are quadratic. Then, according to Lemma A.8, the1400

codimension still is two since the polynomials are irreducible by Lemma A.10.1401

Finally in the last case, when one polynomial is linear and another one is qua-1402

dratic, the assertion is clear since then the AAS in question is an intersection1403

of a quadratic irreducible surface with a hyperplane. Thus, its codimension is1404

two by Lemma A.2. (ii).1405

Remark A.11. The proof of Lemma A.7 follows from three lemmas. Two of1406

them are valid for any N > 2, but Lemma A.8 holds only for N = 4 (and1407
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tautologically holds for smaller N). Still the bi-linear (or linear) nature of the1408

polynomials q
(p)
j and direct analysis of the AAS Q̃(p), jointly with the two1409

lemmas, valid for any N > 2, allow to prove by hand Lemma A.7 for “not too1410

high” values of N , and thus, to prove for those N ’s Theorem 3.2. Unfortunately,1411

for the moment we cannot prove the theorem for all N > 2; cf. Conjecture 3.8.1412

Appendix B. Proof of Proposition 4.3 and Lemma 4.41413

We prove Proposition 4.3 in Sects. B.1-B.6 and Lemma 4.4 in Sect. B.7.1414

B.1. Beginning of the Proof of Proposition 4.31415

The proof of the proposition is somewhat cumbersome since we have to con-1416

sider a number of different terms and different cases. During the proof we will1417

often skip the upper index (0), so by writing a and as we will mean a(0) and a
(0)
s .1418

We will also skip the dependence on τ0 by writing c
(i)
s (τ ; τ0) and Δa

(i)
s (τ ; τ0)1419

as c
(i)
s (τ) and Δa

(i)
s (τ). Besides, for a complex function (ws1,...,sk

, sj ∈ Z
d
L) we1420

denote1421

◦
∑

s1,...,sk∈Z
d
L

ws1,...,sk
= L−kd

∑

s1,...,sk∈Z
d
L

ws1,...,sk
,1422

and we introduce the symmetrization1423

Ysym
s (u, v, w; t) =

L−d

3

∑

1,2,3

δ′12
3s δ(ω12

3s) (u1v2w̄3 + v1w2ū3 + w1u2v̄3) .1424

We recall that Qs,L is given by formula (4.30) and first consider the term1425

EΔa
(2)
s (τ)ās(τ0 + τ). Inserting the identity a(1)(τ0 + l) = c(1)(l)+Δa(1)(l) into1426

formula (4.27) for Δa
(2)
s , we obtain1427

EΔa(2)
s (τ)ās(τ0 + τ) = Ns + Ñs,1428

where1429

Ns := i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)3Ysym
s (a(τ0 + l), a(τ0 + l),Δa(1)(l)) dl

)
1430

(B.1)1431

and1432

Ñs := i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)3Ysym
s (a(τ0 + l), a(τ0 + l), c(1)(l)) dl

)
.1433

Thus,1434

Qs,L = L2
(
E|Δa(1)

s (τ)|2 + 2RNs1435

+2REΔa(1)
s (τ)c̄(1)

s (τ) + 2RÑs

)
, s ∈ R

d. (B.2)1436

We will analyse the four terms above term by term.1437
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B.2. The First Term of Qs,L in (B.2)1438

Due to (4.27), we have1439

E|Δa(1)
s (τ)|2 = E

∫ τ0+τ

τ0

dl

∫ τ0+τ

τ0

dl′ e−γs(2τ0+2τ−l−l′)Ys(a(l))Ys(a(l′)).1440

(B.3)1441

Writing the functions Ys explicitly and applying the Wick theorem, in view of1442

(2.13) we find1443

E|Δa(1)
s (τ)|2 = 2L−2d

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ0+τ

τ0

dl

∫ τ0+τ

τ0

dl′ e−γs(2τ0+2τ−l−l′)
1444

Ea1(l)ā1(l′) Ea2(l)ā2(l′) Eā3(l)a3(l′),1445
1446

and note that1447

∫ τ0+τ

τ0

dl

∫ τ0+τ

τ0

dl′ e−γs(2τ0+2τ−l−l′) ≤ τ2.1448

On account of (2.13), we can bound1449

E|Δa(1)
s (τ)|2 ≤ 2τ2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)B123,1450

where B123 = B1B2B3. Since B123 with s3 = s−s1 −s2 is a Schwartz function1451

of s, s1, s2 then Theorem 3.2 with N = 2 applies and we find1452

E|Δa(1)
s (τ)|2 ≤ C#(s)L−2τ2. (B.4)1453

B.3. The Second Term of Qs,L in (B.2)1454

To study the term 2RNs, we use the same strategy as above. Namely, express-1455

ing in (B.1) the function 3Ysym
s via Ys, we write Ns as Ns = N1

s +2N2
s , s ∈ R

d,1456

where1457

N1
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(a(τ0 + l), a(τ0 + l),Δa(1)(l)) dl
)
,1458

N2
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(Δa(1)(l), a(τ0 + l), a(τ0 + l)) dl
)
.1459

1460

Term N1
s . Writing explicitly the function Ys and then Δā

(1)
3 , we get1461

N1
s = i L−d

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl e−γs(τ−l)
1462

× E
(
a1(τ0 + l)a2(τ0 + l)Δā

(1)
3 (l)ās(τ0 + τ)

)
1463

= L−2d
∑

1,2

∑

1′,2′
δ′12
3s δ′1′2′

3′3 δ(ω12
3s)δ(ω1′2′

3′3 )
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)e−γ3(l−l′)
1464

× E
(
a1(τ0 + l)a2(τ0 + l)ā1′(τ0 + l′)ā2′(τ0 + l′)a3′(τ0 + l′)ās(τ0 + τ)

)
.

(B.5)
1465

1466
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By the Wick theorem, we need to take the summation only over s1′ , s2′ , s3′1467

satisfying s1′ = s1, s2′ = s2, s3′ = s or s1′ = s2, s2′ = s1, s3′ = s. Since in1468

both cases we get δ′1′2′
3′3 = δ′12

3s and ω1′2′
3′3 = ω12

3s , we find1469

N1
s = 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)−γ3(l−l′)
1470

× Ea1(τ0 + l)ā1(τ0 + l′) Ea2(τ0 + l)ā2(τ0 + l′) Eas(τ0 + l′)ās(τ0 + τ).1471
1472

Arguing as in Sect. B.2 we find1473

|N1
s | ≤ C#(s)L−2τ2. (B.6)1474

Term N2
s . By literally repeating the argument we have applied to N1

s , we1475

find that1476

N2
s = i L−d

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl e−γs(τ−l)
1477

× E
(
Δa

(1)
1 (l)a2(τ0 + l)ā3(τ0 + l)ās(τ0 + τ)

)
1478

= −L−2d
∑

1,2

∑

1′,2′
δ′12
3s δ′1′2′

3′1 δ(ω12
3s)δ(ω1′2′

3′1 )
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)e−γ1(l−l′)
1479

× E
(
a1′(τ0 + l′)a2′(τ0 + l′)ā3′(τ0 + l′)a2(τ0 + l)ā3(τ0 + l)ās(τ0 + τ)

)
.1480

1481

By the Wick theorem, we should take summation either under the condition1482

s1′ = s3, s2′ = s, s3′ = s2 or s1′ = s, s2′ = s3, s3′ = s2. Since in both cases1483

δ′1′2′
3′1 = δ′12

3s and ω1′2′
3′1 = −ω12

3s , then1484

N2
s = −2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)e−γ1(l−l′)
1485

Ea2(τ0 + l)ā2(τ0 + l′) Ea3(τ0 + l′)ā3(τ0 + l) Eas(τ0 + l′)ās(τ0 + τ) .
(B.7)

1486

1487

Again we get1488

|N2
s | ≤ C#(s)L−2τ2. (B.8)1489

B.4. The Third Term of Qs,L in (B.2)1490

We have1491

EΔa(1)
s c̄(1)

s (τ) = E

∫ τ0+τ

τ0

e−γs(τ0+τ−l)Ys(a(l)) dl

∫ τ0

0

e−γs(τ0+τ−l′)Ys(a(l′)) dl′.1492

This expression coincides with (B.3) in which the integral
∫ τ0+τ

τ0
dl′ is replaced1493

by
∫ τ0

0
dl′. Then,1494

EΔa(1)
s (τ)c̄(1)

s (τ) = 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ0+τ

τ0

dl

∫ τ0

0

dl′ e−γs(2τ0+2τ−l−l′)
1495

Ea1(l)ā1(l′) Ea2(l)ā2(l′) Eā3(l)a3(l′),1496
1497
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Expressing the correlations Eaj(l)āj(l′) through (2.13), we get1498

EΔa(1)
s (τ)c̄(1)

s (τ) = 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)B123

∫ τ

0

dl e−2γs(τ−l)−γ123sl
1499

∫ τ0

0

dl′ e−γ123sτ0eγsl′
∏

j=1,2,3

(
eγj l′ − e−γj l′

)
.1500

1501

For the integral in the first line, we have1502

Ts :=
∫ τ

0

dl e−2γs(τ−l)−γ123sl =

{
τe−2γsτ if 2γs = γ123s

e−2γsτ −e−γ123sτ

γ123s−2γs
elsewhere

. (B.9)1503

For the integral in the second line, let us denote1504

T j :=
∫ τ0

0

dl e−γ123sτ0eγj l
∏

k �=j

(
eγkl − e−γkl

)
, (B.10)1505

where j, k ∈ {1, 2, 3, s}. Then,1506

0 ≤ T j ≤ 1/γ123s. (B.11)1507

Due to (B.9) and (B.10) we get1508

EΔa(1)
s (τ)c̄(1)

s (τ) = 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)B123TsT s. (B.12)1509

B.5. The Fourth Term of Qs,L in (B.2)1510

To study the term 2RÑs, as in Sect. B.3, we write Ñs as Ñs = Ñ1
s + 2Ñ2

s , s ∈1511

R
d, where1512

Ñ1
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(a(τ0 + l), a(τ0 + l), c(1)(l)) dl
)
,1513

Ñ2
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(c(1)(l), a(τ0 + l), a(τ0 + l)) dl
)
.1514

1515

Term Ñ1
s . Writing explicitly the function Ys and then c̄(1), we get1516

Ñ1
s = L−2d

∑

1,2

∑

1′,2′
δ′12
3s δ′1′2′

3′3 δ(ω12
3s)δ(ω1′2′

3′3 )
∫ τ

0

dl

∫ 0

−τ0

dl′ e−γs(τ−l)e−γ3(l−l′)
1517

× E
(
a1(τ0 + l)a2(τ0 + l)ā1′(τ0 + l′)ā2′(τ0 + l′)a3′(τ0 + l′)ās(τ0 + τ)

)
.1518

1519

Again, this is the same expression as (B.5), with the integration over dl′ ranging1520

from −τ0 to 0 instead of from 0 to l. Thus, by the Wick theorem, we obtain1521

Ñ1
s = 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ 0

−τ0

dl′ e−γs(τ−l)−γ3(l−l′)
1522

× Ea1(τ0 + l)ā1(τ0 + l′) Ea2(τ0 + l)ā2(τ0 + l′) Eas(τ0 + l′)ās(τ0 + τ).1523
1524
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Following the line of Sect. B.4, we express the correlations through (2.13) and1525

get1526

Ñ1
s = 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)B12s

∫ τ

0

dl e−2γs(τ−l)−γ123sl
1527

∫ τ0

0

dl′ e−γ123sτ0eγ3l′
(
eγsl′ − e−γsl′

) ∏

j=1,2

(
eγj l′ − e−γj l′

)
1528

= 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)B12sTsT 3. (B.13)1529

1530

Term Ñ2
s . Literally repeating the argument which we have applied to Ñ1

s ,1531

we find that the term Ñ2
s is given by the same expression as (B.7) with the1532

integral
∫ l

0
replaced by

∫ 0

−τ0
:1533

Ñ2
s = − 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ 0

−τ0

dl′ e−γs(τ−l)e−γ1(l−l′)
1534

Ea2(τ0 + l)ā2(τ0 + l′) Ea3(τ0 + l′)ā3(τ0 + l) Eas(τ0 + l′)ās(τ0 + τ).1535
1536

Again we get1537

Ñ2
s = −2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)B23sTsT 1. (B.14)1538

B.6. End of the Proof1539

Inserting formulas (B.12), (B.13) and (B.14), as well as (B.4), (B.6), (B.8) in1540

(B.2), we get1541

∣
∣
∣
∣
∣
Qs,L − 4L2Ts ◦

∑

1,2

δ′12
3s δ(ω12

3s)
(
B123T s + B12sT 3 − 2B23sT 1

)
∣
∣
∣
∣
∣
≤ C#(s)τ2.1542

(B.15)1543

Note that the terms Zj defined in (4.14) can be written as1544

Zj =
T j

∏
k �=j(1 − e−2γkτ0)

. (B.16)1545

The relations (2.13)-(2.14) imply that for any permutation (k1, k2, k3, k4) of1546

(1, 2, 3, s) we have Bk1k2k3 = n
(0)
k1

n
(0)
k2

n
(0)
k3

/
∏

m=k1,k2,k3
(1 − e−2γmτ0), where1547

n
(0)
ki

= n
(0)
ki,L

(τ0). Together with (B.16), this implies1548

Bk1k2k3T k4 = Zk4n
(0)
k1

n
(0)
k2

n
(0)
k3

. (B.17)1549

By symmetry, the term 2B23sT 1 in (B.15) can be replaced by B23sT 1+B13sT 2.1550

Then, inserting (B.17) in (B.15) we get1551

|Qs,L − Xs| ≤
∣
∣
∣
∣
∣
4L2(Ts − τ) ◦

∑

1,2

δ′12
3s δ(ω12

3s)
(
T sB123 + T 3B12s − 2T sB23s

)
∣
∣
∣
∣
∣

+ C#(s)τ2,

1552

Journal: 23 Article No.: 1366 TYPESET DISK LE CP Disp.:2023/9/13 Pages: 55



R
ev

is
ed

 P
ro

of

The large-period limit for equations

with Xs defined in (4.33). Finally, we point out that |(Ts − τ)T j | ≤ 3τ2, due1553

to (B.11) and since |Ts − τ | ≤ 3τ2γ123s. So, the bound1554

∣
∣
∣
∣
∣
L2(Ts − τ) ◦

∑

1,2

δ′12
3s δ(ω12

3s)
(
T sB123 + T 3B12s − 2T sB23s

)
∣
∣
∣
∣
∣
≤ C#(s)τ2,1555

is a consequence of Theorem 3.2. This concludes the proof of Proposition 4.3.1556

B.7. Proof of Lemma 4.41557

Note that ∂sj
f(γj) = f ′(γj)∂sj

γj , where ∂sj
γj (as well as higher-order deriva-1558

tives of γj) have at most polynomial growth at infinity. Then, using the defi-1559

nition (4.14) of Zj we find1560

∣
∣∂μ

�s Zj(τ0, �s)∣∣ =
|μ|∑

n1+n2+n3+ns=1

P (�s;n1, . . . , ns)
∫ τ0

0

dl (τ0 − l)nj e−γj(τ0−l)
1561

∏

m �=j

dnm

dγnm
m

(
sinh(γml)
sinh(γmτ0)

)

, (B.18)1562

where P (�s; a1, . . . , an) denotes a function of �s, dependent on parameters1563

(a1, . . . , an), having at most a polynomial growth at infinity. Using the re-1564

lation sinh(γl)
sinh(γτ0)

= e−γ(τ0−l)−e−γ(l+τ0)

1−e−2γτ0 we find by induction that1565

dn

dγn

(
sinh(γl)
sinh(γτ0)

)

=
∑

k+m+p=n

ck,m,pIk,m,p(l, τ0, γ),1566

where ck,m,p are constants,1567

Ik,m,p =
(
(τ0 − l)ke−γ(τ0−l) − (l + τ0)ke−γ(l+τ0)

) τm+p
0 e−2γmτ0

(1 − e−2γτ0)m+1
1568

(B.19)1569

and p �= 0 only if m �= 0. For τ0 ≥ γ−1 the terms Ik,m,p are bounded in1570

absolute values by absolute constants Ck,m,p, where we recall that 0 ≤ l ≤ τ01571

and γ ≥ 1. Let now τ0 ≤ γ−1. In this case, since k + m + p = n,1572

|Ik,m,p| ≤ 2
(l + τ0)kτm+p

0

(1 − e−2γτ0)m+1
≤ 2k+1 τn

0

(1 − e−2γτ0)m+1
.1573

So, in the case m ≤ n − 1 we have |Ik,m,p| ≤ Ck,m,p uniformly in τ0 ≤ γ−1. If1574

m = n (so k = p = 0) we use another estimate, following from (B.19):1575

|Ik,m,p| ≤ C
e−γ(τ0−l) − e−γ(l+τ0)

(1 − e−2γτ0)m+1
τm
0 =Cτm

0 e−γ(τ0−l) 1 − e−2γl

(1 − e−2γτ0)m+1
≤ Ck,m,p,1576

uniformly in τ0 ≤ γ−1.1577

We have seen that the product in (B.18) is bounded uniformly in �s, l and1578

τ0, so the integral over l is also bounded uniformly in �s and τ0.1579
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Appendix C. Proof of Proposition 2.11580

The proof uses the theory of Feynman diagrams, presented in Sect. 2. For1581

N = 0 the assertion is trivial. For N ≥ 1 in Proposition 8.7 of [8] it is proven1582

that E
(
a
(m)
s (τ1)ā

(n)
s (τ2) − a

(m)
s (τ1)ā

(n)
s (τ2)

)
equals to1583

∑

F∈F+
m,n\Fm,n

cF Js(F) +
∑

F∈Fm,n

cF J 2
s (F), (C.1)1584

where F+
m,n is a certain (finite) set of extended Feynman diagrams,13 cF is a1585

complex number of unit norm and Js(F), J 2
s (F) are sums, similar to (2.19).1586

In Section 8.6.3 of [8] are established the following bounds for these sums:1587

|J 2
s (F)| ≤ C#(s)L−Nd

∑

z∈Z+(F):

zj=0 for some j,

ωF
k (z)=0 ∀1≤k≤N

C#(z), (C.2)1588

where1589

Z+(F) =

{

z ∈ (Zd
L)N : zk �= 0 ⇔

N∑

i=1

αF
kizi �= 0 ∀1 ≤ k ≤ N

}

1590

while the quadratic forms ωF
k and the skew-symmetric matrix αF are defined1591

in Sect. 2.4. Note that possibly the diagram F does not belong to the set F true
m,n ,1592

so that the matrix αF may have zero columns and lines. On the other hand,1593

|Js(F)| ≤ C#(s)L−Nd
∑

z∈Z̃+(F):

ω̃F
k (z)=0 ∀1≤k≤Ñ

C#(z). (C.3)1594

Here Ñ = Ñ(F) < N , quadratic forms ω̃F
k (z) are defined by relations (2.17),1595

where N is replaced by Ñ and the matrix (αF
ij) – by a certain Ñ × Ñ -matrix1596

(α̃F
ji), also satisfying α̃F

ji = −α̃F
ij ∈ {0,±1} for all i, j. Accordingly the set1597

Z̃+(F) ⊂ (Zd
L)Ñ is defined as Z+(F) above, but with N and αF

ij replaced by1598

Ñ and α̃F
ij .1599

We first show that the term J 2
s (F) is bounded by the r.h.s. of (2.3). To1600

this end we write Z+(F) = ∪KZK, where the union is taken over all subsets1601

K ⊂ {1, . . . , N} and1602

ZK(F) =

{

z : zk =
N∑

i=1

αF
kizi = 0 ∀k ∈ K and zk �= 0,

N∑

i=1

αF
kizi �= 0 ∀k /∈ K

}

.1603

Then the r.h.s. of (C.2) takes the form1604

C#(s)L−Nd
∑

K�=∅

∑

z∈ZK(F):

ωF
k (z)=0 ∀1≤k≤N

C#(z). (C.4)1605

13These diagrams are defined similarly to the Feynman diagrams from Sect. 2.3.1, but now
we allow to couple leaves not only from different blocks but also from the same block.
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Note that on the set ZK(F) we have ωk(z) = 0 for all k ∈ K and ωk(z) =1606

2zk ·
∑

i/∈K αF
kizi for k /∈ K. Thus, the sum over z in (C.4) takes the form of1607

the sum in (3.2), where z = (zj)j /∈K and N is replaced by1608

N − κ, κ = #K.1609

We recall that N ≤ 4 and K �= ∅, so that N − κ takes values 0, 1, 2 or 3.1610

For the sets K satisfying N − κ = 0 we have ZK(F) = {0}, so the sum (C.3)1611

is bounded by C#(s)L−Nd. Since the matrix αF is skew-symmetric, then in1612

the case N − κ = 1 we have ZK(F) = ∅, so the sum (C.3) vanishes. When1613

N − κ = 2 or 3 we apply Theorem 3.2 and see that the sum over z in (C.4) is1614

bounded by CL−(N−κ)(1−d). So1615

|J 2
s (F)| ≤ C#(s)L−Nd

∑

K�=∅

L−(N−κ)(1−d) = C#(s)
∑

K�=∅

L−N+κ(1−d)

≤ C#
1 (s)L−N+1−d.

1616

Same argument implies that the r.h.s. of (C.3) also is bounded by the1617

quantity C#(s)L−N+1−d (note that decomposing the r.h.s. of (C.3) as in (C.4)1618

we get a new term with K = ∅, but for it N − κ = N ≤ 4 and Theorem 3.21619

still applies).1620

Appendix D. Case d = 21621

A difference between the cases d ≥ 3 and d = 2 comes from Theorem 3.11622

since in the asymptotic, given by the latter, an additional log-factor appears1623

when d = 2. To handle it we redefine the sum in (3.2), defining SL,N (Φ), by1624

multiplying it by (lnL)−N/2. So when d = 2 SL,N takes the form1625

SL,N (Φ) :=
LN(1−d)

(ln L)N/2

∑

z∈Z: ωj(z)=0 ∀j

Φ(z). (D.1)1626

Accordingly the (d = 2)-analogy of (3.5) reads1627

∣
∣
∣SL,2(Φ) − L2(1−d)

ln L

∑

z∈Z
2d
L : z1·z2=0

Φ(z)
∣
∣
∣ ≤ CL2−d

ln L
‖Φ‖0,d+1 =

C

ln L
‖Φ‖0,3.1628

(D.2)1629

This approximation, jointly with a modification of the Heath–Brown result1630

from [14], given in Theorem 1.4 of [10], implies the following version of Theo-1631

rem 3.1 for d = 2:1632

Theorem D.1. Let d = 2. Then there exist constants N1, N2 > 4 such that if1633

‖Φ‖N1,N2 < ∞,1634

∣
∣
∣
∣SL,2(Φ) − C2

∫

Σ0

Φ(z) μΣ0(dz1dz2)
∣
∣
∣
∣ ≤ K2

‖Φ‖N1,N2

ln L
, (D.3)1635

where C2 > 0 is a number-theoretical constant and K2 > 0.1636

Note that estimate (3.8) stays true when d = 2.1637
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Theorem D.2. In the case d = 2 assertion of Theorem 3.2 remains true, if the1638

sum SL,N is defined as in (D.1) and N2 is the constant from Theorem D.1.1639

Proof. The only difference with the proof of Theorem 3.2 comes from estimate1640

(3.18) since the latter is obtained by applying Theorem 3.1, and in the case1641

d = 2 we should apply Theorem D.1 instead. Namely, now the r.h.s. of (3.18)1642

takes the form CL2(d−1) ln L
[
R2d + RN2(ln L)−1

]
≤ C ′RN2L2(d−1) lnL. Since1643

Lemma 3.6 remains unchanged, then for d = 2 the r.h.s. of estimate (3.20),1644

which holds for irreducible matrices α, should be multiplied by lnL. In the case1645

of reducible matrix α we apply the latter estimate to each irreducible block,1646

which gives the factor (ln L)
N/2� in the r.h.s. of (3.12), since the number of1647

blocks does not exceed �N/2�. However, the final estimate of Theorem 3.21648

remains unchanged because of the factor (ln L)−N/2 in the definition (D.1) of1649

the sum SL,N . �1650

Since in the case d = 2 we choose ρ = εL/
√

ln L, then the terms n
(k)
s,L are1651

given by formula (4.4), multiplied by (lnL)−k/2. The proof of Proposition 2.11652

is analogous to that presented in Appendix C for d = 2. The only difference1653

being the use of Theorem D.2 in place of Theorem 3.2. Lemma 2.2 remains1654

unchanged, so the correlations Lk(ln L)−k/2
Ea

(m)
s ā

(n)
s (τ2), m + n = k, are1655

given by formula (2.18), multiplied by (lnL)−k/2 (recall that the sum of these1656

correlations makes n
(k)
s,L). We see that the correlations take the form (D.1), so1657

Theorems D.1 and D.2 apply to study them.1658

The rest of the proof of Theorem 5.8 literally repeats that for the case1659

d ≥ 3, except the appearance of the (ln L)−k/2 factors, coming from the new1660

definition of ρ. Now the estimates, using Theorem 3.1, should be relaxed since1661

the estimate provided by Theorem D.1 is slightly weaker than that of Theo-1662

rem 3.1. In particular, in the r.h.s. of (4.8), (4.11) and (4.12) the factor L−1/2
1663

should be replaced by (lnL)−1. This results in the stronger lower bound for L1664

in Theorem 5.8: now it is L ≥ eε−1
instead of L ≥ ε−2 (see Theorem A).1665

Theorem 5.9, as Theorem 5.8, remains unchanged, except the lower bound1666

for L which is modified as above. Indeed, the theorem follows from Theorem 5.81667

and Proposition 2.1, and the term χ2(L)−N+1 = (lnL)(N−1)/2, appearing in1668

estimate (2.3) for d = 2 does not change the assertion of Theorem 5.8.1669

D.1. Discussion of Remark 1.21670

In fact, Theorem 1.4 from [10] provides more delicate information about SL,21671

than what is stated in Theorem D.1. Namely, if d = 2 then due to [10],1672

∣
∣
∣
∣
∣
L2(1−d)

ln L

∑

z: z1·z2=0

Φ(z) − C2

∫

Σ0

Φ(z) μΣ0(dz1dz2) − σΦ
1 (L)
ln L

∣
∣
∣
∣
∣
≤ C

‖Φ‖N1,N2

L1/6
,1673

where σΦ
1 is a certain function satisfying |σΦ

1 (L)| ≤ C1‖Φ‖N1,N2 , uniformly in1674

L. See [10] for an explicit (but complicated) formula for σΦ
1 . Consequently,1675

∣
∣
∣
∣SL,2(Φ) − C2

∫

Σ0

Φ(z) μΣ0(dz1dz2) − σ̃Φ
1 (L)
ln L

∣
∣
∣
∣ ≤ C

‖Φ‖N1,N2

L1/6
,1676
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where1677

σ̃Φ
1 (L) := σΦ

1 (L) − L2(1−d)
∑

z: z1=0 or z2=0

Φ(z)1678

still satisfies |σ̃Φ
1 (L)| ≤ C‖Φ‖N1,N2 in view of (D.2). Then estimate (4.12)1679

refines as1680

∣
∣
∣n≤2

s − ns,L − f(τ, L)
ln L

∣
∣
∣ ≤ C#(s)ε2(L−1/6 + ε), (D.4)1681

where f(τ, L) := σ̃
Φ(τ)
1 (L) and Φ(τ) is the function satisfying n≤2

s,L(τ) =1682

SL,2(Φ(τ)) that comes from Corollary 2.3. By (2.22) and the estimate for σ̃Φ
11683

above, the function f(τ, L) is bounded uniformly in τ . The rest of the proofs1684

of Theorems 5.8 and 5.9 remain unchanged while the estimate (D.4) leads to1685

the assertion of the remark.1686
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