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ABSTRACT Recently immersed boundary method inspired
physics-informed neural networks (PINNs) including the
moving boundary-enabled PINNs (MB-PINNs) have shown
the ability to accurately reconstruct velocity and recover
pressure as a hidden variable for unsteady flow past moving
bodies. Considering flow past a plunging foil, MB-PINNs
were trained with global physics loss relaxation and also in
conjunction with a physics-based undersampling method,
obtaining good accuracy. The purpose of this study was to
investigate which input spatial subdomain contributes to
the training under the effect of physics loss relaxation and
physics-based undersampling. In the context of MB-PINNs
training, three spatial zones: the moving body, wake, and
outer zones were defined. To quantify which spatial zone
drives the training, two novel metrics are computed from the
zonal loss component gradient statistics and the proportion
of sample points in each zone. Results confirm that the
learning indeed depends on the combined effect of the zonal
loss component gradients and the proportion of points in
each zone. Moreover, the dominant input zones are also the
ones that have the strongest solution gradients in some sense.

Keywords: Immersed boundaries, Physics informed
neural networks, surrogate modeling, unsteady flows,
plunging foil

I. INTRODUCTION
Physics-informed neural networks have become promis-

ing for their use in solving complex inverse problems such
as hidden physics recovery, data-driven equations discov-
ery, uncertainty quantification, Plain vanilla PINNs ([1]
are however difficult to train when the systems exhibit
strong spatiotemporal gradients. Hence, recently, authors
have proposed different strategies to train PINNs better,
such as adaptive sampling, modified architectures, static and
dynamic loss weighting.

Surrogate modeling of unsteady flow past moving bound-
aries such as flapping wings become challenging if the
underlying high-fidelity simulation data used for such
an endeavour is obtained using the immersed boundary
method [2], [3]. This is because, IBM uses a fixed Eulerian
background grid for the fluid, whereas the solid boundary
is described by a set of Lagrangian markers. At any time

instant, there exist eulerian grid cells bounded by the solid
boundary which consists of fictitious flow field data.

Flows past flapping wings are often characterized by
strong flow-field gradients which makes it challenging for
PINNs to train. Hence, in a recent work, a moving boundary
enabled PINNs (MB-PINNs) [4] inspired by the IBM was
proposed, where a fixed Eulerian grid for the fluid domain
was considered discarding the solid region points a any
given time and the no-slip boundary condition was enforced
directly on the Lagrangian markers unlike in discrete forcing
IBM [5]. A combination of global physics loss relaxation
and vorticity cutoff based under sampling was shown to
improve data efficiency while maintaining good accuracy in
velocity reconstruction and simultaneous pressure recovery
as a hidden variable.

Since loss component weighting improves the loss bal-
ancing globally as reported in [6], it would be worthwhile
to investigate if there exist local imbalances in the spatial
domains of interest. This would also in a way determine
which spatial region drives the training. One way of un-
derstanding how PINNs train is to look into the layer-
wise loss component gradients as in [6] to understand
the effect of competing objectives on the training. While
these gradients are often visualized for an entire full batch
setting, it is not visualized however in a localized context to
understand the contributions from respective spatiotemporal
zones. Visualizing the layer-wise gradients obtained for the
loss components over specific spatiotemporal zones would
highlight any imbalances in the gradient updates and also
validate the need for localized weighting strategies further
like in the self-adaptive weighting or residual-based attention
approaches [7], [8].

Hence, the current study’s objectives are to investigate
how loss contributions spatially are affected by physics loss
relaxation combined with a physics-based undersampling
and devise metrics to quantify which spatial zone drives
the training of the network. As an example, the flow past
a plunging airfoil at a low Reynolds number is considered
following [4]. From [4], three MB-PINN cases are consid-
ered with one being a baseline without any loss weighting or
under-sampling and the other two with loss relaxation and
undersampling.

The outline of the paper is as follows. The methodology
of MB-PINNs and understanding the loss component gradi-
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ents is presented in section II. The numerical experiments
and results are discussed in section III and finally the
conclusions are presented in section IV.

II. METHODOLOGY
In this section, the problem setup, MB-PINN formula-

tion, zonal splitting of loss component gradients, and metrics
to quantify the zonal imbalances and determine the spatial
zone driving the training will be discussed.

A. The plunging foil system
In the present study, incompressible unsteady flow past

a harmonically plunging elliptic foil is considered as an
example. The flow around the foil is governed by the two-
dimensional incompressible Navier-Stokes equations

∂tû+ û.∇(û) = −∇p̂+
1

Re
∇2û, and (1)

∇.û = 0, (2)

where Re is the Reynolds number, and û, p̂ are velocity and
pressure fields satisfying the boundary conditions as shown
in the problem setup schematic in Fig. 1, respectively. On the
moving boundary ΓIB especially, a no-slip boundary condi-
tion dependent on the plunging kinematics is to be satisfied.
Here, the plunging kinematics is modeled as follows

y(t) = h0 cos(ωht), and (3)
ẏ(t) = −ωhh0 sin(ωht), (4)

where t, h0 and ωh are dimensional time, the plunging
amplitude and frequency, respectively. The non-dimensional
amplitude h = h0/c and reduced frequency k = ωhc/U∞
are defined aligning with literature [9], [10], where, U∞ = 1
is the free stream velocity and c = 1 is the chord length of
the foil.

In the present study, the example from [4] with Re =
500, k = 2π and h = 0.16 is chosen aligning with [10] for
gradient-based analysis. The training data has been generated
using a discrete forcing IBM-based unsteady flow solver [5]
where, additional momentum forcing (f ) and source/sink (q)
terms are added to Eqs. (1) and (2), respectively to satisfy
the no-slip boundary condition.

B. Moving boundary enabled PINNs (MB-PINNs)
Inspired by the immersed boundary method, an immersed

boundary aware framework using PINNs for surrogate mod-
eling of unsteady flows past moving boundaries was explored
by Sundar et al. [4]. A truncated spatial domain excluding
solid region points Ωr

f was chosen as shown in Fig. 1
to train the moving boundary enabled PINN(MB-PINN)
models in [4]. It was shown that the MB-PINN (see Fig. 2)
was efficacious against solving velocity reconstruction and
simultaneous pressure recovery given IBM data. A feed
forward neural network with Swish activation as a backbone
was used in [4] to map the spatio-temporal coordinates to
the corresponding velocity and pressure predictions. The loss
function L can be written as follows

L = λBulkLBulk + λBCLBC + λICLIC

+ λIBLIB + λPhyLPhy. (5)

Figure 1: Problem setup (Image adapted from Sundar
et al.) [4].

Here, L# with the subscripts # = {Bulk, BC, IC, IB, Phy}
denote the loss contributions from mean squared errors
in interior bulk velocity data, boundary condition, initial
conditions, no-slip boundary condition on the immersed
boundary and the physics constraints, respectively and λ#

denotes the corresponding loss weights. Here, the boundary
conditions include Dirichlet values at the inlet, upper and
lower boundaries of the truncated computational domain Ωr

f
(see Fig. 1).

Throughout the study, λBulk = λBC = λIC = λIB =
1, and the physics loss alone is relaxed. In addition to
physics loss relaxation, a vorticity cutoff based sampling
was proposed in [4]. Here, a vorticity cutoff |ω∗

z |, is
chosen and all those fluid data points retained such that
|ωz|≥ |ω∗

z |. Then based on a percentage sampling ratio

Sωz =
Nsample

|ωz|<|ω∗
z |

N|ωz|<|ω∗
z |

× 100, the remaining fluid points are

undersampled.
Considering KMB mini batches of the data, the network

weights and biases together represented by θ are updated
using the back propagated loss component gradients as
follows

θi+1 = θi − ηi
1

NMB

(i+1)NMB∑
i′=iNMB+1

(
λBulk∇θLi′

Bulk

+ λBC∇θLi′

BC + λIB∇θLi′

IB

+ λIC∇θLi′

IC + λPhy∇θLi′

Phy

)
, (6)

where ηi is the learning rate corresponding to ith iteration
and each epoch corresponds to KMB = Ntrain/NMB

iterations. Here, the MB-PINN models were trained using
the stochastic gradient descent based optimisation algorithm
ADAM [11]. Unless otherwise specified, a mini-batch size
of NMB = 1500 was chosen with a learning rate step decay
lr = [1e − 03, 53 − 04, 1e − 04] where each learning rate
step consisted of 5e05 training iterations.

The loss components LIB ,LBC don’t depend on the
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interior spatial coordinates, and LIC considers a data snap-
shot only at t/T = 0. They play an important role in
ensuring the hidden variables are recovered appropriately
[12], [13]. However, LBulk and LPhy are computed from
spatial coordinates interior to Ωr

f . Given that spatially, there
are zones where strong, weak or no vortices exist, it would
thus be interesting to investigate the contributions from
different spatial regions internally in the domain.

C. Zonal splitting of layer-wise gradients
While global loss weighting improves training and

achieves global loss component balancing, that might not
be the case locally. This could be due to varied contribu-
tions from each spatial region leading to different effective
learning rates in each spatial region. To analyse this, once the
MB-PINNs are trained or even at any intermediate learning
stage, the layer-wise gradients can be computed overall for
samples over the entire domain and for points sampled from
select spatial zones. In the present study, three spatial zones
are defined (see Fig. 3), namely, the moving body zone (
Z1 ⊂ Ωr

f such that −1 < x < 1 and − 0.5 < y < 0.5 ),
the wake zone (Z2 ⊂ Ωr

f such that 1 < x and − 0.5 <
y < 0.5 ), and the outer zone ( Z3 ⊂ Ωr

f such that
Z3 = Ωr

f −Z1∪Z2). Note that the overall spatial domain is
Ωr

f which is Ωr = [−1c, 3.5c] × [−1c, 1c]) minus the solid
region points at any time t ∈ [0, 2]. Also note that, zonal
splitting is not carried out in temporal domain.

Given training velocity data û at these spatial coordinates
across all time, the components LBulk and LPhy in Eq. 5
can hence be split into contributions from respective spatial-
zones as follows

LBulk =
1

NMB

( 3∑
i=1

(NZi∑
j=1

∥uj − ûj∥2
))

(7)

=

( 3∑
i=1

(
NZi

NMB

NZi∑
j=1

∥uj − ûj∥2

NZi

))
(8)

=

( 3∑
i=1

(
pZi

NZi∑
j=1

∥uj − ûj∥2

NZi

))
(9)

=

( 3∑
i=1

(
pZiLZi

Bulk

))
(10)

It is seen that LBulk is a weighted sum of zonal mean
squared errors where pZi for i = 1, 2, 3 is the proportion of
sample points from zone Zi with respect to the overall mini-
batch sample. Similarly, LPhy can be split into respective
contributions from the spatial zones as follows

LPhy =

( 3∑
i=1

(
pZi

NZi∑
j=1

∥r(uj)∥
NZi

))
(11)

The above expressions can be simplified as

L∗ =

( 3∑
i=1

(
pZiLZi

∗

))
(12)

for ∗ = {Bulk, Phy}. Now the gradient vector ∇θL∗
required to be computed at every training iteration to update
the network parameters can be further expressed in terms of
the zonal contributions as

∇θL∗ =

( 3∑
i=1

(
pZi∇θLZi

∗

))
. (13)

The above zonal splitting further indicates that in addi-
tion to loss component weighting, the data and collocation
points sampling can modify the contributions from spatial
zones or even spatio-temporal zones of interest. Hence,
the zonal contributions can’t be investigated independent of
the sample proportions as the overall loss gradient is the
weighted sum of the gradients obtained over each zone.

D. Metrics to diagnose zonal imbalances
Visualising and comparing the distribution of layerwise

loss component gradients often sheds light on the extent
of balance between the components [6] globally or locally.
In addition, as seen previously, since gradient updates also
depend on the proportion of zone specific coordinates with
respect to the overall sample pZ#, this has to be weighed
in while quantifying the relative contributions from each
spatial zone. To quantify which zone drives the training for
components L∗ with ∗ = {Bulk, Phy}, the following zonal
proportion weighted relative gradient statistics based metrics
are thus computed

µZi
∗ = pZi

|∇θLZi
∗ |

|∇θL∗|
(14)

σZi
∗ = pZi

std{|∇θLZi
∗ |}

std{|∇θL∗|}
. (15)

Once MB-PINNs are trained, the mean and standard devi-
ation of the gradient magnitudes |∇θL∗|, std{|∇θL∗|} are
computed over the network parameters for a mini-batch
sample from the entire spatio-temporal domain and also for
samples from respective spatial zones. The metrics µZi

∗ , σZi
∗

for i = {Z1, Z2, Z3}, and ∗ = {Bulk, Phy} are then
computed.

III. RESULTS AND DISCUSSION
In the present study, three MB-PINN test cases from [4]

are considered for analysis; a model without any physics loss
relaxation or under sampling (case 1), a model with physics
loss relaxation alone (case 2), and a model with both physics
loss relaxation and vorticity cutoff based undersampling
(case 3). The true and predicted velocity x-component,
associated point-wise errors, and vorticity contours for these
cases are presented in Fig. 4 where the errors are prominent
in zone Z1 and Z2 for case 1 but they almost vanish for
cases 2 and 3 (see Figs. 4(c-e)). The accuracy details are also
presented in Table 3. To further understand which spatial
zones in the flow contribute to the training and determine
if there exist spatial imbalances, the loss component wise
gradient distributions are analysed. The metrics µZi

∗ and σZi
∗

for i = 1, 2, 3 and ∗ = {Bulk, Phy} described in Eqs. (14)
and (15) are presented in Table 4 for all the test cases
discussed below.
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Figure 2: MB-PINN schematic

Figure 3: Spatial grids of (a) CI and (b) CI-S5 data sets
and the corresponding (c-d) zonal splitting of the grids
into Z1- moving body, Z2 - wake and Z3 - outer zones,
respectively

Table 1: Training and testing data set resolution within
the truncated domain considered in this study. Ref-IBM
and Ref-ALE are the high resolution testing data-sets
generated using a IBM and an ALE solver, respectively.
Further details about the ’Ref-*’ data-sets can be found
in [4].

Data sets Nx Ny Nt ∆t/T (Nx×Ny ×Nt)
CI 270 120 41 0.05 1.3284e06

CI-S5 - - - 0.05 2.648e05
Ref-IBM 651 500 81 0.025 2.6365e07
Ref-ALE - - 81 0.025 4.05e06

A. Case 1: Baseline (λPhy = 1)
It is observed that the first and last layer gradient

distributions overall (see Figs. 5(a)and 5(d)) indicate an
imbalance in contributions more prominent in the first layer.
The ∇θLPhy distributions across all zones are at least one
order higher than that of ∇θLBulk (see Figs. 6(a)and 6(d)

Table 2: Training data-sets and associated proportion
pZi of data points from each spatial zone Zi with i =
1, 2, and 3 for a mini-batch sample at1e06 iterations.

Data set NBulk pZ1 pZ2 pZ3

CI 1.2915e06 2.175e-01 2.857e-01 4.967e-01
CI-S5 2.6481e05 2.936e-01 5.841e-01 1.223e-01

Table 3: Accuracy of MB-PINN for different relaxation
coefficients evaluated on Ref-IBM and Ref-ALE datasets.
Best performing models are highlighted in bold-faced
fonts.

Test case λfluid Sωz
(in %) aMAE arRMSE (in %)

Case 1 1 100 1.37e-01 22.96
Case 2 0.001 100 2.07e-02 3.22
Case 3 0.01 5 2.25e-02 3.22

and Figs. 7(a)and 7(d), respectively). Although the gradients
have a higher µ and σ (subscripts dropped for simplicity) in
Z1 (see Table 4) the gradients for the overall domain Ωf

still receive significant contributions from Z2 and Z3 (see
Fig. 6(a) and 6(d)) since pZ1 < pZ2 < pZ3.

B. Case 2: With physics loss relaxation (λPhy = 0.001)
With global physics loss relaxation, the MB-PINN model

trained on the CI dataset was reported to be optimal for
λPhy = 0.001. It is seen that the gradient magnitudes
are much lower than that of the baseline case indicating
some sort of vanishing gradient problem (see Figs. 5(b)and
5(e)). Even though the gradient magnitudes are very low,
the loss component gradients are relatively well balanced
across all the zones unlike in case 1 (see Figs. 6(b)and 6(e),
and Figs. 7(b)and 7(e), respectively). Here, as seen in the
Table 4, ∇θLBulk is dominated by contributions from Z2,
while ∇θLPhy receives most of its contributions from Z1.
In spite of the good accuracy, it is seen that the gradients
almost vanish in the last layer as opposed to the first layer.

C. Case 3: With global physics loss relaxation and vortic-
ity cutoff based under sampling (λPhy = 0.01, Sωz

= 5%)
Combining the physics loss relaxation with a physics

based vorticity cutoff sampling was identified as a useful
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Figure 4: Comparison of (a-b) true and (c-e) MB-PINN
predicted velocity x-component, corresponding point-
wise maximum value normalised absolute errors and
vorticity contours at t/T = 1.0.

strategy in [4] to reduce the data requirement while still
obtaining similar accuracy as in case 2 (see Table 3). It is
observed that in case 3 the magnitudes of ∇θLBulk and
∇θLPhy are higher and they don’t vanish unlike in case
2 (see Figs. 5(c) and 5(f)). In a way, since vorticity cutoff
based under sampling retains more data points only in those
regions with strong gradients, it is possible that this prevents
the gradients from vanishing. Unlike Case 1 and Case 2, due
to selective under sampling, pZ3 < pZ1 < pZ2 which in turn
affects the gradient back propagation. As a result, in Table 4
it is seen that ∇θLBulk and ∇θLPhy are both dominated
by contributions from Z1 followed by that from Z2. The
first and last layer gradient distributions as well indicate
that across all zones, the gradients are balanced with Z1
driving the training as seen by the gradient distrbutions on
Ωf following Z1.

IV. CONCLUSIONS
In this paper, to understand the training of MB-PINNs

for flow past a plunging foil, a novel zonal splitting method-
ology and gradient statistics-based metrics were proposed to
analyze spatial imbalances in loss component contributions.
Three zones consisting of the moving body, the wake and
the outer far-field were considered. Three test cases from
[4] were considered for analysis with and without physics
loss relaxation and vorticity cutoff based under-sampling.
The analysis confirmed the existence of zonal imbalances
and also determined which zone dictated training. In the
test case with the relaxation of the physics loss alone, the

Table 4: Zonal relative gradient statistics across test
cases. Dominant zones are highlighted in bold.

Zone µZ#
Bulk σZ#

Bulk µZ#
Phy σZ#

Phy

Case 1: λPhy = 1
Z1 7.932e-01 7.466e-01 1.256 2.153
Z2 2.179e-01 2.669e-01 1.292e-01 1.368e-01
Z3 2.292e-01 2.459e-01 6.503e-02 5.801e-02

Case 2: λPhy = 0.001
Z1 3.207e-01 4.769e-01 5.565e-01 5.608e-01
Z2 7.552e-01 8.477e-01 6.906e-02 5.608e-02
Z3 1.297e-01 1.676e-01 9.610e-3 5.823e-03

Case 3: λPhy = 0.01, Sωz = 5%
Z1 7.054e-01 1.194 4.929 7.555
Z2 4.872e-01 4.392e-01 1.359e-01 1.073e-01
Z3 7.959e-03 5.917e-03 1.432e-03 7.506e-04

Figure 5: First layer (top row) and last layer (bottom
row) ∇θLBulk and ∇θLPhy distributions obtained after
1e06 training iterations for (a,d) Case 1: λPhy = 1, (b,e)
Case 2: λPhy = 0.001 and Sωz = 100% and (c,f) Case 3:
λPhy = 0.01 and Sωz = 5%.

wake zone dominated the gradient updates coming from the
loss of data. Whereas, the moving body zone dominated
the updates from physics loss. However, for the test case
with both physics loss relaxation and physics-based under-
sampling, the moving body zone dominated the gradient
updates for both the loss components. It was also observed
that a vorticity cutoff based under-sampling alleviates the
problem of vanishing gradients as opposed to the case
of no under-sampling, further validating the importance
of selective physics-based sampling. It is envisioned that
quantifying the imbalanced contribution from spatial or even
more generally input subdomains would enable the design of
effective loss component weighting strategies. This approach
can be extended effectively for other problems as well to
evaluate imbalances in contributions from the input sub-
domains of interest. Moreover, being agnostic to the model
architecture, this approach can be applied to physics-based
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Figure 6: First layer ∇θLBulk (top row) and ∇θLPhy

(bottom row) distributions obtained after 1e06 training
iterations for (a,d) Case 1: λPhy = 1, (b,e) Case 2:
λPhy = 0.001 and Sωz = 100% and (c,f) Case 3:
λPhy = 0.01 and Sωz = 5%.

Figure 7: Comparison of last layer ∇θLBulk (top row)
and ∇θLPhy (bottom row) distributions obtained after
1e06 training iterations for (a,d) Case 1: λPhy = 1, (b,e)
Case 2: λPhy = 0.001 and Sωz

= 100% and (c,f) Case 3:
λPhy = 0.01 and Sωz = 5%.

or even purely data-driven methods to determine which input
subdomain plays a relatively active role in training.
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NOMENCLATURE

Re Reynolds number
L Loss function
λ# Individual loss component weights
Z Moving body zone
Z2 Wake zone
Z3 Outer zone

µZi
∗

Zonal (Zi) proportion weighted
relative mean gradient magnitudes

of loss components (*)

σZi
∗

Zonal(Zi) proportion weighted
relative standard deviation

of gradient magnitudes of loss components (*)
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