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FORMAL EXPANSIONS IN STOCHASTIC MODEL FOR

WAVE TURBULENCE 2: METHOD OF DIAGRAM

DECOMPOSITION

ANDREY DYMOV AND SERGEI KUKSIN

Abstract. In this paper we continue to study small amplitude solu-
tions of the damped cubic NLS equation, driven by a random force (the
study was initiated in our previous work [9] and continued in [11]). We
write solutions of the equation as formal series in the amplitude and dis-
cuss the behaviour of this series under the wave turbulence limit, when
the amplitude goes to zero, while the space-period goes to infinity.

1. Introduction and results

We continue the study of the nonlinear cubic Shrödinger equation (NLS)
on a torus of large period, dumped by a viscosity and driven by a random
force, initiated in our papers [9, 11]. Results of this work are crucially used
in [9,11] and are of independent interest for further study of wave turbulence
(WT) in the equation which we consider and in similar ones. In particular,
our approach applies to the NLS equations with higher order nonlinearities.

Below we recall the setup, state the main theorem and then discuss its
relevance for works [9,11] and for the theory of WT. The theorem’s proof is
outlined in Section 2 and is given in details in Sections 3-7. In Section 8 we
establish some lemmas, used in the proof, and discuss a number of related
results.

For a general theory of wave turbulence we refer to works [20,21,23], and
for an additional discussion of the relevance of our results for WT – to the
introduction in [9].

1.1. The setting. Let TdL = Rd/(LZd) be a d-dimensional torus, d ≥ 1,
of period L ≥ 1. We denote by ∥u∥ the normalized L2-norm of a complex

function u on TdL, ∥u∥2
= L

−d ∫TdL ∣u(x)∣2 dx , and write the Fourier series

of u as 1

(1.1) u(x) = L−d/2∑
s∈ZdL

vse
2πis⋅x

, ZdL = L
−1Zd .

1 The scaling factor L
−d/2

is convenient for our calculations.

1
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Here the vector of Fourier coefficients v = (vs)s∈ZdL is given by the Fourier

transform of u(x),

v = F(u), vs = L
−d/2 ∫

TdL
u(x)e−2πis⋅x

dx for s ∈ ZdL.

The Parseval identity reeds ∥u∥2
= L

−d∑s∈ZdL
∣vs∣2. We will study solutions

u(t, x) whose norms satisfy ∥u(t, ⋅)∥ ∼ 1 as L→∞.
Our goal is to study the cubic NLS equation with modified nonlinearity

(1.2)
∂

∂t
u + i∆u − iλ (∣u∣2 − 2∥u∥2)u = 0, x ∈ TdL,

where u = u(t, x), ∆ = (2π)−2∑d
j=1(∂

2/∂x2
j) and λ ∈ (0, 1] is a small

parameter. The modification of the nonlinearity by the term 2iλ∥u∥2
u

keeps the main features of the standard cubic NLS equation, reducing some
non-crucial technicalities, see the introduction to [9] for a detailed discussion.

The objective of WT is to study solutions of (1.2) under the wave turbu-
lence limit L→∞ and λ→ 0 on long time intervals, usually while ”pumping
the energy to low modes and dissipating it in high modes”. To make this
rigorous, following Zakharov-L’vov [22], we consider the NLS equation (1.2)
dumped by a (hyper) viscosity and driven by a random force:

(1.3)
∂

∂t
u + i∆u − iλ (∣u∣2 − 2∥u∥2)u = −νA(u) +

√
ν
∂

∂t
η
ω(t, x).

Here ν ∈ (0, 1/2] is a small parameter and A is the dissipative linear operator

(1.4) A(u(x)) = L−d/2∑
s∈ZdL

γsvse
2πis⋅x

, v = F(u), γs = γ
0(∣s∣2).

The real function γ
0(y) ≥ 1 is smooth and has at most a polynomial growth

at infinity, together with all its derivatives. 2 The random noise η
ω

is given
by the Fourier series

η
ω(t, x) = L−d/2∑

s∈ZdL
b(s)βωs (t)e2πis⋅x

,

where {βs(t), s ∈ ZdL} are standard independent complex Wiener processes 3

and b(x) is a Schwartz function on Rd ⊃ ZdL. 4 If the function γ
0(y) grows

at infinity as ∣y∣r∗ with r∗ sufficiently big, then eq. (1.3) is well posed. In
difference with [9,11], where we assumed d ≥ 2, in this work we allow d = 1

and impose less restrictions on the function γ
0
.

2For example A = (1 −∆)r
∗

for some r
∗
≥ 0.

3 i.e. βs = β
1
s + iβ

2
s , where {βjs , s ∈ ZdL, j = 1, 2} are standard independent real Wiener

processes.
4Often it is assumed that the intensity b(x) of the noise η

ω
is non-negative, but we do

not impose this condition. Still note that if b(x) ≡ 0, then our results become trivial since
below we will provide (1.3) with the zero initial conditions.
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We will study the equation on time intervals of order ν
−1

, so it is con-
venient to pass from t to the slow time τ = νt. Then eq. (1.3) takes the
form

u̇ + iν
−1

∆u − iρ (∣u∣2 − 2∥u∥2)u = −A(u) + η̇ω(τ, x),
η
ω(τ, x) = L−d/2∑

s∈ZdL
b(s)βωs (τ)e2πis⋅x

,
(1.5)

where ρ = λν
−1

, the upper-dot stands for d/dτ and {βs(τ), s ∈ ZdL} is
another set of standard independent complex Wiener processes. Below we
use ρ, ν and L as the parameters of the equation.

In the context of eq. (1.5), the objective of WT is to study its solutions
u when

(1.6) L→∞ and ν → 0,

as well as main characteristics of the solutions such as the energy spectrum

(1.7) ns(τ) ∶= E∣vs(τ)∣2, s ∈ ZdL, where v = F(u).
In [9,11] and in this paper we study formal decompositions in ρ of solutions
to eq. (1.5), regarding ρ as an independent parameter, and those of the
energy spectrum ns. In Section 1.3, where we present the results of [9]

and [11], we assume that ρ ∼ ν
−1/2

or ρ ∼ L correspondingly, since due
to [9] and [11] exactly under these scalings the quadratic in ρ part of the
decomposition of the energy spectrum has a non-trivial behaviour under the
limit (1.6), taken in the regimes, considered in [9] and [11].

1.2. The result. Let us take the Fourier transform of eq. (1.5):

(1.8)

v̇s − iν
−1∣s∣2vs + γsvs = iρL−d(∑s1,s2,s3∈ZdL

δ
′12
3s vs1vs2 v̄s3 − ∣vs∣2vs)+ b(s)β̇s ,

s ∈ ZdL, where ∣s∣ stands for the Euclidean norm of a vector s and

(1.9) δ
′12
3s = δ

′s1s2
s3s = { 1, if s1 + s2 = s3 + s and {s1, s2} ≠ {s3, s} ,

0, otherwise.

Note that

(1.10) if δ
′12
3s = 1, then {s1, s2} ∩ {s3, s} /= ∅.

In view of the factor δ
′12
3s, in the sum in (1.8) the variable s3 is a function of

s1, s2, s. That is why below we write the sum as

∑
s1,s2,s3∈ZdL

δ
′12
3s =∶∑s1

∑
s2
δ
′12
3s.

We fix 0 ≤ T ≤ +∞ and study equation (1.5)=(1.8) with zero initial condi-
tion at τ = −T , so

(1.11) vs(−T ) = 0 for all s ∈ ZdL.
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Let us write solutions of (1.8), (1.11) as formal series in ρ: 5

(1.12) vs =
∞

∑
i=0

ρ
i
v
(i)
s , v

(i)
s (−T ) = 0,

where v
(i)
s = v

(i)
s (τ ; ν, L). The processes v

(0)
s satisfy the linear equations

(1.13) v̇
(0)
s (τ)− iν−1∣s∣2v(0)s (τ)+ γsv(0)s (τ) = b(s)β̇s(τ), v

(0)
s (−T ) = 0,

so these are independent Gaussian processes. The linear in ρ term v
(1)
s

satisfies
(1.14)

v̇
(1)
s − iν

−1∣s∣2v(1)s + γsv
(1)
s = iL

−d(∑
s1,s2,s3

δ
′12
3s v

(0)
s1 v

(0)
s2 v̄

(0)
s3 − ∣v(0)s ∣2v(0)s ),

and v
(1)
s (−T ) = 0. Other terms v

(n)
s can be found recursively in a similar

way.
Our goal is to study correlations of the terms of series (1.12) under the

limit (1.6). Repeating the argument of Lemma 2.3 from [9] it is straight-

forward to show that Ev(m)
s (τ1)v

(n)
s′

(τ2) = 0 for any s, s
′
∈ ZdL and that

Ev(m)
s (τ1)v̄

(n)
s′

(τ2) = 0 for s ≠ s
′
. Our main result, given below in The-

orem 1.1, establishes upper bounds for the correlations with s = s
′
. Its

particular case is crucially used in [9], see below in Section 1.3. Our second
main result is Theorems 5.7, 5.9, which are steps in the proof of Theorem 1.1.
There we develop an instrumental representation of the correlations above
in a form of explicit sums, convenient for further analysis. This result is
crucially used in [11].

To state Theorem 1.1 we use the function

(1.15) χ
N
d (ν) = { − ln ν if (N, d) = (3, 2) or (2, 1)

1 otherwise

(we recall that 0 < ν ≤ 1/2). For an x ∈ R we denote ⌈x⌉ = min{n ∈ Z ∶

n ≥ x}; and denote by C
#(⋅) various positive continuous functions on Rk,

k ∈ N, fast decaying at infinity:

(1.16) C
#(x) ≤ cn (1 + ∣x∣)−n ∀x ∈ Rk,

for every n ∈ N, with a suitable constant cn > 0.

Theorem 1.1. Assume that d ≥ 2. Then for any integers m,n ≥ 0 there

exists a function C
#

such that for each s ∈ ZdL and τ1, τ2 ≥ −T we have

(1.17) ∣Ev(m)
s (τ1)v̄(n)s (τ2)∣ ≤ C#(s)(ν−2

L
−2
+ ν

min(⌈N/2⌉,d)
χ
N
d (ν)),

5As we mentioned above, in paper [9] we choose ρ ∼ ν
−1/2

to be large. However, the

first d coefficients v
(i)
s of series (1.12) are in fact of order ≲ ν

i/2
and we expect that the

others also satisfy this estimate, see in Section 1.4. So there is a hope that the series
converges. A similar situation takes place in paper [11], where we assume ρ ∼ L.
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where N = m + n. For d = 1 the assertion above remains true if we modify

the r.h.s. of (1.17) by adding the term C
#(s)L−1

.

In our work [9] estimate (1.17) (with d ≥ 2) is used in the situation when

ν
−2
L
−2
≤ ν

min(⌈N/2⌉,d)
– then it implies that E∣v(m)

s (τ)∣2 ≤ C#(s)νmin(m,d)
,

uniformly in L. The above restriction on the parameters well agrees with a
postulate, usually accepted by the WT community, that in (1.6) L should
go fast to infinity when ν → 0.

To prove the theorem we approximate, with accuracy ν
−2
L
−2

, the ex-

pectation Ev(m)
s v̄

(n)
s by a finite sum of integrals, independent from L and

parametrized by a suitable class Fm,n of Feynman diagrams (the cardinality
of the set Fm,n grows factorially with m+ n). Next we study the behaviour
of each integral as ν ≪ 1. To this end, in Section 5, for every diagram F we
find a special coordinate system such that in these coordinates the integral,
corresponding to F, has the simple explicit form:

(1.18) J̃s(τ1, τ2;F) = ∫
RN

dl∫
RdN

dz F
F
s (τ1, τ2; l, z)eiν

−1
Ω

F(l,z)

with explicit functions Ω
F

and F
F
s , see Theorem 5.9. Here the phase function

Ω
F

is a real quadratic form in z (usually degenerate) which linearly depends

on l. The density function F
F
s is Schwartz in (s, z), while as a function of l

it is piecewise smooth and fast decays as ∣l∣ →∞. Then in Sections 6 and
7 we show that

∣J̃s(F)∣ ≤ C#(s)νmin(⌈N/2⌉,d)
χ
N
d (ν) ∀F,

which implies (1.17). More precisely, there we prove abstract Theorem 6.2
where we get an upper estimate for a class of fast oscillating integrals of the
form (1.18).

The diagram decomposition and transformation of coordinates from Sec-
tions 5 can be rather straightforwardly generalized to NLS equations with
higher order polynomial nonlinearities. Together with abstract Theorem 6.2
this allows to generalize Theorem 1.1 for these equations.

Behaviour of energy spectra of small-amplitude solutions for nonlinear
equations when the space-period of the solution grows to infinity has been
intensively studied by physicists since the 1960’s. Last decade this prob-
lem draw attention of mathematicians starting [19], see [1–6, 14, 15] and
discussions in introduction to [3, 6, 9]. In some of the mentioned works de-
compositions of energy spectra to series of the form (1.12) where examined,
evoking the techniques of Feynman diagrams, inspired by the works [12,13]
(where the diagram techniques were used to analyse expansions of solutions
in different, but related situations). Our diagram presentation is based on
similar ideas, but is rather different from those in the mentioned works. In
particular, as explained above, our approach leads to an explicit presenta-

tion of the correlations Ev(m)
s v̄

(n)
s which may be treated by asymptotical

methods, developed in the present paper and in [9, 11].
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In the next two subsections we briefly present the results of [9, 11] and
explain the role of the present paper for the research started in [9, 11].

1.3. Kinetic limit. Let u(τ, x) be a solution of equation (1.5), so that
v(τ) = F(u(τ)) is a solution of (1.8), and ns(τ) be its energy spectrum
(see (1.7)). One of objective of WT is to study the behaviour of the energy
spectrum under the limits (1.6), with a properly scaled ρ, see [20, 22, 23].
The order of limits is not quite clear but, as we mentioned above, in WT
it is usually accepted that L grows to infinity fast when ν goes to zero (for
a discussion of other possibilities see introductions to [9] and [11] and see
below). Accordingly in [9] we assume that

(1.19) L ≥ ν
−2−δ

for some δ > 0,

or that first L → ∞ and then ν → 0. It is traditional in WT to study the
quadratic in ρ truncation of series (1.12), postulating that it well approxi-
mates small amplitude solutions. Thus motivated, in [9] we considered the
process

(1.20) ṽs(τ) ∶= v(0)s (τ) + ρv(1)s (τ) + ρ2
v
(2)
s (τ), s ∈ ZdL,

which we called a quasisolution of equation (1.8), (1.11), and examined its

energy spectrum ñ = (ñs)s∈ZdL , ñs = E∣ṽs∣2,

(1.21) ñs(τ) = n(0)
s (τ) + ρn(1)

s (τ) + ρ2
n
(2)
s (τ) + ρ3

n
(3)
s (τ) + ρ4

n
(4)
s (τ),

where

n
(k)
s = ∑

0≤k1,k2≤2∶
k1+k2=k

Ev(k1)
s v̄

(k2)
s .

Assuming d ≥ 2, we proved that n
(2)
s ∼ ν as ν → 0 uniformly in L satisfying

(1.19), while a simple computation showed that n
(0)
s ∼ 1 and n

(1)
s = 0. This

indicates that the right scaling for ρ is such that ρ
2
ν ∼ 1 as ν → 0, and

accordingly in [9] we chose ρ to be of the form

(1.22) ρ =
√
εν
−1/2

, so that ρ
2
ν = ε.

Here 0 < ε ≤ 1 is a fixed small number (independent from ν and L). Us-

ing estimate (1.17) under the scaling (1.19), (1.22) we found that ∣ρ3
n
(3)
s ∣,

∣ρ4
n
(4)
s ∣ ≲ ε2

. Accordingly,

ñs = n
(0)
s + εñ

(2)
s (ε), where ñ

(2)
s = ν

−1
n
(2)
s +O(ε) ∼ 1

when ν → 0, since n
(2)
s ∼ ν.

Thus, the parameter ε measures the properly scaled amplitude of oscilla-
tions, described by eq. (1.5), so indeed it should be small for the methodology
of WT apply to the solutions. Next we establish that for ν small in terms
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of ε the energy spectrum ñs(τ) is ε
2
-close to a function m(τ, s), which is a

unique solution of the damped/driven wave kinetic equation:

(1.23) ṁ(τ, s) = −2γsm(τ, s) + 2b(s)2
+ εK(m(τ, ⋅))(s), s ∈ Rd;

m(−T ) = 0. Here K(m)(s) is the wave kinetic integral

2π∫
sΣ∗

ds1 ds2 ∣sΣ∗
m1m2m3ms√

∣s1 − s∣2 + ∣s2 − s∣2
( 1
ms

+
1
m3

−
1
m1

−
1
m2

) ,

where mi = m(si), ms = m(s) with s3 = s1 + s2 − s (cf. (1.9)). The set
s
Σ∗

is the resonant surface (cf. (2.5)-(2.6))

(1.24)
s
Σ∗ = {(s1, s2) ∈ R2d

∶ ∣s1∣2+∣s2∣2 = ∣s3∣2+∣s∣2, s3 = s1+s2−s},
and ds1 ds2 ∣sΣ∗

stands for the volume element on
s
Σ∗, corresponding to

the euclidean structure in R2d
. This is exactly the wave kinetic integral

which appears in physical works on WT to describe the 4–waves interaction,
see [23], p. 71 and [20], p. 91.

In particular from what was said it follows that in the regime (1.19), the

scaling ρ ∼ ν
−1/2

is the only scaling of ρ when the energy spectrum admits a
non-trivial kinetic limit of order one; see [9] for a more detailed discussion.

In [11] we consider the opposite to (1.19) order of limits, when first ν → 0
and then L→∞. As in [9], we study the energy spectrum (1.21) of the qua-

sisolution, but now analysis of the term n
(2)
s shows that the correct scaling

is ρ =
√
εL. 6 In this setting, crucially using Theorem 5.7, we establish a re-

sult, similar to the discussed above that in [9], but the limiting WKE (1.23)
should be modified. In particular, the WKE in [11] is non-autonomous.

Results of the present paper also are used in our work in progress, where
by means of the KAM-technique we are aiming to show that the results in
[9,11] remain true for the energy spectrum of the exact solution for eq. (1.5),
under the corresponding limits (and not only for the quasisolution). See
subsection What next? in [11, Section 1.3].

1.4. Discussion of results. Higher order truncations. Let us come
back to the decomposition (1.12) and accordingly write the energy spectrum
ns, defined in (1.7), as formal series in ρ:

(1.25) ns =
∞

∑
k=0

ρ
k
n
k
s , n

k
s(τ) = ∑

k1+k2=k

Ev(k1)
s (τ)v̄(k2)

s (τ).

Here the terms n
0
s, n

1
s and n

2
s coincide with n

(0)
s , n

(1)
s and n

(2)
s in (1.21), while

the terms n
3
s and n

4
s are slightly different (but still satisfy the estimate (1.26)

6In [11] the notation is slightly different: ε is written as ε
2
. Besides when d = 2, ρ

should be multiplied by the factor (lnL)−1/2
.
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below). According to Theorem 1.1,
(1.26)

∣nks ∣ ≤ C#(s)((ν−2
L
−2
+ ν

min(⌈k/2⌉,d)
χ
k
d(ν)) ≤ C

#
1 (s)(ν−2

L
−2
+ ν

min(k/2,d)),
where for definiteness we assumed that d ≥ 2. For k ≤ 2d in the exponent
in r.h.s. the minimum with d can be removed, so (1.26) takes the form

(1.27) ∣nks ∣ ≤ C#(s)(ν−2
L
−2
+ ν

k/2).
In particular, (1.27) holds for k ≤ 4 since d ≥ 2. Using estimate (1.27)
with k ≤ 2d it is straightforward to show that under the scaling (1.22)
the kinetic limit for quasisolution, established in [9] and discussed in the

previous section, takes place for the truncation ∑m
i=0 ρ

i
v
(i)
s of series (1.12)

not only of order m = 2 as in (1.20) but of any order 2 ≤ m ≤ d (with the

same kinetic equation (1.23) and at least with the same accuracy ε
2
, once

L is sufficiently large in terms of ν
−1

).

If it was true that (1.27) is valid for any k, so that ∣ρknks ∣ ≲ ε
k/2

under

the scaling (1.22) with L ≫ ν
−1

, then the kinetic limit would hold for
truncations of any order m ≥ 2. On the contrary, if for some k we have

∣nk∣1 ∶= L
−d∑s ∣n

k
s ∣ ≫ ν

k/2
, then this is not the case since the term ρ

k
n
k

explodes as ν → 0.
The question if estimate (1.27) holds for high k is complicated. Namely,

estimate (1.26) follows from (1.17), and in Theorem 1.1 we established the

latter by showing that each integral J̃s(F) is bounded by the r.h.s. of (1.17).
We are able to prove that this estimate is optimal at least for some integrals
J̃s(F) in the sense that for some of them the minimum with d in the exponent
cannot be removed, so for these terms estimate (1.27) fails. However, in

the sum ∑F J̃s(F) that approximates Ev(m)
s v̄

(n)
s there are some non-trivial

cancellations in a few first orders of its decomposition in ν which could lead
to the validity of (1.27). In Section 8.1 we discuss this phenomenon in more
detail.

The arXiv version of this paper [10], which is longer than the present one,
contains some additional results and examples (not needed for the proofs
of our main statements). Also we give in [10] a simple but rather long and
tedious proof of Lemma 4.1 below which we omit in the present version of
the paper for the sake of brevity.

Notation. By Zn+ we denote the set of integer n-vectors with non-negative
components. For vectors in Rn we denote by ∣v∣ their Euclidean norms

and by v ⋅ u – the Euclidean scalar product. By C
#
, C

#
1 , C̃

#
1 , . . . we denote

various positive continuous functions satisfying (1.16) for any n ∈ N. If we

want to indicate that a function C
#

depends on a parameterm, we write it as

C
#
m. The functions C

#
, C

#
1 , . . . and constants C,C1, . . . never depend on the

parameters ν, L, ρ, ε and the moments of time T, τ, τ1, . . . unless otherwise

stated. In Section 1.4 of [9] it is shown that for any function C
#(x, y), where
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(x, y) ∈ Rd1+d2 , d1, d2 ≥ 1, there exist functions C
#
1 (x), C#

2 (y) such that

(1.28) C
#(x, y) ≤ C#

1 (x)C#
2 (y).

Acknowledgements. AD was funded by a grant from the Russian Science
Foundation (Project 20-41-09009). Research of SK was equally supported
by the Ministry of Science and Higher Education of the Russian Federa-
tion (megagrant No. 075-15-2022-1115) and by l’Agence Nationale de la
Recherche (France), grant 17-CE40-0006.

2. Preliminaries and outline of the proof

2.1. Approximate equation. We start by getting rid in the r.h.s. of

eq. (1.8) of the term −iρL−d∣vs∣2vs, which is small but rather inconvenient
for analysis. With this term being dropped, equation (1.8), (1.11) reads

ẏs − iν
−1∣s∣2ys + γsys

= iρL
−d∑

s1,s2,s3∈ZdL
δ
′12
3s ys1ys2 ȳs3 + b(s)β̇s , ys(−T ) = 0, s ∈ ZdL.

(2.1)

As in (1.12), we decompose its solution ys into a formal series in ρ:

(2.2) ys =
∞

∑
i=0

ρ
i
y
(i)
s , y

(i)
s (−T ) = 0.

Then {y(0)s = v
(0)
s } are independent Gaussian processes, satisfying eq. (1.13),

y
(1)
s (τ) satisfies eq. (1.14) without the term ∣v(0)s ∣2v(0)s , etc.

Correlations of the processes v
(i)
s and y

(i)
s are L

−d
-close:

Proposition 2.1. For any m,n ≥ 0 there exists a function C
#

such that

for each s ∈ ZdL and τ1, τ2 ≥ −T ,

(2.3) ∣Ev(m)
s (τ1)v̄(n)s (τ2) − Ey(m)

s (τ1)ȳ(n)s (τ2)∣ ≤ L−dC#(s).
Proof of the proposition is straightforward, so we give it only in the arXiv

version of this paper [10]. There, for the needs of [11], we adopt the method
of Feynman diagrams developed for eq. (2.1) to eq. (1.8), and get a stronger
result than (2.3). Alternatively, (2.3) immediately follows from Proposi-
tion 2.1 in [9] and the Cauchy inequality.

In view of Proposition 2.1 it suffices to establish inequality (1.17) (and

its 1d analogy) when the processes v
(m)
s are replaced by y

(m)
s . Accordingly

below we study the latter instead of the former.

2.2. Interaction representation. It is convenient to work in the interac-
tion representation, that is in the a-variables defined as

(2.4) as(τ) = ys(τ)e−iν
−1
τ ∣s∣2

, s ∈ ZdL.
We set

(2.5) ω
12
3s = ω

s1s2
s3s = ∣s1∣2 + ∣s2∣2 − ∣s3∣2 − ∣s∣2,
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(cf. (1.24)). Then eq. (2.1), written in the a-variables reads

ȧs + γsas = iρYs(a, ν−1
τ) + b(s)β̇s, as(−T ) = 0,

Ys(a, t) = L−d ∑
s1,s2,s3∈ZdL

δ
′12
3s as1as2 ās3e

itω
12
3s , s ∈ ZdL,(2.6)

where {βs} is another set of standard independent complex Wiener pro-
cesses. Formal expansion (2.2) takes the form

as =
∞

∑
j=0

ρ
j
a
(j)
s , a

(j)
s (−T ) = 0,

where a
(j)
s (τ) = y

(j)
s (τ)e−iν

−1
τ ∣s∣2

. For a process a
(j)
s (τ) we call the integer

j ≥ 0 its degree,

(2.7) deg a
(j)
s (τ) = deg ā

(j)
s (τ) = j,

and call the vector s ∈ ZdL its index. Since a
(k)
s (τ) differs from y

(k)
s (τ) by the

factor e
−iν−1

τ ∣s∣2
, then ∣Ea(m)

s ā
(n)
s ∣ = ∣Ey(m)

s ȳ
(n)
s ∣. Thus, in view of (2.3), it

suffices to establish Theorem 1.1 with the processes v
(m)
s replaced by a

(m)
s :

Theorem 2.2. Assume that d ≥ 2. Then for any integers m,n ≥ 0 there

exists a function C
#

such that for s ∈ ZdL and any τ1, τ2 ≥ −T ,

(2.8) ∣Ea(m)
s (τ1)ā(n)s (τ2)∣ ≤ C#(s)(ν−2

L
−2
+ ν

min(⌈N/2⌉,d)
χ
N
d (ν)),

where N = m + n and χ
N
d is defined in (1.15). If d = 1, the assertion

above holds if we modify the r.h.s. of (2.8) by adding the term C
#(s)L−1

.

Moreover, the correlation Ea(m)
s (τ1)ā(n)s (τ2) extends to a Schwartz function

of s ∈ Rd ⊃ ZdL which satisfies the same estimate (2.8).

Note that for N = 1 the l.h.s. of (2.8) vanishes, see in Section 4.2 and
Lemma 2.3 in [9].

The processes a
(i)
s can be computed inductively. Namely, a

(0)
s satisfies the

linear equation

ȧ
(0)
s (τ) + γsa(0)s (τ) = b(s)β̇s(τ), a

(0)
s (−T ) = 0 ,

so

(2.9) a
(0)
s (τ) = b(s)∫

τ

−T
e
−γs(τ−l)dβs(l),

and {a(0)s (τ), s ∈ ZdL}, are independent Gaussian processes. The process a
(1)

satisfies

ȧ
(1)
s (τ) + γsa(1)s (τ) = iYs(a(0)(τ), ν−1

τ), a
(1)
s (−T ) = 0,

so

a
(1)
s (τ) = i∫

τ

−T
e
−γs(τ−l)Ys(a(0)(l), ν−1

l) dl ,(2.10)
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is a Wiener chaos of third order (see [17]). For what follows, it is convenient
to introduce in (2.6) a fictitious index s4 and write the function Ys from
(2.6) as

Ys(a, t) = L−d ∑
s1,...,s4∈ZdL

δ
′12
34 δ

s
s4 as1as2 ās3 θ(ω

12
34, t),

where δ
s
s4 is the Kronecker symbol and we denote

(2.11) θ(x, t) = eit x.

Then (2.10) takes the form
(2.12)

a
(1)
s (τ) = i∫

τ

−T
L
−d ∑

s1,...,s4

δ
′12
34 e

−γs4(τ−l) δss4(a
(0)
s1 a

(0)
s2 ā

(0)
s3 )(l) θ(ω12

34, ν
−1
l) dl.

Similar, for m ≥ 1,

a
(m)
s (τ) = ∑

m1+m2+m3=m−1

i∫
τ

−T
dl

× L
−d ∑

s1,...,s4

δ
′12
34 e

−γs4(τ−l) δss4(a
(m1)
s1 a

(m2)
s2 ā

(m3)
s3 )(l) θ(ω12

34, ν
−1
l).

(2.13)

This is a Wiener chaos of order 2m + 1.

In what follows, till the end of Section 5.3, we do not use the explicit form
(2.11) of the function θ (except the next section, where we give an outline

of the proof of Theorem 2.2). Instead we assume that the processes a
(m)
s are

given by eq. (2.13), where

(2.14) θ ∶ R2
↦ C is a bounded measurable function.

In particular, we may choose for θ the function θ(x, t) = I{0}(x), where
I{0}(x) is the indicator function of the point x = 0 (in this case θ does not
depend on t). This choice of θ is used in our paper [11], where we use that in

some sense a properly scaled function (s1, s2, s3, s4) ↦ exp(iν−1
τω

12
34) with

τ ≠ 0, regarded as a “generalised function on (ZdL)4
”, converges to I{0}(ω12

34)
as ν → 0.

We will use correlations of the process a
(0)
s . By (2.9), for any τ1, τ2 ≥ −T

and s, s
′
∈ ZdL,

Ea(0)s (τ1)a
(0)
s′

(τ2) = 0,

Ea(0)s (τ1)ā
(0)
s′

(τ2) = δss′
b(s)2

γs
(e−γs∣τ1−τ2∣ − e−γs(2T+τ1+τ2))

(2.15)

(see (2.8) in [9] for the calculation).
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a)

a
(2)
s (τ1)

a
(0)
s1 a

(0)
s2 ā

(1)
s3 w̄s4

a
(0)
s5

ws6 ā
(0)
s7 ā

(0)
s8

l1 ∶

l2 ∶

b)

a
(2)
ξ0

(τ1)

a
(0)
ξ1
a
(0)
ξ2
ā
(1)
σ1
w̄σ2

a
(0)
ξ3

wξ4 ā
(0)
σ3
ā
(0)
σ4

l1 ∶

l2 ∶

Figure 1. A diagram D ∈ D2. The notation ”li ∶” means

that the vertices a
(k)

, ā
(k)

situated opposite to it are taken
at the time li.

2.3. Outline of the proof of Theorem 2.2. We divide a quite detailed
outline of the proof to four steps, approximately corresponding to Sections 3,
4, 5 and 6+7. In the outline we assume that θ takes the form (2.11).

Step 1. Let us write the variable a
(m)
s (τ1) in the form (2.13) and then

apply the Duhamel formula (2.13) to the variables a
(mi)
si (l) in its r.h.s. with

the degreesmi ≥ 1 (see (2.7)). Iterating the procedure, we represent a
(m)
s (τ1)

by a sum of terms of the form

(2.16) Ĩs = ∫⋯∫ L
−md ∑

s1,...,s4m

(. . . ) dl1 . . . dlm;

here and below we call terms of this form sums. The integrating zone in
(2.16) is a convex polyhedron in [−T, τ1]m and the summation is taken over

the vectors s1, . . . , s4m ∈ ZdL which are subject to certain linear relations,

following from the factors δ
′12
34 and δ

s
s4 in (2.13). The summand in brack-

ets is a product of functions e
−γs′(lk−lr), exp(iν−1

ω
s
′
1s
′
2

s′3s
′
4
lq) and the processes

[a(0)
s
′′ (lj)]∗ where a

∗
is either a or ā, with various indices 1 ≤ k, r, q, j ≤ m

and s
′
, s
′
i, s

′′
∈ {s1, . . . , s4m}. This product is of degree 2m + 1 with respect

to the process a
(0)

(see (2.12) for the case m = 1).

To each sum Ĩs as in (2.16) we associate a diagram D as in fig. 1(a),

constructed according to a rule, explained below; we then write Ĩs = Ĩs(D).
The root of a diagram D, associated with a sum Ĩs, is the vertex a

(m)
s (τ1).

If a
(p)
s′

(t), p ≥ 1, is any vertex of the diagram D, then it generates a block
of four vertices, three of which correspond to a choice of the three terms

a
(m1), a(m2), ā(m3) in the decomposition (2.13) of a

(p)
s′

(t). These three are

called real vertices, and the vertex a
(p)
s′

is called the parent of the block. The
fourth vertex of the block, denoted by w̄s′′ , is called the conjugated virtual

vertex. It corresponds to the factor δ
s
′

s′′ in (2.13), is coupled with the parent

a
(p)
s′

(t) by an edge and one can think that its role is to couple the block
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with its parent. Similarly, each vertex ā
(p)
s′

(t) with degree p ≥ 1 generates
a block, where the three real vertices correspond to a choice of the terms

ā
(m1), ā(m2), a(m3) in the formula, conjugated to (2.13), and the fourth vertex

ws′′ is the non-conjugated virtual vertex (corresponding to factor δ
s
′

s′′).
We denote by Dm the set of all diagrams D associated with different

terms Ĩs from (2.16), sum of which gives a
(m)
s (τ1). 7 Then in every diagram

D ∈ Dm there are m blocks, and in each block there are two conjugated
and two non-conjugated vertices. By convention, in each block we draw and
enumerate first the non-conjugated vertices and then the conjugated. The
virtual vertex is always positioned at the second or forth place, depending
whether it is conjugated or not, see fig. 1(a).

We denote by ξ1, . . . , ξ2m the indices sj ∈ ZdL, enumerating the non-
conjugated vertices, and by σ1, . . . , σ2m – those enumerating the conjugated
vertices. Then, setting ξ0 = s, the diagram from fig. 1(a) takes the form as
in fig. 1(b). For more examples see fig. 2, 3(a-c), where we write c instead
of a and omit indices ξ and σ.

Now the linear relations, imposed on the multi-indices ξi, σj with i, j ≥ 1
in a sum (2.16) take the following compact form:

(2.17) 1) δ′ξ2j−1ξ2j
σ2j−1σ2j = 1 ∀j 2) indices of adjacent in D vertices are equal,

where the first relation comes from the factor δ
′12
34 in (2.13) while the sec-

ond one – from the factor δ
s
s4 . Moreover, we see that in this notation the

frequency of a fast rotating exponent, hidden in the term (. . . ) in (2.16)

and arising from the factor θ(ω12
34, ν

−1
l) = eiν

−1
ω

12
34 l in (2.13), also takes the

compact form iν
−1∑m

j=1 ω
ξ2j−1ξ2j
σ2j−1σ2j lj .

We have seen that

a
(m)
s (τ1) = ∑

D∈Dm

Ĩs(D),

where each sum Ĩs(D) has the form (2.16). Similarly, ā
(n)
s (τ2) = ∑D̄∈Dn

Ĩs(D̄),
where Dn is the set of diagrams with the root ā

(n)
σ0

(τ2), σ0 ∶= s, constructed

by the same inductive rule as diagrams from the set Dm (see fig. 3(d)). 8

Finally, we introduce the set Dm ×Dn of diagrams D = D
1 ⊔ D̄

2
, which

are obtained by drawing side by side pairs D
1

and D̄
2

with various D
1
∈ Dm

and D̄
2
∈ Dn. Here in the diagrams D̄

2
the vertices (except the root) are

enumerated by the indices ξ2m+1, . . . , ξ2N , σ2m+1, . . . , σ2N , N ∶= m+n. Since

7As we will see, structure of the set Dm depends on a
(m)
s (τ1) through the index m only.

This will become more clear in Section 3, where we will construct Dm carefully.
8Equivalently, the set Dn can be obtained by conjugating diagrams from the set Dn,

then exchanging positions of conjugated and non-conjugated vertices in each block (we re-
call that, by convention, the non-conjugated vertices should always situate before the con-
jugated vertices), and exchanging the indices ξj with σj , so that again the non-conjugated

vertices are enumerated by the indices ξj while the conjugated – by the indices σj .
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the root of D̄
2

is denoted σ0, then all vertices of D are enumerated by 4N+2
indices ξi, σj , where 0 ≤ i, j ≤ 2N and always ξ0 = σ0 = s; see fig. 4. Then

setting Is(D) = Ĩs(D1)Ĩs(D̄2), where D = D
1 ⊔ D̄

2
, we find

(2.18) Ea(m)
s (τ1)ā(n)s (τ2) = ∑

D∈Dm×Dn

EIs(D).

In fact, we do not write down the sums Ĩs but directly write the products
Is, see Lemma 3.1 for their explicit form.

Step 2. To estimate the r.h.s. of (2.18) we study separately the expecta-

tion EIs(D) for each diagram D = D
1 ⊔ D̄

2
∈ Dm ×Dn. Due to (2.16),

(2.19) EIs(D) = ∫ . . .∫ L
−Nd ∑

ξ1,...,ξ2N ,σ1,...,σ2N

E(. . .) dl1 . . . dlN ,

where the term in the brackets is obtained by taking the product of the

terms (. . .) in the integrands of Ĩs(D1) and Ĩs(D̄2), corresponding to the
leaves of the diagram D. So, the brackets in (2.19) contain a product of

2N+2 random variables of the form [a(0)
s′

(t)]∗, multiplied by a deterministic

factor. Since a
(0)
s′

(t) are independent complex Gaussian random variables
whose correlations are given by (2.15), then by the Wick theorem (see e.g.
in [17]) the expectation E(. . .) is a sum over different Wick-pairings of the

non-conjugated variables a
(0)
ξj

(lk) with conjugated ā
(0)
σr (lq), where

(2.20) Ea(0)ξj (lk)ā(0)σr (lq) ≠ 0 only if ξj = σr.

The summands can be parametrised by Feynman diagrams F (see e.g. in
[17]), obtained from the diagram D by connecting with an edge every pair

of the Wick-coupled vertices a
(0)
ξj

(lk) and ā
(0)
σr (lq), see fig. 5. So to every

diagram D correspond several Feynman diagrams F, one diagram for each
Wick-pairing. By construction, every Feynman diagram decomposes to pairs
of adjacent vertices, where in each pair either both vertices have zero (recall
(2.7)) degree, or one vertex is virtual and another one has positive degree.

Therefore, by (2.18),

Ea(m)
s (τ1)ā(n)s (τ2) = ∑

F∈Fm,n

Js(F),

where the sum is taken over the set Fm,n of Feynman diagrams F obtained

via all possible Wick-couplings in various diagrams D ∈ Dm × Dn. Each
(deterministic) sum Js(F) has the form

(2.21) Js(F) = ∫ . . .∫ L
−Nd ∑

ξ1,...,ξ2N ,σ1,...,σ2N

(. . .) dl1 . . . dlN ,
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where the term in the brackets (. . . ) is obtained from those in (2.19) by a
Wick-pairing associated to the diagram F. See Lemma 4.1 for an explicit
form of the sums Js(F).

Step 3. The indices ξi, σj in (2.21) are subject to the linear relations
(2.17), where 1 ≤ j ≤ N and in (2.17)(2) the diagram D is replaced by some
F (see (2.20)). By (2.17)(2) (with D replaced by F), the multi-index σ =

(σ1, . . . , σ2N) is a function of the multi-index ξ = (ξ1, . . . , ξ2N), so it remains
to study eq. (2.17)(1), where we substitute σ = σ(ξ). Analysing the dia-
grams F, forming the class Fm,n, we find an F-dependent affine parametriza-

tion of solutions ξ for this equation by poly-vectors z = (z1, . . . , zN), zj ∈ ZdL.

Then we write the normalized sum L
−Nd∑ξ,σ in (2.21) as L

−Nd∑z , ap-

proximate it by an integral over RNd with accuracy L
−2
ν
−2

, and accordingly
find that

(2.22) Js(F) = ∫
RN

dl ∫
RNd

dz F
F
s (l, z)eiν

−1
Ω

F(l,z)
+O(L−2

ν
−2).

Here l = (l1, . . . , lN) ∈ RN , the density function F
F
s (which we write down

explicitly) is Schwartz in the variables (s, z), piecewise smooth and fast

decaying in l, while the phase function Ω
F

is quadratic in z and linear in

l: Ω
F(l, z) = ∑1≤i,j≤N α

F
ij zi ⋅ zj(li − lj), where zi ⋅ zj is the scalar product

in Rd; see Theorem 5.9. The constant skew-symmetric matrix α
F
= (αF

ij),
α
F
ij ∈ {−1, 0, 1}, is given by an explicit formula. Usually it is degenerate,

but all its rows and columns are non-zero vectors.
Step 4. The last step of the proof is to estimate integral (2.22) when

ν ≪ 1. To this end, inspired by the stationary phase method, we apply
to the latter the integral Parseval’s identity, involving the fast oscillating

Gaussian kernel e
iν
−1

Ω
F

. The task is made complicated by the degeneracy of

the quadratic form Ω
F(l, ⋅). To handle it, in Sections 6, 7 and 8.5 we prove

abstract theorems which allow to estimate integrals of a more general forms
than (2.22).

3. Diagrams D and formula for products a
(m)
s ā

(n)
s

In this section we construct the set of diagrams Dm ×Dn, associated to

the product a
(m)
s (τ1)ā(n)s (τ2), and express the latter through the random

processes a
(0)
k and ā

(0)
k (see Lemma 3.1). The construction is rather tedious

but the main difficulties are notational: once the diagrammatic language
is developed and convenient notation are introduced, proof of Lemma 3.1
becomes a simple computation.

3.1. The set of diagrams Dm×Dn. For integers m,n ≥ 0 we define the set

Dm×Dn as a direct product of the sets of diagrams Dm and Dn, associated,

correspondingly, with the variables a
(m)
s and ā

(n)
s .
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a)

c
(2)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

b)

c
(2)
0

c
(0)
1 c

(1)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

c)

c
(2)
0

c
(0)
1 c

(0)
2 c̄

(1)
1 w̄2

c
(0)
3 w4 c̄

(0)
3 c̄

(0)
4

Figure 2. The set of diagrams D2.

We start by constructing the set Dm, construction of Dn is similar. For
example, the set D1 consists of a unique diagram, which can be obtained

from the diagram in fig. 3(a) by erasing the isolated vertex c̄
(0)
0 . Here each

c
(p)
j is regarded as an argument, which should be substituted by a variable

a
(p)
ξj

(l), while c̄
(p)
j should be substituted by an ā

(p)
σj (l

′). E.g., this substitution,

applied to the diagram in fig. 2(c), gives the diagram in fig. 1(b). The set
D2 consists of three diagrams in fig. 2. The set D3 consists of 12 diagrams,
two of which are given in fig. 3(b,c). Construction of the diagrams seems
to be quite clear from these examples. Nevertheless, below we explain it in
detail.

3.1.1. Agreements and first notation. Each diagram D ∈ Dm consists of a
number of vertices, some of them are coupled by edges. Each vertex is either
non-conjugated or conjugated. The non-conjugated vertices are denoted by
cj while the conjugated – by c̄j . If we do not want to indicate whether a
vertex is conjugated or not, we write it as ĉj . Each vertex is characterised
by its degree which we often write as an upper index:

deg ĉ
(k)
j = k,

and each vertex is either virtual or real. If a vertex cj , c̄j or ĉj is virtual, we
may write it as wj , w̄j or ŵj . Each virtual vertex ŵj has zero degree,

deg ŵj = 0,

so we do not write for it the upper index. Real vertices of zero degree are
called leaves.

The vertices of a diagram are organised in blocks of four, where the k-th
block, k ≥ 1, is {c2k−1, c2k, c̄2k−1, c̄2k}. Among these four vertices either the
vertex c2k or the vertex c̄2k is virtual, while the other are real. If the vertex
c2k is virtual then we denote this block by Bk,

(3.1) Bk = {c2k−1, w2k, c̄2k−1, c̄2k},
and call it the non-conjugated k-th block. If the vertex c̄2k is virtual, we
denote

(3.2) B̄k = {c2k−1, c2k, c̄2k−1, w̄2k},
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a)

c
(1)
0

w̄2c̄
(0)
1c

(0)
2c

(0)
1

c̄
(0)
0

b)

c
(3)
0

c
(2)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(1)
4 c̄

(0)
3 w̄4

c
(0)
5 c

(0)
6 c̄

(0)
5 w̄6

c)

c
(3)
0

c
(1)
1 c

(0)
2 c̄

(1)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4 c

(0)
5 w6 c̄

(0)
5 c̄

(0)
6

d)

c̄
(1)
0

w2 c̄
(0)
1 c̄

(0)
2c

(0)
1

Figure 3. a) The unique diagram of the set D1 ×D0. b,c)
Some diagrams from the set D3. d) The unique diagram of

the set D1.

and call it the conjugated k-th block. If we do not want to emphasize whether
a block is conjugated or not, we denote it by B̂k. We define the degree of
each block as the sum of degrees of the forming it vertices. So

degBk ∶= deg c2k−1 + deg c̄2k + deg c̄2k−1

(since deg w̄2k = 0), and similarly for deg B̄k. E.g., the diagram from fig. 2(a)
has two conjugated blocks B̄1 and B̄2, where deg B̄1 = 1 and deg B̄2 = 0.

3.1.2. Construction of the diagrams. If a vertex cj is coupled with a virtual
vertex w̄2k of a block B̄k then we say that cj generates the block B̄k or that
cj is a parent of the block B̄k. The notion that a vertex c̄j generates a block
Bk is defined similarly.

The set of diagrams Dm is constructed by the following inductive proce-
dure. The set D0 is formed by a unique diagram which consists of a unique

(real) vertex c
(0)
0 . If m ≥ 1, the root of each diagram D ∈ Dm is a real

vertex c
(m)
0 . Each vertex ĉj of the diagram D with deg ĉj ≥ 1 (i.e. which is

real and is not a leave) generates a block B̂k satisfying

(3.3) deg B̂k = deg ĉj − 1.
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a)

c
(2)
0 c̄

(0)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

b)

c
(1)
0

w̄2c̄
(0)
1c

(0)
2c

(0)
1

c̄
(2)
0

c
(1)
3 w4 c̄

(0)
3 c̄

(0)
4

c
(0)
5 c

(0)
6 c̄

(0)
5 w̄6

Figure 4. A diagram from the set a) D2 ×D0 and b) D1 ×D2.

Non-conjugated vertices cj generate conjugated blocks B̄k while conjugated
vertices c̄j generate non-conjugated blocks Bk. The numeration of the blocks
(i.e. the dependence of k as a function of (ĉj)) is chosen in arbitrary way.
E.g., from the left to the right and from the top to the bottom, as in fig. 2,3.

Rule (3.3) does not determine uniquely the degrees of vertices in the block

B̂k, but fixes only their sum. So, for m ≠ 0, 1 the diagram D obtained by
the inductive procedure above is not unique. We define Dm as the set of all
possible diagrams obtained by this procedure.

The set of diagrams Dn is constructed by a similar procedure. The only

difference is that in diagrams D̄ ∈ Dn the root vertex is conjugated and has

the form c̄
(n)
0 , see fig. 3(d). The set of diagrams Dn equals to the set Dn in

which we conjugate each diagram, and in every block of each diagram we
exchange positions of conjugated and non-conjugated vertices, so that the
non-conjugated vertices are situated first.

Finally, for a pair of diagrams D
1
∈ Dm and D̄

2
∈ Dn we consider the

diagram D
1 ⊔ D̄

2
(see fig. 3(a) and 4), obtained by drawing the diagrams

D
1

and D̄
2

side by side and enumerate the vertices of D̄
2
, except the root

c̄0, not from 1 to 2n but from 2m + 1 to 2m + 2n. Thus, in D
1 ⊔ D̄

2
we

denote the two roots as c0 and c̄0, then enumerate the remaining vertices of

the diagram D
1
, and finally those of the diagram D̄

2
. We define

Dm ×Dn = {D1
⊔ D̄

2
∶ D

1
∈ Dm, D̄

2
∈ Dn}.

3.1.3. Properties of the set Dm × Dn and some terminology. Throughout
the paper we use the notation

N ∶= m + n.

The following properties of a diagram D ∈ Dm ×Dn are obvious.
• The number of blocks of D equals to N .
• The diagram D has 4N + 2 vertices, half of them are conjugated while

another half are non-conjugated.
• If vertices ĉi and ĉj are coupled by an edge, we call them adjacent and

write ĉi ∼ ĉj . Each pair of adjacent vertices in D consists of a conjugated
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and non-conjugated vertex, and has either the form {c(p)i , w̄j} or {c̄(p)i , wj},
where the degree p ≥ 1.
• An edge which joins ci with c̄j is denoted (ci, c̄j) (either ci or c̄j is a

virtual vertex). Each diagram D ∈ Dm ×Dn has N edges.

• Recall that a real vertex ĉ
(0)
j of zero degree is called a leaf. There is no

vertex in D, adjacent to a leaf. The number of conjugated leaves equals to
the number of non-conjugated leaves and equals to N + 1.

3.1.4. Values of vertices ĉj. Consider a diagram D ∈ Dm × Dn. To every

vertex ĉi of a block B̂k, 1 ≤ k ≤ N , we assign the same time variable lk ≥ −T .
E.g., in the diagram from fig. 4(b) the times assigned to the vertices c2 and
c̄6 are l1 and l3, respectively. To the roots c0 and c̄0 we assign the times τ1

and τ2. The vectors

(3.4) l = (l1, . . . , lN) and l = (τ1, τ2, l)
are called the vectors of times. Let

ξ = (ξ0, . . . , ξ2N), σ = (σ0, . . . , σ2N),

where ξi, σj ∈ ZdL, so (ξ, σ) ∈ Z(4N+2)d
L , and we recall that 4N + 2 is the

number of vertices in D. These will be the indices for summation in a
formula for a

(m)
s (τ1)ā(n)s (τ2), where ξj ’s are indices for the non-conjugated

variables as and σj – for the conjugated variables ās in the following sense.

We regard a real vertex c
(p)
j of the diagram D as a position to put there

a component a
(p)
ξj

(t) of the random vector a
(p)(t), and a real vertex c̄

(p)
j –

as a position for a component ā
(p)
σj (t

′) of the conjugate vector, with suitable

t = t(l), t′ = t
′(l). More precisely, for p ≥ 0 we view the real vertices c

(p)
j ,

c̄
(p)
j as random functions of the variables l, ξ, σ, defined by

(3.5) c
(p)
j (l, ξ, σ) = a(p)ξj (t), c̄

(p)
j (l, ξ, σ) = ā(p)σj (t

′),

where t and t
′

are components of the time-vector l in (3.4), assigned to the

vertices c
(p)
j and c̄

(p)
j . We say that the vertices c

(p)
j and c̄

(p)
j take values

a
(p)
ξj

(t) and ā
(p)
σj (t

′). For virtual vertices wj and w̄j we say that they take

values wξj and w̄σj .

3.1.5. Restrictions on the multi-indices (ξ, σ). To calculate the value of a

diagram D ∈ Dm ×Dn we will make substitutions (3.5), using multi-indices

(ξ, σ) ∈ Z(4N+2)d
L . At some stages of our constructions it will be necessary

to put restrictions on the (ξ, σ) and substitute in the diagram only the cor-
responding multi-indices which we call admissible. The set of all admissible
multi-indices (ξ, σ) is denoted

As(D) ⊂ R(4N+2)d
,
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where we take s, ξi, σj in Rd rather than in ZdL to be able to extend the

correlation from Theorem 2.2 to a function on Rd = {s}. The set As(D) is
defined by the following three relations:
• We have

(3.6) ξ0 = σ0 = s.

• For all 1 ≤ i ≤ N ,

(3.7) δ
′ξ2i−1ξ2i
σ2i−1σ2i

= 1.

• If the vertices ci and c̄j are adjacent, the corresponding indices are
equal:

(3.8) ci ∼ c̄j ⇒ ξi = σj .

We will also use the corresponding discrete subset

(3.9) AL
s (D) = As(D) ∩ Z(4N+2)d

L ,

which is exactly the set of multi-indices in which we sum in (2.21). In view

of condition (3.6) it may be not empty only if s ∈ ZdL.

3.1.6. More notation. Let D ∈ Dm ×Dn.
• We denote by E(D) the set of all edges of a diagram D, E(D) =

{(ci, c̄j)}.
• Let (ξ, σ) ∈ As(D) be an admissible index–vector. Then ξi = σj if

ci ∼ c̄j . Denoting by ϕ an edge ϕ = (ci, c̄j), we set

(3.10) γ
ϕ(ξ, σ) ∶= γξi = γσj

(γs’s are defined in (1.4)).
• Recall that in each pair of adjacent vertices in D always one vertex

is real while another is virtual. Then, by l
ϕ
r and l

ϕ
w we denote the times

assigned to the real and virtual vertices, connected by the edge ϕ. So each
l
ϕ
r,w is a mapping from E(D) to the set {τ1, τ2, l1, . . . , lN}.

• By l
ĉi we denote the time, assigned to a vertex ĉi.

• By

L(D), L̄(D) ⊂ {0, . . . 2N}

we denote the sets such that {ci}i∈L(D) and {c̄i}i∈L̄(D) form the sets of all
non-conjugated leaves and all conjugated leaves, correspondingly. In other
words, abusing notation and identifying the vertices with their values, we

have {ci}i∈L(D) = {a(0)ξi } and {c̄i}i∈L̄(D) = {ā(0)σi }. E.g., for the diagram from

fig. 4(b) we have L(D) = {1, 2, 5, 6} and L̄(D) = {1, 3, 4, 5}.
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3.2. Formula for the product a
(m)
s ā

(n)
s . Let us denote

(3.11) τ ∶= (τ1, τ2),
where we recall that τ1, τ2 are the times for the roots c0, c̄0. Recall also that
the sets E(D), L(D), L̄(D), the functions γ

ϕ
= γ

ϕ(ξ, σ) and the times l
ϕ
r,w

and l
cj ,c̄j are defined in Section 3.1.6; in difference with the functions γ

ϕ
, the

time variables l
ϕ
r , l

ϕ
w, l

cj , l
c̄j are independent from (ξ, σ). To each diagram

D ∈ Dm ×Dn we associate the (random) function

GD(τ, l, ξ, σ) ∶= cD ∏
ϕ∈E(D)

e
−γϕ(ξ,σ) (lϕr −lϕw)I{−T≤lϕw≤lϕr }(τ, l)

∏
j∈L(D)

a
(0)
ξj

(lcj) ∏
j∈L̄(D)

ā
(0)
σj (l

c̄j),(3.12)

which is defined on the set of admissible multi-indices (ξ, σ) ∈ AL
s (D) (see

(3.9)). See below for a discussion of this formula. Here I{−T≤lϕw≤lϕr } denotes

the indicator function of the set in which −T ≤ l
ϕ
w ≤ l

ϕ
r and cD is the constant

(3.13) cD = (−1)#wDi
N
,

where #wD is the number of non-conjugated virtual vertices of the diagram
D, N = m + n and i =

√
−1 is the imaginary unit. Set

(3.14) ωj(ξ, σ) = ω
ξ2j−1ξ2j
σ2j−1σ2j and ω = (ω1, . . . , ωN),

we recall that the quadratic form ω
s1s2
s3s is defined in (2.5). For vectors

x⃗ = (x1, . . . , xN) and t⃗ = (t1, . . . , tN) set also

(3.15) Θ(x⃗, t⃗) =
N

∏
j=1

θ(xj , tj),

where θ is as in (2.14).

Lemma 3.1. For any integers m,n ≥ 0 satisfying N ∶= m + n ≥ 1, s ∈ ZdL
and τ1, τ2 ≥ −T , we have

(3.16) a
(m)
s (τ1)ā(n)s (τ2) = ∑

D∈Dm×Dn

Is(D),

where Is(D) = Is(τ ;D),

(3.17) Is(τ ;D) = ∫
RN

dl L
−Nd ∑

(ξ,σ)∈ALs (D)
GD(τ, l, ξ, σ)Θ(ω(ξ, σ), ν−1

l).

Components of the formula (3.17) are quite simple. Indeed, the fac-

tor ∏j∈L(D) a
(0)
ξj

(lcj)∏j∈L̄(D) ā
(0)
σj (l

c̄j), entering GD(τ, l, ξ, σ) (see (3.12)),

is just the product of values of all leaves of the diagram D. The term l
ϕ
r − l

ϕ
w

is a difference of the times assigned to vertices, coupled by an edge ϕ, and
the corresponding exponent in GD(τ, l, ξ, σ) comes from the iteration of the
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Duhamel formula (2.13) that generates ϕ. It appears together with the in-
dicator function I{−T≤lϕw≤lϕr }, which is there due to the fact that in (2.13)
the integration is performed not over R but only over the interval [−T, τ].
The factor θ(ωj , ν−1

lj), entering the function Θ(ω, ν−1
l), comes from the

iteration of the Duhamel formula, generating the j-th block of D.
The assertion of Lemma 3.1 easily (but clumsily) follows by iterating the

formula (2.13). Instead of giving a complete proof we restrict ourselves to
considering an example below.

3.2.1. Example. Here we establish formula (3.16) for the case m = 1 and
n = 0. We get from (2.12) that

a
(1)
s (τ1)ā(0)s (τ2) = i∫

τ1

−T
dl1 L

−d ∑
ξ1,ξ2,σ1,σ2

δ
′ξ1ξ2
σ1σ2

δ
s
σ2
e
−γσ2(τ1−l1)

(a(0)ξ1 a
(0)
ξ2
ā
(0)
σ1

)(l1)ā(0)s (τ2) θ(ω1, ν
−1
l1),(3.18)

where we use notation (3.14). The set D1×D0 consists of a unique diagram,

given in fig. 3(a), which we denote by D
1,0

. Now the total number of vertices

is 4N+2 = 6, and the corresponding set of admissible multi-indices AL
s (D1,0)

has the form

AL
s (D1,0) = {(ξ0, ξ1, ξ2, σ0, σ1, σ2) ∈ Z6d

L ∶ ξ0 = σ0 = s, δ
′ξ1ξ2
σ1σ2

= 1, ξ0 = σ2}.
Then we rewrite the r.h.s. of (3.18) as

i∫
τ1

−T
dl1 L

−d ∑
(ξ,σ)∈ALs (D1,0)

e
−γσ2(τ1−l1)(a(0)ξ1 a

(0)
ξ2
ā
(0)
σ1

)(l1)ā(0)σ0
(τ2) θ(ω1, ν

−1
l1).

The unique edge of the diagram D
1,0

is ϕ ∶= (c(1)0 , w̄2), so using the in-

troduced in Section 3.1.6 notation we write e
−γσ2(τ1−l1) = e

−γϕ(lϕr −lϕw)
and

∫ τ1−T dl1 = ∫R I{−T≤lϕw≤lϕr } dl1. Then, noting that the term a
(0)
ξ1
a
(0)
ξ2
ā
(0)
σ1
ā
(0)
σ0

is a

product of values of all leaves in the diagram D
1,0

, we see that (3.18) takes

the form a
(1)
s (τ1)ā(0)s (τ2) = Is(D1,0), where the sum Is(D1,0) is defined in

(3.17). Thus, formula (3.16) holds for m = 1, n = 0.

4. Feynman diagrams and formula for expectations Ea(m)
s ā

(n)
s

In this section we compute the expectation Ea(m)
s (τ1)ā(n)s (τ2). Due to

(3.16), it suffices to find EIs(D) for every diagram D ∈ Dm×Dn. Note that

the randomness enters Is(D) only via the product of values of leaves a
(0)
ξi

,

ā
(0)
σj in (3.12), which are Gaussian random variables. Since their correlations

are given by (2.15), due to the Wick theorem EIs(D) is given by a sum

over all Wick pairings of values a
(0)
ξi

(lci) of non-conjugated leaves in D with

values ā
(0)
σj (l

c̄j) of conjugated leaves. We parametrize this sum by Feynman
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a)

c
(2)
0 c̄

(0)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

b)

c
(2)
0 c̄

(0)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

fF

fF

fF

fF

Figure 5. a) A Feynman diagram F obtained from the di-
agram D from fig. 4(a). b) Orientation of the Feynman
diagram from item (a) and associated permutation fF.

diagrams F (see [17] for the notion), which are obtained from the diagram
D by connecting the Wick paired leaves by edges, see fig. 5.

Next we give a detailed definition of the Feynman diagrams and discuss
related notions.

4.1. Feynman diagrams. Let us fix m,n ≥ 0 satisfying N = m + n ≥ 1,

and consider a diagram D ∈ Dm × Dn. Its set of leaves consists of N + 1

conjugated leaves c̄
(0)
i and N + 1 non-conjugated leaves c

(0)
j . Consider any

partition of this set to N + 1 non-intersecting pairs of the form (c(0)i , c̄
(0)
j ),

where the leaves c
(0)
i and c̄

(0)
j do not belong to the same block of D (if such

partition exists). We denote by F a diagram obtained from D by connecting
the leaves in each pair by an edge (see fig. 5(a)) and call it a Feynman
diagram. We never couple leaves belonging to the same block since for any

j-th block the variables a
(0)
ξα

, ā
(0)
σβ , assigned to the vertices in this block as

in (3.5), satisfy Ea(0)ξα ā
(0)
σβ = 0 for α, β ∈ {2j − 1, 2j} and any admissible

mutli-index (ξ, σ) ∈ AL
s (D), since ξα ≠ σβ in view of (1.10) and (3.7).

Let F(D) be the set of all Feynman diagrams, which may be obtained
from D using different partitions of the set of leaves to pairs. We define

(4.1) Fm,n = ⋃
D∈Dm×Dn

F(D).

This is the set of all Feynman diagrams corresponding to the product a
(m)
s ā

(n)
s .

By construction, the set of vertices of any Feynman diagram F ∈ Fm,n is
partitioned into pairs of adjacent vertices (ci, c̄j). Each pair has either the

form (c(p)i , w̄j) or (wi, c̄
(p)
j ), where p ≥ 1, or the form (c(0)i , c̄

(0)
j ). Moreover,

adjacent vertices never belong to the same block. To any D ∈ Dm ×Dn the
construction above corresponds many diagrams F ∈ Fm,n, but the inverse
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mapping

(4.2) Fm,n → Dm ×Dn, F↦ DF,

is well defined: the diagram DF is obtained from F by erasing the edges that
couple its leaves.

In fact, by demanding that in Feynman diagrams coupled leaves never
belong to the same block, we have excluded only a part of vanishing Wick
pairings. To exclude the remaining part, in Section 5.2 we will replace

the set Fm,n of Feynman diagrams by a smaller set F
true
m,n ⊂ Fm,n. For

the Wick pairings corresponding to diagrams F ∉ F
true
m,n the assumption

{s1, s2} ≠ {s3, s}, following from (1.9), again is violated due to (3.7), but in
a less trivial way (see Proposition 5.6).

4.1.1. Set of admissible multi-indices A′
s(F). Let us orient edges of a Feyn-

man diagram F ∈ Fm,n in the direction from conjugated vertices to non-
conjugated, as in fig. 5(b), and consider a permutation fF of the set {0, . . . , 2N}
such that

(4.3) fF(j) = i if c̄j ∼ ci, i.e. an edge of F goes from c̄j to ci,

see fig. 5(b). For a vector ξ ∈ R(2N+1)d
we denote

(4.4) ξfF = (ξfF(0), . . . , ξfF(2N)).

Let A′
s(F) be a set of all multi-indices ξ ∈ R(2N+1)d

satisfying the following
relations: for σ = ξfF ,

• We have

(4.5) ξ0 = σ0 = s.

• For any 1 ≤ i ≤ N ,

(4.6) δ
′ξ2i−1ξ2i
σ2i−1σ2i

= 1.

In other words, we require (4.5) and (4.6) to be satisfied by the multi-
indices ξ, σ, where σ is obtained from ξ accordingly to the edges of diagram
F: σj = ξi if a vertex c̄j is coupled with the vertex ci. In particular, if

ξ ∈ A′
s(F) then (ξ, ξfF) ∈ As(DF), where As(D) is defined in Section 3.1.5

and the diagram DF – in (4.2). Indeed, (3.8) holds by the definition (4.3) of
the permutation fF while (3.6) and (3.7) are obvious.

We also consider the discrete set A′L
s (F) = A′

s(F) ∩ Z(2N+1)d
L .

Our motivation behind these definitions is as follows. As it is explained
in the beginning of the section, each term EI(D) can be written as a sum
over the Feynman diagrams F,

EIs(D) = ∑
F∈F(D)

Js(F).
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Each summand Js(F) has the form (3.17) where GD is replaced by a function

obtained by the corresponding to F Wick pairing of the values a
(0)
ξi

, ā
(0)
σj of

leaves. In this formula for Js(F) we should take summation only over those

multi-indices (ξ, σ) ∈ AL
s (D) for which ξi = σj once the vertices ci and c̄j

are adjacent in F, that is over vectors of the form (ξ, ξfF), where ξ ∈ A′L
s (F).

4.2. Formula for the expectation Ea(m)
s ā

(n)
s . Below we introduce some

more notation. Let F ∈ Fm,n be a Feynman diagram.
• We denote by E(F) the set of edges of the diagram F, then E(DF) ⊂

E(F) (see (4.2)). We also set

ED(F) ∶= E(DF), EL(F) ∶= E(F) \ED(F) so E(F) = ED(F)∪EL(F).
• For an edge ϑ ∈ E(F) which couples some vertices ci and c̄j , we set

cϑ ∶= ci, c̄ϑ ∶= c̄j , and denote by l
cϑ and l

c̄ϑ the times assigned to the vertices
cϑ and c̄ϑ. We also set

γ
ϑ(ξ) ∶= γξi and b

ϑ(ξ) ∶= b(ξi) if ϑ couples ci and cj ,

where γs is defined in (1.4) and b(s) enters the definition of the random
force η

ω
.

• If ϕ ∈ ED(F), we define the times l
ϕ
r and l

ϕ
w as in Section 3.1.6.

The main result of this section is Lemma 4.1, stated below. Recalling
(3.11) and (3.12), (2.15), to each Feynman diagram F we associate the den-

sity function cFF
F(τ, l, ξ), where cF = cDF

(see (3.13)) and F
F(τ, l, ξ) is the

real function

F
F(τ, l, ξ) = ∏

ϕ∈ED(F)
e
−γϕ(lϕr −lϕw)I{−T≤lϕw≤lϕr }(τ, l)

∏
ψ∈EL(F)

(e−γ
ψ∣lcψ−lc̄ψ ∣

− e
−γψ(lcψ+lc̄ψ+2T ))(b

ψ)2

γψ
,(4.7)

where γ
ϕ
= γ

ϕ(ξ), γψ = γ
ψ(ξ), bψ = b

ψ(ξ). We also associate to F the
quadratic forms

(4.8) ω
F
j (ξ) ∶= ωj(ξ, ξfF) = ω

ξ2j−1ξ2j
ξfF(2j−1)ξfF(2j)

and set ω
F
= (ωF

1 , . . . , ω
F
N),

see (3.14) and (4.4).

Lemma 4.1. For any integers m,n ≥ 0 satisfying N = m + n ≥ 1, for

s ∈ ZdL and τ1, τ2 ≥ −T , we have

(4.9) Ea(m)
s (τ1)ā(n)s (τ2) = ∑

F∈Fm,n

cFJs(F),

where Js(F) = Js(τ ;F)

(4.10) Js(τ ;F) = ∫
RN

dl L
−Nd ∑

ξ∈A′L
s (F)

F
F (τ, l, ξ)Θ(ωF(ξ), ν−1

l).
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The density F
F
, given by (4.7), is real, smooth in ξ ∈ R(2N+1)d

, piecewise

smooth in l ∈ RN and such that for any vector κ ∈ Zd(2N+1)
+ we have:

(4.11) ∣∂κξ F F(τ, l, ξ)∣ ≤ C#
κ (ξ) e−δ(∑

m
i=1 ∣τ1−li∣+∑Ni=m+1 ∣τ2−li∣),

for any ξ ∈ A′
s(F), l ∈ RN and τ1, τ2 ≥ −T , where δ = δN > 0.

Below we do not use the explicit form (4.7) of the function F
F

but only
the estimate (4.11).

Proof of (4.9) can be obtained by taking the expectation of both sides
of (3.16) and is essentially explained in previous discussion of this section.

Estimate (4.11) follows from the explicit form (4.7) of the density F
F
. An

accurate proof of Lemma 4.1 is straightforward but rather tedious in view
of the complexity of notation, so we give it only in the arXiv version of this
paper [10].

Let us note that

(4.12) if m + n = 1, then Ea(m)
s ā

(n)
s = 0.

Indeed, in this case Fm,n = ∅, since every partition of the set of leaves
into pairs couples vertices from the same block. Accordingly, we will often
assume that m + n ≥ 2.

5. Change of coordinates and final formula for expectations
Ea(m)

s ā
(n)
s

Lemma 4.1 gives an explicit formula for the expectation Ea(m)
s ā

(n)
s , how-

ever, the structure of the set of multi-indices A′L
s (F), over which we take a

summation in (4.10), is too complicated for further analysis. In this section
we find new coordinates in which this set and the quadratic forms (4.8) take
convenient form.

By (4.6) the vectors ξ ∈ A′L
s satisfy the system of equations

(5.1) ξ2k−1 + ξ2k = σ2k−1 + σ2k, σ ∶= ξfF , 1 ≤ k ≤ N.

We start with constructing coordinates x = (x0, . . . , x2N), where x0 = ξ0 and
for every 1 ≤ k ≤ N we set either x2k−1 = ξ2k−1 − σ2k−1 and x2k = ξ2k − σ2k

or x2k−1 = ξ2k−1 − σ2k and x2k = ξ2k − σ2k−1, so that equations (5.1) take
trivial form x2k = −x2k−1, ∀k. We will make a choice (different for different
k and dependent on the diagram F) between the two possibilities above in
such a way that the transformation ξ ↦ x is invertible. Then, components

zk ∶= x2k−1, 1 ≤ k ≤ N , form coordinates on the set A′L
s while components

x2k are functions of z = (zk)1≤k≤N .
To construct this transformation ξ ↦ x we add to the diagram F dashed

edges which couple vertices inside each block in such a way that the obtained
diagram becomes a Hamilton cycle, see fig. 6(b) (we show that it is always
possible to do). For every k we choose between the two possibilities above in
accordance with the dashed edges. It turns out that in the coordinates z the
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Figure 6. a) The graph UF obtained from the Feynman
diagram F from fig. 5. b) A Hamilton cycle CF in the graph
UF from item (a).

function Θ(ωF
, ν
−1
l) with θ(x, t) = e

ixt
takes a simple form (5.21)-(5.22).

This leads to an explicit formula for the sum Js(F) and next in Sections 6, 7
allows to analyse its asymptotic behaviour as ν → 0, L → ∞. Next we
explain construction of the transformation ξ ↦ x in detail.

5.1. Cycles CF, ĈF and permutation πF. Let us take a Feynman diagram
F ∈ Fm,n with N = m + n ≥ 2. By construction, if two vertices of F belong

to the same block then they are not adjacent. Now inside each block B̂k,
k ≥ 1, (see (3.1)-(3.2)) we join by four dashed edges conjugated vertices with
non-conjugated in all possible ways, see fig. 6(a). We also join by a dashed
edge the two roots c0, c̄0 and denote the resulting graph by UF.

Lemma 5.1. For each Feynman diagram F ∈ Fm,n the graph UF has a
Hamilton cycle in which solid and dashed edges alternate.

Proof of Lemma 5.1, given in Appendix 8.2, follows from the fact that the
diagram, made by the blocks of F, is connected. In general, the Hamilton
cycle in Lemma 5.1 is not unique, so we fix one for each diagram UF and
denote it as CF. Examples of the Hamilton cycles CF are given in fig. 6(b).
It is straightforward to see that, by construction of the diagrams UF, the
cycles CF contain all solid edges of UF (which are the edges of F), and a
half of the dashed edges: for each block exactly two of four dashed edges
that couple vertices inside the block enter the cycle CF. On the cycle CF the
dashes and solid edges alternate.

We orient the dashed edges of CF in the direction from non-conjugated
vertices to conjugated and recall that the solid edges are oriented in the
opposite direction, from conjugated vertices to non-conjugated. Then, CF

becomes an oriented cycle, see fig. 6(b).

Let us denote by ĈF the reduced oriented cycle CF, that is the cycle CF

in which we keep only non-conjugated vertices and ”forget” all conjugated
ones, see fig. 7. The cycle ĈF defines a cyclic permutation πF of the set of
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c0

c3

c2c4

c1

πF

πF

A1

A2

Figure 7. Cycle ĈF corresponding to the cycle CF in
fig. 6(b), the associated permutation πF and the arcs

A1 ∶= [c1, c2], A2 ∶= [c3, c4]. Here we have α
F
12 = −α

F
21 = 1.

parameters for the non-conjugated vertices {0, . . . , 2N} as

πF(j) = i if an edge of ĈF goes from cj to ci.

The graph UF and the Hamilton cycle CF play a central role in our construc-
tion. Nevertheless, below we use only the ”derivative” objects: the reduced
cycle ĈF and the permutation πF.

5.2. The change of coordinates. For a fixed Feynman diagram F ∈ Fm,n
with N = m + n ≥ 1, we set

(5.2) x0 ∶= ξ0, xj ∶= ξj − ξπF(j) ∀1 ≤ j ≤ 2N,

and define the (2N + 1)–vector x = (xj)0≤j≤2N , xj ∈ Rd. Since πF is a
cyclic permutation of the set {0, . . . , 2N}, then the transformation ξ ↦ x is

a bijection of (Rd)2N+1
. Indeed, it is invertible since iterating (5.2) we get

ξj = xj + ξπF(j) = xj + xπF(j) + ξπ2
F(j) = . . . =

k

∑
i=0

xπiF(j) + ξ0,

where k = k(j) denotes minimal positive integer satisfying π
k+1
F (j) = 0. In

other words, since ξ0 = x0,

(5.3) ξj = ∑
i∶ ci∈[cj ,c0]

xi, 0 ≤ j ≤ 2N,

where by [ca, cb], a ≠ b, we denote a set (an arc) of vertices of the cycle ĈF

that are situated between the vertices ca and cb according to the orientation
of ĈF, including ca and cb. E.g., in fig. 7 [c4, c3] = {c4, c1, c0, c3}. For a = b
we set [ca, cb] = {ca}.

Next we write the set of admissible multi-indices A′
s(F) ⊂ Rd(2N−1)

in the
coordinates x. An important role below is played by the N × N incidence



STOCHASTIC MODEL FOR WAVE TURBULENCE 2: DIAGRAMS 29

matrix α
F
= (αF

ij)1≤i,j≤N with components 9

(5.4) α
F
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if c2j−1 ∈ [c2i−1, c2i], c2j ∉ [c2i−1, c2i],
−1 if c2j−1 ∉ [c2i−1, c2i], c2j ∈ [c2i−1, c2i],
0 otherwise.

It is straightforward to see that the matrix α
F

is skew-symmetric, so it is
S-regular in the following sense:

Definition 5.2. A square matrix α = {αij} is called S-regular if it is skew-
symmetric and all its elements αij are such that αij ∈ {−1, 0, 1}. If in
addition all rows and columns of α are non-zero vectors, then it is called
SS-regular.

Given below Propositions 5.3 and 5.5 are in the hart of the proof of the
main result of this work – Theorem 1.1. Previous constructions in Sections 3-
5.1 essentially were made in order to create the notation, needed to state
and prove these results.

Proposition 5.3. For any diagram F ∈ Fm,n and any s ∈ Rd, the set

A′
s(F) consists of all vectors ξ = ξ(x), where ξ(x) is given by (5.3) and

x ∈ (Rd)2N+1
satisfies the following relations, for every 1 ≤ k ≤ N :

(a) x0 = s, (b) x2k = −x2k−1,(5.5)

(a) x2k−1 ≠ 0 (b)
N

∑
i=1

α
F
kix2i−1 ≠ 0.(5.6)

Moreover, for vectors x satisfying (5.5)(b) we have

(5.7) ξ2k−1(x) − ξπF(2k)(x) =
N

∑
i=1

α
F
kix2i−1.

Proof. In this proof we omit the lower index F in the notation πF and fF.
We start by noting that for every k ≥ 1

(5.8) {π(2k − 1), π(2k)} = {f(2k − 1), f(2k)}.
Indeed, the permutation π encodes the change of indices of non-conjugated
vertices of the cycle CF under the double shift, the first along dashed edges
and the second along solid edges. The first shift preserves the set of indices
{2k − 1, 2k} while the second is encoded by the permutation f .

Now let us recall that the set A′
s(F) consists of all multi-indices ξ satis-

fying (4.5) and (4.6) with σ = ξf . In view of what is told above, we have

9Formula (5.4) admits the following interpretation. An element α
F
ij equals ±1 if the

arcs [c2i−1, c2i] and [c2j−1, c2j] are linked, and equals 0 otherwise. The sign ”+” or ”−”

is determined by the order of linking; see fig. 7. So the incidence matrix α
F

describes the

linking of the arcs [c2j−1, c2j] on the reduced cycle ĈF, or equivalently on the Hamiltonian

cycle CF in the diagram F.
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{ξf(2k−1), ξf(2k)} = {ξπ(2k−1), ξπ(2k)}, so δ
′ξ2k−1ξ2k
ξf(2k−1)ξf(2k)

= δ
′ξ2k−1ξ2k
ξπ(2k−1)ξπ(2k)

. Then

eq. (4.6) is equivalent to δ
′ξ2k−1ξ2k
ξπ(2k−1)ξπ(2k)

= 1, that is to the equation

(5.9) ξ2k−1 + ξ2k = ξπ(2k−1) + ξπ(2k)

jointly with

(5.10) {ξ2k−1, ξ2k} ∩ {ξπ(2k−1), ξπ(2k)} = ∅
(see (1.10)). Equation (5.9) is equivalent to (5.5)(b). The equality ξ0 = s
from (4.5) is equivalent to (5.5)(a). The equality σ0 = s, in view of (5.3),
takes the form

(5.11) s = σ0 = ξf(0) = ∑
i∶ ci∈[cf(0),c0]

xi.

Since f(0) = π(0), then [cf(0), c0] = [cπ(0), c0], and this interval contains

all vertices of the cycle ĈF. Then, using (5.5)(b), we see that the r.h.s. of
(5.11) equals to x0, so (5.11) again takes the form (5.5)(a).

Now it remains to show that (5.10) is equivalent to (5.6). In view of (5.9),
relation (5.10) is equivalent to

(5.12) ξ2k−1 ≠ ξπ(2k−1) and ξ2k−1 ≠ ξπ(2k).

The first inequality above is equivalent to (5.6)(a), while the second is equiv-
alent to (5.6)(b) if (5.7) is established. So it remains to verify (5.7). Due to
(5.3),

ξ2k−1 − ξπ(2k) = ∑
i∶ ci∈[c2k−1,c0]

xi − ∑
i∶ ci∈[cπ(2k),c0]

xi.

Let us first assume that cπ(2k) ∈ [c2k−1, c0] and cπ(2k) ≠ c2k−1. Then the
identity above takes the form

ξ2k−1 − ξπ(2k) = ∑
i∶ ci∈[c2k−1,c2k]

xi,

where we have used that the vertex situating in ĈF before cπ(2k) is c2k. In
view of the assumption above, c0 ∉ [c2k−1, c2k]. Then, due to cancellations
provided by (5.5)(b), we get (5.7).

The case cπ(2k) ∉ [c2k−1, c0] can be considered similarly. If cπ(2k) = c2k−1,
that is π(2k) = 2k − 1, then the both sides of eq. (5.7) vanish. Indeed,

α
F
ki = 0 ∀i since the arc [c2k−1, c2k] contains all vertices cj ∈ ĈF. �

Let us denote

zj ∶= x2j−1 ∈ Rd and z = (zj)1≤j≤N ∈ RNdL .

Due to Proposition 5.3, vector z forms coordinates on the set A′
s(F) and, by

(5.5)(b), xi = (−1)i+1
z⌈i/2⌉. Then, using (5.5)(a), we see that for ξ ∈ A′

s(F)
relation (5.3) takes the form

(5.13) ξj(z) = s + ∑
i∶ ci∈[cj ,c0)

(−1)i+1
z⌈i/2⌉, 1 ≤ j ≤ 2N,
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where [cj , c0) ∶= [cj , c0]\{c0}, and ξ0 = s. Here we emphasize that the linear
mapping z ↦ ξ depends on F (through the interval [cj , c0)) and that ξ is an

affine vector-function of the parameter s ∈ Rd. Thus, in the z-coordinates

(5.14) A′
s(F) = {ξ(z) ∶ z ∈ Z(F)},

where, by (5.6),

(5.15) Z(F) = {z ∈ RdN ∶ zj ≠ 0 and
N

∑
i=1

α
F
jizi ≠ 0 ∀1 ≤ j ≤ N}.

Remark 5.4. Since the choice of the Hamilton cycle CF in general is not
unique, the obtained parametrization z ↦ ξ is not unique as well. However,

one can show that if z
′
↦ ξ is another parametrization, obtained by the

procedure above, and α
F ′

is the associated incidence matrix, then for each

j we have either z
′
j(ξ) = zj(ξ) or z

′
j(ξ) = ∑N

i=1 α
F
jizi. In the latter case we

also have the symmetric relation zj(ξ) = ∑N
i=1 α

F ′
ji z

′
i.

Next we write the quadratic forms ω
F
j (ξ), defined in (4.8), in the z-

coordinates.

Proposition 5.5. Functions ω
F
j (ξ), restricted to the set A′

s(F) ∋ ξ and
written in the z-coordinates, take the form

(5.16) ω
F
j (z) = 2zj ⋅

N

∑
i=1

α
F
jizi,

where the S-regular incidence matrix α
F
= (αF

ij)1≤i,j≤N is defined in (5.4).

Proof. In this proof we again skip the lower index F in the notation πF.

Due to (5.8) and their definition (3.14),(4.8), the functions ω
F
j (ξ) have the

form

ω
F
j (ξ) = ∣ξ2j−1∣2 − ∣ξπ(2j−1)∣2 + ∣ξ2j∣2 − ∣ξπ(2j)∣2.

Using (5.5)(b), we obtain

ω
F
j (ξ) = x2j−1 ⋅ (ξ2j−1 + ξπ(2j−1)) + x2j ⋅ (ξ2j + ξπ(2j))

= x2j−1 ⋅ (ξ2j−1 + ξπ(2j−1) − ξ2j − ξπ(2j))
= x2j−1 ⋅ (2ξ2j−1 − x2j−1 − 2ξπ(2j) − x2j)
= 2x2j−1 ⋅ (ξ2j−1 − ξπ(2j)).

Thus, by (5.7), ω
F
j (z) = 2zj ⋅∑N

i=1 α
F
jizi. �

Finally, we note that instead of considering the set of Feynman diagrams
Fm,n it suffices to study only its subset. Denote by

F
true
m,n ⊂ Fm,n
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the subset of diagrams F for which the corresponding incidence matrix α
F

is
not only S-regular, but is SS-regular (see Definition 5.2). In view of (5.15)
we have:

Proposition 5.6. If F ∉ F
true
m,n , then Z(F) = ∅. If F ∈ F

true
m,n , then Z(F) is

the complement to the union of a finite system of linear subspaces of positive

codimension. In particular, it is is an open dense subset of RdN .

Due to (5.14), Proposition 5.6 implies that the integrals Js(F) from (4.10)

with F ∉ F
true
m,n vanish.

5.3. Final formula for expectations Ea(m)
s ā

(n)
s . Let F

F
s (τ, l, z) be the

function F
F(τ, l, ξ), defined in (4.7), restricted to the set A′

s(F) and written
in the z-coordinates,

(5.17) F
F
s (τ, l, z) = F F(τ, l, ξ(z)).

The function F
F
s depends on s ∈ Rd through the transformation z ↦ ξ, see

(5.13). Changing in the sums Js(F) the coordinates ξ to z and using (1.28)
we see that Lemma 4.1 joined with (5.14) and Propositions 5.6, 5.5 implies
the following result (we recall (2.14)):

Theorem 5.7. For any integers m,n ≥ 0 satisfying N = m+n ≥ 1, s ∈ ZdL
and τ1, τ2 ≥ −T , we have

(5.18) Ea(m)
s (τ1)ā(n)s (τ2) = ∑

F∈F truem,n

cFJs(F),

where F
true
m,n is a finite set of diagrams, defined in Section 5.2, the constants

cF ∈ {±1,±i} are defined in Section 4.2 and

(5.19) Js(τ ;F) = ∫
RN

dl L
−Nd ∑

z∈Z(F)∩ZNdL

F
F
s (τ, l, z)Θ(ωF(z), ν−1

l).

Here Θ(ωF
, ν
−1
l) = ∏N

j=1 θ(ω
F
j , ν

−1
lj), while components ω

F
j of the vector

ω
F

are given by (5.16). The set Z(F) is defined in (5.15) and the incidence

matrix α
F

from (5.15), (5.16) is SS-regular. The density function F
F
s is real

and satisfies

(5.20) ∣∂µs ∂κzF F
s (τ, l, z)∣ ≤ C#

µ,κ(s)C#
µ,κ(z) e−δ(∑

m
i=1 ∣τ1−li∣+∑Ni=m+1 ∣τ2−li∣)

with a suitable δ = δN > 0, for any vectors µ ∈ Zd+, κ ∈ ZdN+ , and any

s ∈ Rd, z ∈ RNd.

Since the density F
F
s in (5.19) is an affine function of s ∈ Rd and satisfies

(5.20), the sum Js(F) is a Schwartz function of s ∈ Rd. Thus, the corre-

lations Ea(m)
s (τ1)ā(n)s (τ2) extends to a Schwartz function of s ∈ Rd via the
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equality (5.18), as is affirmed in Theorem 2.2. In view of this result, below

we always assume that s ∈ Rd.
Subsequent analysis of the sums Js(F) is based on the lemma below,

where the function Θ(ωF(z), ν−1
l) is defined as in (3.13) with θ(y, t) = eity

(cf. (2.11)).

Lemma 5.8. If θ(y, t) = eity, then

(5.21) Θ(ωF(z), ν−1
l) = eiν

−1
Ω

F(l,z)
,

where the phase function Ω
F

is given by

(5.22) Ω
F(l, z) = ∑

1≤i,j≤N

α
F
ij (li − lj) zi ⋅ zj .

Proof. Since θ(x, t) = eitx, the function Θ is given by (5.21) with Ω
F(l, z) =

∑N
j=1 ljω

F
j (z). From (5.16) it follows that Ω

F
= 2∑1≤i,j≤N ljα

F
ji zj ⋅ zi. Now

(5.22) follows from the skew symmetry of the matrix α
F
. �

5.4. Continuous approximation. From now on we always assume that

θ(y, t) = eity.
Using that by Proposition 5.6 Z(F) with F ∈ F

true
m,n is an open dense

subset of RdN , we approximate the sum L
−Nd∑z∈Z(F)∩ZNdL from (5.19) by

an integral over RdN by applying Theorem 3.1 from [9]. For d ≥ 2 we get

»»»»»»Js(F) − ∫RN dl ∫RdN dz F
F
s (τ, l, z)eiν

−1
Ω

F(l,z)»»»»»» ≤ C
#(s)L−2

ν
−2
,

where we used (5.21). When d = 1 the r.h.s. of the inequality above should

be modified by adding the term C
#(s)L−1

, see Remark 3.2 in [9].
Together with (5.18) this estimate implies the main result of the section:

Theorem 5.9. Assume that d ≥ 2 and the function θ is as above. Then for

any integers m,n ≥ 0 satisfying N = m+n ≥ 1, any s ∈ Rd and τ1, τ2 ≥ −T ,
we have

(5.23)
»»»»»»Ea

(m)
s (τ1)ā(n)s (τ2) − ∑

F∈F truem,n

cFJ̃s(F)
»»»»»» ≤ C

#(s)L−2
ν
−2
,

where

(5.24) J̃s(τ ;F) = ∫
RN

dl ∫
RdN

dz F
F
s (τ, l, z)eiν

−1
Ω

F(l,z)
.

The constant cF = cDF
is defined in (3.13) and the diagram DF – in (4.2).

The real valued density F
F
s is given by (5.17) together with (4.7) and satisfies

the estimate (5.20). The phase function Ω
F

is given by (5.22) where the

incidence matrix α
F

is SS-regular.



34 ANDREY DYMOV AND SERGEI KUKSIN

If d = 1 then the r.h.s. of (5.23) should be modified by adding to it the

term C
#(s)L−1

.

Theorem 5.9 provides an explicit formula for a correlation Ea(m)
s ā

(n)
s with

arbitrary m and n, up to an error term of the size O(L−2
ν
−2). In Section 8.4

of the arXiv version [10] of this paper we consider an example when m =

n = 2.
Since the functions F

F
and Ω

F
are given by explicit formulas (5.17) and

(5.22), the integral over the variable l in (5.24) can be found explicitly. In
Section 8.4 we give the result of this computation, relevant for further study
of the energy spectrum of the quasisolutions.

6. Main estimate

6.1. Estimation of integrals J̃s(F). Next we estimate the integrals J̃s(F)
from Theorem 5.9.

Theorem 6.1. For any integers m,n ≥ 0, satisfying N = m + n ≥ 2, any

F ∈ F
true
m,n and s ∈ Rd,

(6.1) ∣J̃s(F)∣ ≤ C#(s)νmin(⌈N/2⌉,d)
χ
N
d (ν),

uniformly in τ1, τ2 ≥ −T , wherethe function χ
N
d is defined in (1.15).

Together with Theorem 5.9, estimate (6.1) implies the desired inequality
(2.8) and concludes the proof of Theorems 2.2 and 1.1. 10

We deduce (6.1) from an abstract theorem below where we estimate in-
tegrals of the following more general form. Let

(6.2) Js = ∫
RK

dl ∫
RdM

dz Fs(l, z)eiν
−1
Q(l,z)

,

where M ≥ 2, K ≥ 1, d ≥ 1, l = (l1, . . . , lK) and z is the polyvector

(z1, . . . , zM) with zi = (z1
i , . . . , z

d
i ) ∈ Rd. The phase function Q(l, z) is

assumed to be linear in l and quadratic in z,

Q(l, z) = (Q(l)z) ⋅ z =
M

∑
i,j=1

(qij ⋅ l) (zi ⋅ zj) =
M

∑
i,j=1

qij ⋅ l
d

∑
m=1

z
m
i z

m
j .

Here qij = qji = (qkij)1≤k≤K are K-vectors, so for l ∈ RK , Q(l) = (qij ⋅
l)1≤i,j≤M is a real symmetric M ×M–matrix. Denoting by Qk, 1 ≤ k ≤ K,

the real symmetric matrices

Qk = (qkij)1≤i,j≤M ,

we write Q(l) as ∑kQklk. We denote by R ≤ K the rank of the system

of vectors qij ∈ RK , 1 ≤ i, j ≤ M. It equals to the rank of the system of

10We recall that F
true
m,n = ∅ for N = 1, see (4.12), so we study only the case N ≥ 2.
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matrices {Qk, 1 ≤ k ≤ K} in the space of M ×M matrices. Indeed, consider
the row

(Q1, . . . , QK),

interpreting it as a matrix with columns Qj (regarded as vectors in RM
2

).
Then the two ranks we talk about are the column - and raw-ranks of this
matrix, so they coincide.

Note that the phase function Ω
F

in (5.22) may be written as Q(l, z).
The complex density function Fs(l, z) in (6.2) is assumed to be bounded

and measurable in l ∈ RK , z ∈ RdN , smooth in z, depend on the parameter

s ∈ Rd, and satisfy

(6.3) ∣∂κzFs(l, z)∣ ≤ C#
κ (s)C#

κ (z)hκ(∣l − l0∣),

for any κ ∈ ZdM+ and some l0 ∈ RK . Each function hκ is assumed to
be monotone decreasing, bounded and such that the function hκ(∣l∣) is

integrable over RK . Then

(6.4) 0 ≤ hκ ≤ Cκ, ∫
∞

0
hκ(r)rK−1

dr ≤ Cκ,

for appropriate constants Cκ > 0. For k ∈ N we introduce the functions

(6.5) ψ
k
d(ν) = { − ln ν if k = d,

1 otherwise.

Theorem 6.2. Assume that trQk = 0 for each k. Then, under assumption
(6.3)

(6.6) ∣Js∣ ≤ C#(s)νmin(R,d)
ψ
R
d (ν).

The function C
#

depends on Fs only through the functions C
#
κ and the

constants Cκ in (6.3), (6.4). It also depends on the tensor (qkij).

Theorem 6.2 is proven in the next subsection. In Appendix 8.5 we note
that it implies an asymptotic estimate for parameter-depending integrals of
some quotients with asymptotically degenerating divisors, including those

which are obtained from the integrals J̃s(F) by explicit integration over RNl .
That result is not needed for the present paper, however we believe that it
is of independent interest. It is related to [18].

In view of (5.20), the integrals J̃s(F) satisfy the assumptions of Theo-

rem 6.2 with the functions C
#
κ and the constants Cκ independent from τ1, τ2.

Here, in view of (5.22), we have qij ⋅ l = α
F
ij(li− lj) and it can be shown that

the rank R satisfies R ≥ ⌈N/2⌉ (this follows solely from the fact that the

matrix α
F

is skew-symmetric and does not have zero rows and columns since
it is SS-regular). So Theorem 6.2 implies estimate (6.1), where the function

χ
N
d is replaced by ψ

R
d . In the case R = d = ⌈N/2⌉ (which holds true for
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certain matrices α
F
) this estimate is slightly weaker than (6.1). Indeed, it

gives

∣J̃s(F)∣ ≤ C#(s)ν⌈N/2⌉
ln ν

−1
,

so compare to (6.1) we get an additional factor ln ν
−1

, unless N = 2, 3.
This is insufficient for the purposes of [9]. To overcome this difficulty, in

Theorem 7.1 we prove that if the tensor (qkij) has a block-diagonal form, the
estimate (6.6) improves and implies (6.1). This is mostly a technical issue,
and ideologically (6.1) follows from (6.6). So we postpone Theorem 7.1 till
the next Section 7 and first establish estimate (6.6).

6.2. Proof of Theorem 6.2. In this proof the positive constants C,C1, etc.

and the functions C
#

depend on Fs as in Theorem 6.2. To simplify presen-
tation we assume that in (6.3) l0 = 0, but emphasize that the estimates we
obtain are uniform in l0.

Let λ1(l), . . . , λM(l) be (real) continuous in l eigenvalues of the symmetric
matrix Q(l), enumerated in decreasing order:

(6.7) ∣λ1(l)∣ ≥ ∣λ2(l)∣ ≥ . . . ≥ ∣λM(l)∣ for any l ∈ RK .
The corresponding normalized eigenvectors are vector–functions of l, form-

ing an orthonormal basis in RM for every l, and analytic outside an analytic

subset of RKl of positive codimension (while as functions of l ∈ Rk they even

are not continuous). Denoting by w(l, z) = w = (w1, . . . , wM), wi ∈ Rd, the
polyvector z = (z1, . . . , zM), written in this basis, we write function Q as

Q(l, z) =
M

∑
i=1

λi(l)∣wi∣2 .

Since the transformation z ↦ w is orthogonal for every l, then dz = dw and

(6.8) Js = ∫
RK

dl ∫
RdM

dwHs(l, w)eiν
−1∑Mi=1 λi(l)∣wi∣

2

.

Here Hs(l, w) = Fs(l, z(l, w)), so that the function Hs(l, w) again satisfies
the estimate (6.3). The following observation plays the key role in the proof.

Lemma 6.3. Let A = (aij) be a real symmetric M ×M -matrix, M ≥ 2,
such that trA = 0, and let λ1, . . . , λM be its eigenvalues. Then

(6.9) ∑
i,j

a
2
ij = −2∑

i<j

λiλj .

Proof. Let ∥A∥HS be the Hilbert-Schmidt norm of the matrix A. From

one hand, ∥A∥2
HS equals to the l.h.s. of (6.9). From another hand,

∥A∥2
HS =

M

∑
i=1

λ
2
i = (

M

∑
i=1

λi)
2
− 2∑

i<j

λiλj .

It remains to note that (∑M
i=1 λi)

2
= (trA)2

= 0. �
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Applying Lemma 6.3 to the matrix Q(l), we find

1

2
∑
i,j

(qij ⋅ l)2
= −∑

i<j

λi(l)λj(l) =∶ K(l) ≥ 0.

Let us consider the sets

Nν ∶= {l ∈ RK ∶ K(l) ≥ ν2} and N c
ν ∶= RK \Nν .

Below for a set V ⊂ RKl we denote by ⟨Js, V ⟩ the integral (6.8) with the

domain of integration RKl replaced by V . Recall that R is the rank of the
system of K–vectors (qij).

Lemma 6.4. Under assumption (6.3) we have ∣⟨Js,N c
ν ⟩∣ ≤ C#(s)νR.

Proof of Lemma 6.4 is given at the end of this section.
It remains to establish estimate (6.6) for the integral ⟨Js,Nν⟩. In view
of (6.7),

(6.10) ∣λ1λ2∣ ≥M−2∑
i<j

∣λiλj∣ ≥M−2K.

So for l ∈ Nν we have ∣λ1(l)λ2(l)∣ ≥ M
−2
ν

2
. It is known (see [7, 16]) that

the (generalized) Fourier transform of the function

R2d
∋ (w1, w2)↦ e

−iν−1(λ1∣w1∣2+λ2∣w2∣2)

is

ζ(πν)d(∣λ1λ2∣)−d/2
e
iν(λ−1

1 ∣ξ1∣2+λ−1
2 ∣ξ2∣2)/4

,

where ζ is a complex constant of unit norm; here we define the Fourier trans-

form of a regular function u(x) as ∫ e−ix⋅ξu(x) dx. Inspired by the stationary
phase method [7,16], we apply the Parseval’s identity to the partial integral
over w1, w2 and get

∫
R2d

Hs(l, w)eiν
−1(λ1∣w1∣2+λ2∣w2∣2) dw1dw2

= ζ
(ν/4π)d

∣λ1λ2∣d/2
∫
R2d

Ĥ
1,2
s (l, ξ1, ξ2, w≥3)e−i

ν
4
(λ−1

1 ∣ξ1∣2+λ−1
2 ∣ξ2∣2) dξ1dξ2,

for any w≥3 = (w3, . . . , wM), where Ĥ
1,2
s stands for the Fourier transform

of function Hs with respect to the variables w1, w2. 11 Since Hs satisfies
assumption (6.3) (where l0 = 0), the r.h.s. above is bounded in absolute
value by

C
#(s)C#(w≥3)

ν
d

∣λ1λ2∣d/2
h(∣l∣),

11 See Section 12.2 in [9] for justification of this formula without using the generalized
Fourier transform.
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where the function h ≥ 0 satisfies (6.4). So

∣⟨Js,Nν⟩∣ ≤ ∫
Nν

C
#(s)νdh(∣l∣)

∣λ1(l)λ2(l)∣d/2
dl ∫

R(M−2)d
C

#(w≥3) dw≥3

≤ C
#
1 (s)νd ∫

Nν

h(∣l∣)
∣λ1(l)λ2(l)∣d/2

dl.

Then, due to (6.10), we have

∣⟨Js,Nν⟩∣ ≤ C#(s)νd ∫
Nν

h(∣l∣)
(K(l))d/2

dl =∶ C
#(s)Iν .

Lemma 6.5. Assume that the function h satisfies assumption (6.4). Then

I
ν
≤ Cν

min(R,d)
ψ
R
d (ν).

Lemma 6.5 together with Lemma 6.4 concludes the proof of the theorem.
The lemmas are established below. �

Proof of Lemma 6.4. Since function Hs satisfies (6.3) with l0 = 0, then

∣⟨Js,N c
ν ⟩∣ ≤ C#(s)∫

N c
ν

h0(∣l∣) dl.

Let us denote by v1, . . . , vR a maximal collection of linearly independent
vectors from the set (qij)1≤i,j≤M . In the integral ⟨Js,N c

ν ⟩ we make a linear
(non-degenerate) change of variable from l to t = (t1, . . . , tK) in such a way

that tk = vk ⋅ l for k ≤ R. Let t
<
= (t1, . . . , tR) and t

>
= (tR+1, . . . , tK). Due

to the identity K(l) = 1
2
∑ (qij ⋅ l)2

,

(6.11)
∣t<∣2

2
≤ K(l(t)) ≤ C∣t<∣2.

So denoting by N c
ν,t the set N c

ν written in the t-coordinates, we obtain

N c
ν,t ⊂ {t ∶ ∣t<∣ <

√
2ν}. Since the function h0 is decreasing, inequalities

∣l∣ ≥ C∣t∣ and ∣t∣ ≥ ∣t>∣ imply that h0(∣l∣) ≤ h0(C∣t∣) ≤ h0(C∣t>∣). Then

∣⟨Js,N c
ν ⟩∣ ≤ C#(s)∫

t<∈RR∶ ∣t<∣<
√

2ν
dt
< ∫

RK−R
h0(C∣t>∣) dt>

≤ C
#
1 (s)νR ∫

RK−R
h0(C∣t>∣) dt>.

The last integral is bounded by C ∫∞0 h0(r)rK−R−1
dr < C1, in view of as-

sumption (6.4). �

Proof of Lemma 6.5. We make the change of coordinates l ↦ t as in the
proof of Lemma 6.4 and use the notation t

<
, t

>
, introduced there. Denoting

by Nν,t the set Nν written in the t-coordinates, in view of (6.11) we find

Nν,t ⊂ {t ∶ ∣t<∣ ≥ C
′
ν}. Then, using that h(∣l∣) ≤ h(C1∣t∣), by (6.11) we

get

I
ν
≤ 2

d/2
ν
d ∫

t∶ ∣t<∣≥Cν

h(C1∣t∣)
∣t<∣d

dt.
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Since the function h(∣t∣) is integrable, the r.h.s. above is bounded by Cν
d
,

if we take the integral only over the set where ∣t<∣ ≥ 1. Then, it remains to
get the desired estimate for the integral over the set where Cν ≤ ∣t<∣ ≤ 1.
Since the function h is decreasing, we have h(C1∣t∣) ≤ h(C1∣t>∣), so this
integral is bounded by

2
d/2

ν
d ∫
t∈RK ∶Cν≤∣t<∣≤1

h(C1∣t>∣)
∣t<∣d

dt ≤ C2ν
d ∫
t<∈RR∶Cν≤∣t<∣≤1

1

∣t<∣d
dt
<
,

where we have integrated out the variable t
>
. Passing to the spherical coor-

dinates, we see that the latter integral is bounded by

C3ν
d ∫

1

Cν

r
R−1

rd
dr ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C4ν
d

if d ≤ R − 1

C4ν
d

ln ν
−1

if d = R

C4ν
R

if d > R.

The r.h.s. of the last inequality can be rewritten as C4ν
min(R,d)

ψ
R
d (ν). �

7. Refinement of estimate (6.6) and proof of Theorem 6.1

In this section we establish Theorem 7.1, in which we improve estimate
(6.6), and deduce from it Theorem 6.1.

7.1. Refinement of (6.6). We consider integral (6.2), where to simplify
the formulation of result (and since it suffices for our purpose) we assume
M = K and denote N ∶= M = K ≥ 2. We consider a decomposition of the
set {1, . . . N} into p ≥ 1 non-empty disjoint subsets

(7.1) {1, . . . N} = I1 ∪ . . . ∪ Ip,

and denote by l
k

the vector l
k
= (li)i∈Ik .

We assume that the phase function Q admits a block-decomposition

Q(l, z) =
p

∑
k=1

Uk(l, z), Uk(l, z) = ∑
i,j∈Ik

(qij ⋅ lk) (zi ⋅ zj),

where qij = qji ∈ R∣Ik∣ for i, j ∈ Ik. Concerning the density Fs we assume
that it satisfies the estimate

(7.2) ∣∂κzFs(l, z)∣ ≤ C#
κ (s)C#

κ (z)
p

∏
i=1

h
i
κ(∣li − li0∣),

for any κ and some vectors l
i
0 ∈ R∣Ii∣. The functions h

i
κ are assumed to

satisfy the same assumption that we imposed on the functions hκ in (6.3),
where in (6.4) we replace K by ∣Ii∣. Denote by Rk the rank of the system
of ∣Ik∣-vectors (qij)i,j∈Ik .
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Theorem 7.1. Assume that ∑i∈Ik qii = 0 ∈ R∣Ik∣ for any 1 ≤ k ≤ p. Then,

under assumption (7.2) we have

∣Js∣ ≤ C#(s)
p

∏
k=1

ν
min(Rk,d)ψ

Rk
d (ν),

where the function C
#

depends on Fs as in Theorem 6.2.

Proof. We argue by induction. In the case p = 1 the assertion follows from
Theorem 6.2. Assume that theorem is proven for the case of p − 1 subsets
Ik in (7.1) and let us establish it for the case of p subsets. We recall the

notation l
p
= (li)i∈Ip and set l

<
= (li)i∉Ip . Similarly, we denote z

p
= (zi)i∈Ip

and z
<
= (zi)i∉Ip . Let Np ∶= ∣Ip∣ and

Is(l<, z<) = ∫
RNp

dl
p ∫

RdNp
dz

p
Fs(l, z)eiν

−1
Up(l,z),

where we recall that the function Up(l, z) depends only on l
p

and z
p
. Then,

∂
κ
z< Is(l

<
, z
<) = ∫

RNp
dl
p ∫

RdNp
dz

p (∂κz< Fs(l, z)) e
iν
−1
Up(l,z),

for any κ. Literally repeating the proof of Theorem 6.2, we get

∣∂κz<Is(l
<
, z
<)∣ ≤ C#(s)C#(z<)

p−1

∏
i=1

h
i(∣li − li0∣)g(ν),

where g(ν) = ν
min(Rp,d)ψ

Rp
d (ν) and the functions h

i
satisfy the same as-

sumptions that the functions h
i
κ from (7.2). Thus, we see that the function

Gs(l<, z<) = (g(ν))−1
Is(l<, z<) satisfies assumption (7.2) with p = p − 1.

Note that

Js = g(ν)∫
RN−Np

dl
< ∫

Rd(N−Np)
dz

<
Gs(l<, z<)eiν

−1∑p−1
k=1 Uk(l,z),

where Uk(l, z) depend only on l
<
, z
<
. Then, by the induction hypothesis,

∣Js∣ ≤ C#(s)g(ν)
p−1

∏
k=1

ν
min(Rk,d)ψ

Rk
d (ν) = C#(s)

p

∏
k=1

ν
min(Rk,d)ψ

Rk
d (ν).

�

7.2. Proof of Theorem 6.1. Recall that the phase function Ω
F

from the

definition (5.24) of the integral J̃s(F) is given by (5.22) and that for F ∈ F
true
m,n

the matrix α
F

is SS-regular (see Denition 5.2). Consider a partition (7.1)

with p ≥ 1 such that the matrices αk = (αF
ij)i,j∈Ik are irreducible and α

F
ij = 0

once i ∈ Ik and j ∈ Ir with k ≠ r. Then the integral J̃s(F) satisfies

assumptions of Theorem 7.1 with qij ⋅ l = α
F
ij(li − lj).
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Lemma 7.2. Let A = (aij) be an irreducible n × n-matrix, n ≥ 2, and the
vectors rij ∈ Rn be given by rij = aij(ei − ej), where (ei)1≤i≤n is a basis in
Rn. Then rank R of the system of n-vectors (rij)1≤i,j≤n equals n − 1.

Proof of Lemma 7.2 is a simple exercise from linear algebra and we post-
pone it to Appendix 8.3. Set Nk = ∣Ik∣. Since the Nk ×Nk-matrices αk are
skew-symmetric and non-zero, we have Nk ≥ 2. Applying Lemma 7.2 to the
system of vectors (qij)i,j∈Ik , we see that its rank Rk equals to Nk − 1. Then
by Theorem 7.1 we get the estimate

(7.3) ∣J̃s(F)∣ ≤ C#(s)
p

∏
i=1

ν
min(Ni−1,d)

ψ
Ni−1
d (ν).

Let us show that (7.3) implies the desired estimate (6.1). Assume first that
Ni − 1 < d for every 1 ≤ i ≤ p. Then, in view of (7.3) and the identity
∑p
i=1Ni = N , we have

∣J̃s(F)∣ ≤ C#(s)νN−p.
Since Ni ≥ 2 for any i, the number of blocks p satisfies p ≤ ⌊N/2⌋, where

⌊⋅⌋ denotes the (lower) entire part. Then N − p ≥ ⌈N/2⌉, so we get ν
N−p

≤

ν
⌈N/2⌉

which implies (6.1).
Now we assume that

(7.4) Nj − 1 ≥ d for some 1 ≤ j ≤ p,

so ν
min(Nj−1,d)

= ν
d
. Since for every i we have ν

min(Ni−1,d)
≤ ν, by (7.3) we

find

∣J̃s(F)∣ ≤ C#(s)νd+p−1
p

∏
i=1

ψ
Ni−1
d (ν) ≤ C#

1 (s)νd+p−2
.

In the case p ≥ 2 this implies (6.1). Now it remains to consider the case
when (7.4) holds with p = 1. Then N − 1 ≥ d. If N − 1 > d then (7.3) with
p = 1 implies (6.1). Otherwise N − 1 = d, so

(7.5) ∣J̃s(F)∣ ≤ C#(s)νN−1
ln ν

−1
.

If N−1 > ⌈N/2⌉ then ν
N−1

ln ν
−1
< Cν

⌈N/2⌉
and we are done. The opposite

situation is possible only if N ≤ 3. Since d = N − 1, it takes place if d = 2,
N = 3 or d = 1, N = 2. In these cases we find N − 1 = ⌈N/2⌉ = d, which is
2 or 1 correspondingly, so again (7.5) implies (6.1). �

8. Addenda

8.1. Optimality of the estimate in Theorem 2.2. Throughout this sec-
tion we assume that N = m+n ≥ 2 and d ≥ 2. Accordingly to Theorem 5.9,
we have

(8.1) Ea(m)
s (τ1)ā(n)s (τ2) = ∑

F∈F truem,n

J̃s(F) +O(C#(s)L−2
ν
−2),
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where we recall that the integrals J̃s(F) are given by (5.24) and F
true
m,n is

a certain subset of the set of Feynman diagrams F (which are defined in

Section 4), associated with the product a
(m)
s ā

(n)
s . Each integral J̃s(F) satis-

fies the estimate (6.1), and this implies the estimate in Theorem 2.2. Since

ν ln ν
−1
≤ C these estimates admit the following slightly weaker forms:

∣J̃s(F)∣ ≤ C#(s)νmin(N/2,d)
(8.2)

∣Ea(m)
s (τ1)ā(n)s (τ2)∣ ≤ C#(s)(ν−2

L
−2
+ ν

min(N/2,d)).

In this appendix we discuss the question if it is possible to get rid of the
minimum with d in the estimates above, that is, if it is true that
(8.3)

∣J̃s(F)∣ ≤ C#(s)νN/2
, ∣Ea(m)

s (τ1)ā(n)s (τ2)∣ ≤ C#(s)(ν−2
L
−2
+ ν

N/2),

for any N ≥ 2. We discussed the motivation for this question in Section 1.4.

Let F
2
m,n ⊂ F

true
m,n be a subset of Feynman diagrams F for which there is

q = q(F) such that the matrix α
F

from (5.22) satisfies α
F
ij = 0 if both i ≠ q

and j ≠ q (so, all elements of the matrix α
F

outside the q-th line and column

are zero). It can be shown that F
2
m,n ≠ ∅ if m,n ≥ 1.

Proposition 8.1. If m,n ≥ 1 and N > 2d, then for any Feynman diagram

F ∈ F
2
m,n we have C

#
1 (s)νd ≤ ∣J̃s(F)∣ ≤ C#

2 (s)νd.

Proposition 8.1 shows that the first estimate from (8.3) is false for F ∈

F
2
m,n when N > 2d, so in general we have only (8.2). Then, if the large

integrals J̃s(F) of the size ν
d

did not cancel each other in the sum from
(8.1), the second estimate from (8.3) would also fail. Moreover, if they did

not cancel in the sums from (1.25) that give n
k
s , then as we have discussed

in Section 1.4, this would imply that the energy spectrum corresponding

to a truncation ∑m
i=0 ρ

i
v
(i)
s with m > d of the decomposition (1.12) cannot

be approximated by a solution of the WKE (1.23). However, we find some
strong cancellations in the sum from (8.1):

Proposition 8.2. We have ∣∑F∈F2
m,n

J̃s(F)∣ ≤ C#(s)νN−1
for N ≥ 2.

Since ν
N−1

≤ ν
N/2

, this estimate does not prevent the second estimate
from (8.3) to be true. We expect that for N ≫ 2d the integrals J̃s(F) with

F ∈ F
2
m,n are the biggest (see below) but still there are many other diagrams

F ∉ F
2
m,n for which the corresponding integrals also are large (bigger than

ν
N/2

). Nevertheless, we expect that similar cancellations take place for

them as well, but do not know if they go till the order ν
N/2

. So, we state
the following
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Problem 8.3. Prove that for any d ≥ 2 and m,n satisfying N = m+n ≥ 2,

(8.4)
»»»»»» ∑
F∈F truem,n

J̃s(F)
»»»»»» ≤ C

#(s)νN/2
.

If (8.4) is true, we get the second estimate from (8.3). In particular, under

the ”kinetic” scaling ρ =
√
εν
−1/2

the energy spectrum corresponding to a

truncation ∑m
i=0 ρ

i
v
(i)
s of series (1.12) with any m ≥ 2 can be approximated

by a solution of the WKE (1.23) at least with the accuracy ε
2
, if L

−2
ν
−2
≤

ν
m

.
Discussion of proofs of Propositions 8.1, 8.2 and of Problem 8.3. Below

we do not give proofs but present only their rough ideas. Let us consider

the matrix α
F
l = (αF

ij(li − lj))1≤i,j≤N , which depends on l ∈ RN (see (5.22)).

Since it is symmetric, it has N real eigenvalues, which we enumerate in the

decreasing order ∣λ1(l)∣ ≥ ∣λ2(l)∣ ≥ . . . ≥ ∣λN(l)∣ ≥ 0, for any l ∈ RN . It

is possible to show that the set F
2
m,n can be equivalently defined as follows.

For k ≥ 1 we denote by F
k
m,n a set of Feynman diagrams F for which the

eigenvalues λ1(l), . . . , λk(l) are not identically zero while λi(l) ≡ 0 for any

i ≥ k + 1. Since the matrix α
F
l is non-zero but has zero trace, we have

F
1
m,n = ∅, so F

true
m,n = ∪Nk=2F

k
m,n.

Let us take a diagram F ∈ F
2
m,n and consider the integral over dz from the

definition (5.24) of J̃s(F). Applying to it the Parseval identity in the eigendi-
rections corresponding to the eigenvalues λ1 and λ2, and using that for F ∈

F
2
m,n we have λ3 = . . . = λN = 0, we find that J̃s(F) ∼ νd ∫

RN

h
F
s (l) dl

∣λ1(l)λ2(l)∣d/2

if N > 2d, for an appropriate integrable function h
F
s , which is fast decaying

in s. Due to Lemma 6.3, we have λ1λ2 = −1
2
∑

1≤i,j≤N

(αF
ij)

2(li − lj)2
. Us-

ing this formula, we show that the latter integral converges, which proves
Proposition 8.1.

Below by a graph of a Feynman diagram we mean the diagram, where
we do not specify which vertices are virtual, which have positive degree and
which are leaves, so the graph is just a collection of vertices coupled by
edges. To establish Proposition 8.2, we note that, up to a renumbering of

vertices, all diagrams F ∈ F
2
m,n have the same graph which we denote by G

2
.

To recover the set of diagrams F
2
m,n from this graph, it suffices to look over

all possible placings of virtual vertices (once positions of the virtual vertices
are known, degrees of the other vertices are recovered uniquely).

The graph G
2

is such that in a k-th block with any k ≠ 1, m + 1, the
virtual vertex can be placed in two different positions, c2k or c̄2k. Now,
using the stationary phase method [7,16], we develop each integral J̃s(F) in
ν. Change of position of a virtual vertex inside of a block, roughly speaking,
changes only the sign in first p orders of this decomposition. This is where
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a)

c2r−1

c̄2r−1•

• c̄2r

c2r •

•

C1 C2 b)

c2r−1

c̄2r−1•

• c̄2r

c2r •

•

C12

Figure 8. Construction of the cycle C12 from the cycles C1

and C2. In this figure we do not make difference between
solid and dashed edges.

the cancellations come from. The number p here equals to the number of
blocks in which position of the virtual vertex is not determined uniquely,
that is p = N − 2. After some work, we deduce from this Proposition 8.2.

Let us now discuss Problem 8.3. Take a diagram F0 ∉ F
2
m,n and consider

its graph GF0
. We expect that in the sum

(8.5) ∑
F∈F truem,n ∶GF=GF0

J̃s(F)

there are similar cancellations. However, the graph G
2

is ”very symmetric”
(we are able to draw it explicitly), while for a general diagram F0 there are
less symmetries in the graph GF0

. That is why we expect that in the sum
(8.5) the number p of orders, in which the cancellations take place, is smaller
than in the sum from Proposition 8.2, so we expect to get less ”additional
degrees” of ν than in Proposition 8.2. Then the estimate (8.4) can be true

only if the integrals J̃s(F) are smaller than those from Proposition 8.2, once
N > 2d. Namely, if there exists r > d sufficiently large such that for the

diagrams F satisfying GF = GF0
we have ∣J̃s(F)∣ ≤ C#(s)νr.

It is plausible that this is indeed the case and below we explain the rea-

son. Let k > 2 be such that F0 ∈ F
k
m,n. Then it is possible to show that

F ∈ F
k
m,n as well for any diagram F satisfying GF = GF0

. Then, arguing as
in the proof of Proposition 8.1 and applying the stationary phase method
in the eigendirections corresponding to the eigenvalues λ1, . . . , λk, we get

J̃s(F) ∼ νkd/2 ∫
RN

h
F
s (l) dl

∣λ1(l)⋯λk(l)∣d/2
, if the latter integral converges. Per-

haps, the factor ν
kd/2

could lead to the desired estimate. However, we are
not able to establish the convergence since we do not know a good estimate
from below for the product λ1(l)⋯λk(l) in the case k > 2, in difference with
the situation when k = 2 considered in Proposition 8.1.

8.2. Proof of Lemma 5.1. Let us consider a graph C
′
F which is obtained

from UF by erasing in each block two (of four) dashed edges. We choose the

edges we preserve arbitrarily, but in such a way that in the graph C
′
F each

vertex is incident to exactly two edges, one of which is solid and another
one is dashed. We will modify the choice of the preserved dashed edges in
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certain blocks of C
′
F in such a way that C

′
F will become a cycle. Since in the

graph C
′
F every vertex is incident to two edges, C

′
F decouples to a union of

k ≥ 1 disjoint cycles Ci, 1 ≤ i ≤ k, in which solid and dashed edges alternate.
If k = 1 then we are done. Assume that k > 1. We claim that in this case
there exists a block B̂r = {c2r−1, c2r, c̄2r−1, c̄2r} such that some but not all
of its vertices belongs to cycle C1.

Indeed, assume that the claim is not true, so that each block either entirely
belongs to the cycle C1, or its intersection with C1 is empty. Take a block B̂p
belonging to C1. Then any vertex ĉj ∉ B̂p which is adjacent with a vertex

from the block B̂p (by construction of C
′
F such vertex exists), belongs to the

cycle C1 and, consequently, all other vertices from the block to which belongs
ĉj belong to C1 as well. Arguing in this way, by induction we obtain that

the cycle C1 contains all blocks of the diagram C
′
F, as well as the vertices c0

and c̄0. Thus, C1 = C
′
F which contradicts to the assumption k > 1, so the

claim is true.
Let B̂r be a block as in the claim. By construction of the diagram C

′
F,

its dashed edges either provide the couplings c2r−1 ∼ c̄2r−1 and c2r ∼ c̄2r

or the couplings c2r−1 ∼ c̄2r and c2r ∼ c̄2r−1. For definiteness, we assume
that c2r−1 ∼ c̄2r−1 ∈ C1 and c2r ∼ c̄2r ∈ C2, as in fig. 8(a). Let us erase the
(dashed) edges that couple the vertices c2r−1 with c̄2r−1 and c2r with c̄2r,
and instead couple the vertices c2r−1 with c̄2r and c2r with c̄2r−1. Then from

the diagram C
′
F we obtain another diagram C

′′
F, constructed from UF in the

same way as the diagram C
′
F, in which there is one cycle C12 instead of the

two disjoint cycles C1 and C2 in C
′
F, see fig. 8(b). So the total number of

cycles in the diagram C
′′
F is k − 1, where we recall that by our assumption

in C
′
F there are k > 1 cycles. Then, arguing by induction, we arrive at a

diagram CF which is a cycle itself.

8.3. Proof of Lemma 7.2. Since the matrix A is irreducible, there exists k
and indices i1, . . . , ik satisfying ij ≠ ij+1 ∀j, such that ai1i2ai2i3⋯aik−1ik ≠ 0
and the sequence i1, . . . , ik contains every number from 1 to n. We con-
struct a set B of linearly independent vectors rij by the following inductive
procedure. For the base of induction we consider the indices i1, i2 and set
B = {ri1i2}. For the inductive step, we assume that the indices i1, . . . , im−1

are already considered, and we consider the index im. If the set B does not
contain any vector ruv for which u = im or v = im then we add the vector
rim−1im to B and pass to the next step. Otherwise we just pass to the next
step. We conclude the procedure when all indices i1, . . . , ik are considered.

Since the sequence i1, . . . , ik contains every 1 ≤ j ≤ n, after the end of
the procedure above we have ∣B∣ = n − 1. Due to the form of the vectors
rij , vectors from the set B are linearly independent, so the rank R satisfies
R ≥ n − 1. Thus, it remains to show that R < n. If R = n then the basis
vectors em can be uniquely expressed through the vectors rij . However, this
is not possible since the vectors rij are invariant with respect to translations
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of the set (ei): if we replace ei by ei + e for every i and a vector e then the
vectors rij remain unchanged. �

8.4. Integrals J̃s(F) in which the time variable l is integrated out.

In this appendix we integrate out the time variable l in the integrals J̃s(F),
which are defined in (5.24). We believe that it is relevant for further study of
the energy spectrum (1.25) of quasisolutions since for the moment of writing

we know asymptotical as ν → 0 behaviour of the integrals J̃s(F) only in case
N = 2, and to find it we have to write the integrals in such integrated in
l form. See in [9], where we found this asymptotic and, using a particular
case of Theorem 5.9, deduced from it the asymptotical as ν → 0, L → ∞
behaviour of the moment E∣a(1)s ∣2. Note, however, that in case of general

N , even to get an upper bound for the integrals J̃s(F) in Theorem 6.2 we
write them in the form (5.24) and we do not know how to get the upper
bound using their integrated in l form.

For simplicity of computation we assume τ1 = τ2 =∶ t and T = ∞. We

denote by SN the set of all permutations q of the set {1, . . . , N} and let

LNq ∶= {l ∈ RN ∶ −∞ ≤ lq(N) ≤ . . . ≤ lq(1) ≤ t}, so that RNl = ⋃
q∈SN

LNq ,

and the sets LNq with different q can intersect only over sets of zero Lebesgue
measure. Then, in view of (4.7),

(8.6) J̃s(F) = ∫
RdN

∏
ψ∈EL(F)

(bψ(z))2

γψ(z)
∑
q∈SN

I
q
s (F; z) dz ,

where

I
q
s (F, z) = ∫

LNq
e
iν
−1

Ω
F(l,z) ∏

ϕ∈ED(F)
e
−γϕ(lϕr −lϕw)I{−T≤lϕw≤lϕr }(t, l)

∏
ψ∈EL(F)

e
−γψ∣lcψ−lc̄ψ ∣

dl,(8.7)

where b
ψ(z) = b

ψ(ξ(z)), γψ(z) = γ
ψ(ξ(z)) and γ

ϕ(z) = γ
ϕ(ξ(z)). It re-

mains to compute the integrals I
q
s , and for this purpose we introduce the

following notation. For 0 ≤ i < j ≤ N we set

γ
F
ij ∶= ∑

ϑ∶ B̂i∼B̂j

γϑ ≥ 0,

where the sum is taken over all edges ϑ ∈ E(F) of the diagram F which

couple a vertex from the block B̂i with a vertex from the block B̂j . Here by

B̂0 we denote the set of roots {c0, c̄0}.

Let SNF ⊂ SN be the set of permutations q for which the relation l ∈ LNq
implies

l
ϕ
w ≤ l

ϕ
r for all ϕ ∈ ED(F),



STOCHASTIC MODEL FOR WAVE TURBULENCE 2: DIAGRAMS 47

cf. the indicator function in (8.7).
Below we denote q(0) ∶= 0.

Lemma 8.4. Assume τ1 = τ2 = t and T = ∞. Then for any m,n ≥ 0
satisfying N ∶= m+n ≥ 2 and F ∈ Fm,n the integral J̃s(F) is given by (8.6),
where

(8.8) I
q
s (F; z) = 1

2γs

N

∏
k=2

⎛
⎜
⎝
iν
−1

N

∑
j=k

ω
F
q(j)(z) + ∑

0≤r<k≤j≤N

γ
F
q(r)q(j)(z)

⎞
⎟
⎠

−1

if q ∈ SNF and I
q
s (F; z) ≡ 0 otherwise. Moreover, ∑0≤r<k≤j≤N γ

F
q(r)q(j) ≥ 1

for any 2 ≤ k ≤ N , so the denominator in (8.8) is separated from zero.

The lemma can be proven by induction.
Note that outside the intersection of quadrics

Q ∶= {z ∶ ωF
j (z) = 0 for 1 ≤ j ≤ N}

we have I
q
s (F; z) ∼ νN−1

, while on Q we have I
q
s (F; z) ∼ 1. So the integrand

in (8.6) asymptotically degenerates on Q as ν → 0, and the integral in (8.6)
is asymptotically singular.

8.5. Estimation of asymptotically singular integrals of quotients. In
Lemma 8.4 we integrated out the time variable l in integrals J̃s(F), defined

in (5.24), and represented J̃s(F) as sums of integrals of quotients with large
quadratic forms in divisors, see (8.6),(8.8). In Theorem 6.2 we got an upper
bound for a family of integrals of quotients that have more general form
than the integrals J̃s(F). As a corollary, in this appendix we obtain an
upper bound for a natural family of integrals of more general form than
those in (8.6), (8.8).

As in Section 6.1, we consider the family of quadratic forms

(Qkz) ⋅ z =
M

∑
i,j=1

q
k
ijzi ⋅ zj , 1 ≤ k ≤ K,

where z is the polyvector z = (z1, . . . , zM), zj ∈ Rd, and Qk = (qkij)1≤i,j≤M

are real symmetric matrices. As before, we denote by R the rank of the
system of matrices Q1, . . . , QK in the space of M ×M -matrices, equal to the
rank of the system of vectors

qij ∈ RK , 1 ≤ i, j ≤M, qij = (q1
ij , . . . , q

K
ij ).

Let

(8.9) J
ν
= ∫

RdM

G(z)
∏K

k=1 (iν−1(Qkz) ⋅ z + Γk(z))
dz,
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where 0 < ν ≤ 1/2, G is a Schwartz function, the functions Γk are smooth,
have at most polynomial growth at infinity together with their partial deriva-
tives of all orders, and satisfy Γk(z) ≥ CΓ for some constant CΓ > 0 and any
k and z.

Proposition 8.5. Assume that trQk = 0 for every 1 ≤ k ≤ K. Then

(8.10) ∣Jν∣ ≤ Cνmin(R,d)
ψ
R
d (ν),

where the function ψ
R
d is defined in (6.5).

To establish the proposition, we use representation

1

iν−1(Qkz) ⋅ z + Γk(z)
= ∫

0

−∞
e
lk(iν−1(Qkz)⋅z+Γk(z)) dlk,

for every k. Then the integral J
ν

takes the form (6.2) and the desired
estimate follows from Theorem 6.2. See [8] for a generalization of this result.

In [18] the asymptotic behaviour as ν → 0 of the integral J
ν

was found
in the case when d ≥ 2 is a pair number, K = 2, Γ1 = Γ2 and Q1 = −Q2,
where the quadratic form Q1 was assumed to be non-degenerate and to
have the index of the form (m,m), for some m. This result plays a crucial

role in [9] when analysing the asymptotic behaviour of the term n
(2)

from
the decomposition (1.21). In particular, it was shown that J

ν
∼ ν which

is in accordance with the estimate (8.10). The family of integrals (8.9)
is significantly more complicated than that in [18]. We get for them only
the upper bound and for the moment do not now how to examine their
asymptotic behaviour.

Data Availability Statement. Data sharing not applicable to this article as no datasets

were generated or analysed during the current study.
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[7] M. Dimassi, J. Sjöstrand, Spectral Asymptotic in the Semi–Classical Limit, CUP 1999.
[8] A.V. Dymov, Asymptotic estimates for singular Integrals of fractions whose denom-

inators contain products of block quadratic forms, Proc. Steklov Inst. Math. 310,
148-162 (2020).



STOCHASTIC MODEL FOR WAVE TURBULENCE 2: DIAGRAMS 49

[9] A. Dymov, S. Kuksin, Formal expansions in stochastic model for wave turbulence 1:
kinetic limit, Comm. Math. Phys. 382, 951–1014 (2021).

[10] A. Dymov, S. Kuksin, arXiv:1907.02279.
[11] A. Dymov, S. Kuksin, A. Maiocchi, S. Vladuts, The large-period limit for equations

of discrete turbulence, arXiv:2104.11967 (2021).
[12] L. Erdös, H.T. Yau, Linear Boltzmann equation as the weak coupling limit of a random

Schrödinger equation, Commun. Pure Appl. Math. 53, 667-735 (2000).
[13] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the cubic non-linear Schrödinger

equation from quantum dynamics of many-body systems, Invent. math. 167, 515-614
(2007).

[14] E. Faou, Linearized wave turbulence convergence results for three-wave systems,
Comm. Math. Physics 378, 807-849 (2020)

[15] E. Faou, P. Germain, Z. Hani, The weakly nonlinear large-box limit of the 2D cubic
nonlinear Schrödinger equation, J. Amer. Math. Soc., 29, 915–982 (2016)
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