
HAL Id: hal-04463127
https://hal.science/hal-04463127

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multilayer monitoring for real-time applications
Etienne Hamelin, Mihail Asavoae, Selma Azaiez, Alexandre Berne, Cyril

Faure, Kods Trabelsi

To cite this version:
Etienne Hamelin, Mihail Asavoae, Selma Azaiez, Alexandre Berne, Cyril Faure, et al.. Multilayer
monitoring for real-time applications. ERTS 2022 - 11th European Congress Embedded Real Time
Systems, Jun 2022, Toulouse, France. �hal-04463127�

https://hal.science/hal-04463127
https://hal.archives-ouvertes.fr

Multilayer Monitoring for Real-Time Applications
Etienne Hamelin∗, Mihail Asavoae∗, Selma Azaiez∗, Alexandre Berne∗, Cyril Faure∗, Kods Trabelsi∗

∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France (email: firstname.lastname@cea.fr)

Abstract—Validation of timing requirements of multicore, het-
erogenous and distributed systems is difficult problem because of
a large number of situations that introduce temporal variability
and/or interference. A possible solution is to augment the system
with monitors and to rely on runtime monitoring techniques. In
this paper we propose such a runtime monitoring which spans
all the semantics layers of a model-based design, from high-
level specification to executable code. We showcase our runtime
monitoring on a safety-critical application for driving assistance.

I. INTRODUCTION

Runtime monitoring is a lightweight verification technique
for detecting property violations in embedded safety-critical
systems. A typical runtime verification workflow consists of
the definition, the synthesis and the execution of a collection
of monitors which observe concrete executions of the system
and check their conformance with respect to a set of stipulated
properties. The observation aspect requires either a form of
instrumentation (e.g. the code is made available) or external
annotations (e.g. only black-box / COTS components are
provided). The conformance checking aspect usually refers to
property violations, or stated differently, to deviations from
expected correct runtime behaviors. The design and implemen-
tation of a runtime monitoring environment needs to address
these aspects as well as the characteristics of the embedded
safety-critical system under consideration. In the following we
propose a versatile runtime monitoring, which we denote as
multilayer runtime monitoring and which combines high-level
design details with low-level implementation particularities (of
both application and execution platform).

We consider a model-based design (MBD) methodology
for embedded software, adapted to address complex designs
and to respond to complex and precise requirements. A
prime example of such a methodology is based on the syn-
chronous dataflow principle, with well-established workflows
from Lustre/SCADE [8] or Simulink [9]. A MBD exposes
several programming languages: the (just enumerated) high-
level languages, intermediate languages like C and finally, low-
level languages (e.g. assembly or binary code). In this case a
multilayer runtime monitoring mimics the MBD languages,
with monitors being placed at each level and an existing
simulation/execution environment, likewise available. We also
consider a distributed execution platform, which is suitable to
map mixed-critical applications.

This research was partially supported by the ECSEL-JU under the program
ECSEL-Innovation Actions-2018 (ECSEL-IA) for research project CPS4EU
(ID-826276) in the area Cyber-Physical Systems.

In this paper we exemplify our multilayer runtime moni-
toring, driven by the non-functional requirements of a safety-
critical application from the automotive domain. More specif-
ically, in this paper we address timing properties. The MBD
workflow starts with a high-level Polygraph design [11], a
specialized dataflow-like language, which is further compiled
and deployed on a distributed architecture. In this setting, the
design of a multilayer runtime monitoring needs to address
a certain number of challenges, presented in Section II.
Moreover, details of the underlying MBD are in Section III, a
high-level presentation of the multilayer runtime monitoring,
in Section IV and the proposed case study, in Section V.

II. CHALLENGES

One of the main challenges in designing and analyz-
ing safety-critical applications running on complex computa-
tional systems (e.g. heterogeneous, distributed or even virtual-
ized [15]) lies in the computation and communication timing
variability of the application’s components. This variability is
due to various factors, among which we enumerate:

• task-specific behavior:
– data-dependent (e.g. a task may chose a different

behavior mode)
• inter-task interference due to shared software resources:

– operating system-managed resources (e.g. schedul-
ing, peripherals etc.),

– exclusive services (e.g. drivers, communication pro-
tocols stacks, synchronization primitives, etc.)

• inter-task interference due to shared hardware resources:
– shared CPU cores, shared caches etc.,
– shared communication buses, shared peripherals, etc.

Static timing analyzers like aiT [1], or Otawa [5] compute
safe bounds on the worst-case execution time of an application
(i.e. behaviour-related timing variability). Another source of
timing variability is due to interference between tasks; dif-
ferent techniques (e.g. static, statistical etc.) are developed
to compute the necessary bounds on the timing behavior. To
address interferences, static timing analyzers are extended with
specialized shared cache analyses or cache-related preemption
delay analyses.

Static and dynamic analyses are used to accurately capture
the timing variability, whereas online monitoring is how the
system identifies and addresses the deviations from specified/-
validated timing values.

• static analysis is performed on the control-flow graph of
the source or binary code,

1

• dynamic analysis is performed on traces extracted from
concrete executions on the actual architecture, on an
emulated target etc.,

• online monitoring is performed, at runtime, on the em-
bedded target

The list of challenges, while non-exhaustive, is sufficient
to expose the potential complexity arising when the timing
variability is analyzed. One of the objectives of our multilayer
runtime monitoring is to provide the necessary support, in the
form of monitors, at various levels in this system representa-
tion (e.g. from high-level design to hardware).

III. DESCRIPTION OF THE APPROACH

An overview of our approach is presented in Figure 1,
adhering to a MBD workflow for dataflow designs. A use case
defines the application and a dataflow model, in Polygraph,
defines the correct behavior of the system. From the Polygraph
model, through a dataflow compilation, we generate elements
of the source code, in C (i.e. a scheduler) which are then
integrated with other elements of the source code (e.g. user-
written code, libraries, RTOS APIs etc.), and finally compiled
into a binary. When deploying and running such binaries on
target boards, we obtain the execution traces which are then
analysed by a processing engine. The goal is to check their
conformance with respect to the correct timing, as defined in
the high-level specification [17].

Fig. 1: Overview of the design flow

The first required step for analyzing the timing behaviour
of our distributed application is to define accurately what is
a ”correct” behaviour for this application. To this end, we
use the Polygraph model of computation and communication,
presented in [11]. Polygraph is a real-time dataflow paradigm
that extends the multi-rate synchronous dataflow approach.

The Polygraph model defines a complex set of causal rela-
tionships between actor/task firings, message tokens, and time
instants. From a Polygraph model verified as both consistent
and live, we generate elements of source code, which are
linked with other user-provided code files and the instrumen-
tation, and finally compiled into a set of binary firmware.
When running these firmware programs on a heterogeneous
platform made of single- or multicore targets, we monitor and

analyze the execution traces generated from the instrumented
programs.

In a MBD workflow, as in Figure 1, the semantics of
the initial use case is successively transformed. First, the
use case is formalized in the dataflow design (i.e. a high-
level application semantics), then the C code is generated
(i.e. an intermediate-level application semantics) and finally,
it is compiled into the binary (i.e. a low-level application
semantics). In order to preserve accurate traceability between
the C code and the generated binary, the compilation is
usually performed without optimizations. However, a coarser
traceability could be preserved in the presence of compilation
optimizations, so as to relate the high-level events to low-
level functionalities (e.g. at function-level). In this work we
consider compiler optimizations, however, regardless of the
optimized/un-optimized compilation, it remains the fact that
the use case semantics is obfuscated by this chain of transfor-
mations and, at the binary level, the use case characteristics
(structural and functional) are difficult to identify and reason
about. This motivates a runtime monitoring which should
preserve some traceability features of the MBD compilation
chain. Obviously, such a multilayered runtime monitoring
implies the existence of execution environments at each level
in the MBD workflow.

IV. MONITORING SYSTEM

In the following, we briefly present some design decisions
behind our multilayer runtime monitoring. We distinguish
three levels of interest, starting with a dataflow Polygraph
design and ending at the hardware hardware level and we
organize this section as such.

A. Application level monitoring

The timing properties derived from the Polygraph design
are used by the code generator to instantiate a set of software
monitors. Here, we rely on the traceability of dataflow compi-
lation chains. These monitors are inserted into the generated
C code; each monitor is dedicated to observe a specific set of
events, and related causal or temporal properties (as specified
in the dataflow design). Then, these monitors output a trace
of timestamped events for further conformance checking with
respect to an expected behavior. As previously mentioned, the
conformance checking could be of static or statistical nature.

B. Binary level monitoring

In case of safety-critical applications (i.e. requiring safe and
tight timing bounds), timing analysis should be addressed in
worst-case scenarios. There are two types of worst-case timing
analysis: based on static analysis and on measurements. In the
measurement-based approach, the binary is actually executed
on the architecture or in a simulation environment and the
results are interpreted with respect to a set of requirements.
The instrumentation is necessary in this case to ensure that
the collected executions are representative for the input ap-
plication. In the context of runtime execution, and thus, in
the presence of a monitoring system, the measurement-based

2

timing analysis seems to be the obvious choice. The code is
instrumented at meaningful program points (actor job start,
job end, message send/receive) so that runtime observations
are possible whenever the code execution passes these points.

The binary instrumentation could and should be coupled
with the non-intrusive hardware performance monitoring,
which is detailed next.

C. Architecture level monitoring

The software-level runtime monitoring is complemented by
a dedicated hardware infrastructure in the form of a Perfor-
mance Monitoring Unit (PMU), available in most hardware
architectures. The PMU allows recording of architectural and
micro-architecture events for profiling purposes. Most modern
CPU architectures contain a PMU embedded in the silicon,
which provides performance counters (PMCs), a set of per-
formance events to be counted Events such as preemptions,
cache hits/misses could be tracked via the PMU to analyze
the execution time of the system under test [6], [25]. Several
commercial tools like ARM Streamline gator kernel module
and daemon [2] are available to leverage PMUs in order to
provide real-time feedback to engineers and help them to
diagnose bugs or identify bottlenecks in software.

V. CASE-STUDY AND EXPERIMENTATION

We showcase our approach by setting up a practical proto-
type platform, which embeds the monitoring layers described
above into a use-case implemented as a Polygraph design.

In Figure 2, we present our use-case. This application is
representative of the kind of real-time computing loads asso-
ciated with advanced driver assistance systems (ADAS): the
Camera actor generates image frames at a fixed rate e.g. 15
frames per second. These frames are analyzed by two mostly
independent sub-chains. On one hand, lanes are detected on
every frame using classic computer vision algorithms, and
illustrates a time-critical chain. On the other hand Objects
detection is performed using a deep neural network, and
processes only a subsampled set of the input frames, in a
soft real-time way. The Display sink actor serves as visual
output, and additionally checks for deadline misses.

A. Case study implementation

The case study was implemented on a set of two Raspberry
Pi multicore embedded computers, equipped with the Linux
Operating system patched with PREEMPT RT to support real-
time applications, connected over Ethernet.

The RPi model 3B+ has a Broadcom BCM2835, 4-core
ARMv7 processor, with 16KiB private L1 instruction, 16KiB
L1 data cache, a 512KiB shared L2 cache.

Actors communicate through ZeroMQ messages using the
publish/subscribe communication pattern. ZeroMQ [16], avail-
able as both C and Python-compatible, was chosen for its
performance and versatility, supporting equally well inter-
thread, inter-process process and Ethernet-based communica-
tions, independently from actual scheduling-related configu-
ration. In comparison the popular ROS framework, available

in C++ and Python, uses by default a single event queue
for scheduling callbacks in a run-to-completion manner. This
makes configuration and verification of real-time properties
complex (see e.g. [34]).

Below is a simplified view of the implementation for an
actor thread, where the business logic is inserted into a task
and communication structure generated from the Polygraph
model with inline tracing statements. The actor detailed,
Perspective Warp, has a simple Polygraph specification:
one input port, one output port, and no clock constraint, i.e.
firings are triggered by incoming messages.

Listing 1: Example actor code
// actor thread
void * a c t o r p e r s p e c t i v e w a r p (void * a r g) {
// Input channel: create subscriber socket
void * z i n = zmq socket (zc tx , ZMQ SUB) ;
// connect to TCP endpoint
zmq connect (z in , "tcp://...") ;
// subscribe to topic
z m q s e t s o c k o p t (z in , ZMQ SUBSCRIBE , "frame") ;

// Output channel: Create publisher socket
z o u t = zmq socket (zc tx , ZMQ PUB) ;
// bind to inter-process com endpoint
zmq bind (z out , "inproc://persp_warp") ;

// Allocate image memory space
img t * im in = img new (. . .) ;
img t * im out = img new (. . .) ;

// Main loop
while (1) {

t r a c e j o b s t a r t (. . .) ;
// receive (blocking) input message
zmq recv image (z in , im in , . . .) ;
t r a c e t o k e n r e c e i v e d (. . .) ;

// transform front view to bird-eye view
i m g p e r s p e c t i v e w a r p (im in , im out , . . .) ;

// send output message
t r a c e t o k e n s e n d (. . .) ;
zmq send image (z out , im out , . . .) ;
t r a c e j o b e n d (. . .) ;

}
}

1) Test stubs: The ADAS camera is simulated by a Image
source actor, implemented with Python and OpenCV. It peri-
odically sends images (300x200 pixels, RGB format) extracted
from a video file, shown in Figure 3.

The Display actor, implemented in Python, subscribes to
the outputs of both lane and object detection chains, and ad-
ditionally monitors the end-to-end latency of each processing
sub-chain.

2) Lane detection: The image processing pipeline is in-
spired from the many Python implementations of Advanced
Lane Detection published by participants to the popular ”Self
Driving Car” NanoDegree from Udacity, e.g. [27].

These actors represent a hard real-time processing sub-
chain. They are implemented in bare C, as three separate

3

Fig. 2: Use-case dataflow

Fig. 3: Input image

threads. They are run on the isolated cores with high real-
time priority.

The Perspective Warp actor transforms the front view
image into a bird-eye-view image, following a manually-
calibrated perspective transform, as shown in Figure 4a.

The Lane Detection actor then uses a color filter to
extract lane markings, then a boxed histogram search to
identify the most plausible markings (local maxima) for each
lane, shown in Figure 4b.

A 2nd degree polynomial is fitted through the local maxima.
The polynomial is used to extrapolate and draw curved lane
besides the detected markings, shown in Figure 4c.

Finally, the Inverse Perspective actor projects the
lane-marked bird-eye-view into a front view, shown in Fig-
ure 4d.

3) Object detection: The Object detection actor uses
a deep neural network (DNN) to detect objects such as cars,
trucks or motorcycles (see 5. The network used is the SSD
Mobilenet v3, pre-trained on 300x300 color images using the
COCO Small dataset [31]. This network is not trained specif-
ically for ADAS applications, but is however representative
of the type of computational load typical of computer vision
DNNs.

This actor is implemented in Python, and uses the Ten-
sorflow Lite runtime. Due to its intensive CPU and memory

usage, this actor only processes 1 frame per second. This actor
is mapped onto the non-isolated cores.

4) Variability sources: In II, we recalled the most promi-
nent sources of temporal variability in real-time applications.
The following measures are configured so as to reduce vari-
ability to a minimum:

• data-dependent behavior is reduced to a minimum: the
memory allocation is authorized only during setup, and
the execution flow depends on image size but not image
content. Only the Gauss-Jordan matrix inversion used in
the polynomial fit step has non-deterministic execution
flow, however this represent a small fraction of the
execution time (less than 100µs);

• time-critical tasks are scheduled as high-priority real-time
threads

• time-critical tasks are run on isolated CPU cores: the
isolcpu and taskset commands prevent the OS
from scheduling background services on two CPU cores
dedicated to real-time tasks, and consequently ensure
interference-free access to private L1 caches;

• inter-task synchronization is limited to blocking on
message reception, thus enforcing a correct Polygraph
dataflow semantics.

The execution times of the non-critical Object detection sub-
chain on the other hand show much more variability, due to
e.g.:

• data-dependent behavior: due to its black box nature,
we could not inspect to what extent the TFLite runtime
behavior does depend on actual image content. To the
least, we observe a variable execution time, and assume
that some operations depend on e.g. the number of objects
detected.

This task configuration is expected to reduce the risk of
interference between non-critical and critical tasks. However,
the shared L2 cache remains a possible source of interference,

4

(a) Perspective warp (b) Boxed histogram search

(c) Polynomial-fitter lane markings (d) Inverse-perspective warped lane markings
Fig. 4: Lane detection chain: intermediate stages

Fig. 5: Detected objects

since both critical and non-critical task chains process memory
chunks larger than the last-level L2 cache.

5) Monitoring infrastructure: The monitoring infrastructure
is integrated within each Python and C-based actor thread,
using the low-overhead LTTNG-UST infrastructure (Linux
Tracing Toolkig - New Generation, User-Space Tracing). In
our configuration, LTTNG-UST tracing was tested to cost
approximately 5µs per trace point, well below the time gran-
ularity of the monitored events. We monitor all Polygraph
dataflow relevant events, that is: actor job start, job end,
message sent, message received. Using these events, we can
compute the execution times of each actor job.

In addition, the Image Source actor generates a times-
tamp, which is transported together with the image payload
during all processing steps. This enables other actors comput-
ing the input and output latency of each actor (time of arrival
of input data, and time of departure of output data, relative to
original input timestamp).

The real-time, NTP synchronized, clock
CLOCK_REALTIME is used to compare timestamps from
distributed platforms with millisecond-level precision,
whereas the monotonic clock CLOCK_MONOTONIC is used
to compare timestamps inside a given platform, up to
microsecond precision for e.g. actor execution times.

The event trace generated by this monitoring infrastructure,
showed in Figure 6 allows to analyze the evolution in time
of execution times of critical actor jobs (in µs; top section).
In particular, the execution time of critical actors is relatively
stable (standard deviation is below 2% of the average). The
input/output latency is computed at each actor job (in ms;
middle section).

In the PMU trace (lower section), we see hardware-level
metrics for the Perspective warp actor. In particular,
from PMU monitored metrics we compute the instruction per
cycle ratio (IPC), and miss rate at private (L1) as well as shared
(last level) cache. In our application, a significant variability
of the miss rate at shared cache LL (stddev ≈ 12% · avg)
is probably caused by interference from the non-critical,
memory-intensive, Object detection actor. This variable
LL miss rate would cause a variable access time for data
outside L1 cache, and variable instruction per cycle (IPC).
However since most data reads only hit the L1 cache (miss
rate < 1%), the effect of LL cache interference is not much
visible on actor execution time or the IPC metric in this run.

B. Static WCET Analysis

In order to better establish correlations between the monitor-
ing infrastructure and the architecture timing, we have consid-
ered a cycle-accurate, WCET analysis for the Perspective
Warp actor. More precisely, we consider a reference imple-
mentation of this actor which is then evaluated with Otawa
static timing analyzer [5] for ARM processors. Whereas spe-
cialized analyses are necessary to address shared caches or the
possibility to accommodate the preemption, Otawa proposes
single-core, non-preemptive analysis, hence we only directly
analyze L1 cache effects. Let us elaborate next on these two
aspects of the experimentation.

5

Fig. 6: Execution trace analysis

The reference implementation of the Perspective
Warp actor is characterized by the following elements. First,
the input image, as shown in Figure 3 is of fixed size (i.e.
300x200 pixels) and the output image, as shown in Figure 4a
is also of fixed side (i.e. 200x133 pixels). We note that both
image sizes are modifiable, but we fix them as a referenced
input-output, as we have previously stated. Second, the code
is organized in three stages: memory allocation of all the
manipulated images, followed by a perspective transformation
algorithm (through a resolution of a system of linear equations)
and finally, the generation of the resulted imaged. We note
that our contribution (wrt. the monitoring infrastructure) is
to observe the timing contribution of the memory accesses.
Third, the code is stripped of auxiliary functionalities, namely
calls to the ZMQ library and other tracing operations. Finally,
we also addressed a highly-optimized version (-O3) of this
code (as used in all the other tests). From the architecture
point of view, we analyze with Otawa single-core timing, using
cache analyses for L1 caches (and without considering the L2
shared cache). As such, the resulting code presents its core
functionality which is then evaluated with the static timing
analyzer in order to obtain a timing bound in the absence of
other interferences (i.e. from ObjectDetection and Linux
background services).

The Otawa timing analyzer is also highly configurable,
featuring, on the architecture side, an infrastructure for ARM,
RISC-V or PPC architectures (to name a few) and on the anal-

ysis side, a wide range of abstractions to compute flow-facts
from both the input program and the underlying architecture
(e.g. standard cache may- and must- analyses). Also, Otawa
proposes an advanced scripting to facilitate the extraction of
loop addresses, in order to introduce loop bounds. We note that
Otawa is accompanied by oRange [10] tool to compute these
loop bounds, however, due to the fact that our code contains
only for-loops, it is not necessary to consider oRange for
these bounds. In our experimentation with the Perspective
Warp actor, we consider the ARM architecture of Otawa with
a simple pipeline and instruction and data caches, for which
the aforementioned analyses are selected. In this setting, Otawa
returns slighly more than 12 million cycles for each image
processed, for a code which is dominated by memory accesses
(55% instructions). This estimate is roughly three times the
cycle count measured by runtime monitoring.

The Otawa analyzer only considers a 1 level cache, whereas
our target features 2 cache levels; for this reason we cannot
expect Otawa to provide an accurate figure. However since
the L1 miss rate is low (cf. Fig. 6, consistent with Otawa
analysis), the effect of 2nd level cache cannot explain the large
difference. This discrepancy needs to be further investigated.

While these results are used as a baseline WCET behavior
for Perspective Warp, similar investigations could be
performed for the other time-critical actors of our case study.

6

VI. RELATED WORK

Model-based design (MBD) approaches for real-time sys-
tems consider as, for the high-level application, a design
developed using synchronous languages like Lustre [13]. For
this particular language (as for others in the same family), a
notion of observer could be defined [14] to address design
properties. More precisely, an observer, according to [14] is
another program which observers the behavior of the original
application (in Lustre) and determines eventual deviations
from stipulated correct behaviors. In other words, an observer
is a monitor for the high-level application and a high-level
Polygraph design, as in our work, could also support such an
approach.

The Polygraph formal model is also used by Alkalee, a
spin-off of CEA LIST, as the base of their modeling tool
Euphilia [32]. Alkalee moreover provides the Receef runtime
environment [33], which can supervise actors’ communication
events according to the input system model. The Receef mon-
itors can additionally trigger various containment strategies
for communication faults, e.g. when an expected data sample
is not received on time. To the best of our knowledge, the
Receef monitoring infrastructure does not cover, nor interface
to, low-level architectural observation points such as hardware
performance counters.

In the context of the low-level application and the under-
lying execution platform (wrt. the same MBD workflow), a
typical monitoring systems relies on hardware performance
counters (HPCs) to observe the behavior of the system under
analysis. As such, HPCs are used to address security prop-
erties, e.g. in [7], safety properties, e.g. in [20] and non-
functional requirements, e.g. energy [18] and timing [22]. The
key aspects in using HPCs to cover a wide range of properties
are that modern processors support them and also that their
overhead wrt. the runtime analysis is minimal. We also con-
sider HPCs in our current work for the same reasons, however,
we also aim to correlate the results of their measurements with
different observation methods (i.e. at different semantics levels
in the system design). Such correlations define our framework
of multilayer monitoring for mixed-criticality systems.

The worst-case timing analysis is necessary to ensure that
critical tasks in mixed-criticality systems are able to meet their
timing deadlines. There are two types of timing analysis -
using static-based [30] and measurement-based [29] methods.
Our multilayer monitoring framework draws inspiration from
both, as follows. The static timing analysis, when applied to
MBD workflows (i.e. a survey of methods and techniques is
presented in [4]) considers the application to be represented
and analyzed at each level [19] and aims to establish trace-
ability properties between these levels. In the same way, our
approach aims to exploit the traceability towards increasing
the confidence between the observed timing behavior at the
various levels. The measurement-based timing analysis uses
the HPCs to estimate timing bounds of critical tasks, having
problems of compositionality [21]. Another way of performing
measurement-based timing analysis is by code instrumentation

followed by the application of statistical and/or probabilistic
methods on the collected results [3]. In the same way, our
approach considers the HPCs, but with a broader goal, that of
establishing (composable) connections with different levels in
a MBD workflow.

VII. CONCLUSION

We explained in this document how we used a MBD
methodology to define a monitoring system for a distributed
execution platform in order to validate their temporal be-
haviour during their execution. Using a high-level dataflow
language, i.e. Polygraph, the correct temporal behavior is
specified. From these specifications, source code is generated
or written to embed software monitors. These monitors are
compiled into the application, and inserted into the application
execution flow, and track dataflow-relevant events. At the
binary level, two types of worst-case timing analysis are
considered. For the first one, static analyses are performed on
the control flow graph as a high level abstraction of the binary
code. The second one a measurement-based approach where
the binary is actually executed on the architecture and the
results are interpreted with respect to these measurements. Fi-
nally, at the architecture level, execution is profiled using tools
such as Performance Monitoring Unit (PMU). We have shown
that these various monitoring layers provide complementary
data, especially useful to modelling the actual execution time
in presence of inter-task interference.

REFERENCES

[1] https://www.absint.com/ait/index.htm
[2] https://github.com/ARM-software/gator
[3] https://www.rapitasystems.com
[4] Mihail Asavoae and Claire Maiza and Pascal Raymond, ”Program

Semantics in Model-Based WCET Analysis: A State of the Art Perspec-
tive”, In 13th International Workshop on Worst-Case Execution Time
Analysis (WCET), pp. 32–41, 2013.

[5] Ballabriga C., Cassé H., Rochange C., Sainrat P. (2010) OTAWA: An
Open Toolbox for Adaptive WCET Analysis. In: Min S.L., Pettit R.,
Puschner P., Ungerer T. (eds) Software Technologies for Embedded and
Ubiquitous Systems. SEUS 2010. Lecture Notes in Computer Science,
vol 6399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
642-16256-5 6

[6] W. L. Bircher and L. K. John, ”Complete System Power Estimation Us-
ing Processor Performance Events,” in IEEE Transactions on Computers,
vol. 61, no. 4, pp. 563-577, April 2012, doi: 10.1109/TC.2011.47.

[7] Malcolm Bourdon and Eric Alata and Mohamed Kaaniche and Vincent
Migliore and Vincent Nicomette and Youssef Laarouchi, ”Anomaly
detection using hardware performance counters on a large scale deploy-
ment”, In ERTS 2020.

[8] J.-L. Colaço, B. Pagano and M. Pouzet, ”SCADE6: A Formal Language
for Embedded Critical Software Development”, in 11th International
Symposium on Theoretical Aspects of Software Engineering (TASE),
pp 1-11, 2017

[9] J. Dabney, T. Harman, ”Mastering Simulink”, Pearson Ed, 2004
[10] Marianne De Michiel and Armelle Bonenfant and Hugues Cassé and

Pascal Sainrat, ”Static Loop Bound Analysis of C Programs Based on
Flow Analysis and Abstract Interpretation”, The Fourteenth IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp 161–166, 2008

[11] Dubrulle P., Gaston C., Kosmatov N., Lapitre A., Louise S. (2019) A
Data Flow Model with Frequency Arithmetic. In: Hähnle R., van der
Aalst W. (eds) Fundamental Approaches to Software Engineering. FASE
2019. Lecture Notes in Computer Science, vol 11424. Springer, Cham.
https://doi.org/10.1007/978-3-030-16722-6 22

7

[12] Francalanza, A., Pérez, J.A. and Sánchez, C., 2018. Runtime verification
for decentralised and distributed systems. Lectures on Runtime Verifi-
cation, pp.176-210.

[13] Nicolas Halbwachs, ”A synchronous language at work: the story of
Lustre”, International Conference on Formal Methods and Models for
Co-Design, MEMOCODE, pp.3–11, 2005.

[14] Nicolas Halbwachs and Fabienne Lagnier and Pascal Raymond, ”Syn-
chronous Observers and the Verification of Reactive Systems”, in
Algebraic Methodology and Software Technology (AMAST), pp. 83–96,
1993

[15] Hamelin, Etienne and Ait Hmid, M and Naji, Amine and Mouafo-
Tchinda, Yves, ”Selection and evaluation of an embedded hypervisor:
Application to an automotive platform”, European Congress of Embed-
ded Real Time Software and Systems, 2020

[16] P. Hintjens, ”ZeroMQ: Messaging for Many Applications”, O’Reilly
Media, 2013

[17] R. Kirner, R. Lang, G. Freiberger and P. Puschner, ”Fully Automatic
Worst-Case Execution Time Analysis for Matlab/Simulink Models”, in
14th Euromicro Conference on Real-Time Systems (ECRTS), pp 31-40,
2002

[18] Ghislain Landry and Tsafack Chetsa and Laurent Lefevre and Jean-
Marc Pierson and Patricia Stolf and Georges Da Costa, ”Exploiting
performance counters to predict and improve energy performance of
HPC systems”, in Future Gener. Comput. Syst, pp. 287–298, 2014.

[19] Claire Maiza and Pascal Raymond and Catherine Parent-Vigouroux and
Armelle Bonenfant and Fabienne Carrier and Hugues Cassé and Philippe
Cuenot and Denis Claraz and Nicolas Halbwachs and Erwan Jahier
and Hanbing Li and Marianne De Michiel and Vincent Mussot and
Isabelle Puaut and Christine Rochange and Erven Rohou and Jordy Ruiz
and Pascal Sotin and Wei-Tsun Sun, ”The W-SEPT Project: Towards
Semantic-Aware WCET Estimation”, In 17th International Workshop
on Worst-Case Execution Time Analysis (WCET), pp. 9:1–9:13, 2017.

[20] Corey Malone and Mohamed Zahran and Ramesh Karri, ”Are hardware
performance counters a cost effective way for integrity checking of
programs”, In Workshop on Scalable trusted computing, STC@CCS,
pp. 71–76, 2011

[21] Cristian Maxim and Adriana Gogonel and Irina Mariuca Asavoae
and Mihail Asavoae and Liliana Cucu-Grosjean, ”Reproducibility
and representativity: mandatory properties for the compositionality of
measurement-based WCET estimation approaches”, In SIGBED Rev.,
pp. 24–31, 2017.

[22] Jan Nowotsch and Michael Paulitsch and Arne Henrichsen and Werner
Pongratz and Andreas Schacht, ”Monitoring and WCET analysis in
COTS multi-core-SoC-based mixed-criticality systems”, In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE) pp. 1–5,
2014

[23] Navabpour S., Bonakdarpour B., Fischmeister S. (2015) Time-Triggered
Runtime Verification of Component-Based Multi-core Systems. In:
Bartocci E., Majumdar R. (eds) Runtime Verification. Lecture Notes
in Computer Science, vol 9333. Springer, Cham.

[24] Reinbacher T., Függer M., Brauer J. (2013) Real-Time Runtime Verifi-
cation on Chip. In: Qadeer S., Tasiran S. (eds) Runtime Verification. RV
2012. Lecture Notes in Computer Science, vol 7687. Springer, Berlin,
Heidelberg.

[25] R. Rodrigues, A. Annamalai, I. Koren and S. Kundu, ”A Study on the
Use of Performance Counters to Estimate Power in Microprocessors,”
in IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
60, no. 12, pp. 882-886, Dec. 2013, doi: 10.1109/TCSII.2013.2285966.

[26] Norman Scaife and Christos Sofronis and Paul Caspi and Stavros
Tripakis and Florence Maraninchi, ”Defining and translating a ”safe”
subset of Simulink/Stateflow into Lustre”, In EMSOFT, pp.259–268,
2004

[27] Siddharth Sharma, Advanced Lane Lines Detection,
https://github.com/sidroopdaska/SelfDrivingCar/

[28] Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka,
S.A. and Zadok, E., 2011, September. Runtime verification with state
estimation. In International conference on runtime verification (pp. 193-
207). Springer, Berlin, Heidelberg.

[29] Ingomar Wenzel and Raimund Kirner and Bernhard Rieder and Peter
P. Puschner, ”Measurement-Based Timing Analysis”, In Leveraging
Applications of Formal Methods, Verification and Validation, Third
International Symposium, (ISoLA), pp. 430–444, 2008.

[30] Reinhard Wilhelm and Sebastian Altmeyer and Claire Burguière and
Daniel Grund and Jörg Herter and Jan Reineke and Björn Wachter

and Stephan Wilhelm, ”Static Timing Analysis for Hard Real-Time
Systems”, In Verification, Model Checking, and Abstract Interpretation,
11th International Conference, (VMCAI), pp. 3–22, 2010.

[31] Hongkun Yu and Chen Chen and Xianzhi Du and Yeqing Li and
Abdullah Rashwan and Le Hou and Pengchong Jin and Fan Yang and
Frederick Liu and Jaeyoun Kim and Jing Li, TensorFlow Model Garden,
https://github.com/tensorflow/models, 2020

[32] Euphilia, the systems modeling tool, ALKALEE,
https://www.alkalee.fr/products/euphilia/

[33] Receef, the embedded features orchestration software, ALKALEE,
https://www.alkalee.fr/products/receef/

[34] Daniel Casini and Tobias Blaß and Ingo Lütkebohle and Björn B.
Brandenburg, Response-Time Analysis of ROS 2 Processing Chains
Under Reservation-Based Scheduling, ECRTS, 2019

8

