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ABSTRACT. In this paper we introduce elliptic Bernoulli functions and
numbers, which are related to special Jacobi forms of two variables and
study their properties.

More importantly, we state and prove elliptic analogues to the following
important theorems:

i) The Dedekind reciprocity law for Dedekind classical sums, here
we introduce enhanced multiple elliptic Dedekind sums and study
their reciprocity law.

ii) The congruence of Clausen-von-Staudt and Kummer for Bernoulli
numbers, here we state and prove it for elliptic Bernoulli numbers.

iii) We obtain Damerell’s type result concerning the algebraicity of
the special values of the Hecke L-function related to our Jacobi
forms.

iv) As a corollary, we connect these elliptic Bernoulli numbers ( ex-
plicitly computed ) to the special values of Hecke L-functions of
imaginary quadratic number field and associated to some Grossen-

character.
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1. Introduction

It is well known that the Jacobi forms in one variable are a cross between
elliptic functions and modular forms in one variable. They have several ap-
plications in different areas of mathematics, especially in number theory and
arithmetical geometry [28].

In this paper we study a special family of Jacobi forms in two variables.
These forms have shown up in the study of Galois module structure of rings
of integers of numbers fields [11], construction of classgoups annihilators [12]
and stark’s units [10] and periods theory [53].

As we show in this paper there are many more reasons why these forms are
of fundamental importance.
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First of all we explore the rich analytical properties ( meromorphy, ellipticity,
modularity, functional equation, Laurent expansion, Fourier g-expansion,
Eisenstein-Kronecker expansion, distributions formulas) of our Jacobi forms
which are of arithmetical nature. The second reason for studying Jacobi
forms of two variables is the following: they define elliptic Bernoulli func-
tions ( comes from coefficients of Laurent expansion of our Jacobi forms,
we will state and prove their essential properties: symmetry, periodicity,
Raabe’s formulas, modular properties). The special values of these ellip-
tic Bernoulli functions give elliptic Bernoulli numbers which are studied in
this paper. The third important reason for studying Jacobi forms, elliptic
Bernoulli functions and Bernoulli numbers: we will establish the elliptic ana-
logues of Von-Staudt Clausen theorem and Kummer congruence for elliptic
Bernoulli numbers; we compute special values of Hecke L-functions associ-
ated to certain Grossencharacter of type (m,n) € N? and expressed them
using elliptic Bernoulli numbers. The fourth important reason is the study
of the “Enhanced” multiple elliptic analogues of Dedekind sums which are
defined here in two different ways: the first one in terms of our Jacobi forms
in two variables and the second by using elliptic Bernoulli functions.

Let us recall the classical Bernoulli polynomials and functions. The
Bernoulli polynomials B, (z) are defined by the following identity in the

ring Q[=][[t]]

el® > B,(z)
1.1 = L
(1.1) et —1 7;) n!

Thus Bo(z) =1, Bi(z) =2 — 3, Bo(z) =2? —a + %, e
By, == B,(0) is the n-th Bernoulli number. Let {x} be the fractional part
of the real number x. Then the Bernoulli functions By, (x) are defined by

_ 0, if n=1x€Z
B, ({z}), otherwise.
Writing
8(5[1) _ 627riz
It is easy to see that their generating function is given by

= e(u)+1 .
Bu(@) (o syt {;egug_l, if r€Z

n! ee((g_})l, if xdZ.

(1.2)

s

Its most important property is the Fourier expansion formula

(1.3) Bulz) = — Ze<k$).

(2mi)™ = kn
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*
where the sum Z means that k& = 0 is to be omitted (and in the non-

keZ
absolutely convergent case n = 1 the sum to be interpreted as a Cauchy

principal value).
The essential series is

(1.4) ori—C) 3 e(mw)

e(u) — 1 fgu—n

As Kronecker emphasized [19], this identity is the foundation of the theory
of classical Bernoulli functions and their relation to special values of the
Riemann zeta function and Dirichlet L-functions. Indeed, expanding the
left and the right side into a Lurent series in u, yields at once the Fourier
expansion of the classical Bernoulli functions. From this, it is not difficult to
relate Bernoulli numbers and polynomials to special values of zeta and par-
tial zeta functions defined over the field of rational numbers. The Bernoulli
numbers satisfy a famous set of congruences discovered by Kummer. In
addition, the denominator of the Bernoulli numbers is known thanks to a
fundamental result of van Staudt-Clausen. This paper can now be summa-
rized as a generalization of these facts to the case where the simple lattice
Z is replaced by a complex lattice L admitting complex multiplication by a
ring of algebraic integers in a imaginary quadratic number field. In the next
section we introduce an elliptic analogue of these Bernoulli functions B,,(z).
Our elliptic Bernoulli functions are defined as coefficients of the Laurent
expansion of the Jacobi forms in two variables Dy (z; ¢).

More precisely, this paper is organized as follows.

In the second section we introduce and study modular Jacobi forms of two
variables Dy (z;¢) and deduce the properties of elliptic Bernoulli functions.
In section three we connected our Jacobi form to Eisenstein series and we
study first and second elliptic Bernoulli functions in details.

In section four we define, in two equivalent ways, the elliptic multiple Dedekind
sums in terms of singular values of D (z;¢) and also in terms of singular
values of our elliptic Bernoulli functions. We will precise the relationship
between these two points of view. Our main result on multiple elliptic
Dedekind sums recover and unify all known results concerning reciprocity
laws ( and also gives a generalization of them) proved by Zagier [51], Beck
[13], Rademacher [11], Ito[30], Sczech [12].

In section five we prove algebraicity and Damerell type result for our Jacobi
forms and elliptic Bernoulli numbers.

In sections six and seven we would like to establish the analogues of Clausen-
von Staudt and Kummer Congruences for singular values of our elliptic
Bernoulli functions. The singular values of our elliptic Bernoulli functions
are called the “elliptic Bernoulli numbers”. Our result recovers and gener-
alizes the Congruences of Clausen-von Staudt and Kummer for Bernoulli-
Hurwitz numbers proved by Katz [32].
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Section eight contains the study of Hecke L-functions associated to our el-
liptic Bernoulli functions. The main purpose of this section is to interpolate
the values at non negative integers of these L-functions by using The theory
of our elliptic Bernoulli functions. As an application, special values of some
Hecke L-function will be expressed by elliptic Bernoulli numbers. We deduce
new Damerell’s type result.

2. Presentation and study of Jacobi forms of two variables:
Di(z; )
2.1. Notations and definitions.

For 7 € H = {z € C : Im(z) > 0} the upper half plane, we consider the
following Kronecker Theta function

1 1.9 1 1
0:) = e (3 + i+t P+ 3)).
nez
Using the Jacobi triple product formula, this can be written as

o0

0r(2) = iqy/® (e(2/2) — e(~2/2)) H 1—q7) (1= qfe(2)) (1 — gre(=2)),

where
e(z) = ¥ q. = e(7).
Now, for each complex lattice L, we fix {w1,w2} an oriented Z-basis of L i.e
Im (“”) >0, L = Zuwy + Zas.
w2
We define the following alternating R-bilinear form
ZY — 2@ ZY — 2@
Ep(z) = —2—% LY

WIW2 = W1W2 9], [2Im (ﬂ)
w2

which is the symplectic form on C associated to the oriented complex lattice
L. Note that for two complex lattices L C A we have

Ex=[A: LE;
where [A : L] indicates the number of elements of A/L.
Viewing (w1, w2) as a R-basis of C, we can write any ¢ € C as
@ = prw1 + paws, (01, p2) € R%.

We denote by {¢} = {p1}7 + {p2} and [¢] = [p1]T + [p2], where {p1},
{p2} are the fractional parts of real numbers @1, p2 ( resp. [¢1], [p2] integer
parts).

Now we can associate to L a Jacobi form of two variables
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2\ 00 (222)
()5 e (2

1
Dr(z0) = ;26

w1

where 7 =
w

2.2. Fundamental properties of Dy (z;p).

We list in Theorems 2.1, 2.2, 2.3, 2.4 and 2.5 the main interesting proper-
ties of Dp(z; ). These properties show that our Jacobi form Dy (z;¢) is of
arithmetical nature. The proofs of Theorems 2.1, 2.2, 2.3, 2.4 are omitted
here. For their proofs see [5, &, 9]. We prove here only properties stated in
Theorem 2.5 since only these are new.

Theorem 2.1.

i) Dy, is meromorphic in the first variable z and only real analytic on
the second variable .
i1) Dy, is homogenous of degre —1

Dy (Az; Ap) = A1 D (25 ), YA € C\{0}.
In particular, we have the following symmetry
Dr(=2;—¢) = =Dr(2; ).
iit) (Periodicity of Dr(z;¢)):
Dr(z;¢0+ p) = Dr(z;9)
Dr(z + p; ) = e(EL(p, 9)) DL(259)
where Er(u,v) = 2%%77{;(2?
iv) (Functional Equation): Dy (z;p)e(—EL(z,¢)) = Dr(p;2).

v) (Modularity ): Dy, is a Jacobi modular form for SLy(Z) with index
0 and weight 1 i.e

z %) a b
Dy | ——: - d)D-(2: 0), Lo(Z
e (m‘—l—d’m—l—d) (er + d)Dr(2; ) v<C d> € SIx(Z)

VpeL

where Dy (z;¢) := D (2z;9¢), Ly =21 +Z,7 € H.
Theorem 2.2.
T
i) For any D = Zni(ai) principal divisor modulo L. there exists an

i=1
L-elliptic function having D as divisor, which is equal to

gp(z L) = [[ Drlz;—a)™
a; &L

up to multiplicative constant,
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- Weiestrass p/-function:

or(z)==2 ] Dulxv),

felL/I\{0}

i1) (Twisted square root):

Di(z ¢)D1(2,~¢) = p1(2)—p1(g), where pr(z) = 5+ [2_ L

1 _1
2 _ 2
2’]I'Z ImI(mwié) <q,z$2<p qz:};p)
Dp(z, ) q_= X I 1 n N
w2 w2 2 —3 2 —3
(qz—q2> <Q¢> _Qw>
w2 w2 w w2

N (1—qp)? (1 - qfqzw> (1 - fﬁq?#)
w w9

w1 (1 g2 ) (1 ~qq ) (1-araz) (1 - q?(f#)
w2 w2

Theorem 2.3. Let Tt € H. We set L =77 + 7.

i) The coefficients of Laurent expansion of Dy (z, ) namely
zp) = di(p; L)z
k=0

are given by

k!

(2.1) i

1 4
By ({e1}) + kfpr et
Yp}-1

kZ({m L LT T Ui )

—1
m>1 1 - {(p} qm 1- q{ga}qm

where Bj(X) is the j-th Bernoulli Polynomial.
These coefficients di(p; L) satisfy the following recursive formula

(2.2)
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do(p; L) = Sdi(p,L)? — Sp1(e),
2n—1
don(p3 L) = B Gop (L) — 3 37 (=1)di(p; L)dan—i(3 L),
=1
1
where Goyn (L) = Z ﬁ,Vn > 2,
weL\{o}

Gaon(L) are the classical Eisenstein series.
i1) (Cusp at co) For each z,p € C\L, we have

(2.3)
7 (cot(m{p}) + cot(m{z}) Je Bl i (z1,00) € 22
. 7 (cot(m{ip}) — i)~ 2intarltea) if p1€Zn ¢l
lim D;(z,¢) = ' '
Im(1)—00 7 (cot(m{z}) — ) e2im{p1}z2—2im[z1]{p2} if 21€Z,01¢7Z
0 if 21 €L,p1 &L
In the case z € R\Z and ¢ € C\L we obtain

Im(7) 00 T e(z) =1 e({p)) —1 e
iii) For all ¢ € C\L, we have

Bj({cpl})m Otherwise

Im(7)—o00 i

lm  d, (so; L) _ {Wcot(ﬂ{sﬁ}) If j=1,¢1 €Z,

iv) (Fourier g-expansion)

T2 TP > . Tz 2nTe\ .,
t{ — t — 45 E 2d— + —— .
(CO <w2> e (w2) N Sm( w, " d “’2> QT)

n=1 d|n
Theorem 2.4.
i) ( Distribution formulae for Dy (z;¢)) : For L, A complex lattices
such that : L C A, [A: L] =1. We have:
Z DL(lz;go —i—t) = DA(z;go), vV z,p € C\A
teA/L
and

Z D (lz;t) = ((2;A) = ¢(lz, L), V z € C\A
feA/L\{0}
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where

1 1 1z
C(z,L)=—-+ [++2
z Z— W w w

i1) ( Inverse distribution formula for Dy (z;¢)) :
Let L, A et A’ complex lattices and | positive integer such that:

[A:Lj=[N:L=letANAN =L.

L'=1L

A/

A
L

We have the following inverse distribution formula: Dr(z;¢) =

T 2 Da(3:%+1).
teA' /L

2.3. New properties of Dy (z;¢).

Theorem 2.5.
i) Kronecker doubles series I: One has the following identity

(e)
(25) Dy(sip) = 3 EL )

z w
weL T

where foéL is the Eisenstein summation equal to

(e) m=N m=M
E = lim lim , Where w = mw1 4+ nws.
N—o0 M—o0
weL m=—N m=—M

i1) Kronecker doubles series II: we have the identity
(2.6) Dp,(z9) =
( )|Z +wl — B, (w, @))

1
e<_2'ilm7'
> +
z+w

wELT

e (~amamle + ol — B (w,2))
YFw

e (Br (20) 3

UJELT
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iii) “Eisenstein-Kronecker series of Weight m =Bernoulli Func-

tions”
We set
_ m!
We have
_ 2™
Di(zig) = 3 B, 1) E2L mt
m)!
m=0
with
ok e(EL(w, )
_ ) Z m If m=>1
Bm(@a L) = weL w
w#0
1 If m=0

iv) (Coeflicients of Laurent expansion at cusp co )
For ¢ = o174 2 € C\L, we have

- - e({¥})
]m(lql—I)ILoo Bm (‘Pa L) = Bm({(pl}) ({ }) 61 m50 w1}
Equivalently,

i B (1) = {E0TD I m =L and g} =0
Im(1)—00 B.({¢1}) Otherwise

Proof of the property i) of Theorem 2.5:

We want to prove the equalities 2.5 and 2.6. We begin with the first one

(e)
Dy(zip) = Y AT,

z w
w€eL T

: e(—Ep(w, )
The funct — D (z; dF,:2z— E -
e functions z r(z;¢) and F, : z 2 o are mero

morphic functions with only simple poles in w € L. Moreover,

{DL(z + p; ) = e(Er(p, ¢))Dr(z; @)
Fp(z+p) = e(EL(p, ) Fp(2)

and they have the same residue at z = w,w € L :

Res(Fg,(z)dz, z = w) = Res(DL(z; p)dz, z = w) = €(EL(W, 90)>

Now, we can conclude in two differents ways:

Vpe L.

Method 1: we consider the quotient function z — DL(,(z ;) It is mero-
morphic, periodic with periods the lattice L and modulo L it has only one
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pole ( a simple one) at z = —p. Then, from Liouville’s theorem, the func-
tions 2z — Dr(2;¢) and F,(z) are proportional. But, we know that they
have the same residue at z = w,w € L. Thus we get our desired equality 2.5.

Method 2: we can consider the difference function z — F,(2) — Dr(2; ¢)
which is meromorphic, periodic with set of periods containing the lattice L
and modulo L it has priori a pole at z = 0. But, we know that the functions
F, and z — Dr(z;¢) have the same residue at z = w,w € L. Then, the
function difference z — F,(z) — Dr(2; ¢) is holomorphic on whole complex
plan. Then, using again Liouville’s theorem we get our equality 2.5.

Proof of the property ii) of Theorem 2.5:
Here, we prove the equality 2.6:

Dr (z;0) =

€ (_ 2iIn1’1('r) ’Z + w’2 - ELT (wa (/7))
Z zZ+w +

OJGLT

e (~mmale + ol = B, (0,2))
p+w

e (Br,(2¢) 3

weL,
We set

F(Z,(p) =

€ (_21‘11111(T) 2+ wl® - B, (v, 90))

Z Z+w *

UJELT

sle + Wl - Br.(w,2))
Y+ w

e@hww»EZQG

LUGLT

This function has the following properties:

i) We remark that the form E . takes integer values on L. then after
a simple calculation one derives that

F(z+p,p) = e(EL(p, ) F (2, ¢);Vp € L.

ii) We claim that the function z — F(z,¢) is meromorphic. We prove

that 5
F
E(«Z, @) =0.

Precisely,
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62( D)

=Y e (—mimlerw\Q - ELJ%@)) -

UJELT

1 2
- —E
S ¢ (~gmple + o ~ B+ 0.)
wGLT
But the function e ( WM ) = exp (—ﬁ|z|2> is Fourier self-

dual. The Fourier transform associated to the symplectic form Ej,
is defined ( for any f in the Schwarz space on C) by the formula

/ f(@)e(Er(z,z))dur(x)

where dpy (x) is the Haar measure on C normalized by the condition
dur(z) = 1. By Poisson summation formula the distribution

c/L
= Z dw ( dy is the Dirac function) is Fourier self-dual. Fur-

weL
thermore, the translation by = goes under Fourier transform to the

multiplication by e (—Er(.,z)). Then, we obtain
S fert e (~Eglert70) = Y Flo -+ ghe (—Eulia)

weL w€eL

Now, we take f(z) = exp <_Im7r7') ]z\2> Then
OF
—(z,¢) = 0.
55 (@)

Then, the functions z — F(z,¢) and z — Dp_(z;¢) are meromorphic
with only simple poles in w € L. Moreover,

{DL(z +p;¢) = e(EL(p,9))Dr(z: ) Vpe L.

F(z+p,0) =e(EL(p, ) F(2,¢)

and finally,

Res (F(z, p)dz, z = w) = Res (DL(Z; p)dz, z = w) = e(EL(w, cp))

The desired equality 2.6 follows.

Proof of the property iii) of Theorem 2.5:
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To prove this property we use the result 2.5. But, we need the Laurent
For w € L\{0} we have

1 Z\k
zZ+w - kgo(_l)k (;)

For our convenance we use —w instead w. Then,

Dy 7*""2 ZM ,m—1

m=>=1 weL

expansion of z — - +w

w#0
Then, we obtain
- m! EL(w ) -
Bm(p,L) = " 2riym ; , Vm>1, and By(p,L) = 1.
w#0

Example 2.6. ( Jacobi forms of weight 2) :
For complex parameter of the non zero 2-division point , ¢ € %L/ L\{0} ,
we have the following Jacobi form of weight 2

27.‘_2 2k+2 B2k’+2 m2k+1qm ok
Da(z=) = = MTGT okt
( + Z 2k + 1) 41<;+4+mz>:1 Trqm )°
T 1
DT(Z; 5) = ;-1—

k 2m+1 +1
(2mi)2kt2 <32k+2(1/2) n Z (m + 1/2)2k+1q mH g™ ) 2k+1

| 2

e (2/{—!—1). 4k + 4 o (1_q 1)
T+ 1 1
D = -
(5T =+

2m+1

2mi) 2 (B 1/2 1

((214;11)1 2:;{&4/ ) 3 o+ 5)21<;+1q m+q1/2 e
k>0 : m>1 (1+4q )

In the following theorem we precise the most important properties of
elliptic Bernoulli numbers and functions.
Theorem 2.7. (Elliptic Bernoulli functions)

i) (Homogeneity) For each m € N*, d,,(p, L;) is homogenous of
degre —m i.e

o (M@, AL) = A" dp, (0, L), VA € C\{0}.
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iit) (Modularity ): We let dy, (@, T) := dp(p, Lr).
Then, dn(p,T) is a modular form for SLy(7Z), with index 0 and
weight m i.e

w ar+b a b
m ; = "y (5 T), Lo (Z).
d <cr+d c7—|—d> (et +d)™d (QOT)V<C d)ES 2(Z)

In other way,

ar+b+(_b ta ).CLT-i—b
et +d v1 m’cr—l—d

dm <(dcp1 — cp2) ) = (e7+d)" dm (17425 T),

b
\4 (Z d) S SLQ(Z), (@1,802) S R2.

iv) (Periodicity ):
(2.7) A (p +p;7) = dp(p;7),Vp € ZT + Z
v) (Symmetry):
dn (=03 7) = (=1)" (5 7)
vi)

vii) ( Distribution formula for d,, (¢, L):
For L, A lattices such that : L C A, [A: L] =1, we have:

> dm(p+tL) =[A: L' Mdy (g A),m > 1Y @ € C\A
teA/L

and

> dm(t;L) =Ep(0;L) = [A: L] " Ep (0;A),m > 1
teA/L\{0}

In particular, for A = %L we have

jwl?
> dn(tL)=(1- 1) En(0,L),Ym > 2
teA/L\{0} “

viii) ( Inverse distribution formula for d,,(¢, L)):
Let L, A et N' complex lattices and | a postive integer such that:

[A:Lj=[N:Ll=letANAN =L
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L'=1L

|
A/
L

We have the following inverse distribution formula

1
dn(@iL) =7 Y du(¥+5A),
teA'/L

which comes from the homogeneity and direct distribution properties

of dm(p, L).

3. Jacobi forms Dy (z;¢) and Eisenstein series FE,(z, L)

In the following we will connect, in severals ways, Jacobi forms Dy (z;¢),
Eisenstein series E,(z, L), Elliptic Bernoulli numbers d,, (¢, L) and values
of En(z,L).

3.1. Connection between Dy (z; ) and Eisenstein series

In the following we state our second main result, giving the relationship
between Eisenstein series E,(z, L), our Jacobi form Dy (z, ) and their co-
efficients d,,(p, L).

We recall here the definition of Eisenstein series

. (e) o I
(3.1) Em(z,L)_sg%l+ZE:L (w+2)"™w+ 275, m=1,...

the sum being over w € L'if z ¢ L an w € L\{—=z} if z € L.
The following proposition, containing standard distribution formulas sat-

isfied by Eisenstein series, is proved in an almost identical manner in Weil
[19], its proof is omitted here.

Proposition 3.1. Let w € C\{0} such that: wL C L. Then
i)

/ 1
Y E, <Z+L> — W"E, (2,L) = E, (z, L>
w w w

teL/wL
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Equivalently,

E, <z,iL>: > E.(z+t,L)

telL/L

> B, (iL) = (W"—1)E, (0,L)

feL/wL\{0}

Now, we can state the connection between Dy (z; ), their special values
and Eisenstein series E,(z, L).

Theorem 3.2.
i) Let w € C\{0}, ¢ € C\L such that: wL C L and wp € L. Then

Di(z,¢) = itEIZL:/Lt?( - EL(t7w(P))E1 <5 +t,L> :

In other way,

Dule) =2 3 o~ Butto)m (1)

teL/wL
ii)
—1 t
- 5 - >
dn(¢; L) o Z e(EL(t,wcp))En <w’L) :Vn >3
teXL/L
Equivalently

—1 t
Ty — z >
dn(p; L) o Z e(E’L(t,go)>En (w’L> ,Vn >3
teL/wL
iii) (Inversion formula): For all p € C\L we have

wn—l

Bu(giL) = =“— 3 e(Bu(t,wp))dn (t. L)

w
teZL/L

iv) (Recursion formula) Let f be a positive integer, ¢ primitive pa-
rameter of order f. Then

d3(p; L) = 2}3 Z €(EL(757 @))@/L (;)
teL/fL\{0}

N 2
bt =7 X e(But)o(f) - pE0.0)
teL/fL\{0}
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-1 t t
ds(p; L) = — Y e<EL(t,<p)) oL <> By (L>
f teL/fL\{0} f f
and for k > 4 we have

—[F(k + Dk(k = 1)dps2(p, L) =

6 > > W+ 1><q+1>e<EL(t,so>>Ep+2<t L) Eq+z<t L>+

I A
pt+q=k—2
A teL/fL

12k -1) Y e(EL(t, w))m <;) E, (;L>

teL/fL

Proof of theorem 3.2:
We prove the Recursion formula. We consider the function

o (5) o (7).

_ 2

D Corop R oL
4 L1
=/ Z ((z—p)2 PQ>

p=t (mod f)
Then the expression

Fiz)= Y <€(EL(P»90))_6(EL(p,80)))

2
p=t (mod f) (Z o P) P

I 72 (Bt ) (m ( 7 t) G (?))

F(2) = f2e(EL(t, 9)) (PL (T) — oL <;>>

we use the relation for p; Weierstrass function:

o1 (2) = 6pr,(2)? — 30E4(0, L)

is equal to

Then

Then applying this relation to gy, (ZT_t) yields

2
fle(“Ep(t.9) F'(z) = 6 (f% (—Ew(t.¢) F(2) + o1 (;)) ~30E,(0, L)
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On the other hand we take into account the Laurent expansion

FO) =3 relBut o) Be (7.2) #

k>1
We get
fre(—EL(t, ¢) Z i ?,:i(f — 1)6(EL(t, ©))Ej12 (;, L) 2=
k>2
2
6 | fre(=EL(t0) ) l;,;izl (t,9)) Er+2 (;L) F 4o (;) —30E4(0, L)

k>1

We compare the coefficients of z* of both sides to get the following recursion
formula for Eisenstein series Fj ( f,L)

(k-+1)k(k—1)Ep 1o <;L> —6 3 (p+1)(g+1)Epra (;L> Eyeo (t,L> +

p+q=k—2 f
p=2l,q21

e (2) ()

Finally we multiply the above quantity by e(E (t, cp)) and make the sum-

mation Z of both sides to get our desired recursive formula for
teL/fL

3.2. Weierstrass functions and Eisenstein Series E;(z, L).

We state the following proposition whose proof is omitted here. For more
details you can see [12] p.526 and [21] p.188 proposition 1.5.

Proposition 3.3.

i)
-1 If z€elL
EO(va) =
0 Otherwise
\
ii)
El(ZaL) = C(ZaL) - n(va)
where

n(z,L) = Ga(L)z + @2.
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iii)

Es(z,L) = gpr(2)+ Ga(L)

En(z7L) - ((g_li;l @L(nfm (z),Vn =3

3.3. First and second Elliptic Bernoulli functions d;(z, L) and
Ei(z? L),Z = 1’ 2

In this subsection we study the first and second Elliptic Bernoulli func-
tions and write them in terms of Eisenstein series. As application, Elliptic
Dedekind-Sczech reciprocity law will be derived from our multiple Dedekind
Sums.

We recall from Lang [38,p.248], that

C(z,L) =zmy + ngz i_ 1
(32) | e(-2)g"  e(2)g"
*m”;;(l—d—@wn‘l—euqm>

Where 1y = n(1,L), m = n(r, L) and note that
n(z, L) =n(z17 + 22, L) = z1n(7, L) + zon(1, L).
Then
n(z, L) = z1m + zam2, where z = 217 + 22, (21, 22) € R2.

On the other hand

n(z, L) = Go(L)z + a(L)z'

From these equalities and Legendre relation, we obtain

n(z, L) = Go(L)(z17 + 22) + (21T + 22)

a(L)

n(z, L) = = (GQ(L)T + a(WL)%> + 2 <G2(L) + a(ﬂL)>

Then, by identification, we have
= Ga(D)T + 5757,
me = Ga(L) + o5

The result of the following theorem will be used in section 4.4 | to give a
new and elementary proof of the reciprocity Theorem 4.12 of Sczech.

Theorem 3.4. For all z ¢ L we have
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i)

Ey(z,L) = 2miBy(21)+mitmi———r e(z) + +2m Z (1 — __el2)g

(Z m=1

In an identical way,

Ei(z,L) = 2miBy(z1)+ 2wt ————

) Z( 5 —15(Z?3§Zm)

ii)
iii)

di(z,L) = Ei(z, L)

1 1
do(z,L) = §E1(z,L)2 — ipL(z)

Proof : The property i) comes from the equality (3.2). The property ii) is
a consequence of the equality (2.1). Again, from the formula (2.1) and the
periodicity property (2.7) we obtain

di(z,L) = 2mB1(21)+2m — 1 + 27 Z <1 o B e(z)q™ )

m>1

Hence
di(z,L) = Eq1(z, L).
Finally, the property iii) comes from the properties ii) and (2.2).

4. “Enhanced” multiple elliptic Dedekind Sums and their
applications

The purpose of our study here is not so much a rederivation of old theo-
rems but rather to show a common thread and give a natural generalisation
of them to elliptic situation.

These multiple elliptic Dedekind sums generalize and unify various
arithmetic sums introduced by Dedekind, Rademacher, Apostol, Carlitz, Za-
gier, Berndt, Meyer, Sczech, and Dieter. We prove reciprocity laws which are
elliptic analogues to The Dedekind reciprocity law satisfied by the classical
Dedekind sums [5]. Moreover, from the main result of this section ( multiple
elliptic Dedekind reciprocity law) we generalize, recover and unify all clas-
sical and elliptic known reciprocity laws on Dedekind-Apostol-Rademacher-
Beck-Dieter-Berndt-Sczech-Zagier and others sums [1, 8, 9, 13, 23, 22, 41,

,51].

Generalized Dedekind sums appear in various areas such as analytic and
algebraic number theory, topology, algebraic and combinatorial geometry,
and algorithmic complexity. See [2, 26, 27, 28]

Our theory of enhanced multiple elliptic Dedekind sums developped here
can be explored to study the Eisenstein Cohomology of groups as SLa(O),
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GL,(Ok), where K is an algebraic number field, see [12, 50] and is also
closely related to the study elliptic genera, the index theorem of Atiyah-
Singer associated to complex manifold [20] and to Meyer’s, Euler’s and
Maslov cocycles [12, 33, 4].

4.1. Statement of multiple elliptic Dedekind reciprocity laws

Let ai,...,an,a},...,a, beelements in N*, z1,...,x,,2,,..., 2, € Cand
©1,- -+ ,pn be complex variables. A usual & means that we omit the term x.
We let

/ /
7 / ag
2 = ka + xk—T b = —t) +tp—1,
ag ag
— . — .
Mk: (ml,...,mk,...,mn),Rk = (rl,...,rk,...,rn),
— . — .
Zk = (Zl,...,Zk,...,Zn),(Z)k: ((plv"'agoka"'vgpn)v
- . 7 ~/ /
Ap = (a1,..., 0k, ..., an), Ay, = (ay,..., 0%, ..., ap)
and finally

L=[r1]=2Z7+7Z, L= {akT, 1]
a

We define the multiple elliptic Dedekind Sums

%
d(Ar, AL 71 1. Mo B 7) =

(71)m1‘:mk! a;_TJ' - ok
S Mt H o Z e\ Er, | th, —
@k 1<k ) f @

tk€Lk/a} L
m;+r, t j
I o J+J>( 2+ _Zj;%>
1< #k<n aj, @
Notice that the case o
My = R, = (0,...,0)

corresponds to
— = = = =
d(Aka"?k7Zk7¢k7MkaRkaT) -

1 Z ~ k H 2k + fk; ;
aj, ‘ (ELk <tk7 i >> DLj <a; aj A ?)
k k J

fveLy/d,L M2 1<jksn

this quantity is also called elliptic multiple Dedekind sums studied in [5, &,

I

— =
For arbitrary values of My, Ry we get here multiple elliptic Apostol-
Dedekind-Rademacher version of all considered so-called (in literature) “Apos-
tol, Dedekind, Rademacher and others” sums.

We now formulate the corresponding reciprocity law for these sums
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Theorem 4.1. (Elliptic reciprocity law in terms of Jacobi forms)
For all j,k,1 < j # k <n, we assume that

! / /
(ajzy — apj, djry — apa}) & Zaj + LZay x Za + Lay,

and
n
D ¢piel
j=1
Then .
— s
Z d(Ak>‘7kaZk7¢k7MkaRkaT) =0
k=1
Tt +T + +rn:mk
The summation is over Rk = (r1yeeeyThyeoyTn) € N1
Theorem 4.2. i) For all j,k,1 < j# k < n, we assume that
(ajzp — apxj, djoy, — ayal) € Laj + LZay x La; + Lay,
and
n
> % =0
j=1
Then

So ST on (B s) =

b fe€Ly/al L 1<j#k<n k

ii) (Complement formula) We assume only that

n
Y =0
j=1

Sa T T ou (B -

/
k=1 "F { el /a) L\{0} 1<j#k<n

—Res HDL( >dzz—0

1<j<n

We will establish in the following that the theorem 4.2 contains and gen-
eralized the Sczech’s result [Scz], in other hand it recovers the Hall-Wilson-
Zagier result [HWZ].

Proof of theorem }.2 :
This theorem 4.2 comes from theorem 4.1. In fact, we consider only the case
when

mp=---=my=20
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and we obtain our theorem 4.2 with using the functional equation of the
Jacobi form:

Dp(z¢) = e(EL(2,9))DL(p; 2)

> =0 O
j=1

In the following we define an other elliptic analogue of the generalized
Dedekind Sums in terms of the elliptic analogous of the Classical Bernoulli
functions, as follows:

We recall that

and the condition

Di(z,9) =Y dm(p, L)z"",

m=0
and
Bulp.L) = (. )
m 907 L (271_@)7.” m SO>
B (g, L) are our elliptic Bernoulli functions.
Hence
Yk 2+ fk _ ; 2k + t~k (27TZ')Tj ©Yj =1
DLj —ay ; — %)= ZBTj(aj 7 _Zijj) |
Qaj ap 750 ag Ty 7
Furthermore, ~
t
II o (%?GQZkJ/r : —Zj> =
a; a
1<j#k<n J k
An—1 5 zg + U 1 i\
(2mi)" Z H B, (a; T zj,Lj)ﬁ 27rza—7
]?;26) 1<j#k<n k J J

_%
Where Ry = (71, ...,7k,...,7,) € N*7L

We now introduce the second main object of this section, the multiple
elliptic Dedekind sums in terms of elliptic Bernoulli functions:

— = = 1 _ 21 + L
S(Ak,Ak,Rk,Zk;T) = CIZ Z H Brj(a’~ —Zj,Lj)

A,
Th€Ly/a) L 1<j#k<n k

Theorem 4.3. (Elliptic reciprocity law in terms of Elliptic Bernoulli
functions) For all j,k,1 < j # k < n, we assume that
(ajzy — apxy, ajry — apxs) & Laj + Lay, X Lay + Lay,

and

n
Y ej=0
j=1



JACOBI FORMS IN TWO VARIABLES: MULTIPLE ELLIPTIC DEDEKIND SUMS,.. 81

Then
) 1
i Z Akﬂ?mRkaZka ) H 2mip; \"7 T 0
!l ooy, a; N
k=1 cyn-1 J I<#ks<n N Y
L =7 . -1
The summation is over Ry = (ri,... 7k, ..., ) € N?

Proof of Theorem 4.3:
Remark that generating function of the second multiple elliptic Dedekind

— — =
sum S(Ag, Ay, Ry, Z; T) is exactly equal to

1 Zk-i-tk
@ri)1 HD(- @ @

O 1<j#£k<n

After using the functional equation satisfied by Jacobi form

Dp(z,¢) = e(EL(2,¢)) Dr(p, 2)

we obtain
) 2 +1 ' 7 +1, i
a; a a a;
1<j#k<n J k 1<j#k<n k 4
2+ 1 i
H Dy, (a;- - k_zﬁ%)
a a;
1<j#k<n k J
Hence

Zk—i—fk i
[T ou (i os) = ¥ B2
a (lk a

1<j#k<n J 1<5<n J
/Zk—’_{k‘ ¥j - Pk ,Zk—f—t~k
el =X B@2 T e (B @ 2)) T Du, (a5 -
‘ ap a5 ak , aj,
Isisn 1<j#k<n

Now, we use the fact that:

n

s
Z@j =0 and EL].(z,gO) = afiEL(ZaCP)
J

we conclude that

P ) 2k + e . ‘PJ
H Dy, <aj’ J a zj)—e Z Er( z],f

1<j#k<n 1<j<n
~ 2K + tk Qi
e (ELk (tk, ‘5—:)) H Dy, <a;- — — 2j; j)
A aj

1<j#k<n



82 A. BAYAD

Finally
— = = = N

Z S(Ak, Ay, Ry Zi; 7) H <2mg0j) I

1) ! . o

P A SR P v N
1 ©j — = = —
e | 2 Bus ) | dALALZL 6N = (0....0).7)
1<j<n J

We conclude, up a multiplicative non zero constant, that the first multiple
elliptic Dedekind sums in terms of Jacobi forms corresponding to M =
(0,...,0) is the generating function of the second one in terms of elliptic
Bernoulli functions. Then theorem 4.3 is equivalent to theorem 4.2. U

4.2. Application 1: Enhanced classical sums of ¢
Dedekind-Apostol-Rademacher-Beck-Berndt-Dieter-Zagier”

In order to state the first corollary of our main theorems of this section,
we denote by cot(™ the m’th derivative of the cotangent function and let
ay,...;a, e N;my,....my, €N, z1,...,2, € C. We will study the following
sums( the Enhanced Dedekind cotangent sums):

afl a/2 a;m

¢ myp|mz -0 Mp .
1 xo e xd -
L1 P2 o Pn

1 - ) , k+ 33,1 , ) Pj

W Z H <C0t(mj) s <CLJ a/ — .'Ifj - 5O7mj Cot(mj) m ;
1 k mod a1 j=2 1 J

and the sum is taken over all k mod a) for which the summand is not

singular. Our notation of this sum is similar of Beck’s notation in [13].

Indeed, our “Enhanced” Dedekind cotangent sums include the so-called

“Dedekind cotangent sums” introduced by Beck [13], and various generalized
Dedekind sums introduced by Rademacher [22, 11], Apostol [1], Carlitz [17],
Zagier [51], Berndt [11], Meyer [39, 10], Sczech [12], and Dieter [19].

In the following, we state the strongest theorem concerning classical reci-
procity law

Theorem 4.4. (Generalisation of Beck’s result)
For all j,k,1 < j # k < n, we assume that

asx), — apr; & La + Zay,
and @1, -+ ,n are real numbers such that:

ﬁgzavje{laa}
aj
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Then

n

D (=) kmy! > 4 a’La"

| | |
k=1 1 seeislgyeensln >0 h lk' In
ll+"'+i;+"'+ln:mk
/ / / /
ap aj ay a,
—_—
o | M| mith my + my, + 1,
/ / / /
xy, x T}, xy,
$1 ¥2 Pk $n
n
>
smy| ™ —
— a;
_ ()" —m—— ifallmp =0
sin | m—=
=1 “j
0 otherwise.
Theorem 4.5. (Division points)
Let ay,--- ,a, = 2 be nonnegative integers pairwise coprime, whith n > 1

and @1, -+ ,n real numbers such that:

n
ZcijZ andﬂgz,ijl,-'- , .
=1 “

We obtain

1 n
B [ajfl’z _J —(=1)"= ifnis odd,
S IT-0# = { ]

otherwise.
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More generally, for 2 = p = %, (k, N) =1, we have

a;
n a—1 n a .
l (672m¢)[t¢7’“] _ _Sl'n(m”w) pim(n—1)¢
1=0 t=1 k=0 sin(p)

Then, theorem 4.5 can be seen as an extension of Berndt and Dieter re-

sult, theorem 2.1 [15], for complex valued functions.
Question:
i) Can you extend the theorem 2.1 [15] of Berndt-Dieter to

complex valued functions? I think that is possible.
ii) If it is, can you give application in terms of signature theory
of complex manifolds?

Proof of theorem 4./ :
In order to prove our theorem 4.1, in section 4.5, we considered the aux-
illary function

Jj=n
e T — mg) (1, . %5
F(zaq)vZ?M)_jl_‘[lDLj (CLjZ Z]’aj>

Where
— —
A= (a1 an)i(dys ), M = (. ), B = (91, pn)s 2 =
a/
—xﬁc—l—xk—kr
ai

Here, we introduce the function

n
— — , . -
f(z, @,, X, M) = H (cot(mf) T (a;-z - l‘;) — d0,m; cot™) <ij>>
j=1
- = =
This function f comes essentially from the limit of F'(z, @, Z, M) when
Im(7) — oo, (for more details we can refer to the property xi) of theorem
2.1).
Now, like in the proof of our theoreg 4.1, %in section 4.5, we apply the
residue theorem to this function f(z, ®, A, M). We integrate f along the
simple rectangular path

v=lz+iy,z —iy,z+1—iy,x+ 1+ iy, x + iy,
where x and y are chosen such that v does not pass through any pole of f,
and all poles z, of f have imaginary part [Im(z,)| < y. By the periodicity
of the cotangent function, the contributions of the two vertical segments of
~ cancel each other. By definition of the cotangent function,

lim cot(z £ iy) = Fi ,

Yy—0o0
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and therefore also
lim cot™(z +iy) =0

Yy—00

for m > 0. Hence if any of the m; > 0,
/f(z,g,,z,]\_i) dz=0.
.

If all m; = 0, we obtain

Lf@,?,ﬁ,ﬁ) dz — ﬁ (z _ cot(wij)) _ ﬁ (—z‘ _ cot(wij)) .

j=1 J=1

This can be rewritten as follows

n
- i
1 S (j_zl a])
1 = — _\yn—1__ \y=L /] . o
~/f(z7(1)77X,M) dz = ( 1) n 0 lfallm] O’
2 Jy H sinm <])
. aj
7j=1
L0 otherwise.

or, by means of the residue theorem,we obtain
(4.1)

P

sinm zn: ﬂ
1 =1
N — -1 nin; ifallm-:(],
> Res (f(z, 8, 4, Mz, 2,) = - [] sium (%) j
Zp a;
i=1 ’

L 0 otherwise.

Here the sum ranges over all poles z, inside «. It remains to compute their
residues. By assumption, f has only simple poles. We will compute the
residue at z, = k‘z,zl, k € Z, the other residues being completely equivalent.

We use the Laurent expansion of the cotangent

1 ( k+ 2z
5

/ !/
Tay ay

(4.2) cot (alz — 21) =

-1
) + analytic part

and, more generally,

_1\m | —(m1+1)
cotm) - (a'lz _ 21)—50,m1 cot(m) - <901> _ (—1)™tmy! <z B k+ 2’1>

a1 (mal)m+l al

+ analytic part .
The other cotangents are analytic at this pole: for j > 1,

(4.3) cot (™) (a;-z — 2j) = 60.m, cot (™) <i]) =
J
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wal)l k -
( ]) (cot(mj+lj) T (a;-;lzl — zj> — 00,m;+1; cot(mith) 7 (ij))

Hence

ay
mi | d /lj
U T
rmi+1 A
™Ay 11,0020 j=1 l]'
ll+"'+ld:m1

(cot(mJ'Hf) T (a; +, S zj> — 00,m;+1; cot(mithi) <%>>

Since 7 has horizontal width 1, we have a} poles of the form kz,zl inside -,
1

where k runs through a complete set of residues modulo af. This gives, by
definition of the generalized Dedekind cotangent sum,

Z Res (f(zag,z,]\_f)dz,z = k+,21> =

/7 al
k mod ai
b2 11
! alt? ..., o b
D S
" 19, eseiyln 20 Qi n!
lo+-tetlp=mq
/ / /
ay as, o
c| ™ T T N
/ ’ /
T x5 o
1 P2 on

The other residues are computed in the same way, and give with (4.1) the
statement:

n 1l 7 Uk 1 ln

a PEEEEY a PEEEEY a

| I A R A |

1 b im0 S LERRY /A Ry

11+.A.+l/]:+m+ln:mk
/ / 9 /
ay ay K Gy,
o | M| mith my + my, + 1,

/ / / /
Ty, 7 Ty, Ty
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n
. o
sm7 —
E: a
j=1 "7
n
[sinr ()
SN —
s
j=1 J

0 otherwise.

;

(—1)nt if all my =0

O
To deduce the following result of Beck precised in Corollary 4.7, from our
theorem 4.4, we simply take the following values

o1
B vii<n
7 2
Hence
Corollary 4.7. (Beck’s original result)
Under the same hypothesis of theorem 4.4, we have

n I Uk In
alt---af---q

S S

k=1 ST l/]; ..... In>0 lllkln

ll+‘“+lllg+‘“+l"l:mk

ak al ... ak ... a”f'L
—_—
¢ my, mi+0L - mp+ly - mp+l,
al a /\(lk an

_{ (—1)%1 if all mp, =0 and n odd
0

otherwise.
Proof of theorem /.5 (Division points) :

To prove this theorem 4.5 we need some preliminaries. Let z = 217+ 29 €
C and z1,22 € R, we denote by {z} = {z1}7 + {22} and [z] = [z1]7 + [22],
with {z1}, {22} the fractional parts of the real numbers z1, zo (resp. [z1], [22]
integer parts of real numbers z1, z9). For each z,¢ € C\Z7 + Z, using the
property ii) in theorem 2.1, we obtain

7| cot(m{p}) + cot(w{z}))e*%”[zl]{‘”} If (z1,01) € Z2

b D(e.) — 4 Tleotrlen) - ) e 2intaltea) I 12,2 ¢7

1im %, P) = . .

Im(r) 00 7 (cot(n{z}) — ')62”{%01}22—2”[211{802} If z1€Zp1 &7
0 I 21¢Z,p1 €7

From the periodicity of D;(z, ), iii) in theorem 2.1, we obtain
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DE" (24 pi0) = 5 Dz + i) = e(Brlp. 9)) D" (1) Vo € L

For the rest of this proof we assume that ¢ € R\Z, then

(4.4) lim DU (z, ) =

Im(7)—o00

amtl (50 meot™ ({p}) + cot™ (w{z})) “Zimlzil{ez} I {5} =0
70, (cot(m{ip}) — i) e Hinlalea) If {21} # 0

Lemma 4.8. We assume p; € R\Z,Vj =1,--- ,n and let

/ /
ay
zk:—xk—i—xk kT tk——tk—l—tk o Oétk<ak,0<t;€<a;€

Then, we have

L i )
(4.5) lim D(L"W’“J) (a; Z’“Jj k. 90]) — ity

Im(7)—00 J ay, 77 a;

. t’
50,mj+rj (COt(mj—i_rj)(Wﬂ) - COt(mj+rj)(7r( ;xk - .%'/)))

7 CLk
T + 1k T + 1k
6(—[%’ - } )If{y —zj} = 0.
ag ag
; . T+t rr +t
00,m+r; (cot(ﬂ'%) — Z>e<— [aj ka L } ) If {a; h Tk —x;} #0.
J k
Now, for the rest of the proof we take z; = 0,Vj =1,--- ,n. Then
(4.6) lim D) (o LI Zi; L ity
Im(7)—00 L; J a% 7 a;
(507mj+rj cot(mﬂ'”j)(ﬂ%) — cot(mﬂ'”j)(ﬂ(a;% - :U}))) Ift), =0
80,mj+r; (cot(w%) — i)e( {a] 2’;} ij) Iftp #0
Hence,
(4.7)

lim H D(m]+m < Zk-l/-tk; _ Zj;%) — 1<j#k<n
Y

Im(7)—00 1<jEk<n
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:L’k+t’

H (60””#7“]‘ COt(mﬁ”)(Wﬁ) — cot ™3 (7 (d al
k

a; a;
1<j#k<n J

H 00,m;+r; (COt(ﬂ%) — i)e(— {a] ak} 90]>

1<j#k<n J
Then

Im(T)—>OO 0Kty <ay, 1<j£k<n
O<t2<a;€
nelt Z (m + ;)
T 1<j#k<n «

/
aj—1

g i+ E
iws) S e (B 2)) [ Dt (o2
ag J aj,

/
J

. Py

Zj,

# =0 1<j#k<n

. / t/
11 (507mj+rjcot(mi+7'j)(7rﬂ) — cot M) (x(d) Tp Tl

_|_
ap—1
akz (_7tk) H 507mj+7~j(00t(7['a7j') i)e(_[ajak}
te=0 1<j#k<n J
Finally

(=1)™*my! aj'"?
movarre= el BN B
1<j#k<n 7~
a;c—l t/
Z H (5Om-+r~00t(mj+r")(77ﬁ) — cot"™it73) (n(a ;xk +
4 J J .
th =0 1<j#k<n aj ay,
_|_
= ¥ t
4 ’ i
ak Z (_7tk) H 60,m]-+rj (Cot(ﬂ'ij) — Z)e(— |:aJ7
tr=0 Ak 1<j#k<n aj ag
and Z rj = my, then
1<j#k<n
a7 = T
(4.10) lim d(Ak”?kaZk»¢kaMkaRk»T) _

Im(7)—00 W"*“FZ r<jen M

SEAS

J

2)-

x~))) It ty = 0

Iftk#o
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T.
(_1)mkmk| H 0,;- J
q! Metl 7.l
k 1<j#k<n 7
a;c—l gp , x, 4 t/
Z H (50,mj+rj00t(mj+rj)(Tﬁ> _ Cot(mj+rj)(ﬂ.(a; ka/ k _ x;)))
t) =0 1<j£k<n J k
+
ap—1 i t .
aj, Z e(—ﬁtk) H 80,m;+r; (cot(wﬁ) — i)e(— {aj —k} ﬁ)
Qg " : a; a4 a;
tp=0 1<G#k<n J 7
This gives the limit
(—1)n 1 _ - — 7 = = — =
lim Z Z d(Ak7Ak7Zk7¢k7MkaRk77—)
n—1+ Z my; Im(r)—o0 =] At
T 1<]~<n ri+o Tt rn=my
n AN
O e
r mp+1 il
k=1 "> @ 1<#k<n '
Tyttt rp=my,
i
aj—1 , ,
, T+t N, P
i I k / i J
Z H <00t(m3+rj)(ﬂ(ajT —z3)) — 50,m]-+rj00t(mj+rj)(ﬂ;)>
t) =0 1<j£k<n k J
_l’_
ap—1

. ©0; t i
G5 1 o) T BT
tr=0 1<j#k<n J 1<j<n k J

Now, we can give a final formulation

n (_1)mkmkl al’i
D D

J
1 mp+1 H 7
7>7 @k 1<#ks<n
Tyt et =my
al—1
k / /
T+t ©;
: ; Ik k / i i J
> 11 <00t(m]+rj)(7f(aj7 —z3)) - 50,mj+r]-00t(mj+r])(ﬁ;>)
th =0 1<j#k<n k j
k
P
ap—1 —TmL
_(_1)712 H e 7 H e<_{ajti}ﬁ> if all my, = 0
0 1< sin (2L ; Ak aj
tr=0 1<j#k<n -] 1<g<n
0

Otherwise
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Or equivalently,

n A 7 Uk 1 ln

Z(—l)m’“mk! Z a™ - aﬁ\ c-ah

= | I S IR A |
k=1 Uil 20 bl il 1]
L4t Hln=my
’ / 9 /
a ay g a,
| Mk |mith my + g My, + Iy,
/ / / /
T, x Ty xy,
$1 ¥2 Pk $n
ap—1 —misd

H e<—{ajf;;j Zj) if all mp =0

= tp=0 1<j#k<n sin (77@) 1<jsn

Otherwise .

. ©j
I Sin ™ —_—
J

n ar—1 n I a;

[a; 2] - ~
—2m aj e Jj=1
SI() T MG =
k=1 tp=1 j=1 J#k a; HSin <7TJ>

4.3. Application 2: Enhanced sums of “
Dedekind-Rademacher-Hall-Wilson-Zagier” in terms of
Bernoulli functions.

Let n € N be an arbitrary integer > 3 and 1 < k < n.
Our second “Enhanced” multiple elliptic Dedekind-Rademacher sums are

— = = 1 2 + T
S(Akv"?bRk?Zk;T) = 7/ Z H / al Zj’Lj)
U th€Ly/a) L 1<j#k<n A

The generating function of these sums is exactly equal to

L
(2mi)n—1

g XTI ou (S -s)
k k

tp€Ly/a) L 1<j#k<n

S(AL, AL 7, Byir) =
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Theorem 4.3 gives us the reciprocity laws for these ““Enhanced” mul-
tiple elliptic Dedekind-Rademacher sums. It can be stated in terms of the
generating function as follows

N
Z G(Ak, A]gu Zk7 ) (pk’ T) =0
k=1
Where @1, - - - , ¢y, are non-zero variables and ¢ 4+ ---+ ¢, = 0 and
(ajzp — apxj, djry, — ayal) € Laj + Lay x La; + Lay,

for all j,k,1<j#k<

Let me now state the classical version of our Theorem 4.3. More precisely,
when Im(7) — oo from our result Theorem 4.3 we will obtain a formula (
generalizing a formula of Hall-Wilson-Zagier in [23] for n = 3) which is the
multiple version of Dedekind reciprocity laws in terms of classical Bernoulli
functions.

The classical multiple Dedekind sums are defined by the expression

ap—1
— = = T+t
S(Ap, X, Rism)i=> . J[ B < L fﬂj>

t=0 1<j#£k<n %

Now, we consider the generating function of these sums

— = = 4
v 5 S(Ag, X, Rg; 7 A\
S(Ap, Xj, &) = ) (, - ,) [ ] al
— rie...rji...p: . a;
Rj€Nn—1 1<j#k<n

Now, we state our main result of this subsection

Theorem 4.9. For all j, k,1 < j # k < n, we assume that

n
alxy, — apx’s; & Lal; + Laj, and Z pj =0

=1
Then
(4.11)
B =
&(Ay, Xy, 27”‘1)16 Z Z (24) Card 1(k)
1 k=1 0<t<ay
I, k>¢®

e (2Ha; = —a)})
11 5 S x
e( )—1

JEI(tk)U{k}

aj

11 cot(”%)—z T (cor(%22) oo (7200 o)

jeI(t,k) U = 0 jel(t,k)
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Equivalently,
(4.12)
ﬁ{a.lk“_w.}
n . J J
— = —> 1 e “k
> S( Ak, X, @) :Z > gamw 1l —=—x
_ <t<a : a;
k=1 k=1 ?(tt;#k@ FEI(t,k)U{k} e —1
/ /
, X+t ,
H coth <> - — Z H (coth( > + tcotm < T xj>>
JEI(t,k) k v=0 jeI(tk) @i k
Where

t
Proof of theorem /.9:

From the equality (2.4) we quote

(4.13)
1 t
Cdim D, (PP )
274 Im(7)—oo0 a; J a;
. L4t
e (Blotyt —o))  mie (50 —a)))

+ x4+t
®. x) +t 0,9 a; -k —g;
(%) -1 O e
Then we deduce a cotangent version of the theorem 4.2

(4.14)

0
. Lt
(%{ ngi:t — xj}> 2mie (—(a}x’;k — :):3))
- x) 4t 50 {a Zett x} =0
e(%)—l e(—(a; o —m;.))—l I ey

Now, we set

we can reformulate this result in terms of Bernoulli functions as follows
(4.15)

3
S)
=~
I
—

Q
=
|
_
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Then
(4.16)

3

| —
S)
2
|
A
IS]
e
|
<

T+t 2mi; \ 7170
T o5 (™ ) (2
: ag aj
JEI(tk)U{k}
Now, we distinguish two cases for our summation over I(t,k) = () or
o1, = L and I(t,k) # 0 or 61, = 0. We remark that the case I(t,k) = ()

or 51’” = 1 gives us our quantity

n
S &(Ar, Xy, 2midy)
k=1
that corresponds to the first member of our equality 4.11) and the rest
corresponds to the second member of our equality (4.11). Hence, we obtain
our desired theorem 4.9. [J
In particular, we have the following corollaries

Corollary 4.10. (Generic case)
For all j,k,1 < j# k <n, we assume that

n
ajxy, — apx’; & Zay + Lay, and Z p;j =0

j=1
Indeed, if we assume that
X cRA + 2"
Then
N 1
G(Ak, Xk, 2FZ(I)k) = (27;)”_1
k=1
- T . T
Z H cot< %) —Im H <cot<%> +z>
k=11<j aj j= aj
=11<j#k<n Jj=1
Equivalently,

S S(AL XL B = iy > [ coth (;J) _

k=1 k=11<j£k<n
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2% ﬁ <coth <2¢GJJ> + 1) —jﬁl <coth <2¢afj> - 1)

j=1
Where A= (ay,--- ,an),? = (z1, -, )

Proof of the corollary 4.10:
It’s comes from the following fact

?GRZ—FZ” <« Vk, 0<k<n, Jaunique 0 <t < ar — 1 such that

I(tka k) = {1’ T 7n}\{k}
Then for 0 < t # t;, < ax — 1 we have I(t, k) = (. The corollary 4.10 comes
from the theorem 4.9. [
Now, for n = 3 we can formulate our Theorem 4.9 as follows

Corollary 4.11. (Hall-Wilson-Zagier: n = 3) Let aj,as, a3 be three

positive integers which no common factor,A = (a1, as,a3),x1,x2,x3 three
real numbers, and p1, P2, p3 three variables with sum zero. Then

3
26@,2,@):{ 1 X eRA + 78

0 otherwise.
k=1

Where X = (al,ag,ag),y = (z1, w2, 23)

Proof of the corollary 4.11:
Since n = 3 then 0 < cardI(¢,k) < 2. If cardI(¢, k) = 2,V1 < k < 3 then
€ RZ +Z3 ( remark that ¢ is unique for each k). Hence we use the result
of corollary 4.10 to obtain the first part of the corollary 4.11. Otherwise, we
take the real part of the two members of the equality (4.12) of the theorem
4.9 to obtain the rest of our desired corollary 4.11. [J

4.4. Application 3: Dedekind-Sczech reciprocity result.

In this section we give a new and elementary proof of the reciprocity
Theorem 4.12 of Sczech. Our proof is clearly different to Sczech one.
We recall here Sczech’s result [12].
For a,c € Op, :={z € C: zL C L}, we define

D(a,c) ::% Y B <2;L> E; <UZ§;L>

teL/cL
Theorem 4.12. (R.Sczech). For a,c € Op\{0} pairwise coprime. Then

D(a,c) 4+ D(c,a) = 2iEy(0; L) Im (a + 54 1) .
c a ac
In the following, we attempt to deduce the result of Sczech above from
our general Dedekind multiple elliptic reciprocity laws satisfied by elliptic
multiple Dedekind Sums. We reformulate a weak version of our reciprocity
law in Theorem 4.2 for Three variables ¢1, @2 and (3.
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Theorem 4.13. For @1, @2, p3 Three variables, ai,a2,as € Or, pairwise
coprime such that:

p1+ 2+ p3=0.
Then, we have

t t t t
ZD <802 a2>DL(<P3 as) ZDL<801 a1>DL<903,a3>+
a as a az a2
teL/L

Lterser

@3 teL/cL
(W@ D@ LD A DAED | GG DA (G D)
al a2 as

B <d2(f_11,L)a1 n dQ(%,L)CLQ n dg(ﬁ,L)dg)

aza3 aiasg a1ao
Proof of Theorem /.13: We consider the function
H DL (ajz > .
1<5<3

This function is meromorphic, and periodic with periods the Lattice L,
because 1 + 2 + p3 = 0, and have poles ( modulo L) at z = a%’ teL/ajL

all its poles have a simple multiplicity except at z = 0 modulo L which is of
order 3. Then, by residue theorem, we obtain

;1 Z H DL(%ﬁ th>:

(k€L /a, L\{0} 1<j#h<3 @k

—Res H Dy, <aj > dz;z=10

1<5<3
Now, we use the Laurent expansion of the form

DL Z 90 de ()07 k !
k>0

with
do(@v L) =1,

we obtain
] e _
Res Dy, (ajz, _) dz;z = =
: a;
1<5<3

1 1
—d, <“”2L> d <“”3L> + —dy (‘“,L) d
a as as 2 al

a
1
—dy <901 >d1 < L)-I— L, (go L>+ 24, <¢2,L>+ %, <QP37L
as aq as asas3 al ajas ag alag as

R

S
h

~——
_|_
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which is the desired theorem 4.13.

As a consequence of our Theorem 4.13 we obtain the result of Sczech
4.12.
In fact, in the folllowing we prove the implication: Theorem 4.13 —
Theorem 4.12.

Proof of theorem 4.13 = Theorem 4.12:

Without loss of generality we can assume

¥1
©2
1) Let us compute the constant term of the quantity
dl(‘p2 L)dl(“"3 L) dl(“o1 L)dl(‘p?’ L) dl(%,L)dl(%,L)

al a9 as

<1

A(p1, p2,3) =
We use the following Lemma
Lemma 4.14. We have

di(z L) = % C Go(L)r — — 5~ Ga(L)S + o).

T
a(L)

The lemma comes from the proposition 3.3, theorem 3.4 (dy(z, L) =
Eq(z,L)) and the power series of ((z, L) at the origin,

n=2
Using ¢35 = —p1 — @2 and “01 < 1, we can get the Laurent
expansions
P2 L1
b = 1o T
L1 — _ %1
o3 = + ...

Then we obtain, from these equalities and lemma 4.14, that the
constant coefficient of

dl(%a L)dl(%7L)

a

a: a:
ajas a1ag
and the constant coefficient of
dl(% L)dl(sos L)

a2

is equal to
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is equal to
ai

—G (L)
as20as
and the constant coefficient of
dl(ﬂa L)dl(%> L)

ai

as
is zero.
Hence, the constant term of

A(p1, 92, 93)

<a_2 By o )GQ(L)

a1da3  aide G243

is equal to

Secondly, we compute the constant term of the quantity
dg(%,L)al " dg(%,L)ag " dg(ﬂ,L)ag

as

B(p1, p2, =
(gol w2 ('03) azas3 aijasg aiaz

to do that we use the following lemma
Lemma 4.15. We have

T z  7Gy(L)
a(L) z a(L)

The lemma comes from the proposition 3.3, theorem 3.2 and the
power series of p(z, L) at the origin,

1
p(z, L) = 2—2 + Z(Qn + 1)G2n+2(L)2’2n.

n=>1

do(z,L) = —Go(L) — zZz + o(2).

Then, the constant term of B(p1, @2, 3) is equal to

—G2(L)< nop 2y a3>

azas3 aijas aiaz

Finally, the constant term in the Laurent expansion of
—A(p1, 02, 03) — B(p1, 92, ¢3)

is equal to

G2(L)(CL1+CL2+CL36LQCL3(L1>

aa3 aias a1a9 a1as3 a1a9 a2a3

that is the constant term of Laurent expansion of the right member
of the equality in Theorem 4.13.

Now we compute the constant term of Laurent expansion of the left
member of the equality in Theorem 4.13:

In the following we compute successively the constant terms of lau-
rent expansions of the expressions
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1 2 agt 3 CL3t 1 1 alt 3 a3t
— Z Dy, <SO_,> Dy, (({, y— Z Dy (2, %) py (22,50
al _ as ap as ai as _ ar a2 az ag

To do that we use the Laurent expansion of The Jacobi form
DT(Z; SO) = Z dk(@v L)Zkilv dO(SOa L) = 17
k>0

®1

Y2

. _
Dy, <@@> =2 a4 <a2t,L> + P24, <a2t,L> T
a2 a P2 ai a al
, _
o1, 00) B gy () By (B 4
asz aj ©3 ai a3 a1

t t t t 190 1 t
Dy ((’”2 “2> Dy <‘p3 a“”’) =d (‘“L) d <a2,L>+ 2 B2 g <“3L> +
az aj az ai ai ai w203 P2 al

as ast a: ast
—l—iﬁdz <3, L>+(p23d2 (2,L>—|— powers series in terms of
P2 a3 ai

and the fact that p3 = —p1 — @2 and < 1. Hence, we obtain

-
h
~

a a2 ©3

w1 and s.
Then, for fixed t €€ L/cL, the constant term of Laurent expansion

1 t t
7-DL <<p_27 a2) DL (SD_?” a3>
ai az ai az ai

is equal to

t t 19 t 1 t
dy (“3 ,L) d (“QL) _ 22 g, (‘”’L) _ % g, (‘”L) .
al al aias al a1a2 al

In a similar way, we obtain

. )
Dy (‘pl,“l> A (alt,L> + Py, <a1t,L) o
ap a2 P1 az al az

t t t t 114 I t

DL <80_17 al) -DL <SD_37 a?’) == dl <CL3)L> dl (alaL>+ 143 +ﬂd1 <a37L> +
ayp az az az a2 a2 Y1L3 L1 a2

) :

a ast a: ait
+—1ﬂd2 <3, L>+¢13d2 (1,L>—|— power series in terms of
ai ¢3 az
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¢1 and 2.
Then, the constant term in the Laurent expansion of

t t t t 110
DL <9017a1> DL <m7®> :dl <alaL> dl <a27L> -+ 4142
ap as az a3 as as P1¥2

11 t 19 t
ﬂd1 <a27 L) + %dl <C;1, L> + powers series in terms of @1 and s.
3

Then, the constant term in the Laurent expansion of

is equal to

Now from our calculation 1), 2), 3) and Theorem 3.4, we obtain

SL oS e (%e)-

=1 " teL/a;I\{0} 1<j#k<3

a a a a as a:
GQ(L) < 1 + 2 + 3 1_ _ 2_ B 3_ > +
as0a3 aijas a1ag as20a3 ajas a1ag
as ast as ast
do [ =, L do (=, L
a1ds Z 2<a1 >+ 1 Z 2<a1 >+

_ alay _
teL/a1L\{0} teL/a1L\{0}

a ast
oY w(%h)
293 feL/as L\ {0} 2

Now using the distribution formula

DR (ZL) = G5 (0) (1 - g) Ve € Op\{0}.

teL/cL\{0}
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Then, we obtain

1 it
SIS s (M) —amr (s )
. a; a; as20as ajas ai1an

i=1 " feL/a;L\{0} 1<j#k<3

where I(z) = z — Z.

This result is an Homogenization of the Theorem 4.12. In particular, for
a1 = a,as = c,a3 = 1, we get our implication : Theorem 4.13 —
Theorem 4.12. [

4.5. Proof of Theorems 4.1 and 4.3

We consider the function

j=n
= ry i (mj) ( ]
F(z, 8,4, M) = HlDLjJ <ajz—zj,aj>
J:

Where

A= ((al...,an);(all,...,a/)),]\7:(ml,...,mn),

n

/
a
/ k
= (8017 s 7(Pn)azk = T +$k;T-
k

%
d

We assume that:

n
)Y e L=7r+1,

i=1
ii) (aéx} — ajT, a;T — ajxi) ¢ <a;,a;-> Z % {a;,aj) Z
The function
F:z— F(z,g,z,ﬁ)
has the following properties

i) F' is meromorphic, has poles on

this pole has order equal to m; + 1.
ii) F is periodic with periods containing the lattice L i.e

F(z—|—p,3,z,]\—4>) = F(z,g,Z,]\?),Vp er
this comes from

Dr(z+p,0) =
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Then, Vp e L

F(z+p.®,4,0) = e(ELme)) F(z, @, A, M),
=1
= F(Z787Z’ﬁ)7

because Z w; €L
i=1

Then, using Liouville residue theorem for an elliptic function with periods
containing lattice L, we obtain

n

S Y Res(F(s, 8 A Mydzz= 20— r 7 ) =0
; a’ f a;

i=1 (t;,t))ez? ¢ ?
0§t¢<ui,0§,t;<a;

It remains to compute their residues. The function
— —
Fizo F(z &, 4,M)

has poles at z = % — %7’ + 2—"2,, (t;,t)) € Z? with order m; + 1.
We will compute the residue at 2 — %T + 2—1'1_, (ti,t}) € Z?, the other residues
being completely equivalent. We use the Laurent expansion of the Jacobi
form

—1)"km,!
i) <a;€Z L w;) _ (=1)™my —— + analytic part.
k ag al mg+1 5 Z+tk k
k aﬁc

~ /
where &, = —t} + 357, 0 <ty < ay, 0 < ), < aj,
and, more generally,

, By 5
(mj) ( 4 2] @i (my+ry) (s 2k Ttk 7 2+t
DLjJ <ajz_zj’aj> - ZW‘DLJI] ’ (aj a _Zj’? = ;

ay,

Ay
B Ok \ (—1)™kmy!
€ Lk(tk’ k) al my+1
k
17Ty ~
a5 S mtr) (2Kt T ]
Z H Dy, = — %
: : il aj, aj
T]peens Tloseos rn =0 1<]7ék<n

Tyt P Ty =my,
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Let us give some details on this fact. We begin with the change of variable
z—=z+ Z—’Z, ty, € Li. Then, we obtain

£
Res (F(z,g,z,]\?)dz;z s k) =

/
ag

Res <F(z+tlf,5>,z,]\_4>)dz;z = Zk) =
a

!
k ay,

7 k j t P Rk
Res D(LT:’“) <a;€z + tr — 2k; i) H D(LTJ) <a;z + a;-a—;g — Zj; J) dz;z =

s
1<j#k<n J

=e <ELk (s, i:))

Pk (m;) A D"
Res D(LTk) (akz—zm%) H DLT] (a;z+a;%—zj,7>dz,z:d

1<j#k<n aj k
Now, we know that
—1)"™emy,!
D(Lmk) <a;€Z = Zks 9%) = 1) li ——7 + analytic part.
k Qg a/ mp+1 (Z B Zk“l‘tk) k
k T
and
/1T ~ ~
. . a’. i ] 21+ t . 2+ i
D (e =2 22 ) = 3 S (w2t ) (- 2l
J a; 7,50 T J ar, a; a
Hence,
— — 7 _1ym .
o (2 s 25) - S22 (1, 20)
1Ty

a'i s 1+t ,
5 (mj+r;) 1 %k k Py
X 2 : | | HDLJ-] ! (aj _zJ'?A)

/
a a
Pl Frmn 20 1< j2£k<n k J
Pyt et =my

After using the functional equation satisfied by the Jacobi form
Dr(z,¢) = e(EL(z,¢)) DL(¢, 2)
we obtain

t —1)™kmy,!
Res(F(z,g,X,]\_f)dz;zzzk—tk)z( ) MU o

ak a;fmk-i-l
2k + t~k ©j T
€ Z ELJ‘ (a; 7 — Zjs 7]) € (ELk (tka 7) X
j Ak aj ar
1<j#k<n

175

J
a5 " mytry) (P, s 2kt Ttk
——D; - a; — Zj
| L e/ ! J
4 . rj! J a; ay

T]5eens Tloseos rn =20 1<]7ék<n
4Pt rp=my

v
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Now, we use the following :

By (z¢) = 2 BL(z,9)
and the fact that: ]

n
Y wiel
j=1

we conclude that

— — g —_1\ym .
Res (F(Z, @,Z,M)dz,z = Zk+tk> = (L) my! xe|l| — Z ELj(Zjv %)
J

“ T .
1<j<n

/T g
a; (my+r;) (5. 1%k T Uk
X —D;" = a; — zj
7 j a;’ ? a
Pl T 20 1<j£k<n I J k
Tt bbb =my

The other residues are computed in the same way.
Finally, we have
n
E ©j (=1)™*my!
e|- 2 Bulm )| X 2 >
1<<n J k=1 k 0<t <a—1;0<t) <af —1 Tl FloyersTn =0

1
P ap, y k rit T =my
k= k%T— k

17y . 7

[I Zpime) (Lg2tte ) —o

7! J a; 7 a
1<j#k<n 7 J k

this gives our statement

n 1T
a;’

— = = = — —
D (=)™ my! > 11 ;., d(AkaZZaZk7¢kaMk+RkaT) =0
k=1 Rp>T 1<j#k<n 7
P b =my,

O

5. Algebraicity and Damerell’s type result for Jacobi forms
D;(z;p) and elliptic Bernoulli numbers B,,(¢; 7).

5.1. Algebraicity of Jacobi forms D.(z;y)

We fix a Weierstrass Model
y? = 42® — g2 (Q)x — g3(Q),

g3 g =d > p%* ke{23},
Y PESY, p#0
dy = 60, ds = 140

for an elliptic curve F, where €} is the complex Lattice which is formed by

the complex periods of (E, %m) .
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We note F' = Q (g2(£2), g3(€2)) the definition field of the Weierstrass Model
<E, %) . For any o € Aut(C/F) we consider

p—s ol

application of: C/Q2 — C/Q via the action of o over the coordinates
(Pa(p), P4(p)) the image of the point p € C/2 in Weierstrass Model (E, dj‘) .

Let L D € be a complex Lattice with finite index. We associate to L the
Jacobi form Dy (z, ¢):

e st

DL('Z; ‘P) = —€ 6 (é) 6 u%)

wo
where L = Zwi + Zwo, T = % € H, ¢ = prw1 + pawa, (gol,QOQ) € R2.

w2

We have the following properties of Dy, (z; ) :

Proposition 5.1. Let p be an integer > 1.

i) The fonction z — Dq (z;p) is defined over the field F(E|p]), ex-
tension of the field F obtained by adjonction of the coordinates of
the p-torsion points of E.

ii) For all o € Aut(C/F), we have

Dy, (2;¢)7 = Do (Z[ol; gp[a]) .

iii) In particular, the function z — Dy, (z;¢) is defined over F
(¢ (mod L),L/Q). Where F (¢ (mod L), L/Q) is the smallest subex-
tension of F(E[p])/F such that :
the point ¢ modulo L and the subgroup L/ are defined.

5.2. Algebraicity of elliptic Bernoulli numbers B,,(¢; 7).

Let n be the eta Dedekind function defined by:
For r € H )
n(r) = [[Q-a).qr =7
n=1
The main result of this subsection is the following

Theorem 5.2. Let T belonging to an imaginary quadratic field with Im(T) >
0. For positive integers f, k with k > 3 and ¢ complex parameter of a
primitive f-division point i.e @ complex parameter of f-division of order f
in C/Zt + Z. Then
f*Bi(; 7)
n(r)*
is an algebraic integer.
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For this result we give two differents proofs. In these proofs we use
the g-expansion principle and the complex multiplication theory.
For N a positive integer we define

P(N) = {M € SLy(Z) : M = (é ‘i) (mod N)}

If M = (Z Z) we define the function

ar +b
ct+d

M:H—H,M(T)=

Definition 5.3. By a modular function of level N, we mean a function f
defined on H such that:

i) f is meromorphic on H
ii) foM = f,VM € I'(N)
iii) VM € SLy(Z),3B > 0 such that for all w € H with Im(w) > B, we
have

2miw

foM (w) = Z ang™, Ny € Z,a,C, and q% =e N .

n>=Ny

This expansion is called the Fourier expansion or ¢g-expansion of f oM
and the a,, are called their coefficients.

As usual we denote the absolute modular invariant by j(w). We state the
following propositions whose proofs are omitted here.

Proposition 5.4. (g-expansion principle):
a) Let f be a modular function of level one, with Fourier expansion given by

flw) = Z anq%
n>=Ny

i) If all the ay are contained in a subfield K of C, then f belongs to
K(j) i.e f is a rational function of j with coefficients in K.

ii) If f is holomorphic on H and all the a, are contained in some ad-
ditive subgroup A of C, then f belongs to Alj] i.e f is a polynomial
function of j with coefficients in A.

b) Let f be a modular function of level N on H. Suppose further that for
each M € SLy(Z), the Fourier Coefficients of foM are contained in some
additive subgroup A of C. Then f is integral over A[j].

We know that every elliptic curve with complex multiplication is defined
over an algebraic extension of Q. Precisely, if the complex Lattice L' admits
a complex multiplier w, then it is of the form al, where L is a Lattice
contained in K = Q(w) be an imgainary quadratic field.

Next, we recall the main result concerning the integrality of j.
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Proposition 5.5. Let L a complex Lattice with complexr multiplier w, take
{1,7} a basis for Og, K = Q(w) imaginary quadratic field, with Im(7) > 0.
Then (Ox)?
. 172892 (O
Og)=—F7"FT"—""—
is algebraic over Q, where

A(OK) = A(1,7) = 02(0x)* — 2705(0x)* = (2mim(r)?)

Remark that ¢; = e*™7 is a real number ( because T is a quadratic imaginary
complex). Then, we have 1n(7T) is a real number.

We have

A(Ok) = +0" & = 27|n(1) .

Then g2(0Ok) and g3(wOK) are algebraic over Q.
Indeed, if L is a Lattice contained in K. As it is commensurable with O,
WL is commensurable with OO .Then for all m > 2, g,(0Ok) is algebraic
over Q, see [19] pp.38-39. Then , by the homogeneity of gm, for all m > 2

gm(OK)

— is algebraic over Q.
w2m

Theorem 5.6. Let K a quadratic imaginary number field and L a complex
lattice in K. Then, we have for m > 2

9m(OFK) and En(a,Ok)

a)2m om
are algebraic over Q, for all o € QL\ L.

First Proof of theorem 5.2:
We use the following distribution formulas:

t
> (B(5r)-E0D)-0
feL/NL\{0}
More generally, for any w € C\{0} such that: wL C L, we have

if
Z (En <t7L> - En(ovL)> = 0 -1 - b Odd
w w(w" ' —w)E,(0,L) otherwise

feL/wL\{0}
Or equivalently,
2 E"<t’L>:{O" 1)En(0, L g}? .
feL/wL\{0} “ (W' =1)E,(0,L) therwise

Now, we take in particular w = N, Then for 1 < k < N2, we have by
induction on N:

k
3 ENG[,L) EQ{En(O,L),n24.

teL/NL\{0}
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We obtain a linear system, 1 < k < N2, we deduce that:

En (4, L) are integral over the ring Q[E,, (0, L), n > 4] for allt € L/NL\{0}.
We know, that for L = @Ok and N > 2, g,,(wOg) is algebraic over Q. Then

En (%, L) is algebraic over Q. Hence,
En (x,0k)
oN

is algebraic over Q.
From theorem 3.2 we get, that for f € C\{0},

di(p; L) = fk d e )Ek<;L>, VEk > 2.

teL/fL

or equivalently

F*Bu(e, L) = — o

Now, our theorem 5.2 comes from theorem 5.6. [J
Second Proof of theorem 5.2:
By the g-expansion principle, we claim that

n(r)?

is holomorphic modular function for I'(12f).
We prove this fact, we know that

ar +b
ct +d

at +b
B, | (dp1 — —b ;
(( ©1 C¢2)CT+d+( ©1 + aps)
and

at +b _
7 (S) = Gabaler + @47,

b
A <(z d) S SLQ(Z), (cpl, 902) S R2
where (44,4 is @ root of unity and

Cabed =1,V (“ Z) e I(12).

Iz Bi(o,L=L7+17)

Then by the g-expansion principle 7 — )

) = (cr+d)™B

m((PlT‘HPQ; 7—)7

is algebraic over

Alj] where A = ring generated by Fourier coefficients of g-expansion of this

function. Explicitely, we know that

F*Brle, L =71 +Z) = f*B(p1) + (-1 Y e

o<, v<f
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mmo

>t signme (") "

mmg >0
mo=v (mod f)

Then
ACZ [e%] .
An other point of view, we can deduce this formula by using the following
Hecke result

t B 11 (—2mi)*

n=te (mod f)

Z nt mn
mn>0 f f
m=t; (mod f)

Then, for ¢ = 17 + 2, (01, p2) € R?, we have

1 1 (=2mi)*
Ey(p,L=Tr+7)=34 —
(¢, T+ 7Z) 0{901}% (p2+n)k:+fk?(k—1)!
k—1 n902> mn
nel——|q/f
el
m=¢1 (mod f)
Note that
Z’: L O+ 08w If =0
(o2 +n)F | Clp k) + (—DFC(—p2, k) TE 0 < <1

Using this result of Hecke and the following formula
t

f*Bi(p, L) = @i > e )Ek< L), VE > 2
teL/fL r

Again, we deduce

F*Bi(p, L) = f*By(p1) + (—1)F 'k

mmo

Y oelBulte) D m’f—l(sign(m))e(”;f‘)q 7

o<p,r< mmg >0
’ I mo=v (mod f)

Then, by complex multiplication theory ( proposition 5.5) we deduce that

f*Bi(p;7)
n(r)?*

is an algebraic integer. [
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6. The Congruence of Clausen-von Staudt for elliptic Bernoulli
functions

“ cups at 00”, we obtain the Bernoulli numbers. In

In the degnerate case

the case of L = Zi+7Z ( case of the lemniscatic curve y? = 423 —4z,w = %m),
we obtain a generalization of the so-called Hurwitz numbers. Our ellip-
tic Bernoulli numbers can be regarded as a generalization of the so-called
Bernoulli-Hurwitz stutied by Katz [32].

The main purpose of this section is to settle the theorem of von staudt-
Clausen for elliptic Bernoulli numbers By (p, ZT + Z) in the case T is imagi-
nary quadratic and ¢ is the rational parameter of torsion point on the elliptic

curve C/Zt + 7.

We begin this section by an overview of the classical Von Staudt Clausen
congruence. Indeed , we introduce the Weber functions and establish a
recursion formula satisfied by Eisenstein series. These functions are partic-
ulary well suited to question of analogous von Staudt clausen congruence
type. Another fondamental step in our study, to obtain the main result of
this section, is principally based on the systematic use of the results of Hasse
[241] and Herglotz [25]. In particular, we obtain arithmetic information for
so-called singular values of Bernoulli ellitpic functions and Eisenstein series,
that is to say when the lattice L admits complex multiplications.

Throught this section K denotes a quadratic imaginary field.

Let us make an overview of Von Staudt Clausen congruence for ordinary
Bernoulli numbers.
For now, let n be an even positive integer. An elementary property of
Bernoulli numbers is the following discovered independently by T. Clausen
[18] and K. G.C. von Staudt [16] in 1840.

The von Staudt-Clausen theorem states that

e The structure of the denominator of B,, is given by

1
6.1 B + - €z
1) ey

p—l‘n
Equivalently
[ ]
(6.2) denominator of (B,) = H p.
p—l‘n

Sometimes the theorem is stated in this alternative form:
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For an even integer k£ > 2 and any prime p the product pBj, is p-integral,
that is, pBy, is a rational number ¢/s such that p does not divide s. Moreover:

-1 (mod p) if(p-1) divides k

6.3 By =
(6.3) Pk {0 (mod p) if(p-1) does not divide k.

6.1. Weber’s functions and Eisenstein series.

Let L = Zw1 + Zws complex lattice i.e 7 = z—; cH.
We define the Weber function hr(z) by

L)gs(L :
—2735%pﬂz) if dg <-4

hi(z) = (L)?

253 Ry pL(2)? if dg=—4
—2030RH o (2)3 i di = -3

Let j, 2,73 be functions as in Weber [1&] by

. L)3
j= 2633 QZ((L)) ,

A(L) = g2(L)* — 27gs(L)* = (2mi) (1),

A4
(6.4) No = ¥/ = 2239%(\;)’

N3 =/j — 1728 = 233393/%),

Let K be an imaginary quadratic number field. We let dx denote the
discriminant of K and fix a non-zero fractional Og-ideal L. Let | be an
integral ideal in K and f be the smallest positive integer divisible by §. Let

w1, wy be a basis of the ideal L with Im (:j—;) > 0. Thus K = Q(7), 7 =%

wo?
j(7) is algebraic integer.

We put
t
hi == hp, (f) b= tiw +tawn, 0 < 1,12 < f.
Then it is known, by Hasse [24], that these f-division values of hp(z) are
algebraic numbers whose denominators are at most divisible by prime factors
of f.

Now, we state the following result about singular values of Eisenstein series
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Theorem 6.1. Vt € L/fL\{0}, we have

(k= 1)!Ey (;7L> = Y Agelter (;)a or, (;)bgz(L)c

2a+3b+4c=k,
a,b,c20

with Agpc(t) € Q(&y), & is a primitive root of unity, in particular the
numerator of Aqp.c(t) is an integer in Q(&¢) and the denominator of Aqp.c(t)
is at most powers of 2.

Proof :  'We proced by induction on k.
We examine the cases: k =4, 5:

(4—1)E, <; L> = 6p1 <;>2 - %m(L)

(5—1)IE; GL) = e (jf) oL <th>

Then the theorem holds for k = 4, 5.
Now assume that the theorem holds for & < n+1. Then by recursive formula

for E;. <%, L), we have

t B (p+1)(g+1)(k+1) t t
s (1) =6 P e (0) e (1) ¢

TR (;) b (jfL)

Hence

(k+1)'Ek+2< >—6 > ChL(p+1) Epya <;L> (q+1)!Eqi2 (;,L>+

pta=k—2
p=21l,q=1

e (2) 5 (3)

Then by induction we get the theorem. [

6.2. Statement and proof of elliptic Von-Staudt Clausen
Congruence.

We state our elliptic analogue of the von-Staudt Clausen congruence.
Let 7 belong to an imaginary quadratic field K with Im(7) > 0. In this
subsection we set L = Z1 + Z.
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Theorem 6.2. (Even index)

Let § be an integral ideal in K # Q(i), Q(v/—3) and f be the smallest positive
integer divisible by §. Then for ¢ a complex parameter of a primitive f-
division point of C/Zt + Z and for k > 3, we have

f2k BQk(QO, T)

where

2k

U~V W A w ,OJ p—1 )
Cop= (- BB 5 AT

6 p—1|2k p
pprime=5
Dy, = 2k
e(EL(t,¢))
teL/fL\{0}

b
> Aa’zb,c(t)(—1)“22””"‘%30"“75’“’“%?””“%1( — h} + 3v3v3he — 27373‘) :

a+3b+2c=k
a,b,c20

k=6w+2u+3v,0<u<2,0<0<1, P(j) € Z]j)

and A,(wi,ws) denote the penultimate coefficient in the multiplicative equa-
tion
-1

2P — Ay (wr,wo)a 4 -+ — Ap(wr, we)x + (—1)20T =0
satisfied by

and Aqop.c(t) € Q(&f) and the denominator of Agap(t) is al most powers
of 2. Finally,

Ap(w1,w2) = 75" 75" fp (),
with
p—1

2

Corollary 6.3. In the even index case the denominator of the number

= 6tp, + 2up + 3vp, 0 < up < 2,0 < vy < 1, f(J) € Z]j],d° fp = tp.

ok Bak (5 7)
L

is divisible by at most prime factors of 2, 3, f, v2,7v3 or prime p = 5 such
that p — 1 divides 2k.
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Theorem 6.4. (Odd index)

Let § be an integral ideal in K # Q(i), Q(v/—3) and f be the smallest positive
integer divisible by §. Then for ¢ a complex parameter of a primitive f-
division point of C/L and for k > 3, we have

4L Bojt1(p57)

=R Cok+1 + Dokt

where
Cok+1 =0

and

2k +1 , <t>
2k-+1 (274) 35 (1) tEL/%L:\{O} (EL(t, ¢))oL 7

Z Aa,Qb—i—l,c(t) (_1)a22b+25—2k+23c—k+1,7§>cfk+1,7§cfk+1

a+3b+2c=k—1
a,b,c20

b
R (= b+ 333 — 20804
Corollary 6.5. In the odd index case the denominator of the number

f2k+1 BQkH(%O; T)
77(7_)4k+2

is only divisible by at most prime factors of 2, 3, f, v2(L) and v3(L).

Theorem 6.6. K = Q(i)
Let | be an integral ideal in K = Q(7) and f be the smallest positive integer
divisible by f. Then for ¢ a complex parameter of a primitive f-division
point of C/Of and for k > 3, we have
i) The number
ik Buy(4;7)
n(7)%*
is divisible by at most prime factors of 2,3, f and prime p > 5 such

that p divides 4k.
ii) For k # 0 (mod 4), we have the number

e BrlpiT)
n(r)*
is divisible by at most prime factors of 2,3, f.
Theorem 6.7. K = Q(1/—3)
Let § be an integral ideal in K = Q(v/—3) and f be the smallest positive

integer divisible by §f. Then for ¢ a complex parameter of a primitive f-
division point of C/Ok and for k > 3,
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i) The number
6k Bok (45 7)

n(7)*
is divisible by at most prime factors of 2,3, f and prime p > 5 such

that p divides 6k.
it) For k # 0 (mod 6), we have the number
fk Bk(% 7-)
n(r)*
is divisible by at most prime factors of 2,3, f.

Remark 6.8. The first part C} of our elliptic Bernoulli number ka’“i)%) is

already studied by G. Herglotz [25] and H.Lang [36, 37]. Consequently our
attention is to study in details the second object Dy.

Proof of theorems 6.2, 6.4 and 6.6:

We get from Theorem 3.2

T ! t
R = B S Bt oEn (f0)
teL/fL
t
S LTGRO SR (N
teL/fL\{0}
Then in G. Herglotz [25] and H.Lang [36, 37] it is showed, that
(2]{3) 2k

V555" W , W u_ v .
Sy B 0,1) = (-1 B 3 Bl s, ),
p—1|2k

pprime

where Gai(j) € Z[j], p prime > 5, and

Do = 2SS B ) B (t,L>
) o) /

:wﬁf% > e(EL<t,so>><2k—1>!E%<;,L>

U te L/ FL\{0}
o
(2mi)%RntR (1)
" a , " 2b
> dBte) Y Audton(5) o (3) ar
teL/fL\{0} a_‘jz:‘;;co:k

Now, using the Weierstrass gp-function model,

o1(2)? = 4p1(2)* — g2(L)pr(2) — gs(L)
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Here dg < —4, we use the Weber’s functions and notations to obtain
A(L)s = (2mi)*n(r)*,

g2(L) = 272371 AS

(6.5) < g3(L) = 27337823,

pr(z) = —2_23_1Aé72_173_1hL(z),

/ —hoy— 1 _3 _
p1(2)? = 271373 A 75 ? ( — b + 39393 e — 20404

Then
D 2k ST e(Bilte)
2k = o N2k dk(\ L\Y%
@ T o)
t\* 3 b ¢
> Aume®or () (400~ 0:(L)r() — gs(L)) ga(L)
a+3b+2c=k
a,b,c20
Hence

Dy =2k Y e(BL(t))
teL/fL\{0}

b

D" A olt) (—1)722 2o hoekaZemk s (a3 —20804 )
a+3b+2c=k
a,b,c20

By theorem 6.1, we know that the denominator of A, 2 (t) is at most pow-
ers of 2 in the other hand the f-division values of Weber’s function h; are
algebraic numbers whose denominators are at most divisible by prime fac-

tors of f cf. Hasse [24]. This completes the proof of theorem 6.2.

Using the relation (6.5) the proof of theorem 6./ is similar as the theorem

6.2.

Now, to prove the theorem 6.6 and theorem 6.7 you use same techniques as

in the proof of the theorem 6.2, we must only remark that:
j=1728,7%0 =223,v3 =0 If K =Q(i)

(6.6) =070 = 0,75 = 233/=3 If K =Q(v=3)
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This complete the proof of our result of elliptic analogue to Von Staudt
Clausen over an imaginary quadratic number field K = Q(7) for the elliptic
Bernoulli numbers By (¢, 7). O

Theorem 6.9. (2-division points)
Let L be an arbitrary complex lattice with L = Zwi + Zws, T = Z—; € H.
Then for ¢ a complex parameter of a non zero 2-division point of C/L , we

have
Bojt1(p,7) = 0,Vk > 0
and
f2k BzILS%T )
n*(r)
where Cop, and Doy, are the same as in the Theorem 6.2

= Co, + Doy, VE > 2

In this case the coefficients By (p, 7) are explicitely given by example 2.6.

7. The Kummer Congruence for elliptic Bernoulli functions

It should be noted that our results in this paragraph are to be brought
closer to those obtained by Villegas, in terms of special values of certain
function L, in its paper [17].

In this section, it will be shown that the singular values of elliptic Bernoulli
numbers satisfy a Kummer congruence.

7.1. An overview of the classical Kummer Congruence

We begin with an overview of classical Kummer congruences :
Let k,, and r with £ > r > 1 and p be prime with p — 1 fk. The classical
Kummer congruence [35] states that the Bernoulli numbers satisfy

T

S8 Bk+5(p_1) — r

In the study of p-adic L-series Iwasawa introduced generalized Bernoulli
numbers By, associated to characters x s of conductor f. Carlitz [16] proved
a Kummer congruence for these generalized Bernoulli numbers. He showed
that with k,p, and r as before and with p ff, then

T

BkJrs(pfl)
-1)°C ———F—— = ).
SV =0 modp)

In our main result of this section, we are insterested by a related Kummer
congruence which was established by Vandiver [15] who demonstrated that
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if k, and r with £k > r > 1 and p be prime with p — 1 /k, and a and f
positive integers, then

r Bk+s(p—1) (%)
1)5C'S k+s(p—1) Y
SE O( )’ Crf kot s 0 0 (mod p")

7.2. Statement and proof of the elliptic Kummer congruence.

We state now our Kummer congruence type satisfied by the elliptic Bernoulli
numbers By (p, L).

Theorem 7.1. let p > 5 be prime and let k,r be integers with k > r > 1,
f>1andp—1 [k, p € C\{0} of order f i.e f =[L+ Zy : L], then if T is
an tmaginary quadratic complex number with Imr > 0, We have

r

1\ys(14+252) s pk4-s(p—1) Bk(@vL) r
§< sy Frspon =0 (med?).

Siegel in [13] has shown that the values at positive integers of L(s, ),
where K is an imaginary quadratic field, f is an integral ideal of K, x = e,
where € is a primitive ray-class character modf and 1 is a Grossencharacter,
is expressed in terms of the elliptic Bernoulli numbers. Consequently, our
theorem 7.1 also give a Kummer congruence for the values of this Hecke
L-series.

Proof of theorem 7.1:
In the proof of this theorem we need the g-expansion of By(p, L) and the
standard Kummer congruence. We have the following g-expansion formula

f*Bi(e, L) = f*Bi(pr) + (-1 'k >

op,v< f

mmo

> sign(me (") o

mmg >0
mo=v (mod f)

Hence
By(p,L) €7, [chvff} 4]

Now using classical Kummer congruence and Vandiver result. Then, we
write the sum
i( 1) s(1+2= 1)Csfk+5p 1) By(p, L)

— kE+s(p—1)

s s Bk s 1)
-2 (- )Cf’“*pl)kisp Ly > el(Bilt,)
s=0 o<, v<f
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> b signme (B ) 4"

mmog >0
mo=v (mod f)

zr:(_1)k++s(p—1)gﬁmk+s(p—1)
s=0
We remark , after Newton’s binomial, that
ZT:(_1)k++8(p71)cﬁmk+s(p71) — mk-1 ((_m)pfl _ 1)7” =0 (IIlOd pr).
s=0
Let R(p,q) denote the ring of g-expansions of the form

>

with algebraic and p-integral coefficients, with only finite number of nonzero
terms with m < 0. Hence one can use the last equalities to write

T

p—1 — By (¢, L)
7S (=1)sAHE g phase-1) PR (04 p)R(p, q).
( )sz:;)( ) i Frso 1) (mod p)R(p, q)
Hence, we can conclude with the result of Theorem 5.2 and the congruence
7.1, that the Kummer congruence for elliptic Bernoulli numbers By(p, 7) is
valid.

8. Hecke L-functions associated to Elliptic Bernoulli functions

The main purpose of this section is to study special values of Hecke L-
Functions and their connection with elliptic Bernoulli numbers.

8.1. Statement of the main result

Let K be a number Field, (x(s) the Dedekind zeta Function of K. We
can break up (i into a finite sum

Cr(s) = Cr(s, A),
A

where A runs over the ideal classgroup of K and
1
Cr(s,A) =) N Re(s) > 1.

acA
Then (x (s, A) is, after analytic continuation, a meromorphic function of s
with a simple pole at s = 1 as its only singularity. Moreover, the residue
of (x(s,A) at s = 1 is independent of the ideal class A chosen; this fact,
discovered by Dirichlet( for quadratic fields) is at the basis of the analytic
determination of class number of K. If we consider the Laurent expansion
of (x (s, A) at s = 1, however, say

Crels, A) = <<+ po(A) + pr(A) (s = 1) + ...



120 A. BAYAD

More generally, to a character y of the ideal class group of K, we associate

the L-series

X(a))s, for Re(s) >1

The sum runs over all ideals a of K.
Now, x being an ideal class character, we may write

Ls) = x4 X N

acA

= ZX )Ck (s, A)

= S (S )+ )1+ )

A
Then
L(s,x) = > _ x(A)po(A) + o(s — 1)
A
since, x being # xo = 1, Zx(A) =0.

A
Taking the limit as s — 1, we get

L(s=1,x) = Zx

Then it transpires that the constant term pp(A) is no longer independent of
the choice of A. When K is an imaginary quadratic field, the evaluation of
po(A) accomplished by Kronecker[34] ( the so-called “First Kronecker limit
formula”), when K is real quadratic field py(A) evaluated by D. Zagier [52].
Our interest here is to connect L(s = m,x),m > 1, to elliptic Bernoulli
numbers is as follows. One may express the special values of Hecke L-
functions of K using the coefficients of Laurent expression of Jacobi forms
Dr(z,¢).
Let K be an imaginary quadratic field with ring of integers Ox. We consider
Ok and any ideal F of Ok to be lattices in C through a fixed embedding
Q = C. Le  be an algebraic Hecke character of ideals in K, with conductor
f and type (m,n) i.e

X Ik (f) — Q~
homomorphism of the form

x((B)) = e(B)p™pB"
for some finite character
e: (Ok/f)* —Q%,
we set Y(8) = ™3™ where 3 € Ok is prime to f
e((B)) = €(B),(8,1) =



JACOBI FORMS IN TWO VARIABLES: MULTIPLE ELLIPTIC DEDEKIND SUMS,.121

we extend € so that €(8) = 0 for (8,f) # 1 Then the Hecke L-function
associated to x is defined by
X a)
N(a)s

(a,f)=1
where the sum is over integral ideals of O prime to f, and this series is
absolutely convergent if Re(s) > ™f" 4 1. The Hecke L-function is known
to have a meromorphic continuation to the whole complex s-plane and a
functional equation.
The function Li(s, x) has a pole at s = s if and only if the conductor of x
is trivial, m = n and sg = mTM + 1.
Now, we can state the main result of this section. The Hecke L-function
may be expressed in terms of Elliptic Bernoulli numbers as follows.

Theorem 8.1. (Interpolation)

Let § be an ideal of K. Let Ik (f) be the subgroup of the ideal groups of K
consisting of ideal prime to §, and P (f) be the subgroup of I(f) of principal
ideals (o) such that « =1 (mod )f. Let x be an algebraic Hecke Character
of K of conductor § and type (—m,m). Then we have

_ (2mi)? Yo N (@i(64)) |
Lf(S =m, X) 2m |wa Z < m BQS(QO(AL bA)
Or equivalently

Li(s =m,x) = w;;Z)Z(bA) (ybA \>—( ))> das(p(A); ba)
XA

we have wy is the number of roots of 1 congruent to 1 (mod §), A runs over
bA)

all ray-classes modf, is the imaginary part of , D is the discriminant

of K. Gy is the Gaussian sum associated to x, deﬁned as follows.

Let D be the different of K. Let a be an ideal such that (a,f) = 1, belonging
to the inverse class of §'® L. Then there exists an element v € K such
that

(v) =of D!
We fix v one for all. The Gaussian sum is defined by
GX _ Z X(a)e%riS(a'y)
a (mod)f

where o Tuns over the complete set of representatives (mod f) and S denotes
the trace from K to Q.

Let
at={Ne K:S5\a) € Z,Va € a}
ideal of K. It is known that aa* is independent of a and in fact:

ag* = (1) = D!
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Furthermore (a*)* = a and N(Dg) = |Dg|, Dg: the discriminant of K. We
make explicit calculation if K is a quadratic field over QQ, with discriminant
Dy. Let {w1,ws} be an integral basis of a:

a = Zw1 + Zwa, a* = {/\ c K S()\wl),S()\OJQ) S Z}

Then
S()\wl) =
S()\WQ) = n
where m,n € Z
i.e
Awi + oy =
Aws + Ao = n
Then ~ ~
w w
A=m—— 2 — —n— ! —
W1w — Wawi wiwz — Wawi
Hence B B
w —@
=z—2 471
w1l — walq w19 — walq
Now,

Wi — Wolwy = :EN(CL)\/ |DK‘

and this means that

1 1
- =a | —— , e aa* = = @K_l.
VIDkl| | D|

Moreover N(Df) = |Dk]|.

We have

a) consider the ideal a = f~'®x ! in K; clearly a* = §.

b) Let us choose in the class of fD, an integral ideal a coprime to f. Then

af 1D =(y), forye K

i.e
af ! = (7)D g has exact denominator f.

Lemma 8.2.
i)
Gx? = N(j) i.e |Gy| = VN
i)
XB) =G' D xS,
A (mod f)
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Proof :
GXGX _ GX Z X(a)e—QTriS(a'y)
a (mod §)
_ Z )Z(A) Z X(a)€—27ri5’(a()\—1)'y)
A (mod f) a (mod §)
Because

GX — Z X(a)BQWiS(aw)
a (mod)f
a be an integer in K coprime to f, then a\ runs over a complete set of prime
residue classes modulo § when A does so. Thus

Gy=x(@) Y x(emse)

A (mod )f
Thus
2 s {?V(f) i e
o (mod)f
From the equalities above, we have then

Gy = N(f).

From the last equality above, we obtain directly the second assertion of our

lemma: ‘
X(a) — G;l Z X(}\)627TZS()\C¥’}/)'
A (mod f)

8.2. Proof of the Interpolation Theorem 8.1: Computation of
Ly(s, x)

There are three key lemmas for our proof of the main result of this section.
First of all, the Hecke L-function associated to x is defined by

x(a)
L -
f(57 X) Z N(a)s
(a,f)=1
where the sum is over all integral of Ok coprime to f,

_ x(a)
Lf(57X) - gaEZA N(a)s’

where A runs over all the ideal classes in the wide sense and a over all the
non-zero integrals ideals in A, which are coprime to f.
In the class A~!, we can choose an integral ideal b4 coprime to f and

abs = (0)

where [ is an integer divisible by b4 and coprime to f. Conversely, any
principal ideal () divisible by by and coprime to f is of the form abg4,
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where a is an integral ideal in A coprime to f.
Moreover,

x(ba)x(a) = x((5)), and N(ba)N(a) = |N(5)[.
where N () is the norm of 3. Then

) ((B)
Li(s,x) = 3 x(ba)N(ba)* Y 20
A bal|(B) N(ﬂ)

Where the inner summation is over all principal ideal (/) divisible by b4
and coprime to §. Since A~! runs over all classes in the wide sense when A
does so, we may assume that b4 is an integral ideal in A coprime to f. Then

_ v(B)x(B)
:ZX(bA)N(bA)S Z TAN(RYs
A bal(B) N(IB)

Lemma 8.3. Any character x(B) of the ray class group modulo § may be
written in the form

~—

x((8)) = v(B)x(B)

where v(B) is a character “of signature” and x(B) is a character of the group
(Ok /)" . We may extend x(B) to all residue classes modulo by setting

x(8) =0 for B not coprime to f.
2mi(mu+nv)

Next step, we have to replace x(8) by an exponential of the form e ,
comes from lemma 8.2. Hence

Proposition 8.4. For any character x with conductor f,

1 U(B)e%ris’()\ﬁ’y)
Li(s, x) = . Z ZX (ba)N Z W
XX (modf) A bal(B)

In other hand

Ly(s,x) = . > D x(ba)N(ba) >

wKGX)x (mod f) A hA\B7£0

v (/8) e2miS(ABY)
N(B)®

where the summation is over all 8 # 0 in ba.

Note that A runs over all a full system of representatives of the prime
residue classes modulo f and by over a complete set of representatives in-
tegral and coprime to f of the classes in the wide sense, then (A\)by covers
exactly =/ times, a complete system of representatives of the ray classes

modulo f Then

Lo ‘ o(B)e*m S
Li(s,x) = —— bA)N(b —
i(5.X) waxgm AN (b.4) BEMZM NG

Where A runs over the ray classes modulo f and b4 is a fixed integral ideal
in A coprime to f.
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Lemma 8.5. Let {wi(A),ws(A)} be an integral basis of ba; we can assume,
without loss of generality that i;g’:; =74 = T4+ iya with ya > 0, yaq =

w1 (A)
Im (wi(A)) .
Then if € ba, 5 =mwi(A) + nwa(A) for rational m,n and
N(B) = N(w2(A))lm + n7al* = |wa(A)|?|m + n7al

Moreowver,
N(b4)y/|Dk| = |wi(A)@2(A) — wa(A)wr (A)|
N(ba)VIDx| = 2yalws(4)?
_ 2yalwa(A)P
N(ba) = N
Thus
. v(B)e2mis (3 <2yArw2<A>P>S o(w)e2miS )
Ve o ),
! 6@%#0 N(B) VIDk| weg{o} N(w)

Now for w = mw(A) + nwa(A), let us set

ug = S(wi(A)y),va = S(w2(A)7)
and let f be the smallest positive integer divisible by f. Then in view of the
fact that (7)®x has exact denominator f and b4 is coprime to f, it follows

that u4 and v4 are rational numbers with the reduced denominator f. Since
f# (1), ua and v4 are not simultaneously integral. We then have

Noa 3 UeemEe) (2yAw2<A>P>S D G
w€b 4,w#0 N(w) \/W weba\{0} \w|
We recall that
Ey , (w==mwi(A) + nwa(A), p = —vawi(A) + uawz(A)) = mus +nva
Finally, we obtain

Theorem 8.6. Let x be a Hecke character of conductor f.
Then we have

Li(s,x) =

2yA|w2(A ’
‘*’fG ~ VIDkl
v(w)e (EbA (W = mwi(A) +nwa(A),pa) >e27ri(muA+nvA)

wsw?’

D

weba\{0}
where

9

w4 = —vaw1(A) + ugwz(A)
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In particular, for

i)

We obtain
. 1 - 21 4|wa(A)|?

Zjvwwwmwwmwmmﬁwﬂ

merswsfm

web s \{0}
As consequence, we have

1 ) 2 alwa(A)2\
Li(s =m,x) = X(ba) | —F——=—| dom(pa,ba);¥m>1.
f wiGy EA: NP
i) If
w —m
vw)=|— ,m>=1
) (w)
We obtain

wf3

1 2 A)?
Li(s =m,x) = wfiGZX(bA) (meg()'> dm(pa,ba);Vm > 1.
X A

VIDk|

Theorem 8.7. (Damerell’s type result)
For each Hecke character x of conductor .

i) For

we have that

1$ algebraic
ii) For

mm=<;07ﬁm>L

Li(s =m, x)
(i () m

we have that

s algebraic.
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