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Abstract – The forecast of Space Weather events is becoming more and more important as the reliance on 

space-based systems is increased. Reliable and timely forecasts can allow mitigating actions to be taken in 

order to reduce disruptive or harmful consequences of space weather disturbances. The objective of the 

Space Weather impact on Arctic Navigation (SWAN) project is the development of forecasts for impacts 

of space weather disturbances on satellite navigation services in the Arctic region. The SWAN project is 

part of the efforts of the European Space Agency (ESA) to provide monitoring and forecasts of space 

weather effects in Europe. Two approaches have been considered for the development of operational 

forecasts; An empirical approach based on prior work by project partners, and a novel machine learning 

approach. This paper reports on the developments performed during the project, the results obtained from 

the validation of the developed approaches to forecasts, and the forecast service which is the main result 

of the project. 

Introduction 

There are several factors which influence the accuracy of a position estimated by a Global Navigation 

Satellite System (GNSS) device [1]. However, during strong ionospheric activity, the ionosphere is the 

dominant error source for GNSS signals. 

Ionospheric scintillation refers to the random amplitude and phase fluctuations observed in radio signals 

propagating through electron density irregularities in the ionospheric plasma and most commonly occurs 

in equatorial, auroral, and polar regions [2], [3]. The scintillations are caused by the presence of a wide 

range of scale size irregularities in the ionosphere. The irregularities causing scintillation may be 

considered as an irregular, spatial distribution that is drifting but also evolving in time. The amplitude 

scintillations come from irregularities having a scale size of the first Fresnel zone, which depends on the 

signal wavelength and average height of the irregularity layer [4], [5]. For GPS, this scale is about 370-

400 m. Large-scale plasma density structures in the ionosphere with scale sizes greater than the first 

Fresnel zone do not cause significant amplitude scintillation but may still cause fluctuations in the signal 

phase [5]. Under such conditions, refraction effects must be taken into account and the phase fluctuations 

are due to the optical path changes of a radio wave [6]. The low-frequency GPS phase fluctuations may be 

directly due to electron density changes along the radio ray path. 

The occurrence of scintillation at high latitudes is related to the auroral oval, cusp, and polar-cap patches, 

through the formation of small-scale plasma structures [7]–[17]. It has been observed that phase 

scintillation occurs more often than amplitude scintillation at high latitudes, and that scintillation is more 

common on geomagnetically disturbed days in the auroral oval region and close to noon and midnight 

[12], [13], [16]–[19]. Phase scintillations at high latitudes are associated with particle precipitation and 

plasma patches [20]–[23] and the scale of the processes (i.e. the spatial extent of the region of 

irregularities) can be substantially enlarged during geomagnetic storms and substorms [24], [25]. 



Calculating disturbance indices from GNSS measurements is a proven method for the detection and near 

real-time monitoring of the occurrence and dynamics of ionospheric irregularities. High-rate (sampling 

rates of 50 Hz or more) GNSS receivers can be used to calculate the variations of the signal phase and 

amplitude, quantifying them by the phase and amplitude scintillation indices (𝜎𝜑 and 𝑆4 [26]. The Rate Of 

Total electron content Index (ROTI) is another measure of disturbances in the phase measurements and 

can be calculated based on lower-rate data. Thus it can be based on data from normal geodetic GNSS 

receiver networks, of which there exists substantial data archives. ROTI has been shown to be a useful 

tool for characterizing the ionospheric disturbance level of GNSS measurements [27]–[31]. 

Tracking errors imposed in the presence of ionospheric scintillation can exceed receiver thresholds and 

result in signal loss of lock. Loss of satellite signals will degrade the positioning solution. In severe cases, 

the receiver may be unable to maintain lock on at least four GNSS satellites and a temporary loss of 

positioning capabilities can occur. The duration and frequency of such outages depend on the duration and 

severity of the disturbances, the geometry of the satellites in view and the signal reacquisition time [32]. 

Even if the signal is not completely lost rapid phase variation may cause cycle slips, which are 

discontinuities in a receiver’s phase lock on a satellite’s signal. 

[33] quantified the global-scale impacts of ionospheric disturbances on GPS Precise Point Positioning 

(PPP) solutions during an extreme space weather event on the 17𝑡ℎ of March 2015 by taking advantage of 

more than 5,500 GNSS stations installed worldwide. The overall impact was more severe at high latitudes. 

Specifically, the results show that kinematic PPP solutions degraded following an intensified auroral 

particle precipitation during the storm’s main phase (06-23 UTC) when up to ∼ 70% of the high-latitude 

stations experienced degraded position solutions in the range of several meters at 16-18 UTC. Around 

magnetic noon and midnight, the storm-induced plasma irregularities caused notable PPP errors (> 10 m) 

at high latitudes. 

[34] demonstrated how the PPP 3D position error correlates with ROTI at high latitudes. The risk of 

having several satellites observing enhanced ROTI values simultaneously is greater at higher latitudes. 

Several receivers (FOLC, VEGS, TRO1, HAMC, LYRS, and NYA1) were analyzed and 3D position error 

up to 15 cm was observed. 

Occurrence of scintillation is difficult to predict and model due to the variability of its numerous 

influencing factors, which include solar activity, interplanetary magnetic field orientation, local electric 

field and conductivity, ionospheric convection processes, and wave interactions [35]. 

The ESA Space Weather Service Network (https://swe.ssa.esa.int/) provides several space weather 

monitoring services. Available types of data that may be relevant for GNSS users include TEC maps, 

ROTI maps, scintillation indices, and limited forecasted TEC maps. In addition, other data are available 

that could be used as an input for algorithms to estimate impacts on PNT/GNSS systems (Positioning, 

Navigation and Timing GNSS systems), broadly categorized as solar monitoring data, solar wind 

monitoring data, geomagnetic conditions monitoring data and solar flare forecasts (in the form of current 

probability of occurrence). 

Examples of other space weather services providing global and/or local monitoring are the US Space 

Weather Prediction Center (SWPC) (https://www.swpc.noaa.gov/) , Norwegian Centre for Space Weather 

(NOSWE) (https://site.uit.no/spaceweather/) , Space Weather Canada (https://spaceweather.gc.ca/index-

en.php) , Russian space weather services (http://ipg.geospace.ru/) , the UK Met Office Space Weather 

Operations Centre (MOSWOC) (https://www.metoffice.gov.uk/weather/specialist-forecasts/space-

weather) , International Space Environment Service (ISES) (http://www.spaceweather.org/). The types of 

ionospheric monitoring data are similar for many of these services, but as they are based on different 

measurement networks their coverage and resolution varies. 

https://swe.ssa.esa.int/
https://www.swpc.noaa.gov/
https://site.uit.no/spaceweather/
https://spaceweather.gc.ca/index-en.php
https://spaceweather.gc.ca/index-en.php
http://ipg.geospace.ru/
https://www.metoffice.gov.uk/weather/specialist-forecasts/space-weather
https://www.metoffice.gov.uk/weather/specialist-forecasts/space-weather
http://www.spaceweather.org/


In these operationally available services there is little focus on measures of impact on GNSS end users. 

Also, forecasts of ionospheric variations (𝜎𝜑, 𝑆4, 𝑅𝑂𝑇𝐼 or similar) are very limited. 

Consequently, the main objective of the SWAN project was to "... develop and demonstrate new 

techniques, which are expected to improve on the current state-of-the-art Space Weather forecasting 

techniques and products related to Space Weather effects for Positioning, Navigation and Timing (PNT) 

systems in the Arctic, with particular attention to the Greenland area.". To achieve this, two approaches 

have been investigated: 

• Empirical modelling of ROTI statistics, by modifying and extending the HAPEE model [31]. 

• Forecasting ROTI time series from solar wind inputs, through a machine learning algorithm. 

At the end of the project, the machine learning approach is still considered as not mature enough to be 

used for operational services. Therefore, a forecast service was established using the HAPEE model.  

Data sources 

This section describes the data sources and the steps taken to check and prepare the data before using it for 

algorithm development. 

Solar wind data 

High-resolution solar wind magnetic field, density and velocity data was extracted from NASA/GSFC’s 

OMNI data set through OMNIWeb [36]. 

We applied a 10-minute running window average to the solar wind data, in order to reduce the impact of 

rapid solar wind variations and data gaps. Then we calculated the coupling function 
𝑑𝛷𝑀𝑃

𝑑𝑡
 as described in 

[37]. The value of this coupling function will be used as the input to the forecast algorithms, as a proxy 

index of space weather activity in the ionosphere at high latitudes. 



ROTI from GNSS receivers 

  

Figure 1: Maps showing the location of the GNSS receivers used in this work, on Greenland (GNET) and 

in Norway (NMA). The red lines show the geomagnetic latitude. 

Figure 1 shows the locations of the GNSS receivers used to provide ROTI data for the project, which are 

subsets of the Norwegian Mapping Authority (NMA) network and the Greenland GNSS Network 

(GNET). The receivers are geodetic quality, multi-frequency, and sampling observations at 1 Hz. The 

ROTI data from NMA used in the framework of this project corresponds to the period [2007-2019], 

covering the 24𝑡ℎ solar cycle. The ROTI data from GNET used in the framework of this project 

corresponds to the period [2010-2020], covering most of the 24𝑡ℎ solar cycle. 

After quality checks, including clock jump and cycle slip detection, ROTI has been calculated every 5 

minutes for each observed satellite. To detect cycle slips, the change of the Melbourne-Wübbena linear 

combination [38], [39] from the previous to the current timestep is compared to a threshold. If the 

threshold is exceeded, it is considered as a cycle slip. A description of this cycle slip detection method can 

be found in [40]. 

The elevation angle of a ROTI data record is defined as the average elevation angle of the satellite during 

the time period used for the ROTI calculation. Only measurements with elevation above 30𝑜 have been 

kept for the model derivation, as the data from satellites at low elevation is often contaminated with e.g. 

multipath effects or other disturbances from vegetation and structures on the ground. The remaining ROTI 

data have been corrected for other elevation-dependent effects based on the theoretical behavior proposed 

by [41], assuming an isotropic ionosphere. 



 

Figure 2: Example of skyplot of mean ROTI, used to identify multipath or other persistent disruptions. On 

the left is “dmhn” station in 2014. On the right is “sisi” station in 2015, which has signs of bad data. 

The data quality has been carefully checked by analyzing the skyplots of each station per year. Examples 

of skyplots for the GNET stations “dmhn” and “sisi” for the years 2014 and 2015, respectively, are shown 

in Figure 2. Using such an analysis, persistent unwanted disturbances that are not related to space weather 

(e.g. multipath) can be removed from the data. In the skyplot graphs, the mean value of ROTI is plotted as 

a function of azimuth and elevation angles. The skyplots illustrate the need to exclude low elevation data. 

This filtering allows removing the multipath visible at low elevations for station “dmhn”. However, other 

errors can be observed for station “sisi”, tracing large arcs related to some satellite paths. This type of 

disturbance, which is likely caused by measurement or processing errors in the receiver, can be difficult to 

remove when it is too dominant. For those cases we have removed the entire year of data. This analysis 

and filtering has been applied to the whole database to generate the final database that will be used in the 

continuation of the project. 

Another check of ROTI data has been performed analyzing the CDF (Cumulative Distribution Function) 

of the ROTI index for each station, per year. We expect higher levels of ROTI for years close to the 

maximum of the solar cycle (2013-2015) and lower values close to the minimum (2008-2009 or 2019-

2020). Also, the CDF should be smooth (i.e. without any significant jumps or breaks in the graph). These 

points have been taken into account and years with too high level of noise or unphysical breaks in the 

graph have not been included in the final database. 

The final ROTI database contained more than 95 million ROTI data records. 

Empirical forecasts - HAPEE extension and validation 

HAPEE extension 

The High lAtitude disturbances Positioning Error Estimator (HAPEE) model is described in [31]. It is an 

empirical, statistical model that can forecast the probability distribution of ROTI for the near future, using 

solar wind measurements as its real-time input. The original HAPEE model described in the paper is based 

on data from GNSS receivers in Norway and provides a forecast for the coming hour. It is parameterized 

by the magnetic latitude, magnetic longitude, and the value of the Newell coupling function 
𝑑𝛷𝑀𝑃

𝑑𝑡
 ([37]). 

An optional extension of the algorithm transforms the output from ROTI distributions to distributions of 

PPP positioning error, using an empirical model. 

In the frame of the SWAN project, the HAPEE model was modified/extended in two ways. As a 3-hour 

forecast was requested, all statistical regression had to be re-run with a different configuration. Also, the 



database used to build the model was extended by the addition of data from the GNET network in 

Greenland. A new realization of the HAPEE model was regressed as described in [31], using the extended 

dataset and providing parameters for 3-hour forecasts. 

Validation of ROTI forecasts 

For the validation of the HAPEE model a statistical approach has been used. The ROTI datasets consist of 

the data measured by NMA and GNET networks measured during period [2007-2019]. 

During the regressions of the HAPEE model, 80% of the whole database of ROTI data has been 

considered for the regression, while 20% of the database was kept for the validation. 

3 different thresholds of ROTI index (𝑇𝑅𝑂𝑇𝐼) have been defined for low (0.75 TECU/min), moderate (1.5 

TECU/min) and high (3.0 TECU/min) levels of ionosphere disturbance. The probability of exceeding 

these thresholds, 𝑃(𝑅𝑂𝑇𝐼 > 𝑇𝑅𝑂𝑇𝐼), has been investigated by comparing forecasts from the HAPEE 

model with the actual observations in the validation dataset. 

 

Figure 3: Comparison of forecasted (abscissa axis, HAPEE model) and measured (ordinate axis, 

validation dataset) probability to exceed the low (left), moderate (middle) and high (right) thresholds. 

The problem is binned into different intervals of solar wind conditions (i.e. coupling function), MLT time 

and Magnetic latitudes. 41 intervals in MLAT have been defined (from 50 to 90𝑜 of magnetic latitudes, 

sampled per degree, and an initial bin [0,50] for potential low latitude data), 12 intervals of coupling 

function levels (from 0 to 19000 Wb/s and a last bin for all upper solar wind conditions), and 48 MLT 

time intervals from 0 to 24 hours. In each interval combination, 𝑃(𝑅𝑂𝑇𝐼 > 𝑇𝑅𝑂𝑇𝐼) has been compared 

between validation dataset and HAPEE model. This way HAPEE model is tested for all levels of coupling 

function (i.e. solar wind condition), all possible MLT time and Magnetic latitudes. 

The results of correspondence between modeled and measured 𝑃(𝑅𝑂𝑇𝐼 > 𝑇𝑅𝑂𝑇𝐼) are presented in Figure 

3. In those plots, the percentages computed by HAPEE model and obtained from the data have been 

binned every percent. The colors represent the number of points in each 1 x 1 % bin. This representation 

shows the spread between modeled and observed percentages. An ideal model would provide a perfect 

straight line from the origin to the point 100% in abscissa and ordinate. The model results closely follow 

the actual observations, with the forecasted occurrence rates generally staying within 10 percentage points 

of the actual occurrence. 

One can observe a decay in the percentage correspondence whereas the ROTI threshold is increasing. This 

phenomenon is due to the lower percentages of occurence to exceed higher values of threshold. The 

number of points is also lower, as the high levels of scintillation become rarer. 



Machine Learning forecasts 

Adapting Machine Learning to the problem 

In parallel to the statistical approach, based on classification and regressions, Machine Learning 

techniques have been investigated. Machine learning is normally defined as the group of algorithms 

trained using an example database in order to find rules, which in time allow them to perform the same 

task for new data. Three types of machine learning tasks can be classified based on the feedback signal 

used: supervised learning, unsupervised learning and reinforcement learning. In the case of supervised 

learning, a database including examples of inputs and the corresponding desired output is presented to the 

machine learning model with the objective to learn the mapping between the inputs and the outputs. On 

the contrary, when unsupervised learning is performed the inputs given to the model are not labelled and 

its task is to find hidden patterns or structures in the data. Another type of machine learning approach is 

called reinforcement learning, in which the main idea is to maximize a reward in a particular situation by 

interacting with the environment to solve a problem in a game-like way. 

Recurrent Neural Networks (RNN) are a class of artificial neural networks that has applications in all 

three types of machine learning tasks. RNN are specifically designed to process data for which the 

temporal behavior is important. In fact, they create a memory of the system by processing each element of 

the sequence and conserving information regarding what it has encountered up to that time epoch. [42] 

used RNN to forecast the Dst index. In this project we implemented a variant of the RNN, called Long 

Short Term Memory (LSTM) [43], in order to forecast ground-based ROTI from solar wind parameters at 

L1 through the Newell coupling function [37]. The LSTM is designed to be able to retain past information 

for many time steps and has previously been successfully applied in the field of space weather (See e.g. 

[44] , [45],[46]). [47] implemented a LSTM NN to predict the am index. By improving the internal 

structure of basic RNN, the LSTM avoids the gradient issue that can occur with RNN and has the ability 

to retain long term memory for significant information. Important properties of LSTM NN are: 

• It captures the long-term dependencies. 

• It models the time series temporal structure. 

• It allows variable length inputs and/or outputs. 

• It can address multivariate problems and multi-step prediction. 

In addition to the processing of the ROTI, for each epoch at each receiver a super observation is created 

by taking the median of ROTI from the observed satellites as it has been done previously in [48]. Gaps in 

the solar wind coupling function time series have been filled by Nearest-neighbor interpolation, as it is 

important for the machine learning algorithm to have continuous time series. As the ROTI data have a 5-

minute time resolution, the solar wind coupling function data is resampled to 5-minutes in order to have a 

matching timeline for all data. The dataset is then split into three parts: 

• 60% of the total dataset is used to train the LSTM NN, this is the "Train" dataset. 

• 20% of the total dataset is used to evaluate the loss function of the LSTM NN during the training 

phase, this is the "Validation" dataset. 

• 20% of the total dataset is used to test the LSTM NN, this is the "Test" dataset. 

The first step for building the machine learning forecaster is to provide local time series of ROTI in an 

appropriate magnetic latitude interval that is more likely to contain the auroral oval at different magnetic 

local times. In order to select this relevant interval, we analyzed the geographical distribution of ROTI 



with respect to the magnetic local time. Based on our data, the interval of 70𝑜 to 85𝑜 MLAT is the most 

frequently disturbed and so it is chosen. 

The length of the history of the input features has been set to twelve samples, corresponding to one hour 

of data with a time step of five minutes. The predicted value is set at twelve steps ahead, as it has been 

done previously by [48]. In summary, this model predicts the value of the ionospheric scintillation index 

one-hour in advance based on the values of the solar wind coupling function at Earth’s bow shock nose 

during the past hour and the MLT position of the IPP. 

The LSTM NN was implemented using the Python libraries "Tensorflow", "Keras", "Pandas" and "Scikit-

learn". To obtain the architecture of the LSTM NN model used in this study, several sets of 

hyperparameters have been tried. Thus the number of LSTM NN layer used to extract representative 

feature from historical input data is 512. Those layers are then connected to a 3 fully connected layers with 

128, 32 and 1 nodes respectively. The batch size used during the training step is 288. The LSTM NN 

layers are combined with Dropout sequence to prevent overfitting. A patience of 100 epochs has been 

added to further reduce the overfitting, while the maximum number of training epochs is 1000. The loss 

function corresponds to the mean square error. 

Validation of Machine Learning forecasts 

 

Figure 4: Observed ROTI vs predicted ROTI from the LSTM NN model 

Figure 4 shows a comparison of the observed ROTI the with 1-hour predicted ROTI from the LSTM NN 

model. Note that the figure shows only a part of the validation dataset, and thus must be considered as an 

example. The LSTM NN forecasting correctly reacts to the disturbed periods, generating forecasted ROTI 

values larger during these periods. The main difference is that the LSTM NN forecasts time series present 

lower values than the amplitudes of the measured peaks. 

To illustrate this in another way, we compute the standard skill scores using the entire Test dataset. A 

confusion matrix has been used to evaluate the quality of the prediction system. To classify the ROTI 

measurements, 8 intervals containing the same number of measurements have been defined. The limits 

corresponding to these intervals are [0, 0.424, 0.454, 0.49, 0.539, 0.612, 0.735, 0.988, +inf], in units of 

TECU/minute. Figure 4 shows these ROTI thresholds, represented as dashed horizontal lines. The last of 

the bins ([0.988, +inf]) is the most important for predicting events. From the confusion matrix, the 

different skill scores used are the Probability of Detection (POD) which shows what fraction of “true” 

events is correctly predicted, the False Alarm Rate (FAR) which shows the fraction of the predicted event 



that actually did not occur, and the True Skill Score (TSS) which accounts for random chance. Other skill 

scores used are the Accuracy (ACC) and the Root-Mean-Square Error (RMSE). 

Table 1 shows the skill scores when considering the condition ROTI > 0.988 TECU/minute (i.e. the 

detection of disturbed ionosphere). A perfect model would have POD = 1 and FAR = 0. As can be seen in 

the table, the current ML model has a substantial number of failed detections and false positives when 

tested in this way. While the model has some prediction skill, it needs to be improved before it can be 

considered for operational use. For this reason the forecast service has been based on the empirical 

statistical approach. 

POD FAR ACC TSS RMSE 

0.19 0.61 0.86 0.15 0.38 

Table 1: ML model prediction skill scores, considering the condition ROTI > 0.988. 

Forecast service 

A major objective of the project was to demonstrate usage of the forecast method by establishing a 

prototype of a forecast service. The service was built on the forecasts supplied by the extended HAPEE 

algorithm, using archive data to provide forecasts for previous times (hindcasts), but also designed in a 

way that allows integration of real-time data feeds in the future. 

 

Figure 5: Overview of service components and data flow 

Figure 5 shows an overview of the components of the service and the data flows. Solar wind data and 

GNSS almanacs are the dynamic inputs to the processing, while the model parameters are static sets of 

coefficients. The AACGM coefficients are a part of the AACGM library [49]. The HAPEE model 

coefficients define a realization of the HAPEE model. The HAPEE model analysis modules reads the 

various input data, perform the calculations to provide forecasts, and transmits the output to the database 

of the forecast service. The model is forecasting the percentage of occurence to exceed a given threshold 

of ROTI during the following three hours. Note that it also proposes the percentage of occurence to 

exceed a given PPP error, applying the approach described in [31]. The service modules comprise a 

database which holds the forecasts, data transformation code to transform the output into a format suitable 

for visualization, APIs for both internal and external data access, and a webpage. External users can 

connect to the human interface (webpage), or directly to data APIs (intended for machine-to-machine 

communication). For a future real-time service, real-time solar wind measurements and almanac data 

would be processed on a periodic basis. The processing time for a single set of data is less than one 



minute. We note that solar wind data is available in near-real-time from the NOAA SWPC data service 

(currently available at https://services.swpc.noaa.gov/products/solar-wind/). 

The Prediction Engine module uses the input modules to acquire input data, and to perform some 

calculations (notably, calculating geographic IPP coordinates). For the calculation of geomagnetic 

coordinates, it uses the AACGM library. The Prediction Engine module will, given a date&time and solar 

wind parameters, calculate maps of forecasted probabilities to exceed thresholds as follows: 

• From Solar Wind Data, calculate coupling function value [37] 

• For each grid point of the map: 

– Calculate geomagnetic coordinates for IPPs seen from that grid point 

– Retrieve HAPEE model parameters for the current coupling function and set of geomagnetic 

coordinates 

– For each defined threshold, calculate the probability to exceed it 

• Package results and send it to the output module 

The dataflow and major processing steps of the Prediction Engine are shown in Figure 6. 

 

Figure 6: Overview of major processing steps inside the Prediction Engine 

The output module transmits data in NetCDF format (See https://www.unidata.ucar.edu/software/netcdf/) 

via http to an API endpoint that ingests the data into a PostgreSQL database (See 

https://www.postgresql.org/). Note that this is purely an internal data flow (not exposed externally to 

users). 

In order to best represent the data structure, we can consider it from the point of view of the database. 

Figure 7 describes three tables, related by foreign key relationships where the data array is stored in the 

"rast" column in the "coverage" table. Each "coverage" represents one forecast map. In short, one 

metadata entry, which contains the timestamp, can be related to many coverages, which in turn can be one 

of many use-cases. This allows us to keep track of the use-cases and uniquely identify the correct 

https://services.swpc.noaa.gov/products/solar-wind/
https://www.unidata.ucar.edu/software/netcdf/
https://www.postgresql.org/


coverage (data array) for a given timestamp, use-case and layer (threshold type). Note that the external 

users do not directly access the database. 

 

Figure 7: Database Entity Relationship diagram of the normalized data model 

The external users can request data via an API. An example of an API call is: 

https://swan.kartverket.no/api/collections/PPP01/area?parameter_name=pR

OTI&datetime=2015-01-01T00 

In the URL for the API call we have specified the use case (for example "PPP01" for Precise Point 

Positioning user type), the parameter "pROTI" (corresponding to the ROTI probability to exceed 1 

TECu/mn) and the time "2015-01-01T00". The API returns the forecast map data to the user in the 

"CoverageJSON" format (See https://covjson.org). The data access APIs are used to provide content to the 

service webpage. 

 

Figure 8: Screenshot of the SWAN service 

Figure 8 is a screenshot of the prototype forecast service webpage. The user selects the use case ("PPP01") 

and threshold type ("pROTI") in the dropdown boxes, and the date and time, and a forecast map is 

displayed to the left. The map is dynamic, supporting panning and zooming. At the top right are links to 

information pages about the service itself, the machine learning study, and the APIs for direct data access. 

https://covjson.org/


  

 

Figure 9: Forecast of chance to exceed ROTI threshold (top left), issued at 2015-03-17 13:00 UTC, and 

ground ROTI maps for Fennoscandia at three points in time during the forecasted time period. 

 

 

Figure 10: Forecast of chance to exceed ROTI threshold (top left), issued at 2015-03-17 22:30 UTC, and 

ground ROTI maps for Fennoscandia at three points in time during the forecasted time period. 



Figure 9 and Figure 10 show examples of forecast maps and actual observation maps, during a space 

weather event in 2015 known as the "St. Patrick’s day storm" [28], [50]–[52]. The forecasting provided by 

the service are represented in the top left panel, with probability of occurence to exceed 1 TECu/mn 

represented in colorscale. The NMA network ROTI measurements are represented by the mean ROTI 

value at IPP position, and are reported in the other panels for different time corresponding to the interval 

of the forecasting. The position of the auroral oval appears to be well reproduced by the forecasting. 

Summary and Road ahead 

The SWAN project has successfully implemented a statistical method (HAPEE) for predicting the 

occurrence of GNSS disturbances in the polar region. Furthermore, an alternative method using a more 

sophisticated machine learning (ML) model has been investigated. 

The ROTI database was extended by the addition of data from the GNET GNSS receiver network in 

Greenland (i.e. 13 stations, measuring during the period [2010-2020]. The output of the HAPEE model is 

probability distributions of ROTI or PPP position error, which can be combined with a threshold to 

quantify the risk of exceeding that threshold within a period of time. A realization of the HAPEE model 

for a 3-hour forecast was generated, and a prototype of an operational service based on this approach was 

created. The service provides forecasts both via a machine-to-machine API, and as a graphical view on a 

webpage. The provided forecasts were validated, with very good results for the ROTI forecasts. 

In parallel to the HAPEE statistical model, a machine learning approach using a LSTM NN was 

investigated. This method is complementary to the statistical one, providing one-hour forecasted time 

series of ROTI index, valid for a limited area of MLAT. The results are very promising regarding the 

timing of the disturbed periods, but are struggling to correctly predict the amplitudes of the disturbances. 

Further work on this topic is expected to improve the performance. 

Future work on the HAPEE-based service 

The prototype service is a candidate for inclusion into the ESA Space Weather service network. The 

model and service are capable of real-time operation, by providing a reliable real-time data flow of solar 

wind and almanac data and setting up a continuously operating processing server. 

Currently, it provides ROTI index forecasts for several use cases but position error forecasts only for the 

PPP use case. To define position error forecasts for other use cases requires studies to characterize their 

response to the ionospheric disturbance. More work is needed on validation of position error forecasts. 

The spatial coverage of the service may be further extended to fully cover the northern polar cap, and 

potentially to also cover the southern hemisphere auroral region if sufficient data from that region can be 

acquired. However, due to the way the model is built it is not suitable for modeling equatorial 

disturbances. 

Future work on machine learning 

The Machine Learning approach is promising and its performances have been quantified. The model 

paves the way for a new kind of operational service based on data driven methods. Even with a simple 

approach linking solar wind data, magnetic local time and the ROTI, the LSTM NN should be able to 

blindly learn a coarse regular pattern, which is the strength of this approach. One of the main 

improvements that can be imagined is to consider additional data sources as inputs for the model to extend 

the environment description. 



Additional data sources for future work 

The current SWAN system provides a statistical link between the solar wind at L1 and the ROTI (rate of 

TEC index) or position error experienced by a GNSS receiver on the ground. However, in the future it 

may be beneficial to include additional ground- and space-based measurements which can improve the 

forecasts by providing information about intermediate parts of the physical system (i.e. physical processes 

taking place after the L1 solar wind measurements but before the ground based ROTI measurements). In 

particular, space-based GNSS measurements can provide information on the state of small scale 

irregularities in the ionosphere. Furthermore, space-based magnetometers can provide information on the 

large scale features of the high latitude ionosphere (i.e. the position of the auroral zone) that have a direct 

impact on the likelihood of scintillation occurring. 

Space-based measurements of the high latitude ionosphere can be provided by low cost LEO satellites in 

sun-synchronous near polar orbits. One way to use these platforms is to deploy GNSS receivers that can 

be used to sense the ionosphere in a variety of geometries (Figure 11): 

• Towards zenith, usually making use of a receiver designed for precise orbit determination (GNSS-

POD). The measurements are generally made with 1 Hz sampling and at positive elevation angles 

(i.e., >30°), effectively sensing only the topside region of the ionosphere above the satellite’s orbit 

[53], [54]. 

• In a radio occultation (GNSS-RO) geometry (i.e. pseudo horizontally). As the LEO satellite moves 

in its orbit, the GNSS satellites are seen to rise above or set below the horizon. Thus, the GNSS 

signals traverse the atmosphere at a range of heights and the direction of the line integral of the 

electron density (i.e., the sTEC) has mainly an horizontal component. The high rate (50Hz) data can 

be used to detect and characterise phase and amplitude scintillation [55]. 

•  

• Figure 11: GNSS-RO and GNSS-POD observation geometries. Fs is the measurement sampling 

frequency; T is the measurement duration; SLTP is the straight line tangent point. 

Space based magnetometers in LEO can also be used to help determine the location of the Auroral 

boundaries through the effects of field aligned currents [56]. 

Given such diverse measurement regions and types, and the naturally irregular sampling that comes from 

LEO space-based measurements, it is likely that a combined data assimilation (DA) and machine learning 

(ML) approach will be required. One possible, multi-step approach might be to 

• predict the Auroral boundary using L1 data (ML) 



• Update the boundaries using data (DA) 

• Update an irregularity model using data (DA) 

• Produce a short term forecast of scintillation (ML) 

The use of an ionospheric irregularity model (i.e. using height-integrated strength of irregularities, 𝐶𝑘𝐿) 

[57] rather than a ROTI model allows data at different frequencies, with different geometries, and with 

different sampling rates to be used self-consistently. 

Acknowledgements 

This work was funded by the ESA project "Forecasting Space Weather Impacts on Navigation Systems in 

the Arctic (Greenland Area)" (Ref. ESA AO/1-9961/20/NL/AS). 

We acknowledge use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service 

(https://omniweb.gsfc.nasa.gov/), and OMNI data. 

The original HAPEE model was developed in a cooperation between NMA, ONERA, CNES (Centre 

National d’Études Spatiales) and NOSA (Norwegian Space Agency). 

For GNSS data from Norway, contact NMA. NMAs website is https://kartverket.no/en. 

For GNSS data from Greenland, contact DTU Space. See the GNET website http://go-gnet.org/ for 

information. 

References 
[1] C. Jeffrey, An introduction to gnss: GPS, glonass, galileo and other global navigation satellite 

systems. NovAtel, 2010. 

[2] J. Aarons, “Global morphology of ionospheric scintillations,” Proceedings of the IEEE, vol. 70, no. 4, 

pp. 360–378, 1982. 

[3] J. Aarons and S. Basu, “Ionospheric amplitude and phase fluctuations at the gps frequencies,” in 

Proceedings of the 7th international technical meeting of the satellite division of the institute of navigation 

(ion gps 1994), 1994, pp. 1569–1578. 

[4] I. I. Shagimuratov, A. Krankowski, I. Ephishov, Y. Cherniak, P. Wielgosz, and I. Zakharenkova, 

“High latitude tec fluctuations and irregularity oval during geomagnetic storms,” Earth Planet Sp, vol. 64, 

pp. 521–529, 2012. 

[5] K. C. Yeh and C.-H. Liu, “Radio wave scintillations in the ionosphere,” Proceedings of the IEEE, vol. 

70, no. 4, p. 324, 1982. 

[6] X. Pi, A. J. Mannucci, U. J. Lindqwister, and C. M. Ho, “Monitoring of global ionospheric 

irregularities using the worldwide gps network,” Geophysical Research Letters, vol. 24, no. 18, pp. 2283–

2286, 1997. 

[7] J. Aarons, “Global positioning system phase fluctuations at auroral latitudes,” Journal of Geophysical 

Research: Space Physics, vol. 102, no. A8, pp. 17219–17231, 1997. 

https://omniweb.gsfc.nasa.gov/
https://kartverket.no/en
http://go-gnet.org/


[8] L. Kersley, C. D. Russell, and D. L. Rice, “Phase scintillation and irregularities in the northern polar 

ionosphere,” Radio Science, vol. 30, no. 3, pp. 619–629, 1995. 

[9] A. Krankowski, I. Shagimuratov, L. Baran, I. Ephishov, and N. Tepenitzyna, “The occurrence of polar 

cap patches in TEC fluctuations detected using GPS measurements in southern hemisphere,” Advances in 

Space Research, vol. 38, no. 11, pp. 2601–2609, 2006. 

[10] E. J. Weber, J. A. Klobuchar, J. Buchau, H. C. Carlson, R. C. Livingston, O. de la Beaujardiere, M. 

McCready, J. G. Moore, and G. J. Bishop, “Polar cap f layer patches: Structure and dynamics,” Journal of 

Geophysical Research: Space Physics, vol. 91, no. A11, pp. 12121–12129, 1986. 

[11] S. Skone, M. Feng, R. Tiwari, and A. Coster, “"Characterizing ionospheric irregularities for auroral 

scintillations",” in Proceedings of the 22nd international technical meeting of the satellite division of the 

institute of navigation (ion gnss 2009), 2009, pp. 2551–2558. 

[12] R. Tiwari, F. Ghafoori, O. Al-Fanek, O. Haddad, and S. Skone, “"Investigation of high latitude 

ionospheric scintillations observed in the canadian region",” in Proceedings of the 23rd international 

technical meeting of the satellite division of the institute of navigation (ion gnss 2010), 2010, pp. 349–360. 

[13] M. Aquino, F. S. Rodrigues, J. Souter, T. Moore, A. Dodson, and S. Waugh, “Ionospheric 

scintillation and impact on gnss users in northern europe: Results of a 3 year study,” Space 

Communications, vol. 20, nos. 1-2, pp. 17–29, Jan. 2005. 

[14] Ö. Kivanc and R. A. Heelis, “Structures in ionospheric number density and velocity associated with 

polar cap ionization patches,” Journal of Geophysical Research: Space Physics, vol. 102, no. A1, pp. 

307–318, 1997. 

[15] R. Burston, I. Astin, C. Mitchell, L. Alfonsi, T. Pedersen, and S. Skone, “Turbulent times in the 

northern polar ionosphere?” Journal of Geophysical Research: Space Physics, vol. 115, no. A4, 2010. 

[16] L. Spogli, L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino, and A. Dodson, “Climatology 

of gps ionospheric scintillations over high and mid-latitude european regions,” Annales Geophysicae, vol. 

27, no. 9, pp. 3429–3437, 2009. 

[17] P. Prikryl, R. Ghoddousi-Fard, B. S. R. Kunduri, E. G. Thomas, A. J. Coster, P. T. Jayachandran, E. 

Spanswick, and D. W. Danskin, “GPS phase scintillation and proxy index at high latitudes during a 

moderate geomagnetic storm,” Annales Geophysicae, vol. 31, no. 5, pp. 805–816, 2013. 

[18] Moen, Jøran, Oksavik, Kjellmar, Alfonsi, Lucilla, Daabakk, Yvonne, Romano, Vineenzo, and Spogli, 

Luca, “Space weather challenges of the polar cap ionosphere,” Journal of Space Weather and Space 

Climate, vol. 3, p. A02, 2013. 

[19] P. Prikryl, P. T. Jayachandran, S. C. Mushini, D. Pokhotelov, J. W. MacDougall, E. Donovan, E. 

Spanswick, and J.-P. St.-Maurice, “GPS tec, scintillation and cycle slips observed at high latitudes during 

solar minimum,” Annales Geophysicae, vol. 28, no. 6, pp. 1307–1316, 2010. 

[20] Jin, Yaqi, Moen, Jøran I., Oksavik, Kjellmar, Spicher, Andres, Clausen, Lasse B.N., and Miloch, 

Wojciech J., “GPS scintillations associated with cusp dynamics and polar cap patches,” J. Space Weather 

Space Clim., vol. 7, p. A23, 2017. 

[21] Y. Jin, J. I. Moen, and W. J. Miloch, “GPS scintillation effects associated with polar cap patches and 

substorm auroral activity: Direct comparison,” J. Space Weather Space Clim., vol. 4, p. A23, 2014. 



[22] C. van der Meeren, K. Oksavik, D. A. Lorentzen, M. T. Rietveld, and L. B. N. Clausen, “Severe and 

localized gnss scintillation at the poleward edge of the nightside auroral oval during intense substorm 

aurora,” Journal of Geophysical Research: Space Physics, vol. 120, no. 12, pp. 10, 607–10, 621, 2015. 

[23] L. B. N. Clausen, J. I. Moen, K. Hosokawa, and J. M. Holmes, “GPS scintillations in the high 

latitudes during periods of dayside and nightside reconnection,” Journal of Geophysical Research: Space 

Physics, vol. 121, no. 4, pp. 3293–3309, 2016. 

[24] A. Krankowski, I. Shagimuratov, L. Baran, and I. Ephishov, “Study of tec fluctuations in antarctic 

ionosphere during storm using gps observations,” Acta Geophysica Polonica, vols. Vol. 53, nr 2, pp. 205–

218, 2005. 

[25] C. Watson, P. T. Jayachandran, E. Spanswick, E. F. Donovan, and D. W. Danskin, “GPS tec 

technique for observation of the evolution of substorm particle precipitation,” Journal of Geophysical 

Research: Space Physics, vol. 116, no. A10, 2011. 

[26] P. M. Kintner, B. M. Ledvina, and E. R. de Paula, “GPS and ionospheric scintillations,” Space 

Weather, vol. 5, no. 9, 2007. 

[27] I. Cherniak, I. Zakharenkova, and R. J. Redmon, “Dynamics of the high-latitude ionospheric 

irregularities during the 17 march 2015 st. Patrick’s day storm: Ground-based gps measurements,” Space 

Weather, vol. 13, no. 9, pp. 585–597, 2015. 

[28] K. S. Jacobsen and Y. L. Andalsvik, “Overview of the 2015 st. Patrick's day storm and its 

consequences for rtk and ppp positioning in norway,” J. Space Weather Space Clim., vol. 6, p. A9, 2016. 

[29] O. E. Abe, X. Otero Villamide, C. Paparini, R. H. Ngaya, S. M. Radicella, and B. Nava, “Signature of 

ionospheric irregularities under different geophysical conditions on sbas performance in the western 

african low-latitude region,” Ann. Geophys., vol. 35, pp. 1–9, 2017. 

[30] J. Berdermann, M. Kriegel, D. Banyś, F. Heymann, M. M. Hoque, V. Wilken, C. Borries, A. 

Heßelbarth, and N. Jakowski, “Ionospheric response to the x9.3 flare on 6 september 2017 and its 

implication for navigation services over europe,” Space Weather, vol. 16, no. 10, pp. 1604–1615, 2018. 

[31] V. Fabbro, K. S. Jacobsen, Y. L. Andalsvik, and S. Rougerie, “GNSS positioning error forecasting in 

the arctic: ROTI and precise point positioning error forecasting from solar wind measurements,” J. Space 

Weather Space Clim., vol. 11, p. 43, 2021. 

[32] M. Najmafshar, “Modeling high-latitude ionospheric scintillations for radio occultation gps receiver 

performance analysis.” PRISM, 2017. 

[33] Z. Yang, Y. T. J. Morton, I. Zakharenkova, I. Cherniak, S. Song, and W. Li, “Global view of 

ionospheric disturbance impacts on kinematic gps positioning solutions during the 2015 st. Patrick’s day 

storm,” Journal of Geophysical Research: Space Physics, vol. 125, no. 7, p. e2019JA027681, 2020. 

[34] K. S. Jacobsen and M. Dähnn, “Statistics of ionospheric disturbances and their correlation with gnss 

positioning errors at high latitudes,” J. Space Weather Space Clim., vol. 4, p. A27, 2014. 

[35] Y. Jiao and Y. T. Morton, “Comparison of the effect of high-latitude and equatorial ionospheric 

scintillation on gps signals during the maximum of solar cycle 24,” Radio Science, vol. 50, no. 9, pp. 886–

903, 2015. 



[36] J. H. King and N. E. Papitashvili, “Solar wind spatial scales in and comparisons of hourly wind and 

ace plasma and magnetic field data,” Journal of Geophysical Research: Space Physics, vol. 110, no. A2, 

2005. 

[37] P. T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich, “A nearly universal solar wind-

magnetosphere coupling function inferred from 10 magnetospheric state variables,” Journal of 

Geophysical Research: Space Physics, vol. 112, no. A1, 2007. 

[38] W. Melbourne, “The case for ranging in gps-based geodetic systems,” Proc. 1st int. symp. on precise 

positioning with GPS, pp. 373–386, 1985. 

[39] G. Wübbena, “Software developments for geodetic positioning with gps using ti 4100 code and 

carrier measurements,” Proceedings 1st International Symposium on Precise Positioning with the Global 

Positioning System, pp. 403–412, 1985. 

[40] Z. Liu, “A new automated cycle slip detection and repair method for a single dual-frequency gps 

receiver,” Journal of Geodesy, vol. 85, 2011. 

[41] C. S. Carrano, K. M. Groves, and C. L. Rino, “On the relationship between the rate of change of total 

electron content index (roti), irregularity strength (ckl), and the scintillation index (s4),” Journal of 

Geophysical Research: Space Physics, vol. 124, no. 3, pp. 2099–2112, 2019. 

[42] H. Lundstedt, H. Gleisner, and P. Wintoft, “Operational forecasts of the geomagnetic dst index,” 

Geophysical Research Letters, vol. 29, no. 24, pp. 34–1–34–4, 2002. 

[43] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, 

pp. 1735–1780, Nov. 1997. 

[44] Y. Tan, Q. Hu, Z. Wang, and Q. Zhong, “Geomagnetic index kp forecasting with lstm,” Space 

Weather, vol. 16, no. 4, pp. 406–416, 2018. 

[45] I. Srivani, G. Siva Vara Prasad, and D. Venkata Ratnam, “A deep learning-based approach to forecast 

ionospheric delays for gps signals,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 8, pp. 

1180–1184, 2019. 

[46] L. Liu, S. Zou, Y. Yao, and Z. Wang, “Forecasting global ionospheric tec using deep learning 

approach,” Space Weather, vol. 18, no. 11, p. e2020SW002501, 2020. 

[47] M. Gruet, “Intelligence artificielle et prévision de l’impact de l’activité solaire sur l’environnement 

magnétique terrestre,” Theses, UNIVERSITE DE TOULOUSE, 2018. 

[48] R. M. McGranaghan, A. J. Mannucci, B. Wilson, C. A. Mattmann, and R. Chadwick, “New 

capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine 

learning,” Space Weather, vol. 16, no. 11, pp. 1817–1846, 2018. 

[49] S. G. Shepherd, “Altitude-adjusted corrected geomagnetic coordinates: Definition and functional 

approximations,” Journal of Geophysical Research: Space Physics, vol. 119, no. 9, pp. 7501–7521, 2014. 

[50] P. Prikryl, R. Ghoddousi-Fard, J. M. Weygand, A. Viljanen, M. Connors, D. W. Danskin, P. T. 

Jayachandran, K. S. Jacobsen, Y. L. Andalsvik, E. G. Thomas, J. M. Ruohoniemi, T. Durgonics, K. 

Oksavik, Y. Zhang, E. Spanswick, M. Aquino, and V. Sreeja, “GPS phase scintillation at high latitudes 

during the geomagnetic storm of 17–18 march 2015,” Journal of Geophysical Research: Space Physics, 

vol. 121, no. 10, pp. 10, 448–10, 465, 2016. 



[51] Y. Jin and K. Oksavik, “GPS scintillations and losses of signal lock at high latitudes during the 2015 

st. Patrick’s day storm,” Journal of Geophysical Research: Space Physics, vol. 123, no. 9, pp. 7943–7957, 

2018. 

[52] I. Zakharenkova, I. Cherniak, and A. Krankowski, “Features of storm-induced ionospheric 

irregularities from ground-based and spaceborne gps observations during the 2015 st. Patrick’s day 

storm,” Journal of Geophysical Research: Space Physics, vol. 124, no. 12, pp. 10728–10748, 2019. 

[53] I. Zakharenkova, E. Astafyeva, and I. Cherniak, “GPS and in situ swarm observations of the 

equatorial plasma density irregularities in the topside ionosphere,” Earth, Planets and Space, vol. 68, 

2016. 

[54] I. Zakharenkova and E. Astafyeva, “Topside ionospheric irregularities as seen from multisatellite 

observations,” Journal of Geophysical Research: Space Physics, vol. 120, no. 1, pp. 807–824, 2015. 

[55] M. J. Angling, O. Nogués-Correig, V. Nguyen, S. Vetra-Carvalho, F.-X. Bocquet, K. Nordstrom, S. 

E. Melville, G. Savastano, S. Mohanty, and D. Masters, “Sensing the ionosphere with the spire radio 

occultation constellation,” J. Space Weather Space Clim., vol. 11, p. 56, 2021. 

[56] A. G. Burrell, G. Chisham, S. E. Milan, L. Kilcommons, Y.-J. Chen, E. G. Thomas, and B. Anderson, 

“AMPERE polar cap boundaries,” Annales Geophysicae, vol. 38, no. 2, pp. 481–490, 2020. 

[57] J. Secan and R. Bussey, “An improved model of high-latitude f-region scintillation (wbmod version 

13),” p. 93, Aug. 1994. 


