
HAL Id: hal-04462876
https://hal.science/hal-04462876v1

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Learning for Automated
Cyber-Attack Path Prediction in Communication

Networks
Franco Terranova, Abdelkader Lahmadi, Isabelle Chrisment

To cite this version:
Franco Terranova, Abdelkader Lahmadi, Isabelle Chrisment. Deep Reinforcement Learning for Au-
tomated Cyber-Attack Path Prediction in Communication Networks. Geilo Winter School 2024 -
Graphs and Applications, Jan 2024, Geilo, Norway. �hal-04462876�

https://hal.science/hal-04462876v1
https://hal.archives-ouvertes.fr


Deep Reinforcement Learning for Automated Cyber-Attack Path
Prediction in Communication Networks

Franco Terranova1, Abdelkader Lahmadi1, Isabelle Chrisment1

1Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Background & Motivation

Traditional methods of manual attack path discovery struggle to

scale with the dynamic nature of potential threats and

time-varying communication networks.

Deep Reinforcement Learning (RL) [1] can be leveraged to realize

an automated network security analysis.

The RL agent will aim to learn an effective attack policy to exploit

vulnerabilities and compromise the largest amount of nodes

within the network. The cyber-attack paths learned can be used

to assess and increase the situational awareness of the network

security.

This work aims to improve existing studies with a

topology-independent neural network (NN) structure and a

comprehensive evaluation of generalization, particularly across

various topology sizes [2, 3].

Figure 1. The agent receives a state or observation S(t), takes action A(t), receives reward R(t),
and transitions to a new state S(t + 1).

Methodology

Our contribution includes initial improvements to the existing attack

simulation approaches, providing:

An enhancement of the Partially Observable Markov Decision

Process (POMDP) discarding assumptions about prior knowledge

of the communication network structure.

Local nodes’ observation and action spaces: re-formulating the

NN’s input and output spaces focusing on pair of nodes, leading

to a topology-independent NN’s structure.

Figure 2. Representation of the POMDP with the distinction of owned, discovered, and not

discovered nodes. The observation vector at a given moment t will be the concatenation of the
feature vectors of the source and target nodes.

The observation space O includes the partially visible features for
the source and the target nodes of the attack.

The action space A includes:

– Local vulnerabilities

– Remote vulnerabilities

– Port connections

– Source node selection

– Target node selection

The reward function R will represent the control gained by the
agent as a consequence of the exploitation of a vulnerability.

R(o, a) =
∑

i∈owned

value(i) + Knode discover · nodes discovered +

Kcredential discover · credentials discovered + Ksuccess − costvulnerability

Simulation Environment

CyberBattleSim [4] has been used for generating the abstract net-

work environment scenario CyberBattleChain.

Start node as the entry point

Variable-size chain of alternating Linux and Windows host with

fixed vulnerabilities per OS

Terminate node with a goal flag

Figure 3. The representation of the CyberBattleChain simulation environment with the

Windows-Linux chain.

The experimental scenarios has been generated with the following

procedure:

200 different chains with a number of nodes in the range [100,

300] divided in training set (60%), validation set (20%), and test

set (20%) by size.

Deep Q-Network (DQN) [5], Proximal Policy Optimization (PPO)

[6], and Actor-Critic (A2C) [7] algorithms with default

hyper-parameters [8].

Multiple runs of 1,000,000 steps with episodes’ cut-off set to 2 *

optimal number of steps:

optimal steps’ number = (3 ∗ (chain size + 1)) (1)

Results

(a) Average reward on the validation set during

training.

(b) Owned nodes’ percentage on the validation

set during training.

(c) Success rate percentage of the actions

performed on the validation set.

Algorithm Average Owned Nodes (%)

Random Agent 0.02 ±0.01
A2C 0.75 ±0.02
PPO 0.78 ±0.07
DQN 1.00 ±0.00

(d) Average owned nodes’ percentage on the

test set.

Conclusions

Our experiments of the value-based, policy-based, and actor-critic

methods showed convergence results on a chain-based topology

environment being able to generalize among chain sizes.

The DQN method has converged to the optimal policy required

to solve the deterministic environment, also on reserved sets of

larger chains.

Future work will aim to explore new environments and leverage

Graph Neural Networks (GNNs) capabilities.
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