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Background & Motivation

Traditional methods of manual attack path discovery struggle to scale with the dynamic nature of potential threats and time-varying communication networks. Deep Reinforcement Learning (RL) [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] can be leveraged to realize an automated network security analysis. The RL agent will aim to learn an effective attack policy to exploit vulnerabilities and compromise the largest amount of nodes within the network. The cyber-attack paths learned can be used to assess and increase the situational awareness of the network security. This work aims to improve existing studies with a topology-independent neural network (NN) structure and a comprehensive evaluation of generalization, particularly across various topology sizes [START_REF] Li | Innes: An intelligent network penetration testing model based on deep reinforcement learning[END_REF][START_REF] Guo | Automated penetration testing with fine-grained control through deep reinforcement learning[END_REF]. The experimental scenarios has been generated with the following procedure: 200 different chains with a number of nodes in the range [100, 300] divided in training set (60%), validation set (20%), and test set (20%) by size. Deep Q-Network (DQN) [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], Proximal Policy Optimization (PPO) [START_REF] Schulman | Proximal policy optimization algorithms[END_REF], and Actor-Critic (A2C) [START_REF] Mnih | Asynchronous methods for deep reinforcement learning[END_REF] algorithms with default hyper-parameters [START_REF] Raffin | Stable baselines3: Reinforcement learning in python[END_REF]. Multiple runs of 1,000,000 steps with episodes' cut-off set to 2 * optimal number of steps: optimal steps' number = (3 * (chain size + 1)) 

Conclusions

Our experiments of the value-based, policy-based, and actor-critic methods showed convergence results on a chain-based topology environment being able to generalize among chain sizes.

The DQN method has converged to the optimal policy required to solve the deterministic environment, also on reserved sets of larger chains. Future work will aim to explore new environments and leverage Graph Neural Networks (GNNs) capabilities.
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 1 Figure 1. The agent receives a state or observation S(t), takes action A(t), receives reward R(t), and transitions to a new state S(t + 1).
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 23 Figure2. Representation of the POMDP with the distinction of owned, discovered, and not discovered nodes. The observation vector at a given moment t will be the concatenation of the feature vectors of the source and target nodes.

  Average reward on the validation set during training. (b) Owned nodes' percentage on the validation set during training. (c) Success rate percentage of the actions performed on the validation set. ±0.00 (d) Average owned nodes' percentage on the test set.
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