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Analyzing and Comparing Deep Learning
models on a ARM 32 bits microcontroller for

pre-impact fall detection
Aurélien Benoit, Christophe Escriba, David Gauchard, Alain Esteve and Carole Rossi

Abstract— Automated pre-impact fall detection in real-time using
raw data acquired from wearable sensors, such as tri-axial ac-
celerometers, remains an open research problem in the context
of elderly care. This paper presents a comparative study of nine
neural network models, including Dense, CNN, LSTM, GRU, BiLSTM,
BiGRU, CNN Dense, CNN LSTM, and CNN GRU, for predicting an oc-
curring fall before impact with the ground using accelerometer data.
The models were optimized using Keras Tuner with the TensorFlow
backend, a dominant deep learning software framework. Machine
learning classifiers suitable for execution on microcontrollers were
built and evaluated based on performance metrics such as accu-
racy, sensitivity, specificity, storage size, inference time, and energy
consumption. The results highlight that the CNN DENSE algorithm provides the best detection accuracy (94.70%) with a
lead time of 76.91 ms. Sensitivity and specificity reach 95.33% and 94.18%. The energy consumption and inference time
are 6.72 mA and 12.88 ms, respectively. In conclusion, deep learning demonstrates increased classification accuracy and
a simplified software architecture, but it comes at the cost of decreased energy efficiency and inference speed. These
factors are crucial considerations in developing on-demand fall injury prevention wearable systems.

Index Terms— Deep Learning, Energy consumption, pre-impact fall detection, Tensorflow lite, threshold-based, wearable
systems.

I. INTRODUCTION

OVER the past century, the average life expectancy has
increased dramatically. As a result, the safety of the

elderly has become a major societal concern. In particular, the
increased risk of falls is one such distinct health risk factor.
Unintentional falls are the leading cause of fatal injuries and
the most common cause of nonfatal trauma-related hospital
admissions among adults over 65 years-old [1]. Between 2015
and 2050, the proportion of the world’s population aged
over 60 will almost double, from 12% to 22%. Each year,
approximately 684,000 people die as a result of a fall and
37.3 million of falls are recorded that are severe enough to
require medical attention. In the United States of America,
elderly falls costed $50 billion in 2015, and $43 billion by the
year 2020. Every year in France, falls among the elderly result
in over 130,000 hospitalizations and 10,000 deaths. The cost
of falls among the elderly is currently estimated at 2 billion
euros, including 1.5 billion for the french health insurance
system.
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In this context, wearable sensors, such as 3D accelerom-
eters, that can monitor daily activities, quickly identify oc-
curring falls and send out remote notifications, are crucial
to elderly care, allowing for earlier assistance. One major
hurdle to the deployment of wearable sensors on elderly is the
accuracy of pre-impact fall detection system, often generating
false alarms,i.e., alerting fall during activities of daily living
(ADL). Thus, most of recent researches have focused on
reducing false alarms and improving accuracy of the pre-
impact fall detection system [2]–[4] using either threshold-
based algorithm [5]–[18], conventional machine learning (ML)
[15], [19], or deep learning approaches [20]–[36]. Threshold-
based algorithms have demonstrated good performances to
distinguish pre-impact falls from ADL: sensitivities are in the
range of 92% - 99%, specificities are in the range of 95%
- 98% with an average lead time (time interval between fall
detection and body-ground impact occurrences) in the range
of 250 - 400 ms. Two interesting papers present exceptional
results with a sensitivity and specificity > 97% [17], [18]
but the algorithms were evaluated on a very small sample of
people. Despite the good sensitivity and specificity, threshold-
based algorithms lack of generalizability and robustness when
applied to real scenarios or different groups of persons.
Conventional ML algorithms such as support vector machine
(SVM) were explored to detect falls using, as inputs, highly
correlated parameters among raw signals of acceleration and
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angular velocity. Detection sensitivity > 95% and specificity
> 90% with a lead time ranging from 63 to 200 ms were
demonstrated. For example, Xie et al. [15] used a smartwatch
using the SVM method and demonstrated 100%, 95.5% and
95.7% forward, backward and lateral fall accuracy, respec-
tively, with an average processing time of 276 ms, which is
still too long to envisage a real application for pre-impact fall
detection.

More recently, as computing power in hardware, especially
GPUs, has advanced rapidly, deep learning-based algorithms
such as Convolutional Neural Networks (CNN), Adaboost, and
Long Short-Term Memory (LSTM) have been explored for
pre-impact fall detection [20]–[36]. The significant advantage
of these deep learning approaches is their ability to process
raw data directly from wearable sensors and automatically ex-
tract high-level motion features through specifically designed
network layers.

However, it is important to note that while these works
have evaluated their model performances on computers, there
is a gap in the literature concerning the assessment of deep
learning models, including Recurrent Neural Networks (RNN),
LSTM, CNN, and CNN-LSTM, on microcontrollers. It is
worth mentioning that there are instances in the literature
where deep learning models have been successfully imple-
mented on low-power microcontrollers for various applica-
tions, such as spoken keyword spotting [37], human activity
recognition [38], [39], gesture recognition [40], acoustic event
detection [41], post-stroke assistance and rehabilitation [42],
flow analysis in public spaces [43], nutrition monitoring [44],
sports activities classification [45], and even for industrial
applications [46], [47]. The performance of these models,
in terms of power consumption, accuracy, precision, and
sensitivity, varies based on the specific models and problems
they address.

This comprehensive review of existing research highlights
the absence of studies developing pre-impact fall detection
systems using deep-learning models integrated into microcon-
trollers for elderly care. Notably, the work by Yu et al. [4]
is the only one that employs an embedded micro-computer
(Raspberry Pi 4) to measure lead time and computation latency
on a test set.

This paper aims to fill this gap by conducting a thorough
comparison of nine deep learning models (Dense, CNN,
LSTM, GRU, BiLSTM, BiGRU, CNN Dense, CNN LSTM,
CNN GRU) integrated into an ultra-low-power ARM Cortex
M4 microcontroller. The evaluation focuses on quantifying
the models’ performances for pre-impact fall detection using
raw data collected from a 3-axis accelerometer. Additionally,
inference time and energy consumption are measured for each
model integrated into the microcontroller. As a preliminary
step to the present investigation, a comparison of optimizers
was performed, although the details are not covered in this
paper. The major contributions of this research include:

• the first comprehensive comparison of different algo-
rithms for pre-impact fall detection based on a large-scale
motion dataset from nine young subjects, encompassing
three types of ADL and four types of falls. The com-
parison extends beyond commonly used accuracy-related

measures (e.g., accuracy, sensitivity, and specificity) to
include model storage size, inference time, and energy
consumption—crucial parameters in designing an on-
demand fall injury prevention system for the elderly.

• Pioneering research in determining which algorithms can
effectively run on a microcontroller to detect pre-impact
fall situations, while also assessing the current limitations
of deep learning techniques for pre-impact fall detection
due to their high energy consumption efficiency.

This study offers valuable insights for researchers, shedding
light on the strengths and limitations of each machine learning
method. It also outlines pathways for integrating these meth-
ods into autonomous systems, representing a significant step
towards the design of future products to address societal needs.

II. MATERIALS AND METHODS

A. Data collection and preprocessing
We used recently established Kfall public fall databases [48]

for the evaluation of the different models. The Kfall dataset
was collected from 32 healthy young males (age: 24.9 ± 3.7
years; height: 174.0 ± 6.3 cm; weight: 69.3 ± 9.5 kg) using
a 9-axis inertial sensor attached to the lower back of each
subject and sampled at 100 Hz. The dataset also includes 21
Activities of Daily Living (ADLs) and 15 simulated falls. Only
the three axes of the inertial sensor were utilized in this study.
Furthermore, since the Kfalls series is better suited for post-fall
detection rather than pre-impact fall detection, we augmented
the model training process by incorporating a custom-made
dataset from nine volunteers (2 females, 7 males) in good
health and without any physical conditions (average height
174.11±6.98 cm; average weight 63.57±7.91 kg). They were
equipped with a circuit placed on a belt (Figure 1). Data were
recorded using a specific circuitry integrating an nRF52832
System-on-Chip (SoC) from Nordic Semiconductor and a 3-
axis accelerometer LIS3DH from STMicroelectronics at 100
Hz. The system description can be found in [5]. We recorded
four types of falls, namely forward, backward, lateral right and
lateral left, and three ADL, i.e. walking, sitting, picking up an
object. Overall, this corresponds to a total of 474 acquisitions,
including 188 series of ADL and 286 series of falls (a forward
fall signature is plotted in Figure 2). Then, the dataset is
divided into test and train sets. The train set includes 80%
of the overall dataset (7 volunteers randomly chosen) while
the remaining 20% of the dataset (2 volunteers) are devoted
to the test set. As a result, the train set is composed of 364
series (140 ADL and 218 falls), and the test set is composed
of 110 series (48 ADL and 68 falls). A ”tag connect” plug was
integrated to reduce the hardware footprint and programmed
by Serial Wire Debug (SWD). The entire software project
was built with Segger Embbeded Studio. Our system used a
512 kB FLASH and a 64 kB RAM. Note that the addition
of the NORDIC and TFLM libraries occupies 29.8 kB and
181.4 kB of RAM and FLASH memories, respectively. Table
I summarizes the characteristics of the accelerometers used to
build the two different databases (Kfall and ours).

Then, the collected data from both custom-made and Kfall
datasets were pre-processed following 2 steps.
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Fig. 1. Prototype of the pre-impact fall detection circuitry

TABLE I
CHARACTERISTICS OF THE ACCELEROMETERS USED TO BUILD THE

TWO DIFFERENT DATABASES (KFALL AND OURS)

Features sensors Kfall Our dataset
Sampling frequency 100 Hz 100 Hz

Sensibility 16 g 8 g
Resolution 16 bits 12 bits

Step 1. Definition of the length of time series
First, all data from the dataset were concatenated into a single
row in a parquet file. Each data point within each series was
labeled based on the type of movement (fall or ADL). Each
file contains 8 columns, consisting of:

• Time : time step
• ax, ay , az : components of the acceleration along x, y, z

axes
• SVM : sum vector magnitude of the acceleration
• tiltAngle : Tilt angle from the y-axis relative to the fall
• user : name of volunteer
• type : type of movement
• Test : test number
• label : class for output classification models

Fig. 2. Forward fall, time evolution of : (top) components of the accel-
eration along axis x, y, z and sum vector magnitude (SVM), (bottom) tilt
angle

The tiltAngle (in rad) is calculated using Equation 1 [5] :

tiltAngle = cos−1

 ay(t)√
a2x(t) + a2y(t) + a2z(t)

 (1)

From each data file, we divided the overall dataset into equal
frames corresponding to 25 acquisition steps, with an overlap
of one acquisition step considered between two adjacent
frames (referred to as a ”sliding window”). This multi-frame
approach has been found to enhance the performance of the
ML models, reducing the amount of data treated as input
for each layer of the models and capturing time variations
in features. The input dataset was structured with 3 columns
(sample, time-steps, features), where each input sample con-
tains 5 features (ax, ay , az , SVM, tiltAngle) composed of 25
values each.

Moreover, automated extraction of temporal features from
various types of fall data collected using wearable sensors
has been demonstrated in previous studies [31]. Finally,
since the objective is to classify whether a fall occurred or
not, each series is labeled as either ”ADL” or ”fall” based
on the labels that occur most frequently. It is important
to note that this labeling may differ from the label of
some individual data points, as there are series labeled as
”ADL” containing points labeled as ”fall” and vice versa.
These cases mostly occur at the end of each acquisition series.

Step 2. Normalization
Normalization corresponds to the process of transforming data
of different scales to a common scale, typically within the
range [0, 1]. This is done to balance the impact of each feature
on the model and expedite model convergence [49] [50]. For
each feature xi, the normalization involves subtracting the
median value xmed and dividing it by the interquartile range
(Q75 − Q25). The normalized value X is obtained using the
equation 2 :

X =
xi − xmed

Q75 −Q25
(2)

We opted for the Robust Scaler normalization method
following a comparison with both the Standard Scaler and
MinMax Scaler methods (Figure 3). The Robust Scaler is
considered the most appropriate for large and wide datasets,
as it effectively handles outliers that could significantly impact
predictions. Unlike the Standard Scaler, which transforms data
to have a mean of 0 and a standard deviation of 1 (suitable
for normally distributed data), and the MinMax Scaler, which
scales data to a specified range typically between 0 and 1
(preserving the original data’s relationships), the Robust Scaler
provides robustness against outliers.

The plots in Figure 3 illustrate the data distribution before
and after the normalization step. Prior to normalization, raw
data are within a small range of values [-2.5, 2.5], but they
are not centered around 0, and each feature has a different
disparity of values. MinMax scaling spreads the features over
the range [0, 1]. Acceleration components on the x, y, and z
axes are centered around 0.5, SVM around 0.1, and tilt angle is
spread across the range with two density peaks at 0.5 and 0.95.
With standardization, data are scaled with a mean value of 0,
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and density peaks are present in the [-5, 5] range. By removing
the median and spreading the features over the interquartile
range (IQR), features are centered around 0 with density peaks
in the [-5, 5] range. It’s observed that Standard Scaler and
Robust Scaler have data at equivalent density scales: [0, 2].
However, Robust Scaler spreads certain features, providing
a more balanced representation with uniformly distributed
density peaks. In conclusion, Robust Scaler is the most suitable
normalization method for the specific problem of pre-impact
fall detection, as it balances the representation and facilitates
effective model learning.

B. Models construction, optimization and training

In this study, nine ML models were evaluated, namely
Dense, CNN, LSTM, GRU, BiLSTM, BiGRU, CNN Dense,
CNN LSTM, CNN GRU, that were trained and run using
Tensorflow 2.10.

Dense model was chosen as it is the base layer charac-
terized by interlayer connections between adjacent layers and
performing linear transformations on input data for the next
layer, mainly for the output layer. The CNN model [51], [52]
is commonly used for computer vision tasks such as object
detection, image segmentation, video recognition [53] or op-
timization energy consumption for embedded systems [54].
The LSTM model is suitable to classification and prediction
of future values based on time series data in anomaly de-
tection, stock prediction or gesture classification [55]. Hybrid
models combining Convolutional Neural Networks (CNNs)
with Recurrent Neural Networks (RNNs) such as Long Short-
Term Memory (LSTM) [56], [57] or Gated Recurrent Unit
(GRU) layers have been widely used in various image and
natural language processing tasks [58]–[61], including speech
emotion recognition and movie sentiment analysis. These
models leverage the strengths of both CNNs and RNNs
to capture spatial features through convolutional layers and
temporal dependencies through recurrent layers. The forward
and backward LSTMs are trained separately, but their outputs
are combined to produce the final prediction. The output at
each time step is obtained by concatenating the forward and
backward hidden states, allowing the network to capture both
past and future context. Bidirectional GRU (BiGRU) does
exactly the same, but employing forward and backward GRU’s
[62].

1) Choice of the optimizers: the choice of optimizers plays
a crucial role in the training process, and evaluating multiple
optimizers is a good practice. We used a Bayesian optimization
strategy to explore the hyperparameter space and find the
optimal configuration for our hybrid model. 7 optimizers were
evaluated : Stochastic Gradient Descent (SGD) [63], AdAptive
Gradient (AdaGrad) [64], Root Mean Square Propagation
(RMSProp) [65], AdAptive Gradient Delta (AdaDelta) [66],
AdAptive Moment estimation (Adam) [67], Nesterov AdAp-
tive Moment estimation (Nadam) [68], AdAptive Moment
Weight (AdamW) [69]. The optimal choices for pre-impact
fall detection application were found to be Adam, Nadam, and
AdamW optimizers. Among these, Adam emerged as the most
suitable choice due to its integration of momentum, facilitating

accelerated convergence, and RMSProp, contributing to the
normalization of learning rates. These characteristics make
Adam particularly well-suited for addressing the challenges
inherent in temporal binary classification problems, where
features exhibit variations over time, often characterized by
sparse or non-uniform behaviors [20], [31], [32], [34], [70]–
[72]. The adaptability of Adam to capture temporal dynamics
aligns seamlessly with the nature of our application, enhancing
the effectiveness of our hybrid model in detecting falls prior
to impact.

2) Kernel initializer, Activation functions and hyperparame-
ters tuning: According to [73], the activation functions Relu
and Leaky Relu must be initialized with He. Although ReLU
is widely used due to its simplicity and efficiency, it provides
zero activation for negative values. This leads to the phe-
nomenon called ”dead neurons” or ”dying ReLU” as negative
neurons do not contribute to learning. To avoid this problem,
the Leaky ReLU activation function is used to assign a slope of
0.1 to negative neurons. Hence, when a activation is negative,
neurons fall into a ”sleep” state but continue to receive gradient
updates.

TABLE II
SEARCH SPACE FOR THE OPTIMIZATION OF HYPERPARAMETERS

Model type Parameters Range

All
Learning rate [10−2,10−6]

Number of hiddens [1, 5]
Optimizers [Adam,Nadam,AdamW]

Dense Number of neurons [16, 128]

CNN

Number of filters [8, 128]
Number of kernel size [1, 10]

Number of strides 1

GRU,
LSTM

Number of neurons [16, 256]
Dropout [0.1, 0.5]

3) Hyperparameters: Hyperparameters summary is pre-
sented in the Table III and final models are presented in the
Tables IV and V. Each of them was trained on 200 epochs with
Adam optimizer and batch size of 128. Binary cross-entropy
was used. In the case of no improvement in the validation loss
after 10 epochs, we used a call to stop the training process.

TABLE III
SUMMARY OF HYPERPARAMETERS

Parameters Model type Range

Learning rate

Dense 0.004
CNN 0.001

LSTM 0.001
GRU 0.00001

BiLSTM 0.0005
BiGRU 0.0006

CNN DENSE 0.001
CNN LSTM 0.001
CNN GRU 0.001

Optimizer Adam
Input Shape 25,5
Batch size 128

Epochs 200
Loss function Binary cross-entropy

4) Training Environmental Configuration: in this study, the
16 GB graphics processor unit of NVIDIA RTX A4500 and
the NVIDIA CUDA Deep Neural Network library (cuDNN), a
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Fig. 3. Comparison of normalisation methods, namely MinMax Scaler, Standard Scaler and Robust Scaler techniques, on dataset (train and test
set)

GPU-accelerated library, were used. This study was achieved
under the Windows 10 as OS environment, using Intel Core
i9-12950HX as CPU and 64Go 4800MHz DDR5 as RAM.
The experiment was programmed using Python v3.10.10,
Tensorflow 2.10 and CUDA v11.2.152 graphic cards.

5) Porting models into ARM 32 bit Microcontroller: All mod-
els with parameters outlined in the provided Table II, under-
went reduction procedures as detailed in [74]. Subsequently,
these optimized models were implemented on the micro-
controller using the TensorFlow Lite for Microcontrollers
(TFLite Micro) library. This implementation involved lever-
aging configuration optimizations to enhance efficiency and
streamline the deployment process. Procedure is :

• TARGET=cortex m generic : selects the target microcon-
troller family.

• TARGET ARCH=cortex-m4+fp : enables support for
hardware floating point on cortex-m4.

• OPTIMIZED KERNEL DIR=cmsis nn : enables the use
of the CMSIS-NN library optimizations for performance
boost on ARM Cortex core microcontrollers.

Reduction or quantization is the process of converting
the weights and activations of a neural network from
high-precision floating-point numbers to lower-precision
representations, resulting in lighter models. This process
is crucial for deploying deep learning models on resource-
constrained embedded systems, such as our system. Prior to
quantization, the models utilize 32-bit floating-point numbers
(float32) for representing weights and activations, ensuring
high precision. We conducted tests on three quantification
techniques—Optimized Integral type with floating fold,
Float16 Quantization, and Float8 Quantization. For each
model, we selected the quantization method that produced
the lightest model. Specifically, Float8 Quantization was
employed for Dense, CNN, BiLSTM, CNN DENSE, CNN
LSTM, and CNN GRU models. For LSTM, GRU, BiGRU, the
Optimized Integral type with floating fold method was chosen.

The memory size before and after quantization is reported
in the Table VI. We observed that the float8 models experience
size reduction without introducing any additional operators. In
contrast, integer models include two extra operators, namely

”Quantize” and ”Dequantize.” The architectures of float16
models exhibit the highest complexity. In the case of CNNs,
multiple ”Dequantize” operators are integrated as inputs to
the ”Conv2D” operators, and a similar pattern is observed for
FullyConnected operators in DENSE models. For recurrent
models featuring LSTM and GRU layers, the LSTM and GRU
operators are transformed into numerous elementary operators,
accompanied by the inclusion of ”while” operators, each con-
taining over twenty operators. Additionally, ”Dequantize” and
”Quantize” operators have been incorporated. The necessity
for including Tensorflow operators, in addition to Tensorflow
Lite operators, arises during quantization to float. Importantly,
the use of signatures before conversion becomes impractical in
this scenario. Throughout the remainder of the paper, our focus
is exclusively on quantized models, denoting reduced models.
The programming languages employed were C and C++. The
nRF5 v17.1.0 Software Development Kit (SDK) facilitated
Bluetooth low energy and 2.4 GHz support compatibility.

For the nRF52832 System-on-Chip (SoC), the SoftDevice
version employed was v7.2.0, and the Segger Embedded
Studio version used was v7.10a. Notably, BiLSTM models
were not implemented on ARM microcontrollers using TFlite
Micro due to the lack of support for the ”REVERSE V2”
operation, essential for inverting data windows before
the ”UNIDIRECTIONAL SEQUENCE LSTM” operation.
To overcome this limitation, we developed a custom
”REVERSE V2” operator for Tensorflow Lite for
microcontrollers. The implementation underwent rigorous
unit testing to ensure its functionality, using Bazel v6.2.0.
To maintain consistent code formatting in Google style,
clang-format v16.0.4 was applied. After completing the
tests, the entire library was recompiled. Two key metrics
guided our testing process: functional coverage and linear
coverage. Functional coverage was employed to verify that
all functions were adequately covered, ensuring their correct
implementation. Linear coverage, on the other hand, focused
on source code coverage, measuring the execution of specific
lines of code during the tests. This metric provided insights
into the portions of the source code that were executed at
least once during testing. Hence, we designed a set of six
unit tests, encompassing 2 tests for each compatible input and
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output type—float32, int8, and int16. For each data type, one
test involved a 1D tensor, while the other utilized a 3D tensor.
Through these tests, we achieved comprehensive functional
coverage, ensuring that all functions were systematically
covered. Additionally, our testing process resulted in a
commendable linear coverage of 83.9%, signifying the extent
to which specific lines of source code were executed during
the testing phase

6) Threshold method in post processing: Upon detecting
false alarms in the ADL series concerning pre-impact fall
detection, we identified a noteworthy correlation between the
variance of the sum of acceleration vectors (SVM) after
normalization and actual fall events. In response to this obser-
vation, we introduced a filtering condition aimed at mitigating
false alarms. This condition involves verifying whether the
variance of the classification window surpasses a threshold of
2 (after normalization), equivalent to 1.156713 g. The normal-
ization conversion for raw accelerometer data is represented
by Equation 3.:

Xnorm =
xi − cv

sv
(3)

with Xnorm normalize value, xi, raw value, cv, center value
of 0.9622855 and scaler value of value 0.09721375. This is a
filtering post-processing step. After each window prediction,
the SVM variance (Equation 4) is calculated and, if it exceeds
the threshold, we consider that a fall is starting.

variance =

N∑
i=1

(xi − µ)2

N
(4)

with µ, the mean value of the ensemble of the data from one
window.
It’s important to highlight that the chosen threshold value
not only enhances the sensitivity, accuracy, and specificity
of pre-fall detection (metrics defined in the next section)
but also influences the lead time. The optimal threshold
value was identified as 2, ensuring a lead time greater than
100 ms. This time window allows sufficient duration for
triggering the inflation of an airbag before making contact
with the ground. It’s noteworthy that the same threshold
is consistently applied across all models for the sake of
comparison. This approach aligns with the methodology
used by Shi et al. in their work on pre-impact fall detection
[34], where a post-processing threshold was also incorporated.

III. RESULTS AND DISCUSSION

In the following we consider some important outputs as
basis for the analysis: True Positives (TP), which correspond
to correctly classified falls before impact, True Negatives (TN),
which correspond to correctly classified ADLs, False Positives
(FP), which correspond to misclassified falls in ADLs and
False Negatives (FN), which correspond to misclassified ADLs
in falls. From these outputs, we calculate three metrics:

• Sensitivity (SEN) defined as the ratio of the number of
correctly classified falls out of the total number of falls,

calculated as :

SEN =
TP

TP + FN

This metrics informs if the fall is correctly detected.
• Specificity (SPE) defined as the ratio of the number of

correctly classified adls out of the total number of adls.

SPE =
TN

TN + FP

Which quantifies the ability of the model to correctly
distinguish ADLs from falls.

• Accuracy (ACC) defined as the ratio of the number of
correct predictions out of the total number of samples :

ACC =
TP + TN

TP + TN + FP + FN

This metric quantifies the model ability to correctly
identify real falls and ADL

• F1-score defined as the harmonic mean of precision and
sensitivity. It compares the correct positive predictions
TP with the errors (FN + FP ) of the model.

F1− score =
TP

TP + 0.5(FP + FN)

A high F1-score signifies the effectiveness of the exper-
imental method.

The memory sizes associated with the various models are
also provided in kilobytes (kB).
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TABLE IV
DETAILS OF OPTIMIZED MODELS

Block layer Parameters Values
DENSE

flatten - - -
dense 1 neurons 104

2 - 88
3 - 24
4 - 1

CNN
conv conv1d filters 64

kernel size 3
stride 1

maxpooling1d 2
conv1d filters 32

kernel size 3
stride 1

maxpooling1d 2
conv1d filters 64

kernel size 4
stride 1

maxpooling1d 2
conv1d filters 32

kernel size 3
stride 1

maxpooling1d 2
dense dense 1 neurons 1

LSTM
lstm 1 neurons 48

2 - 112
3 - 112

dropout 0.1
dense 1 - 1

GRU
gru 1 neurons 48

dense 1 - 1
BiLSTM

bidirectional lstm neurons 224
dense 1 - 112

dropout 0.1
dense 2 - 1

BiGRU
bidirectional gru neurons 256

dense 1 - 128
dropout 0.1

dense 2 - 1

A. Benchmarking models for pre-impact fall detections

Table VII presents the performance of different models in
detecting a fall before reaching the ground. To benchmark the
various models, we exclusively utilize the KFall dataset. It is
important to highlight that, in the event of a fall, a positive
lead time, indicating the existence of a time interval between
detection and ground impact, results in a True Positive (TP)
value. Conversely, if no such time interval is present, it is
categorized as a False Negative (FN). Similarly, in the context
of ADL, a False Positive (FP) is assigned if at least one
window is classified as a fall, while a True Negative (TN)
is recorded if no such classification occurs.

The CNN, Dense, BiLSTM, and CNN Dense models exhibit
the highest accuracy, achieving 92.61%, 85.96%, 86.90%, and
94.70%, respectively. Regarding sensitivity, the CNN, LSTM,
and CNN LSTM models demonstrate the highest scores at
92.33%, 98.97%, and 96.80%. In terms of specificity, the
CNN DENSE , GRU, and BiLSTM models perform the best

TABLE V
DETAILS OF OPTIMIZED MODELS (CONTINUED)

Block layer Parameters Values
CNN Dense

conv conv1d filters 64
kernel size 4

stride 1
maxpooling1d 2

conv1d filters 64
kernel size 2

stride 1
maxpooling1d 2

conv1d filters 64
kernel size 4

stride 1
maxpooling1d 2

conv1d filters 32
kernel size 4

stride 1
maxpooling1d 2

dense 1 neurons 32
flatten - - -

dense 2 - 1
CNN LSTM

conv conv1d filters 128
kernel size 7

stride 1
maxpooling1d 2

conv1d 2 filters 128
kernel size 7

stride 1
maxpooling1d 2 2

lstm 1 neurons 48
dropout 0.1

flatten - - -
dense 1 - 1

CNN GRU
conv conv1d filters 96

kernel size 7
stride 1

maxpooling1d 2
conv1d 2 filters 96

kernel size 7
stride 1

maxpooling1d 2 2
gru 1 neurons 64

flatten - - -
dense 1 - 1

with scores of 94.18%, 97.25%, and 94.41%, respectively.
The table also includes information on the average lead time
in milliseconds (ms). Notably, the LSTM, BiGRU, and CNN
LSTM models yield the most substantial lead times. In terms
of memory usage, the most resource-intensive models are
LSTM, CNN LSTM, and BiLSTM, utilizing 741.768 kB,
1011.928 kB, and 531.664 kB, respectively. On the other hand,
the most memory-efficient models are GRU, CNN, and Dense,
with consumption rates of 40.536 kB, 99.160 kB, and 101.220
kB, respectively.

We also assessed the inference time and number of CPU
cycles for the models running on both the computer and the
microcontroller (refer to Table VIII). The runtimes can be
categorized into three groups: Dense, CNN models exhibit
the most optimal performances with 0.138 ms, 0.713 ms,
respectively, on the computer. Upon adding a dense layer,
the CNN’s runtime extends to 0.723 ms. However, BiLSTM
performs 100 times slower on the microcontroller than on the
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TABLE VI
DETAILS OF MEMORY SIZE REDUCTION FOR TENSORFLOW LITE MODELS (IN KILOBYTES, KB)

Model Dense LSTM GRU CNN BiLSTM BiGRU CNN DENSE CNN LSTM CNN GRU
Unoptimized 101.220 741.768 40.536 99.160 531.664 567.160 101.864 1011.928 409.976

Optimized Integral type with floating fold 29.304 196.632 21.376 40.856 154.816 159.640 42.616 268.256 122.528
Optimized 16 bits 53.368 392.276 27.256 59.576 280.496 292.768 62.776 517.512 214.060
Optimized 8 bits 28.600 198.720 22.312 39.352 142.888 162.664 38.968 264.656 118.82

Reduction(%) 71.74 73.20 47.26 60.31 70.88 71.31 61.74 73.84 71.01
Figures in bold correspond to the models running on the microcontroller.

TABLE VII
PERFORMANCE METRICS FOR EACH MODEL USING THE KFALL DATASET.

Model Dense LSTM GRU CNN BiLSTM BiGRU CNN DENSE CNN LSTM CNN GRU
Accuracy (%) 85.96 74.49 76.22 92.61 86.90 80.16 94.70 79.81 80.77
Sensibility (%) 93.40 98.97 57.52 98.39 80.20 92.88 5.33 96.80 82.92
Specificity (%) 77.57 46.42 97.25 87.18 94.41 65.62 94.18 60.52 78.35
F1-score (%) 87.58 80.57 71.92 92.84 86.62 71.92 94.56 83.60 82.03

Lead time mean (ms) 214.26 611.26 122.42 233.76 121.16 440.52 176.91 593.23 236.34
Memory size microcontroller (kB) FLASH - 512 kB, RAM - 64kB

FLASH 307.3 495.4 345.0 318.0 454.2 495.2 317.67 489.7 457.9
RAM 31.5

computer, while the convolution models are 16 and 17 times
slower on the microcontroller. The slowest model is BiGRU
(515.19 ms), while the fastest model is the DENSE (0.188 ms).
It’s noteworthy that the execution of the CNN GRU model on
the microcontroller encountered failures.

TABLE VIII
ENERGY CONSUMPTION AND INFERENCE TIME OF MODELS DEPLOYED

ON THE MICROCONTROLLER (NRF52832). THE AVERAGE POWER

CONSUMPTION OF THE MICROCONTROLLER IS MEASURED USING AN

OTII (OPEN TEST INSTRUMENTATION INTERFACE) POWER ANALYZER

DEVELOPED BY QOITECH.

Model run on PC (4.30 GHz)
Infer. time CPU cycle Average consumption

DENSE 0.138 ms 0.594M x
CNN 0.713 ms 3.066M x
GRU 2.029 ms 8.724M x

LSTM 2.245 ms 9.653M x
BiLSTM 1.876 ms 8.066M x
BiGRU 14.798 ms 63.632M x

CNN DENSE 0.723 ms 3.108M x
CNN GRU 1.168 ms 5.023M x

CNN LSTM 1.673 ms 7.194M x
run on Nordic (3.3 V - 64 MHz)

DENSE 2.188ms 0.140M 6.50mA
CNN 11.362 ms 0.727M 6.53 mA
GRU 94.143 ms 6.025M 7.50 mA

LSTM 303.145 ms 19.401M 8.50mA
BiLSTM 194.551 ms 12.452M 7.88 mA
BiGRU 515,194 ms 32.972M 7.85 mA

CNN DENSE 12.878 ms 0.824M 6.72 mA
CNN LSTM 28.894 ms 1.850M 7.03 mA
CNN GRU x x x

In summary, among all tested models, the CNN emerges
as the top performer for pre-impact fall detection, boasting
an average lead time of 176.91 ms and a detection accuracy
of 94.70%. This outcome is unsurprising given the inherent
strengths of the CNN model in processing intricate and ex-
tended temporal sequences. By automatically extracting hi-
erarchical patterns at various scales from temporal sequences,

the model adeptly captures both short- and long-term features,
facilitated by the utilization of convolution filters of differ-
ent sizes. Secondly, the architecture employs weight sharing
among convolution filters, allowing the learning of valuable
features irrespective of their exact position in the temporal
sequence. Moreover, the convolution operations incorporate
temporal translation invariance, enabling the CNN to iden-
tify patterns without dependence on their specific temporal
location. This feature is particularly crucial for pre-impact fall
detection.

Importantly, falls exhibit variations in terms of their duration
and acceleration signal from one instance to another. Notably,
CNN models are distinguished by matrix and convolution
operations that are parallelized and optimized for ARM ar-
chitectures. The utilization of convolution effectively reduces
the size of tensors as data propagates through the network.
The commendable performance of CNN is coupled with a low
memory cost (39.352 kB) and minimal electrical consumption
(averaging 6.53 mA). By augmenting the CNN model with
an increased number of convolution filters and the addition
of a Dense layer, we obtain a CNN DENSE model with
94.70% accuracy, 95.33% sensitivity, and 94.18% specificity.
The heightened complexity of the model results in an inference
time of 12.878 ms and leads to a slight increase in power
consumption (6.72 mA compared to 6.53 mA).

The Dense model stands out as the fastest, achieving an
inference time reduced to 2.188 ms, and demonstrating a
relatively good detection accuracy of 85.96% and sensitivity
of 93.40%. However, the specificity is not as favorable,
registering at only 77.57%. This could be attributed to the
complexity of the temporal features utilized. The underlying
cause might be a class imbalance issue, where there is a larger
number of fall series compared to that of ADLs. In scenarios
with such an imbalance, higher specificity tends to come at
the expense of lower sensitivity. To address this concern,
training took into account the class imbalance by defining an
initial bias for the output layer using the equation: bias =
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log(fall’s number/adl’s number). The reason behind the lower
specificity in Dense models is their consideration of each
data point independently, making it challenging to correctly
identify the temporal and spatial dependencies present in the
time series. The favorable inference time is attributed to the
utilization of an interconnected linear neuron with the equation
y = Wx + b where y is the output, W is the weight matrix,
x is the input and b is the bias vector. Additionally, the use of
weight matrices is instrumental in conserving memory space
and minimizing data transfer between the memory and the
microprocessor.

Certain models clearly exhibit underperformance, notably
BiLSTM, LSTM, GRU, BiGRU, CNN LSTM, and CNN GRU
in terms of pre-impact fall detection accuracy, specificity, and
inference time. BiLSTM achieves commendable performance
for pre-impact fall detection with an average lead time of
121.16 ms and a detection accuracy of 86.90%. However, due
to their capability to store long-term information, BiLSTM
models can be sensitive to subtle variations in the data. In the
context of fall detection, this sensitivity may result in normal
fluctuations or noise being considered, impacting overall per-
formance. Additionally, the inferior performance of BiLSTM
comes at the expense of high memory cost (531.664 kB)
and elevated electrical consumption (average of 7.88 mA). Ye
and Yu [75] also reported the good performances of BiLSLM
model (Table X) to detect a fall (accuracy 90.47%) using
data from an IMU and pressure sensors. But the authors did
not mention about the sampling frequency.Among them, GRU
and LSTM emerge as the least effective performers, achieving
accuracies of 76.22% and 74.49%, respectively. During the
conversion of the GRU model to the tflite format, the GRU
layer transforms into 10 basic operators, including 2 flex
operators. This transformation is a consequence of employing
Tensorflow Lite’s Flex delegate to optimize the execution of
floating-point operations. However, it’s worth noting that the
Flex delegate is currently incompatible with TFLite Micro for
direct integration into a microcontroller. Following quantiza-
tion, the basic operators are replaced by a ”While” operator, as
the GRU layer is not directly portable to microcontrollers. This
process involves defining the expected input data format for the
model (Figure 4). Tensorflow’s quantization tool then converts
and adapts the required operators for the model. Given that the
GRU model entails recurrent calculations performed on each
element of an input sequence, the ”While” operator efficiently
and flexibly handles dynamic variations in sequence lengths.

B. Time complexity analysis
To gain insights into the respective inference times of the

models, we conducted an algorithmic analysis on their time
complexity. Time complexity quantifies the number of basic
operations, such as multiplications and summations, performed
by the model, expressed as a function of the input size nn
(refer to Table IX for the big notation expressions of time
complexity). Analyzing time complexity is a more rigorous
approach than measuring inference time for model benchmark-
ing, as the latter is susceptible to various parameters, including
the hardware platform, compiler optimization, and the APIs
utilized for model implementation.

TABLE IX
EQUATIONS PROVIDING THE TIME COMPLEXITY OF EACH MODEL IN BIG

NOTATION

Model time complexity (big O notation)

DENSE Θ
(
na1 + a4k +

∑4−1
i=1 aiai+1

)
CNN O(

∑2
i=1 fi−1s

2
i fim

2
i ) +DC

LSTM O(
∑3

i=1 4hi(di + 3 + hi) +DC

GRU O(3h(d+ 2 + 3h)) +DC

BiLSTM O(
∑2

i=1 4hi(di + 3 + hi) +DC

BiGRU O(
∑3

i=1 3hi(di + 2 + 3hi) +DC

CNN DENSE O(ns2fm2) + Θ (na1 + a1a2 + a2k)

CNN LSTM O((
∑2

i=1 fi−1s
2
i fim

2
i ) + 4h(d+ 3 + h)) +DC

CNN GRU O((
∑2

i=1 fi−1s
2
i fim

2
i ) + 3h(d+ 2 + 3h)) +DC

DENSE : n - inputs, a - hidden neurons, k - output neurons,
CNN : f - filters, m - size output feature map, s - size filter

LSTM / GRU : d - entries lenght of sequence, h - hidden cell
Θ - strict bound , O - upper bound

DC :Θ(na1 + a1k)

According to He et Sun [76], the time complexity of
convolution layers is estimated by O(

∑d
i=1 fi−1s

2
i fim

2
i ) ,

where d is the number of convolutional layers, fi is the number
of filters in the ith layer, fi−1 is the number of input channels
of the ith layer, si is the spatial size of the filter, and mi is the
spatial size of the output feature map. From equations given
in Table IX, we observe that different parameters and features
influence the inference time: in the LSTM and GRU models,
the time complexity depends mainly on the number of hidden
cells (h) and the length of the input sequences (d). The time
complexity of the Dense model depends on the number of hid-
den neurons (a) and the number of output neurons (k). Hybrid
models (CNN DENSE, CNN LSTM and CNN GRU), which
combines different architectures, combine different complexity
terms for the different parts of the convolution and recurrence
architectures. The Dense model has the shortest inference time
of all considered models, simply because it is the simplest,
restricted to basic operations such as matrix multiplication
and direct addition. The integration of TensorFlow Lite for
Microcontrollers on the microcontroller improves inference on
ARM microcontrollers.

The table in Appendix I (Table XII) details the number
of operations executed by the machine. Models incorporating
FullyConnected and/or convolution layers are well-integrated,
benefiting from their low number of operators and the op-
timization of matrix multiplication for modern architectures.
Additionally, convolution layers use shared filters to identify
patterns in input data, reducing the overall number of param-
eters.

Recursive models such as LSTM, while employing a small
number of operators, are computationally intensive. LSTM
necessitates significant computational repetition for each time
step in the sequence and is not optimized for 32-bit architec-
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TABLE X
COMPARISON OF PERFORMANCE METRICS FOR EACH MODEL FROM

OPEN LITTERATURE

Model Dataset ACC SEN SPE Lead time
CNN
DENSE

Kfall** 94.70 95.33 94.18 176.91 ms

FDSNeXt
[20]

KFall** 91.87 - - -

CNN [20] KFall** 85.688 - - -
LSTM
[20]

KFall** 90.121 - - -

CNN
LSTM
[20]

KFall** 84.036 - - -

PreFall
k.d. [77]

Kfall** 98.05 94.79 98.53 551.3 ms

CNN
LSTM
[25]

Sisfall*
Kfall**

97.52 99.24 - 500 ms

Sampling frequency note : * 200 Hz , ** 100 Hz
k.d. : knowledge distillation

tures. GRU, BiGRU, and CNN GRU share a common WHILE
operator procedure in their TensorFlow Lite architecture. A
closer examination of this procedure reveals that the operator
can be decomposed into a more complex architecture based on
35 elementary operators (ADD, SPLIT, CONCATENATION,
MUL, or RESHAPE, Figure 5 in Appendix II). Despite
compacting the model as explained in section II-B.5, the GRU
layer remains suboptimal for microcontrollers. Future work
will involve making substantial contributions to TensorFlow
operator support to ensure optimal operation on ARM systems.

C. Comparison with the literature
Table X presents different pre-detection and falls detection

models as a function of ACC, SEN, SPE and lead time.
Compared with studies utilizing data sampled at 100 Hz, our
performance stands out with superior accuracy. In a study by
Mekruksavanich et al. [21] on the Kfall dataset, CNN, LSTM,
and CNN LSTM models were tested for fall detection, yielding
accuracies of 85.69%, 90.12%, and 84.04%, respectively.

Another study by Hnoohom et al. [20] achieved improved
detection accuracy (91.87%) by implementing a multi-kernel
CNN model, FDSNeXt, on the Kfall dataset. However, at
our sampling frequency of 100 Hz, our simple CNN DENSE
model outperforms highly complex models such as FDSNeXt,
showcasing better accuracy.

Nevertheless, at lower sampling frequencies, multi-kernel
CNN models demonstrate superior performance compared to
ours. For instance, Wang et al. [23] achieved 98.6% accuracy
by incorporating pressure sensors (connected insoles) along
with IMU data in a CNN model. Similarly, Choi et al. [22]
utilized acceleration and gyroscopic data (40 features) to attain
99% accuracy with a modified CNN model, along with a lead
time of 662 ms.

When examining the Sisfall dataset with a sampling fre-
quency of 200 Hz, CNN LSTM models surpass our work
in both accuracy and lead time, as evidenced by studies
conducted by [25]. In these investigations, the CNN model
is applied to create feature maps from acceleration and gyro-
scopic data. Furthermore, when combined with a Dense Model

(MLP - Multilayer Perceptron), an impressive accuracy of
98.4% is achieved [24].

Despite these models exhibiting high performance compared
to our work, there is limited information available on their
power consumption. Consequently, there is a need to expand
our literature review to encompass fall detection models. Table
XI provides an overview of various pre-detection and fall
detection models, considering factors such as inference time,
power consumption, and the type of hardware used.

Fig. 4. GRU model structure (left) before and (right) after quantization

It’s worth noting that the performance of CNN-LSTM in our
study is relatively lower compared to its reported use in the
literature. Typically, CNN-LSTM architectures consist of three
convolutional blocks and two LSTM blocks. For instance,
in the work by [4], this architecture achieves an impressive
99.16% accuracy, 99.32% sensitivity, and 99.01% specificity
using a 50-step input window with 9 input characteristics.
Similarly, [25] reports an accuracy of 97.52% using the same
type of model with a sliding window size of 200 steps for
6 input features. But, in our study, we utilized a smaller
window of 25 steps with 5 input features. The variation in
accuracy may be attributed to differences in the input window
size and the number of features compared to the architectures
reported in the literature. Additionally, as highlighted in Table
X, employing 100 Hz input data (such as Kfall) results in
a reduction in the accuracy of the CNN LSTM, likely due
to information loss. Conversely, as the sampling frequency
increases, so does the accuracy of the model.

The utilization of a Cortex M4 significantly diminishes
power consumption in comparison to a microcomputer and
an FPGA. This is expected as the latter two must handle
more intricate background execution tasks, leading to higher
power consumption. Novac et al. [74] specifically focuses on
the quantization and deployment of deep neural networks on
low-power 32-bit microcontrollers. In their work, they used
the UCI-HAR dataset for everyday life activity classification,
which comprises data acquired at 50 Hz from a smartphone
IMU [81]. The ResNet model [82] they employed demon-
strated lower energy consumption (4.8 mA) compared to our
model, albeit with a longer inference time (119.541 ms) owing
to the complexity of the architecture.

In a different context, Hammerla et al. [83] utilized BiL-
STM for human activity recognition, achieving an accuracy of
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TABLE XI
COMPARATIVE LITERATURE ON ENERGY CONSUMPTION METRICS

Model Inference
time
(ms)

Average
consump-
tion

Setup Goal Size (Kb) Advantages Disadvantages

Our work
CNN
DENSE

12.878 22.17 mW
(6.72 mA)

Nordic + Ac-
celerometer

Pre-impact
fall detection

38.969 Portable in MCU,
High performance
detection on dataset
, 3-axis sensor, ultra-
low consumption

Low Lead time

PreFallKD
[77]

36.8 - STM32 + IMU Pre-impact fall
detection

59.557 Portable in MCU,
High performance
detection on dataset

all sensors of IMU (6-
axis)

ConvLSTM
Lite [4]

2.1 - Raspberry PI +
IMU

Pre-impact fall
detection

- Low inference time,
Compact model

No embbeded in
MCU, Use reccurent
layer

YOLO-
LW+SVM
[78]

344 300 mW RISC-V
KPU (neuro-
morphic) +
Camera

Fall detection 1800 High performance de-
tection, low consump-
tion

Use a camera for de-
tection

CNN [79] 413 2.5 W FPGA + Cam-
era

Fall detection - CNN model High inference time,
Use a camera for de-
tection

OpenPose-
light+SVM
[80]

100 15 W Jetson TX2 +
GPU + Cam-
era

Fall Detection - High performance de-
tection

Use a camera for de-
tection

ResNet [74] 1034 16 mW
(4.8 mA)

STM32 + IMU ADLs classifi-
cation

119.541 Portable in MCU, one
accelerometer, ultra-
low consumption

High inference time,
Use MicroAI frame-
work

91.9%, a latency of 470 ms, and a memory footprint of 1.5
MB on an ARM Cortex-M3.

D. Summary and Paths to Improvement
We have demonstrated the implementation of machine

learning models on a microcontroller within an integrated cir-
cuit. However, the accuracy of pre-impact fall detection is not
currently sufficient for commercial product implementation, as
false alarms remain an issue (best accuracy 95%). This is a
significant barrier to social acceptability, as trust is a key factor
in the acceptance and adoption of wearable technologies by
the elderly, as established in previous studies [84] [85].

Nevertheless, we anticipate that these limitations will be
addressed in the near future with the availability of larger and
better datasets for model training. In this study, we worked
with 278 time series captured at a frequency of 100 Hz,
resulting in a small sliding window size. Additionally, the
dataset used here is based on the movements of a young adult
and not an elderly person, as it was ethically challenging for us
to create datasets of falls and activities of daily living (ADLs)
involving elderly individuals for research purposes.

It’s worth noting that the Sisfall dataset [86] does exist and
comprises a substantial number of simulated activities of daily
living (ADLs) in elderly people, with an acquisition frequency
of 200 Hz and 908 series. However, the Sisfall dataset contains
relatively few data points on falls by the elderly (75 series from
one volunteer). Consequently, we anticipate that the results of
this study could be modified and improved with the availability
of larger and more relevant datasets.

A third limitation identified in this study, which also repre-
sents a potential avenue for improvement, is the introduction
of a condition based on the variance of the classification
window to enhance the accuracy of fall detection models

on microcontrollers (MCUs). This approach aims to reduce
false alarms while maintaining high performance in detecting
forward drops.

Lastly, the size of the microcontroller poses a challenge for
the integration of classification models, especially since the de-
veloped system was initially intended to work with a threshold
algorithm [5]. Addressing these limitations and considering
these avenues for improvement will likely contribute to the
advancement of fall detection models on microcontrollers.

IV. CONCLUSION

In this paper, we assessed the integration of Deep Learning
models into an ultra-low power embedded system designed
for pre-impact fall detection. Using Kfall dataset, we found
that the CNN DENSE model demonstrated satisfactory per-
formances with accuracy reaching 94.70%, sensitivity 95.33%
and specificity 94.18%. The average current consumption is
6.72 mA, equivalent to a power consumption of 22.17 mW,
with a minimum inference time of 2.188 ms for the Dense
model and a maximum of 515.194 ms for the BiGRU model.
These results were compared with a comprehensive review
of the state of the art, revealing a lack of data and concern
about energy consumption, a critical aspect for nomadic de-
ployment. This study has shed light on the limitations of deep
learning for pre-impact fall detection, particularly in terms of
energy efficiency, interpretability, and continuous learning ca-
pacity. As a promising avenue for future work, spiking neural
networks (SNNs) are introduced. SNNs leverage the asyn-
chronous functioning of the human brain, employing discrete
pulses to transmit information. This bio-inspired approach
offers several potential advantages, including reduced intensive
computations, greater adaptability to continuous learning, and
improved interpretability of models through the analysis of
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neuronal activations and discharge patterns. By delving into
this direction, it should be possible to significantly enhance
the performance of portable artificial intelligence systems,
aligning them more closely with the operating principles of
the human brain. A neuromorphic chip will be integrated into
the system to design a new pre-impact fall detection model
based on spiking neural networks.

APPENDIX I

TABLE XII
COMPARATIVE NUMBER OF OPERATORS MODELS

Model Nb. of op.
Dense 11
CNN 17

LSTM 8
GRU 32

BiLSTM 12
BiGRU 63

CNN Dense 14
CNN LSTM 14
CNN GRU 50
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APPENDIX II

1×1×64

1×64

1×1×961×1×96

1×1×64 1×1×64

1×64

1×64

1×1×96

1×192

1×64 1×64

1×64

1×96

1×192

1×64 1×64

1×64

1×64

1×64 1×64

1×64

1×64

1×64

1×64

1×64

1×64

1×64

1×64

1×641×64

1×64

1

3

1×1×1

1×1×1

1

3

1×1×1

1×1×1 1×1×64

1×1×64

1×1×64

arg00

arg11

arg22

arg33

arg44

Quantize

Quantize

Quantize

Add

FullyConnected

Split

Gather

FullyConnected

Split

Add

Logistic

Mul Sub

Add

Logistic

Mul

Add

Tanh

Mul

Add

Dequantize

Reshape

Concatenation

Slice

Quantize

Reshape

Concatenation

Slice

Quantize Reshape

Concatenation

Dequantize

Add

while/add_553

while/add_420

t�.dequantize52

while/add_3141

arg44

Fig. 5. Architecture in operator WHILE from CNN GRU model
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