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Abstract
This paper experimentally investigates the behavior of analog quantum computers as commercialized by D-Wave when 
confronted to instances of the maximum cardinality matching problem which is specifically designed to be hard to solve by 
means of simulated annealing. We benchmark a D-Wave “Washington” (2X) with 1098 operational qubits on various sizes 
of such instances and observe that for all but the most trivially small of these it fails to obtain an optimal solution. Thus, 
our results suggest that quantum annealing, at least as implemented in a D-Wave device, falls in the same pitfalls as simu-
lated annealing and hence provides additional evidences suggesting that there exist polynomial-time problems that such a 
machine cannot solve efficiently to optimality. Additionally, we investigate the extent to which the qubits interconnection 
topologies explains these latter experimental results. In particular, we provide evidences that the sparsity of these topologies 
which, as such, lead to QUBO problems of artificially inflated sizes can partly explain the aforementioned disappointing 
observations. Therefore, this paper hints that denser interconnection topologies are necessary to unleash the potential of the 
quantum annealing approach.

Keywords  Quantum computing · Quantum annealing · Bipartite matching

Introduction

From a practical view, the emergence of quantum computers 
able to compete with the performance of the most powerful 
conventional computers remains highly speculative in the 
foreseeable future. Indeed, although quantum computing 
devices are scaling up to the point of achieving the so-called 
milestone of quantum supremacy [23], these intermediate-
scale devices, referred to as NISQ [22], will not be able to 
run mainstream quantum algorithms such as Grover, Shor 

and their many variants at significant practical scales. Yet 
there are other breeds of machines in the quantum comput-
ing landscape, in particular, the so-called analog quantum 
computers for which there exists a family of actual processor 
series developed and sold by the Canadian company D-Wave 
as first concrete realizations of these kinds of quantum com-
puters. These machines implement a noisy version of the 
Quantum Adiabatic Algorithm introduced by Farhi et al. in 
2001 [13]. From an abstract point of view, such a machine 
may be seen as an oracle specialized in the resolution of 
an NP-hard optimization problem1 (of the spin-glass type) 
with an algorithm that can be compared to a quantum ver-
sion of the usual simulated annealing, and hence can display 
quantum speed-up in some cases at least. In this context, 
as it is considered unlikely that any presently known quan-
tum computing paradigm will lead to efficient algorithms 
for solving NP-hard problems, determining whether or not 
quantum adiabatic computing yields an advantage over clas-
sical computing is most likely an ill-posed question given 
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present knowledge. Yet, as a quantum analogue of simulated 
annealing, attempting to demonstrate a quantum advantage of 
adiabatic algorithms over simulated annealing appears to be 
a better-posed question. At the time of writing, this problem 
is the focus of a lot of works which, despite claims of expo-
nential speedups in specific cases [12] (which also lead to the 
development of the promising Simulated Quantum Anneal-
ing classical metaheuristic [10]), hint towards a logarithmic 
decay requirement of the temperature-analog of QA but 
with smaller constants involved [25] leading to only an O(1) 
advantage of QA over SA in the general case. Such an advan-
tage has furthermore recently been experimentally demon-
strated by Albash and Lidar [1]. The present paper contrib-
utes to the study of the QA vs SA issue by experimentally 
confronting a D-Wave quantum annealer to the pathological 
instances of the maximum cardinality matching problem 
proposed in the late 80’s [26] to show that simulated anneal-
ing was indeed unable to solve certain polynomial problems 
in polynomial time. Demonstrating an ability to solve these 
instances to optimality on a quantum annealer would cer-
tainly hint towards a worst-case quantum annealing advan-
tage over simulated annealing whereas failure to do so would 
tend to demonstrate that quantum annealing remains subject 
to the same pitfalls as simulated annealing and is, therefore, 
unable to solve certain polynomial problems efficiently. 
To do so, the present paper experimentally benchmarks a 
D-Wave “Washington” (2X) with 1098 operational qubits on 
various sizes of such pathologic instances of the maximum 
cardinality matching problem and observes that for all but 
the most trivially small of these it fails to obtain an optimal 
solution. This thus provides negative evidences towards the 
existence of a worst-case advantage of quantum annealing 
over classical annealing. As a by-product, our study also 
provides feedback on using a D-Wave annealer in particular 
with respect to the size of problems that can be mapped on 
such a device due to the various constraints of the system. In 
addition, we investigate to what extent the qubits intercon-
nection topology influences these results. To do so, we study 
how simulated annealing is able to solve our hard instances 
of the bipartite matching problem when they are embedded 
in the so-called Chimera and Pegasus topologies [11] used in 
present-day D-Wave machines. These results show that when 
solved without taking any topology into account (or, equiva-
lently, when assuming a fully connected network of qubits), 
the instance sizes we are able to map on a D-Wave remains 
solvable by simulated annealing. In other words, the regime 
in which those instances becomes (asymptotically) hard for 
simulated annealing is not yet accessible to theses machines, 
due to the need for one-to-many variables to qubits assign-
ments. Then, when simulated annealing is used to solve these 
(artificially) larger QUBO instances resulting from mapping 
the original problems onto the qubits interconnection topol-
ogy, it performs no better than a quantum annealer. This, 

therefore, hints that the constraints imposed by presently used 
qubits interconnects tend to counter-productively obfuscate 
the optimization problem enough to prevent both classical 
and quantum annealing from performing well. This paper is 
organized as follows. After a brief reminder of lessons learnt 
from simulated annealing history (“Lessons from simulated 
annealing history” section), “Quantum annealing and its 
D-wave implementation” section provides some background 
on quantum annealing, the D-Wave devices and their limita-
tions. “Solving maximum cardinalty matching on a quantum 
annealer” section surveys the maximum cardinality match-
ing problem, introduces the Gn graph family underlying our 
pathologic instances and subsequently details how we build 
the QUBO instances to be mapped on the D-Wave from those 
instances. Then, “Experimental results” section extensively 
details our experimental setup and experimentations and 
“Discussion and perspectives” section concludes the paper 
with a discussion of the results and a number of perspectives 
to follow up on this work.

Lessons from Simulated Annealing History

On top of the formal analogies between simulated and quan-
tum annealing, there also appears to be an analogy between 
the latter present state of art and that of simulated anneal-
ing when it was first introduced. So it might be useful to 
recall a few facts on SA. Indeed, simulated annealing was 
introduced in the mid-80’s [9, 19] and its countless practical 
successes quickly established it as a mainstream method for 
approximately solving computationally-hard combinatorial 
optimization problems. Thus, the theoretical computer sci-
ence community investigated in great depth its convergence 
properties in an attempt to understand the worst-case behav-
ior of the method. With that respect, these pieces of work, 
which were performed in the late 80’s and early 90’s, lead 
to the following insights. First, when it comes to solving 
combinatorial optimization problems to optimality, it is nec-
essary (and sufficient) to use a logarithmic cooling sched-
ule [15, 16, 21] leading to an exponential-time convergence 
in the worst-case (an unsurprising fact since it is known 
that P ≠ NP in the oracle setting [3]). Second, particular 
instances of combinatorial problems have been designed 
to specifically require an exponential number of iterations 
to reach an optimal solution for example on the (NP-hard) 
3-coloring problem [21] and, more importantly for this 
paper, on the (polynomial) maximum cardinality matching 
problem [26]. Lastly, another line of works, still active today, 
investigated the asymptotic behavior of hard combinatorial 
problems [8, 18, 27] showing that the cost ratio between best 
and worst-cost solutions to random instances tends (quite 
quickly) to 1 as the instance size tends to infinity. These lat-
ter results provided clues as to why simple heuristics such 



SN Computer Science (2021) 2:106	 Page 3 of 12  106

SN Computer Science

as simulated annealing appear to work quite well on large 
instances as well as to why branch-and-bound type exact 
resolution methods tend to suffer from a trailing effect (i.e. 
find optimal or near-optimal solutions relatively quickly but 
fail to prove their optimality in reasonable time). Despite 
these results now being quite well established, they can also, 
as illustrated in this paper, contribute to the ongoing effort 
to better understand and benchmark quantum adiabatic algo-
rithms [13] and especially the machines that now imple-
ments it to determine whether or not they provide a quantum 
advantage over some classes of classical computations.

Quantum Annealing and Its D‑wave 
Implementation

The Generalized Ising Problem and QUBO

D-Wave systems are based on a quantum annealing process2 
whose goal is to minimize the Generalized Ising Hamilto-
nian from Eq. (1):

where the external field � and spin coupling interactions 
matrix � are given, and the vector of spin (or qubit) values 
�∕∀i, �i ∈ {−1, 1} is the variable for which the energy of 
the system is minimized. Historically speaking, the Ising 
Hamiltonian corresponds to the case where only the closest 
neighbouring spins are allowed to interact (i.e. Jij ≠ 0 ⟺ 
nodes i and j are conterminous). The generalized Ising prob-
lem, for which any pair of spins in the system are allowed to 
interact, is easily transformed into a well known 0–1 optimi-
zation problem called QUBO (for Quadratic Unconstrained 
Binary Optimization) which objective function is given by:

in which the matrix Q is constant and the goal of the optimi-
zation is to find the vector of binary variables ∀i, xi ∈ {0, 1} 
that either minimizes or maximizes the objective function 
O(Q, x) from Eq. 2. For the minimization problem (but only 
up to a change of sign for the maximization problem), it is 
trivial that the generalized Ising problem and the QUBO 
problem are equivalent given ∀i,Qii = hi , ∀i, j∕i ≠ j,Qij = Jij 
and ∀i, �i = 2xi − 1.

(1)H(�, �,�) =
∑

i

hi𝜎i +
∑

i<j

Jij𝜎i𝜎j,

(2)O(�, �) =
∑

i

Qiixi +
∑

i<j

Qijxixj,

Hence, if quantum annealing can reach a configuration of 
minimum energy, then the associated state vector solves the 
equivalent QUBO problem at the same time. As the behavior 
of each qubit in a quantum annealer allows them to be in a 
superposition state (a combination of the states “ −1 ” and 
“ +1 ”) until they relax to either one of these eigen-states, 
it is thought that quantum mechanical phenomena—e.g., 
quantum tunneling—can help reaching the minimum energy 
configuration, or at least a close approximation of it, in more 
cases than with Simulated Annealing (SA). Indeed, when SA 
only relies on (simulated) temperatures to pass over barriers 
of potential, in Quantum Annealing, quantum phenomena 
can help because tunneling is more efficient to pass energy 
barriers even in the case where the temperature is low. 
Therefore, this technique is a promising heuristic approach 
to “quickly” find acceptable solutions for certain classes of 
complex NP-Hard problems that are easily mapped to these 
machines, such as optimization, machine learning, or opera-
tional research problems.

The physical principle upon which the computation pro-
cess of D-Wave machines [17] occurs is given by a time-
dependent Hamiltonian as given in Eq. (3).

The functions A(t) and B(t) must satisfy B(t = 0) = 0 and 
A(t = �) = 0 so that, when the state evolution t = 0 changes 
to t = � , the Hamiltonian H(t) is the quantum annealing pro-
cess that lead to the final form of the Hamiltonian which is 
the objective Ising problem that requires to be minimized. 
Thus, the fundamental state H(0) = H0 evolves to a state 
H(�) = HP , the measurements made at time � give us low 
energy states of the Ising Hamiltonian (Eq. 1). The adiabatic 
theorem states that if the time evolution is slow enough (i.e. 
� is large enough), and supposing the coherence domain is 
large enough then the optimal (global) solution �(�) of the 
system can be obtained with a high probability. By using

–	 H0 =
∑

i �
x
i
 gives the quantum effects,

–	 HP =
∑

i hi�
z

i
+
∑

(ij) Ji,j�
z

i
�z

j
 is given to encode the prob-

lem of the Ising instance in the final state.

As the process of adiabatic annealing transitions the sys-
tem from a constant coupling with a superposition of spins 
because the initial Hamiltonian is based on Eigen-vectors of 
operator �̂x (on the x-axis) whilst the momentum of spin on 
HP is an Eigen-state of �̂z (on the z-axis) for which Eigen-
states of �̂x are superposition states, the adiabatic theorem 
allows transitioning from the initial ferromagnetic state on 
axis x to an eigen-state of the Hamiltonian of Eq. 1 on axis 
z and hopefully to the lowest energy of it.

(3)H(t) = A(t)H0 + B(t)HP

2  A combinatorial optimization technique functionally similar to 
conventional (simulated) annealing but which, instead of applying 
thermal fluctuations, uses quantum phenomena to search the solution 
space more efficiently [14].
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D‑wave Limitations

Nonetheless, it is worth noting, that in the case of the current 
architectures of the D-Wave annealing devices, the freedom 
to choose the Jij coupling constants is severely restrained by 
the hardware qubit-interconnection topology. In particular, 
this so-called Chimera topology is sparse, with a number 
of inter-spin couplings limited to a maximum of 6 per qubit 
(or spin variable). Figure 1 illustrates an instance of the Chi-
mera graph for 128 qubits, T = (NT ,ET ) , where nodes NT are 
qubits and represent problem variables with programmable 
weights ( hi ), and edges ET are associated to the couplings 
Jij between qubits ( Jij ≠ 0 ⟹ (i, j) ∈ ET ). As such, if the 
graph induced by the nonzero couplings is not isomorphic to 
the Chimera graph, which is the case most usually, then one 
must resort to several palliatives among which the duplica-
tion of logical qubits onto several physical qubits is the least 
disruptive one if the corresponding expanded problem can 
still fit on the target device.

Then, a D-Wave annealer minimizes the energy from the 
Hamiltonian of Eq. (1) by associating weights ( hi ) with qubit 
spins ( �i ) and couplings ( Jij ) with couplers between the spins 
of the two connected qubits ( �i and �j ). As an example, the 
D-Wave 2X system we used has 1098 operational qubits 
and 3049 operational couplers. As said previously, a num-
ber of constraints have an impact on the practical efficiency 
of this type of machines. In [5], the authors highlight four 
factors: the precision/control error which is limited by the 

(4)min �(�) = min

{
∑

i

hi�i +
∑

i,j

Ji,j�i�j

}
.

parameters � and � which value ranges are also limited3, the 
low connectivity4 in T, and the in fine small number of use-
ful qubits once the topological constraints are accounted for. 
In [4], the authors show that using large energy gaps in the 
Ising representation of the model one wants to optimize can 
greatly mitigate some of the intrinsic limitations of the hard-
ware like precision of the coupling values and noises in the 
spin measurements. They also suggest using ferromagnetic 
Ising coupling between qubits (i.e., making qubit duplica-
tion) to mitigate the issues with the limited connectivity of 
the Chimera graph. All these suggestions can be considered 
good practices (which we did our best to follow) when try-
ing to use the D-Wave machine to solve real Ising or QUBO 
problems with higher probabilities of outputting the best 
solution despite hardware and architecture limitations. A last 
point to take into consideration is that real qubits may be 
biased due to hardware defects, and this also should be taken 
into consideration when conducting a series of computing 
jobs on the D-Wave computers. As described in Sect. 5, the 
state-of-the-art recommendation is simply to change several 
times the target Ising problem by randomly choosing 10% 
of the variables and make a variable transformation from 
x to y = 1 − x . As this is not yet automatically done in the 
D-Wave tools, this is part of the pre-processing of one prob-
lem resolution onto a D-Wave computer.

Thus, pre-processing algorithms are required to adapt 
the graph of a problem to the hardware. Pure quantum 
approaches are limited by the number of variables (duplica-
tion included) that can be mapped on the hardware. Larger 
graphs require the development of hybrid approaches (both 
classical and quantum) or the reformulation of the problem 
to adapt to the architecture. For example, for a 128 × 128 
matrix size, the number of possible coefficients Jij is 8128 
in the worst-case, while the Chimera graph which associ-
ates 128 qubits ( 4 × 4 unit cells) has only 318 couplers. The 
topology, therefore, accounts only for ∼ 4% of the total num-
ber of couplings required to map a 128 × 128 matrix in the 
worst case. Although preliminary studies (e.g., [28]) have 
shown that it is possible to obtain solutions close to known 
minimums for � matrices with densities higher than those 
permitted by the Chimera graph by eliminating some coef-
ficients, they have also shown that doing so isomorphically 
to the Chimera topology is difficult. It follows that solving 
large and dense QUBO instances requires nontrivial pre and 
postprocessing as well as a possibly large number of invoca-
tions of the quantum annealer.

Fig. 1   Representation of a Chimera graph with 4 × 4 unit cells, each a 
small 2 × 4 bipartite graph, for 128 physicals qubits. The links repre-
sent all the inter-spin coupling Jij that can be different from 0

3  The range of hi ∈ [−2,+2] and Ji,j ∈ [−1,+1] is a limitation for all 
values of the variables to be included in the graph. If the values of hi 
and Ji,j are outside their respective ranges, then they are unavailable 
and not mapped
4  If the problems to be solved do not match the structure of the T 
graph architecture, then they cannot be mapped and resolved directly.
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Additionally, the next generation of systems that D-Wave 
is starting to release at the time of writing reaches above 
5000 qubits interconnected by the so-called Pegasus topol-
ogy [7, 11]. The Pegasus topology admits the Chimera 
topology as a subgraph but reaches up to a maximum degree 
of 15 to be compared to the low degree 6 maximum of the 
Chimera one. Although Pegasus-based machines are com-
mercialized just now, the D-Wave software toolchain already 
supports this new interconnect which allows to perform pre-
liminary experiments at least in terms of problem mapping 
(as we do in Sect. 5.2).

Solving Maximum Cardinalty Matching 
on a Quantum Annealer

Maximum Cardinality Matching and the �� Graph 
Family

Given an (undirectered) graph G = (V ,E) , the maximum 
matching problem asks for M ⊆ E such that ∀e, e� ∈ M2 , 
e ≠ e′ we have that e ∩ e� = � and such that |M| is maxi-
mum. The maximum matching problem is a well-known 
polynomial problem dealt with in almost every textbook on 
combinatorial optimization (e.g., [20]), yet the algorithm for 
solving it in general graphs, Edmond’s algorithm, is a non-
trivial masterpiece of algorithmics. Additionally, when G is 
bipartite i.e. when there exists two collectively exhaustive 
and mutually exclusive subsets of E, A and B, such that no 
edge has both its vertices in A or in B, the problem becomes 
a special case of the maximum flow problem and can be 
dealt with several simpler algorithms [20].

It is, therefore, very interesting that such a seemingly 
powerful method as simulated annealing can be deceived 
by special instances of this latter easier problem. Indeed, 
in a landmark 1988 paper [26], Sasaki and Hajek, have 
considered the following family of special instances of the 

bipartite matching problem. Let Gn denote the (undirected) 
graph with vertices 

⋃n

i=0
A(i) ∪

⋃n

i=0
B(i) where each of the 

A(i) ’s and B(j) ’s have cardinality n + 1 (vertex numbering 
goes from 0 to n), where vertex A(i)

j
 is connected to vertex 

B
(i)

j
 and where vertex B(i)

j
 is connected to all vertices in 

A(i+1) (for i ∈ {0,… , n} and j ∈ {0,… , n} ). These graphs 
are clearly bipartite has neither two vertices in 

⋃n

i=0
A(i) nor 

two vertices in 
⋃n

i=0
B(i) are connected. These graphs there-

fore exhibit a sequential structure which alternates 
between sparsely and densely connected subsets of verti-
ces, as illustrated on Fig. 2 for G3.

As a special case of the bipartite matching problem, the 
maximum cardinality matching over Gn can be solved by 
any algorithm solving the former. Yet, it is even easier as 
one can easily convince oneself that a maximum matching 
in Gn is obtained by simply selecting all the edges connect-
ing vertices in A(i) to vertices in B(i) (for i ∈ {0,… , n}) , i.e. 
all the edges in the sparsely connected subsets of vertices, 
and that is the only way to do so. This, therefore, leads to 
a maximum matching of cardinality (n + 1)2.

Hence, we have a straightforward special case of a poly-
nomial problem, yet the seminal result of Sasaki and Hajek 
states that the mathematical expectation of the number of 
iterations required by a large class of (classical) annealing-
type algorithms to reach a maximum matching on Gn is in 
O(exp(n)) . The Gn family therefore provides an interesting 
playground to study how quantum annealing behaves on 
problems that are hard for simulated annealing. This is 
what we do, experimentally, in the following.

QUBO Instances

In order for our results to be fully reproducible we hereaf-
ter describe how we converted instances of the maximum 
matching problem into instances of the Quadratric Uncon-
strained Boolean Optimization (QUBO) problem which 

Fig. 2   G
3
 is a quite simple instance of the maximum cardinal-

ity matching problem. While it is not a natural QUBO problem, it 
is transformable into a QUBO problem by introducing additional 

weights so that invalid solutions would not be optimal. Here the opti-
mal solution is easy: select all the edges in the sparce areas of the Gn 
graph
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D-Wave machines require as input. Let G = (V ,E) denote 
the (undirected) graph for which a maximum matching 
is desired. We denote xe ∈ {0, 1} , for e ∈ E , the variable 
which indicates whether e is in the matching. Hence we 
have to maximize 

∑
e∈E xe subject to the contraints that 

each vertex v is covered at most once, i.e. ∀v ∈ V ,

where Γ(v) , in standard graph theory notations, denotes the 
set of edges which have v as an endpoint. In order to turn this 
into a QUBO problem we have to move the above constraints 
into the economic function, for example in maximizing,

which, after rearrangements, leads to the following eco-
nomic function,

Yet we have to reorganize a little to build a proper QUBO 
matrix. Let e = (v,w) , variable xe has coefficient 1 in the first 
term, 2� in the second term (for v) then 2� again in the sec-
ond term (for w) then −� in the third term (for v and e� = e ) 
and another −� again in the third term (for w and e� = e ). 
Hence, the diagonal terms of the QUBO matrix are,

Then, if two distinct edges e and e′ share a common vertex, 
the product of variables xexe′ has coefficient −� , in the third 
term, when v corresponds to the vertex shared by the two 
edges, and this is so twice. So, for e ≠ e′,

Taking � =⏐ E ⏐

5, for example for G1 , we thus obtain an 8 
variables QUBO (the corresponding matrix is given in [29]) 
for which a maximum matching has cost 68, the second-best 
solutions has cost 53 and the worst one (which consist in 
selecting all edges) has cost -56.

(5)
∑

e∈Γ(v)

xe ≤ 1,

∑

e∈E

xe − �
∑

v∈V

(
1 −

∑

e∈Γ(v)

xe

)2

,

∑

e∈E

xe +
∑

v∈V

∑

e∈Γ(v)

2�xe −
∑

v∈V

∑

e∈Γ(v)

∑

e�∈Γ(v)

�xexe�

Qee = 1 + 4� − 2� = 1 + 2�.

Qee� =

{
−2� if e ∩ e� ≠ �,

0 otherwise.

Experimental Results

Concrete Implementation on a D‑Wave

In this section, we detail the steps that we have followed to 
concretely map and solve the QUBO instances associated 
to Gn , n ∈ {1, 2, 3, 4} , on a DW2X operated by the Univer-
sity of South California. Unfortunately (yet unsurprisingly), 
the QUBO matrices defined in the previous section are not 
directly mappable on the Chimera interconnection topology 
and, thus, we need to resort to qubit duplication i.e., use 
several physical qubits to represent one problem variable (or 
“logical qubit”). Fortunately, the D-Wave software pipeline 
automates this duplication process. Yet, this need for dupli-
cation (or equivalently the sparsity of the Chimera intercon-
nection topology) severely limits the size of the instances 
we were able to map on the device and we had to stop at G4 
which 125 variables required using 951 of the 1098 available 
qubits. Table 1 provides the number of qubits required for 
each of our four instances. For G1 , G2 the maximum duplica-
tion is 6 qubits and for G3 , G4 it is 18 qubits.

Eventually, qubit duplication leads to an expanded 
QUBO with more variables and an economic function 
which includes an additional set of penalty constraints to 
favor solutions in which qubits representing the same vari-
able indeed end up with the same value. More precisely, 
each pair of distinct qubits q and q′ (associated to the same 
QUBO variable) adds a penalty term of the form �q(1 − q�) . 
Where the penalty constant � is (user) chosen as minus the 
cost of the worst possible solution to the initial QUBO 
which is obtained for a vector filled with ones (i.e., a solu-
tion that selects all edges of the graph and which therefore 
maximizes the highly-penalized violations of the cardinality 
contraints). This, therefore, guarantees that a solution which 
violates at least one of these consistency constraints cannot 
be optimal (please note that we have switched from a maxi-
mization problem in Sect. 4.2 to a minimization problem as 
required by the machine). Lastly, as qubit duplication leads 
to an expanded QUBO which support graph is trivially iso-
morphic to the Chimera topology, it can be mapped on the 
device after a renormalization of its coefficients to ensure 
that the diagonal terms of Q are in [−2, 2] and the others in 
[−1, 1].

Table 1   Number of qubits required to handle the QUBO instances 
associated to G

1
 , G

2
 , G

3
 and G

4
 . See text

#var. #qubits Average dup. Max. dup.

G
1

8 16 2.0 6
G

2
27 100 3.7 6

G
3

64 431 6.7 18
G

4
125 951 7.6 18

5  As ⏐ E ⏐ is clearly an upper bound for the cost of any matching, any 
solution which violates at least one of the constraints  (5) cannot be 
optimal.
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Results Summary

This section reports on the experiments we have been able 
to perform on instances of the previous QUBO problems. As 
already emphasized, due to the sparsity of the qubit inter-
connection topology, our QUBO instances were not directly 
mappable on the D-Wave machine and we had to resort to 
qubit duplications (whereby one problem variable is repre-
sented by several qubits on the D-Wave, bound together to 
end up with the same value at the end of the annealing pro-
cess). This need for qubit duplication limited us to G4 which, 
with 125 binary variables, already leads to a combinato-
rial problem of non trivial size. Yet, to solve it, we had to 
mobilize about 87% of the 1098 qubits of the machine. The 
results below have been obtained by running 10,000 times 
the quantum annealer with a 20 � s annealing time (although 
we also experimented with 200 and 2000 � s, which did not 
appear to affect the results significantly).

Additionally, to improve the quality of the results 
obtained in our experiments, we used different gauges 
(spin-reversal transformations). The principle of a gauge 
is to apply a Boolean inversion transformation to opera-
tors �i in our Hamiltonian (in QUBO terms, after qubit 
duplication, this just means replacing some variable xi by 
1 − yi , with yi = 1 − xi and updating the final QUBO matrix 
accordingly). This transformation has the particularity of 
not changing the optimal solution of the problem and of 
limiting the effect of local biases of the qubits, as well as 
machine accuracy errors [6]. Following common practices 
(e.g., [2]), we randomly selected 10% of the physical qubits 
used as gauges for each Gn instance that we mapped to the 
D-Wave. This prepocessing does indeed improve the results 
obtained, but not widely so: for example, on G4 , it leads to 
a 2.5% improvement on the mean solution cost outputted by 
the D-Wave and only a 1.2% improvement on the mean solu-
tion cost after correction of the duplication inconsistencies 
by majority voting. Our overall results are given in Table 2.

Instances Solutions

G1 . This instance leads to a graph with 8 vertices, 8 edges 
and then (before duplication) to a QUBO with 8 variables 
and 12 nonzero nondiagonal coefficients6; 16 qubits are 
then finally required. Over 10,000 runs, the optimal solution 
(with a cost of -68) was obtained 9265 times (with correc-
tion 9284 times). Interestingly, the worst solution obtained 
(with a cost of −9 ) violates duplication consistency as all the 
6 qubits representing variable 6 do not have the same value 
(4 of them are 0, so in that particular case, rounding the solu-
tion by means of majority voting gives the optimal solution).

G2 . This instance leads to a graph with 18 vertices, 27 
edges and then to a QUBO with 27 variables and 72 nonzero 
nondiagonal coefficients. Overall, 100 qubits are required. 
Over 10,000 runs the optimal solution (with cost −495 ) was 
obtained only 510 times (i.e., a  6% hitting probability). 
Although the best solution obtained is optimal, the median 
solution (with cost −388 ) does not lead to a valid matching 
since four vertices are covered 3 times7. As for G1 , we also 
observe that the worst solution (with cost −277 ) has dupli-
cation consistency issues. Fixing these issues by means of 
majority voting results only in a marginal left shift of the 
average solution cost from −398.2 to −400.4 , the median 
being unchanged.

G3 . This instance leads to a graph with 32 vertices, 
64 edges and then to a QUBO with 64 variables and 240 
nonzero nondiagonal coefficients. Post-duplication, 431 
qubits were required (39% of the machine capacity). Over 
10,000 runs the optimal solution was never obtained. 
For G3 , the optimum value is −2064 , thus the best solu-
tion obtained (with cost −1810 ) is around 15% far-off 
(the median cost of −1548 is 25% far-off). Furthermore, 

Table 2   Experimental results 
summary without (top) and with 
(bottom) majority voting to fix 
qubit duplication issues on G

1
 , 

G
2
 , G

3
 , G

4
 . See text

Opt. Best Worst Mean Median Stdev

G
1

− 68 − 68 − 9 − 66.8 − 68 4.6
G

2
− 495 − 495 − 29 − 398.2 − 388 48.1

G
3

− 2064 − 1810 − 505 − 1454.8 − 1548 157.7
G

4
− 6275 − 5527 − 2507 − 4609.9 − 4675 346.5

G
1

− 68 − 68 − 37 − 66.8 − 68 4.2
G

2
− 495 − 495 − 277 − 400.4 − 388 44.6

G
3

− 2064 − 1810 − 911 − 1496.5 − 1550 111.8
G

4
− 6275 − 5527 − 3030 − 4579.2 − 4527 314.1

6  In the Chimera topology the diagonal coefficient are not constrain-
ing as there is no limitation on the qubits autocouplings.
7  Fixing this would require a postprocessing step to produce valid 
matchings. Of course, this is of no relevance for a polynomial prob-
lem, but such a postprocessing would thus be required when opera-
tionally using a D-Wave for solving non artificial problems.
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neither the best nor the median solution lead to valid 
matchings since in both, some vertices are covered sev-
eral times. We also observe that the worst solution has 

duplication consistency issues. Figure  3a shows the 
(renormalized) histogram of the economic function as 
outputted by the D-Wave for the 10,000 annealing runs we 

(a) (b)

(c) (d)

Fig. 3   Histograms on the left represent the economic function over 10000 annealing runs on G
3
 and G

4
 . Histograms on the right represent the 

economic function over 10,000 annealing runs on G
3
 and G

4
 (with duplication inconsistencies fixed by majority voting).

Fig. 4   Graphic representation 
of the best solution obtained for 
G

4
 . See text
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performed. Additionally, since some of these solutions are 
inconsistent with respect to duplication, Fig. 3b shows the 
histogram of the economic function for the solutions in 
which duplication inconsistencies were fixed by majority 
voting (thus left shifting the average cost from −1454.8 to 
−1496.5 and the median cost from −1548 to −1550 which 
is marginal).

G4 . This instance leads to a graph with 50 vertices, 125 
edges and then to a QUBO with 125 variables and 600 
nonzero non-diagonal coefficients. Post-duplication, 951 
qubits were required (i.e., 87% of the machine capacity). 
Over 10,000 runs the optimal solution was never obtained. 
Still, Fig. 4 provides a graphic representation of the best 
solutions obtained, with cost −5527 (median and worst solu-
tions obtained respectively had costs −4675 and −2507 ). 
For G4 , the optimum value is −6075 , thus the best solution 
obtained is around 10% far-off (a better ratio than for G3 ) 
and median cost 25%. Furthermore, neither the best nor the 
median solution lead to valid matches since in both, some 
vertices are covered several times. We also observe that the 
worst solution (as well as many others) has duplication con-
sistency issues. Figure 3c shows the (renormalized) histo-
gram of the economic function as outputted by the D-Wave 
for the 10000 annealing runs we performed. Additionally, 
since some of these solutions are inconsistent with respect 
to duplication, Fig. 3d shows the histogram of the economic 
function for the solutions in which duplication inconsisten-
cies were fixed by majority voting (resulting, in this case, in 
a slight right shift of the average solution cost from -4609.9 
to -4579.2 and of the median cost from -4675 to -4527 which 
is also marginal8).

Resolution by Simulated Annealing

Simulated annealing was introduced in the mid-80’s [9, 19] 
and its countless practical successes quickly established it 
as a mainstream method for approximately solving compu-
tationally-hard combinatorial optimization problems. As 
simulated annealing has been around for so long, there is no 
need to introduce the general method but rather to specify 
the key free parameter choices. In our case we have used a 
standard cooling schedule of the form Tk+1 = 0.95Tk start-
ing at T0 = |c0| ( c0 is the high cost of the initial random 
solution) and stopping when T < 10−3 . The key parameter 
of our implementation, however, is the number of iterations 
of the Metropolis algorithm running for each k at a constant 
temperature which we set to n, n1.5 and n2 (where n denotes 
the number of variables in the QUBO). For n iterations per 
plateau of temperature, the algorithm is very fast but the 
Metropolis algorithm has less iterations to reach its station-
ary distribution and, hence, the algorithm is expected to 
provide lower quality results. On the other end of the spec-
trum, n2 iterations per plateau means that one can expect 
high-quality results but the computation time is then much 
more important.

Table 3 presents the results obtained when solving the 
raw QUBO for G1 , G2 , G3 and G4 with simulated annealing 
and several numbers of iterations for the Metropolis algo-
rithm (over just 30 runs). Needless to emphasize that simu-
lated annealing performs extremely well compared to the 
D-Wave with the worst solution of the former (yet over 30 
runs) almost always beating the best solutions obtained by 
the D-Wave over 10,000 runs. Also, the fact that simulated 
annealing (even with only n iterations per plateau) finds the 
optimal solution with high probability, suggests that the 
instance size up to G4 are too small to reach the (asymp-
totic) exponential number of iterations regime of Sasaki 
& Hajek theorem i.e., these instances are small enough to 
remain relatively easy for classical annealing (although we 

Table 3   Experimental results 
obtained when solving the raw 
QUBO instances for G

1
 , G

2
 , G

3
 

and G
4
 by means of simulated 

annealing for several numbers 
of iterations per plateau of 
temperature

Opt. Best Worst Mean Median Stdev

G
1

n − 68 − 68 − 68 − 68 − 68 0
n1.5 − 68 − 68 − 68 − 68 − 68 0
n2 − 68 − 68 − 68 − 68 − 68 0

G
2

n − 495 − 495 − 495 − 495 − 495 0
n1.5 − 495 − 495 − 495 − 495 − 495 0
n2 − 495 − 495 − 495 − 495 − 495 0

G
3

n − 2064 − 2064 − 1810 − 2004.7 − 2064 79.9
n1.5 − 2064 − 2064 − 2064 − 2064 − 2064 0
n2 − 2064 − 2064 − 2064 − 2064 − 2064 0

G
4

n − 6275 − 6275 − 5528 − 5785.3 − 5777 178.9
n1.5 − 6275 − 6275 − 6026 − 6241.8 − 6275 86.1
n2 − 6275 − 6275 − 6275 − 6275 − 6275 0

8  This slight right shift may seem counter-intuitive but the (highly 
nonlinear) majority voting operator does not provide any guarantee 
with respect to objective function improvement. It just guarantees that 
duplication issues are fixed, which is necessary (yet not sufficient) for 
a solution to be feasible.
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can observe a shift in the number of iterations per plateau 
to achieve optimality with almost certainty, e.g., for G4 this 
occurs only for n2 iterations per plateau). Yet, as shown in 
the previous section, quantum annealing was not able to 
solve them satisfactorily (for G3 and G4 ). Also, note that 
computing time is not issue when solving these instances: 
simulated annealing runs natively in less than 5 s ( G4 with 
n2 iterations per plateau) on an average laptop PC with only 
moderately optimized code.

Studying the Topology Bias

Let us emphasize that this comparison between our simu-
lated annealing and the results obtained on the D-Wave 2X 
is perfectly fair as we compare the optimization capabilities 
of two devices coming with their operational constraints. 
Yet, it should also be emphasized that, for example on G4 , 
simulated annealing solved a 125 variables QUBO problems 
while quantum annealing had to solve an (artificially) much 
larger 958 variables QUBO. So, although the larger QUBO 
is equivalent to the smaller one, it is worth investigating 
whether or not these expanded QUBO are somehow harder 
to solve by simulated annealing.

To do so, we have considered the QUBO instances 
obtained after mapping the original QUBO for G4

9 on both 
the Chimera and Pegasus topologies and attempted to solve 
them, this time, by simulated annealing.

Thus, Table 4 provides the results obtained when solving 
the expanded QUBO instances for G4 on both the Chimera 
and Pegasus topologies by means of classical annealing (also 
considering several numbers of iterations per plateau, as in 
the previous section). This time, the results obtained on the 
D-Wave are competitive with those obtained by simulated 
annealing which means that the expanded instances are 
much harder to solve (by simulated annealing) than the raw 

ones, despite them being equivalent and despite the larger 
number of iterations per plateau (since there are more vari-
ables in the QUBO) i.e., the additional computing time, 
invested to solve them. In addition, probably not unsurpris-
ingly, the denser Pegasus topology leads to smaller expanded 
QUBO instances than the Chimera one and provides better 
results (with simulated rather than quantum annealing as the 
first machines with that topology are just being released). 
Yet, although this topology is better, the results obtained 
remain very far from those obtained by simulated anneal-
ing, in “Resolution by simulated annealing” section, on the 
raw non-expanded QUBO instances. In terms of “comput-
ing” time, however, the D-Wave is several orders of magni-
tude faster. Indeed, when it takes less than a second to per-
form 10000 quantum annealing runs, solving the expanded 
( ≈ 1000 variables) G4 QUBO by simulated annealing (with 
n2 iterations per plateau) now takes several minutes on an 
average laptop computer.10

So, as a more general conclusion to this section, it appears 
that the D-Wave machine is competitive with a (heavy 
weight) simulated annealing algorithm with n2 iterations 
per plateau in terms of optimization quality and inherently 
several orders of magnitude faster. However (and that is a 
“big” however), it also appears that having to embed QUBO 
instances in either the Chimera or the Pegasus topologies 
tend to produce larger obfuscated QUBO which are much 
harder to solve by simulated annealing. This therefore hints 
that this is also counterproductive for quantum anneal-
ing and that these qubits interconnect topologies should 
be blamed, at least in part, for the relatively disappointing 
results reported in “Results summary" section.

Table 4   Experimental results obtained when solving the expanded 
QUBO instances for G

4
 on both the Chimera (top rows) and Pegasus 

(bottom rows) topologies by means of simulated annealing (30 runs) 

for several numbers of iterations per plateau of temperature. Note that 
the “D-Wave” line results from the random selection of 30 outputs 
from the 10000 runs that lead to Table 2

Opt. Best Worst Mean Median

G
4

n − 6275 − 2213 3662 1453.9 1401.0
(Chim.) n1.5 − 6275 − 4526 − 2654 − 3585.6 − 3699.8

n2 − 6275 − 5028 − 4027 − 4473.1 − 4527.0
D− Wave − 6275 − 5025 − 3551 − 4447.7 − 4525
G

4
n − 6275 − 3930 − 785 − 2609.3 − 2708.5

(Peg.) n1.5 − 6275 − 5028 − 3580 − 4305.5 − 4281.0
n2 − 6275 − 5278 − 4530 − 5035.9 − 5028.0

10  And simulated annealing being a inherently sequential algorithm, 
it does not parallelize well.

9  We limited ourselves to G
4
 as it is the larger instance we have been 

able to solve on the D-Wave 2X we had access to.
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Discussion and Perspectives

In this paper, our primary goal was to provide a study on 
the behavior of an existing quantum annealer when con-
fronted to old combinatorial beasts known to defeat classical 
annealing. At the very least, our study demonstrates that 
these special instances of the maximum (bipartite) matching 
problem are not at all straightforward to solve on a quantum 
annealer and, as such, are worth being included in a standard 
benchmark of problems for these emerging systems. Further-
more, as this latter problem is polynomial (and the specific 
instances considered in this paper even have straightforward 
optimal solutions), it allows to precisely quantify the quality 
of the solutions obtained by the quantum annealer in terms 
of distance to optimality. There also are a number of lessons 
learnt. First, the need for qubit duplication severely limits 
the size of the problem which can be mapped on the device 
leading to a ratio between 5 and 10 qubits for 1 problem 
variable. Yet, a ≈ 1000 qubits D-Wave can tackle combina-
torial problems with a few hundred variables, a size which 
is clearly nontrivial. Also, the need to embed problem con-
straints (e.g., in our case, matching constraints requiring 
that each vertex is covered at most once) in the economic 
function, even with carefully chosen penalty constants, often 
lead to invalid solutions. This is true both in terms of qubits 
duplication consistency issues (i.e., qubits representing the 
same problem variable having different values) as well as for 
problem-specific constraints. This means that operationally 
using a quantum annealer requires one or more post-pro-
cessing steps (e.g., solving qubit duplication inconsistencies 
by majority voting), including problem-specific ones (e.g., 
turning invalid matchings to valid ones).

Of course, the fact that, in our experiments, the D-Wave 
failed to find optimal solutions for nontrivial instance sizes, 
does not rule out the existence of an advantage of quantum 
annealing as implemented in D-Wave systems over classical 
annealing (the existence of which, as previously emphasized, 
as already been established on specially designed problems 
[1]). However, our results tends to rule out (or confirm) the 
absence of an exponential advantage in the general case 
of quantum over classical annealing. In addition, since the 
present study takes a worst-case (instances) point of view, 
it does not at all imply that D-Wave machines cannot be 
practically useful, and, indeed, its capacity to anneal in a few 
tens of � s makes it inherently very fast compared to software 
implementations of classical annealing. Stated otherwise, 
in the line of [24], the present study provides additional 
experimental evidences that there are (even non NP-hard) 
problems which are hard for both quantum and classical 
annealing and that on these quantum annealing does not per-
form significantly better.

Additionally, this paper experimentally demonstrates that 
dealing with the qubits interconnection topology issue in 
existing quantum annealers is a necessary step on the road to 
unleash the full potential of this technology. First, the need 
for qubit duplication severely limits the size of the problems 
which can be mapped on quantum annealing devices. Fur-
thermore, this need for duplication also tends to obfuscate 
the optimization problem to be solved leading to results of 
significantly lower quality. This fact unfortunately tends to 
obliterate the overwhelming timing advantage of quantum 
over simulated annealing. Hence, although there might of 
course be many pitfalls laying ahead quantum analog com-
puting, we argue that unless much denser qubits intercon-
nects are developed, it will be difficult for the approach to 
compete with classical algorithms on real-world problems, 
both in terms of size and model complexity, even if the num-
ber of qubits keeps on increasing.

In terms of perspectives, it would of course be interest-
ing to test larger instances on D-Wave machines with more 
qubits. It would also be very interesting to benchmark a 
device with the next generation of D-Wave qubit intercon-
nection topology (the so-called Pegasus topology [11]) 
which is significantly denser than the Chimera topology and 
also have larger coherence domains. Both these advances 
should be relevant for the possible outcomes of the com-
putation, but that requires testing. On the more theoretical 
side of things, trying to port Sasaki and Hajek proof [26] to 
the framework of quantum annealing, although easier said 
than done, is also an insightful perspective. Lastly, bipartite 
matching over the Gn graphs family also gives an interesting 
playground to study or benchmark emerging classical quan-
tum-inspired algorithms (e.g. Simulated Quantum Anneal-
ing [10]) or annealers.
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