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A B S T R A C T   

Background and purpose: Lung macrophages (LMs) are critically involved in respiratory diseases. The primary 
objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 
(PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and 
CCL22) by human LMs. 
Experimental Approach: Primary macrophages isolated from resected human lungs were incubated with NECA, 
PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the 
culture supernatants were measured using ELISAs and enzyme immunoassays. 
Key results: Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine 
production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a 
chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. 
At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phos
phodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not 
modulate their IL-13-induced production, regardless of the presence or absence of PGE2. 
Conclusions: NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of 
PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the 
previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced 
release of tumor necrosis factor alpha and M1 chemokines in human LMs.   

1. Introduction 

Lung macrophages (LMs) are key sentinel cells for the host’s primary 
defense and are involved in the pathophysiology of pulmonary inflam
matory diseases (such as asthma and chronic obstructive pulmonary 
disease (COPD)) and viral respiratory diseases (such as respiratory 
syncytial virus-induced bronchiolitis and COVID-19) [1–7]. Human LMs 
orchestrate lung inflammation and can be committed to a continuum of 

functional phenotypes, depending on various environmental cues [8]. 
The phenotypes at the ends of the spectrum are often referred to as 
classically activated M1 macrophages and alternatively activated M2 
macrophages [9–11]. The commitment to an M1 phenotype is induced 
by signals generated during Th1-mediated immune responses or by 
exposure to microbial products, such as lipopolysaccharide (LPS). A M2 
state of activation induced by the canonical Th2 interleukins (IL) IL-4 
and IL-13 is also called M2a, since it may differ from the M2 states of 
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activation induced by other stimulatory factors [12,13]. Human M2a 
macrophages produce chemokines (such as CCL13, CCL17, CCL18, and 
CCL22 [14–16]) that differ from the cytokines and chemokines pro
duced by M1 macrophages [14,17,18]. In allergic asthma, an imbalance 
towards M2 macrophages may be a pathogenic factor [19–21]. 

Prostaglandin E2 (PGE2) can be synthesized by all cell types, and 
elevated levels are observed during most inflammatory responses 
[22,23]. PGE2 promotes inflammatory processes in most organs but has 
predominantly anti-inflammatory effects in the lung [23–25]. Accord
ingly, we have previously shown that exogenous PGE2 can inhibit the 
production of M1 cytokines by LPS-stimulated human LMs [26]. 
Although PGE2 is best documented as having an anti-inflammatory role 
during type 2 inflammation, this prostaglandin might also have a 
proinflammatory role or might alter the type 1 vs. type 2 balance; in 
turn, this would allow or enhance the emergence of a type 2 response 
[25,27]. 

Adenosine is an endogenous purine nucleoside that is rapidly 
released from all cells when ATP is degraded during hypoxia, chronic 
inflammation, or other stress phenomena [28]. Adenosine signaling can 
be markedly amplified under these pathological conditions, with a 100- 
fold increase in the local concentration (i.e. up to 2–30 μM). However, 
the compound has a short half-life and is metabolized by adenosine 
deaminase or adenosine kinase [29–31]. Adenosine has a clear role in 
inflammatory lung diseases like asthma and COPD [32–35]. We have 
previously shown that 5́–N-ethyl-carboxamidoadenosine (NECA, a 
metabolically stable, full agonist of the four subtypes of adenosine re
ceptor [31]) can inhibit the production of M1 cytokines by LPS- 
stimulated human LMs [36]. However, adenosine can also promote 
alternative activation in the macrophage cell line RAW 264.7, as shown 
by the up-regulation of IL-4-induced arginase (Arg) activity and tissue 
inhibitor of metalloprotease 1 (TIMP-1) production [37,38]. 

Both adenosine and PGE2 stimulate adenylate cyclase and intracel
lular cAMP accumulation through the adenosine A2 receptors and the 
EP4 receptor subtypes, respectively. In human LMs, the generation of 
intracellular cAMP by PGE2 and NECA is involved in the downregulation 
of LPS-induced M1 cytokine production [26,36]. Furthermore, the in
hibition of phosphodiesterases 4 (PDE4) by roflumilast leads to an in
crease in intracellular cAMP levels and to the inhibition of LPS-induced 
production of M1 cytokines by human LMs [26,39]. 

The putative roles of adenosine and PGE2 in the regulation of M2a 
chemokine production by human LMs have not been addressed previ
ously. Hence; the main objectives of the present study were to (i) assess 
the effects of NECA and PGE2 on the IL-4/IL-13-stimulated production of 
chemokines in human LMs, and (ii) establish whether or not roflumilast 
enhanced the effects of NECA and PGE2. 

2. Methods 

2.1. Isolation and culture of primary human LMs 

The use of human lung tissues for research was approved by an 
institutional review board (Comité de Protection des Personnes Ile de 
France VIII, Boulogne-Billancourt, France), and all patients gave their 
informed consent, prior to surgery. Lung tissues were obtained from 34 
patients (23 males and 11 females; mean ± SD age: 62.8 ± 7.8 years; 10 
current smokers and 19 ex-smokers; mean pack-years: 41.7 ± 15.2; 
mean FEV1 = 89.5 ± 14.2 %; mean FEV1/FVC ratio: 0.76 ± 0.09; 9 
patients with (non-severe) COPD (FEV1/FVC < 0.7)) undergoing sur
gical resection for lung carcinoma and who had not received chemo
therapy or radiotherapy before surgery. Lung macrophages were 
isolated from finely minced peripheral tissues far from the tumor 
[16,26,36]. Briefly, the fluid collected from several washings of the 
minced lung tissues with sterile culture medium (Roswell Park Memorial 
Institute (RPMI) 1640 medium supplemented with 100 µg.mL− 1 strep
tomycin, 100 U.mL− 1 penicillin and 2 mM glutamine) was centrifuged 
(300 x g, 10 min), and the cell pellet was resuspended in RPMI 1640 

supplemented with 10 % heat-inactivated fetal calf serum (FCS), 2 mM 
L-glutamine, and antibiotics. Resuspended viable cells were then plated 
at 106 cells mL− 1 per well in a 24-well plate. After a 90 min incubation at 
37 ◦C (in a humidified 5 % CO2 atmosphere), non-adherent cells were 
removed by gentle washing. The adherent cells (≈200 × 103 cells per 
well) were > 95 % pure macrophages, as determined by May–
Grünwald–Giemsa staining and CD68 immunocytochemistry. Cell 
viability exceeded 90 %, as assessed by trypan blue dye exclusion. Using 
a CytoFLEX SRT flow cytometer (Beckman Coulter Life Sciences, Ville
pinte, France), we sought to identifying alveolar (AM) versus interstitial 
(IM) macrophages with antibodies targeting CD14 (Beckton-Dickinson 
(BD)-555397), CD45 (Miltenyi (M)-130–110-639), CD43 (Invitrogen (I)- 
563521), CD206 (M− 130− 126− 637), CD169 (I-63–1699-42), HLA-DR 
(M− 130− 111− 944), and live/dead cells (I-L3224). Human AMs were 
defined as CD45+/CD169+/CD206+/CD43+/CD14low and human 
IMs were defined as CD45+/CD169+/CD206+/CD43-/CD14high. The 
vast majority (~90 %) of the LMs were AMs, and the mean proportion of 
IMs after the adherence step was ~ 10 % in four independent samples. 

2.2. Incubation of LMs with an adenosine receptor agonist (NECA), 
PGE2, IL-4, IL-13, and roflumilast 

Stock solutions of 10 mM roflumilast and NECA were prepared in 
dimethylsulfoxide (DMSO). The PGE2 stock solution (10 mM) was pre
pared in ethanol. All subsequent dilutions were prepared daily in sup
plemented RPMI. The maximal DMSO concentration applied to cells in 
culture did not exceed 0.1 % and had no effect on either cell viability or 
cytokine production (data not shown), as reported previously [16,26]. 

The 24-well plates containing LMs were washed with warm medium, 
and 1 mL of fresh medium supplemented with 1 % FCS was then added 
per well. The LMs were preincubated with PGE2 (10 nM) or NECA (1 µM) 
in the presence or absence of the PDE4 inhibitor roflumilast (1 or 100 
nM), or vehicle for 30 min prior to stimulation with IL-4 (10 ng.mL− 1) or 
IL-13 at concentrations of 10 or 50 ng.mL− 1. Our choice of the IL-4 and 
IL-13 concentrations and incubation time (24 h) was based on previous 
experiments on time- and concentration-dependencies [16]. Up to a 
concentration of 1 µM, roflumilast is a selective PDE4 inhibitor [40]; we 
tested it at a clinically relevant concentration (1 nM) and a 100-fold 
higher concentration that fully inhibited PDE4 (100 nM). All wells 
were run in duplicate for each series of experiments performed with LMs 
isolated from a resected lung. Following the 24 h incubation with IL-4 or 
IL-13, cell culture supernatants were collected and stored at − 20 ◦C for 
later assays of M2a chemokines and PGE2. 

Chemokine and prostaglandin E2 assays. The production of M2a 
chemokines was assessed by measuring their concentrations in the LM 
culture supernatants, using an ELISA (Duoset Development System) 
according to the manufacturer’s instructions (R&D Systems Europe, 
Lille, France). The supernatants were diluted with RPMI as appropriate, 
and the optical density was determined at 450 nm with an MRX II 
microplate reader from Dynex Technologies (Saint-Cloud, France). 
Cytokine concentrations are expressed in pg per 106 LMs. The limit of 
detection (LOD) was 4 pg.mL− 1 for the CCL13, CCL18 and CCL22 assays 
and 16 pg.mL− 1 for the CCL17 assay. PGE2 was determined using an 
enzyme immunoassay kit (LOD: 36 pg⋅mL− 1), according to the manu
facturer’s instructions (Cayman Chemical Europe, Tallinn, Estonia). 

2.3. Materials 

RPMI 1640 medium, penicillin–streptomycin stabilized solution, 
DMSO, L-glutamine and FCS were purchased from Eurobio Biotech
nology (Les Ulis, France). LPS (from Escherichia coli serotype 0111:B4, 
batch 029 K4022), PGE2, and DMSO were purchased from Sigma Aldrich 
(St. Louis, MO, USA). Human recombinant IL-13 and IL-4 were obtained 
from R&D Systems (Lille, France). Roflumilast was synthesized by 
Nycomed GmbH (Konstanz, Germany) and provided as a generous gift 
by Dr H. Tenor. NECA was purchased from Tocris Bioscience (Bristol, 
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UK). All other chemicals were of analytical grade and were obtained 
from Prolabo (Fontenay sous Bois, France). All cell culture plastics were 
from CCL (Nemours, France). 

Statistical analysis. Data are expressed as the mean ± standard 
error of the mean (SEM); n represents the number of patients from whom 
LM preparations were obtained. Statistical analyses were performed on 
log-transformed data using an unpaired or paired Student’s t test, a one- 
way, repeated-measures analysis of variance (followed by Sidak’s test 
for multiple comparisons), or a mixed-effects repeated-measures anal
ysis of variance (followed by Tukey’s test for multiple comparisons), as 
appropriate. The threshold for statistical significance was set to p <
0.05. All analyses were performed using GraphPad Prism® software 
(version 8.4.2, GraphPad Software Inc., San Diego, CA, USA). 

3. Results 

3.1. Effects of LPS, IL-4, IL-13, PGE2, NECA and roflumilast on the 
production of M2a chemokines and PGE2 by LMs 

Incubation with LPS (10 ng.mL− 1) did not alter the production of 
CCL13, CCL17, and CCL22 but induced a small (2.1-fold), statistically 
significant elevation in the production of CCL18 (Fig. 1). Incubation 
with IL-4 (10 ng.mL− 1) or IL-13 (50 ng.mL− 1) was associated with much 
greater elevations in the production of CCL13 (19.2- and 20.2-fold, 
respectively), CCL17 (30.3- and 33.9-fold, respectively) and CCL22 
(9.4- and 8.6-fold, respectively) (Fig. 1). The level of CCL18 was slightly 
higher (2.1- to 2.4-fold) after treatment with LPS, IL-4 or IL-13, which 
ruled out this chemokine as a true M2a cytokine (Fig. 1). This result 
differs from a previous report on human monocyte-derived macrophages 
(MDMs), in which the level of CCL17 (rather than CCL18) was elevated 
to the same extent by LPS, IL-4, and IL-13 [15]. There were no 

significant differences in the levels of M2a chemokines after exposure to 
IL-4 (10 ng.mL− 1) or IL-13 (50 ng.mL− 1). However, the levels of M2a 
chemokines were significantly lower (data not shown) after exposure to 
IL-13 (10 ng.mL− 1). 

Treatment with LPS was associated with a much higher (141-fold) 
level of PGE2 production by LMs, as observed previously [26]. In 
contrast, treatment with IL-4 and IL-13 weakly influenced the produc
tion of this prostaglandin (Table 1). The PGE2 concentration in the su
pernatant of LMs exposed to LPS for 24 h was around 10 nM. Exposure to 
this PGE2 concentration promoted M2a chemokine production, with a 
significant greater levels of basal production of CCL13, CCL17, CCL18, 
and CCL22 (4.8-, 11.3-, 1.6- and 3.2- fold, respectively; Fig. 1). 

Furthermore, treatment with NECA was associated with significantly 
greater levels of CCL13, CCL17, CCL18, and CCL22 (6.2-, 12.8-, 1.8-, and 
3.5-fold, respectively; Fig. 1). In contrast, full inhibition of PDE4 by 100 
nM roflumilast was not associated with a difference in the basal 

Fig. 1. Effects of IL-13, IL-4, PGE2, NECA, roflumilast, and LPS on M2a chemokine production.  

Table 1 
Prostaglandin E2 production induced by IL-4, IL-13 and LPS in human LMs.   

Baseline IL-4 
treatment 

IL-13 
treatment 

LPS treatment 

PGE2 

(pg/106 

LM) 

37.8 ±
6.9 

52.9 ± 8.8 
** 

42.7 ± 9.6 
** 

5221.3 ±
1411.1 
## 

Lung macrophages were incubated with LPS (10 ng.mL− 1), IL-4 (10 ng.mL− 1) or 
IL-13 (50 ng.mL− 1). PGE2 was assayed in supernatants collected after 24 h of 
culture. The results are quoted as the mean ± SEM of 18 to 20 independent 
experiments. # indicates a significant difference, relative to the baseline condi
tion (##p < 0.01); * indicates a significant difference, relative to the LPS con
dition (**p < 0.01). 
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production of M2a chemokines (Fig. 1). 

3.2. Effects of PGE2, NECA and roflumilast on IL-4/IL-13-induced 
production of M2a chemokines by LMs 

The combination of PGE2 with IL-4 or IL-13 significantly enhanced 
the production of the four chemokines, relative to IL-4 or IL-13 alone 
(Fig. 2). The difference in the production of CCL13, CCL17, CCL18, and 
CCL22 was respectively 1.4-, 2.4-, 1.3-, and 1.6-fold for IL-4 and 1.7-, 
2.6, 1.4- and 1.4-fold for IL-13. 

The combination of NECA with IL-4 or IL-13 also significantly 
enhanced chemokine production, relative to IL-4 or IL-13 alone (Fig. 2). 
The difference in the production of CCL13, CCL17, CCL18, and CCL22 
was respectively 1.6-, 3.2-, 1.3-, and 1.7-fold for IL-4 and 1.6-, 2.7-, 1.3- 
and 1.6-fold for IL-13. In a limited series of experiments, exposure to the 
adenyl cyclase activator forskolin (25 µM) was associated with similar 
relative increases in the IL-13-induced production (1.3- to 1.7-fold) of 
the M2a chemokines (data not shown). 

In contrast, 1 or 100 nM roflumilast did not significantly alter the IL- 
13-induced production of M2a chemokines (Fig. 2, Table 2). Further
more, roflumilast did not enhance or inhibit the M2a chemokine pro
duction induced by the combination of PGE2 and IL-13 (Table 2). 

4. Discussion and conclusions 

The present study of human LMs is the first to have shown that (i) 
exposure to NECA and PGE2 is associated with greater production of 
CCL13, CCL17, CCL18, and CCL22 and enhancement of the stimulatory 
effects of IL-4 and IL-13 on the production of these M2a chemokines, and 
(ii) inhibition of PDE4 did not influence either the basal and the IL-13 
induced production of M2a chemokines or the enhancing effect of PGE2. 

We have reported previously on the downregulation of the LPS- 
induced production of a pattern of M1 cytokines in LMs by NECA and 
PGE2, and we have discussed the involvement of the intracellular cAMP 
level in this phenomenon [26,36]. A cAMP-dependent pathway has been 
also implicated in the regulation of M2 chemokine production under 
various experimental conditions. The production of CCL22 by murine 

spleen cells (including macrophages/dendritic cells) is reportedly pro
moted by cAMP-elevating agents such as PGE2, dibutyryl cAMP, and 3- 
isobutyl-1-methylxanthine [41]. The neuropeptides vasoactive intesti
nal peptide (VIP) and the structurally related pituitary adenylate 
cyclase-activating polypeptide (PACAP) reportedly promote CCL22 
production by murine bone marrow-derived dendritic cells via the 
cAMP/PKA pathway [42]. Furthermore, PGI2 analogues (iloprost and 
treprostinil), forskolin, and a β2-adrenoceptor agonist (formoterol) 
enhanced the LPS-induced production of CCL22 in human primary 
blood monocytes and in the human monocyte cell line THP-1 [43,44]. 
Forskolin has been shown to increase the basal expression of CCL13 and 
CCL18 by human MDMs [45]. 

However, we reported previously that β2-adrenoceptor agonists 
(including formoterol) were devoid of any effect on LPS-induced 

Fig. 2. Effects of PGE2, NECA, and roflumilast on IL-13 and IL-4-induced M2a chemokine production.  

Table 2 
Effect of roflumilast on the IL-13-induced production of M2a chemokines in 
culture supernatants of human LMs, according to the presence or absence of 
PGE2.   

IL-13 IL-13 +
ROF (1 
nM) 

IL-13 +
ROF 
(100 
nM) 

IL-13 +
PGE2 

IL-13 +
PGE2 

+ ROF 
(1 nM) 

IL-13 +
PGE2 

+ ROF 
(100 
nM) 

CCL13 826.9 ±
174.8 

812.1 ±
171.5 

841.7 ±
196.9 

1534.6 ±
312.5** 

1430.9 
± 333.4 

1614.8 
± 380.7 

CCL17 290.5 ±
87.5 

267.7 ±
64.9 

286.2 ±
85.1 

1339.9 ±
429.9** 

1223.4 
± 401.3 

1254.1 
± 439.9 

CCL18 130.3 ±
17.7 

121.5 ±
16.2 

132.5 ±
18.2 

174.7 ±
15.7* 

169.8 ±
17.3 

181.2 ±
13.7 

CCL22 4471.2 
± 470.3 

4482.9 
± 501.8 

4210.3 
± 488.7 

7872.3 ±
810.4*** 

7938.8 
± 976.8 

7445.5 
± 853.0 

Human LMs were pre-incubated with 1 nM or 100 nM roflumilast (ROF) or 
vehicle, prior to the addition of IL-13 (50 ng.mL− 1) and in the presence or 
absence of PGE2 (10 nM). The supernatant concentrations of the M2a chemo
kines were measured using ELISAs after 24 h of culture and are expressed in pg/ 
106 LMs (except for CCL18, expressed in ng/106 LMs). The data are reported as 
the mean ± SEM of 6 independent, paired preparations..*p < 0.05; **p < 0.01; 
***p < 0.001 vs. IL-13 in the absence of PGE2. 
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cytokine release by LMs [46]; this contrasts with the agonists’ known 
inhibitory effects on human monocytes and MDMs [46]. Furthermore, 
both forskolin and dibutyryl-cAMP suppressed CCL17 and CCL22 pro
duction by interferon gamma and tumor necrosis factor (TNF)-α -stim
ulated HaCaT keratinocytes [47]; this contrasted with their enhancing 
effects on M2 chemokine production in the aforementioned cellular 
preparations of murine macrophages and human monocytes. Taken as a 
whole, these results suggest that the regulatory role of the adenylyl 
cyclase-cAMP system depends on the inflammatory stimulus, the cell 
type, and the cell’s state of differentiation. Lastly, and above all, murine 
macrophages and dendritic cells and human monocytes, MDMs and 
macrophage-derived cell lines are all surrogate cell models that do not 
adequately recapitulate the biology of human primary tissue macro
phages [7,48–51]. It was therefore important to assess the effects of 
cAMP-elevating agents on the production of M2a chemokines by human 
LMs. In the present study, a PGE2 concentration close to that induced in 
vitro by LPS and a NECA concentration equivalent to the adenosine 
concentration induced by hypoxia (taking into account NECA’s 10-fold 
higher affinity for the adenosine receptors, relative to adenosine) pro
moted the basal production of M2a chemokines although to a lesser 
extent than IL-4 or IL-13. In sharp contrast, we have previously shown 
that PGE2 and NECA did not alter the basal production of M1 chemo
kines [26,36]. 

4.1. Regulation of the IL-4/IL-13-induced production of M2a chemokines 
by PGE2 and NECA 

PGE2 and NECA also enhanced the IL-4- and IL-13-induced produc
tion of M2a chemokines by human LMs. We found that the effect was 
somewhat smaller and less consistent for CCL18. In murine splenic 
macrophages and dendritic cells, PGE2 reportedly enhanced IL-4- 
induced CCL22 production [41]. Apart from their effect of the produc
tion of M2a chemokines, adenosine and NECA act synergistically with 
IL-4 and IL-13 to induce the production of two M2 markers (Arg and 
TIMP-1) by the RAW 264.7 murine macrophage cell line [37]. The 
stimulatory effects of adenosine and NECA on alternative macrophage 
activation were mediated chiefly by A2B receptors [37,52], which con
trasts with the predominant role of A2A receptors in downregulating 
LPS-induced macrophage M1 activation [36,52]. In murine bone 
marrow-derived macrophages and RAW 264.7 macrophages, two cAMP- 
elevating agents (db-cAMP or 8-Br-cAMP) and IL-4 were associated with 
greater expression of Arg-1, and the combination of IL-4 and the cAMP 
elevating agents exerted a synergistic effect on Arg-1 expression and Arg 
activity [53–55]. The elevated cAMP concentration resulted in the 
activation and greater nuclear localization of the transcription factor C/ 
EBPβ and the subsequent increase in the expression of Arg-1 (55). 

Taken as a whole, these results contrast sharply with the previously 
reported inhibitory effects of NECA and PGE2 on the LPS-induced release 
of TNF-α and M1 chemokines in human LMs [26,36]. 

4.2. Effect of PDE4 inhibition on the production of M2a chemokines 

A number of previous studies (including some of our own) in human 
MDMs and LMs have found that the presence of PGE2 (i.e. an increase in 
cAMP formation) was required for the reduction in the LPS-induced 
production of TNF-α and some M1 chemokines by PDE4 inhibitors. 
These findings suggested that the inhibition of PDE4 only amplified the 
cAMP response (by inhibiting cAMP degradation) when cAMP synthesis 
was simultaneously activated [26,56]. In the present study, roflumilast 
alone did not enhance the basal production or IL-13-stimulated pro
duction of the M2a chemokines. This finding was probably due to the 
very weak production of PGE2 by unstimulated LMs and IL-13- 
stimulated LMs. Hence, roflumilast could not have had an enhancing 
effect on IL-13-induced M2a chemokine production. 

In RAW 264.7 macrophages, the PDE4 inhibitor rolipram had no 
effect alone but enhanced Arg activity when combined with IL-4 [54]. 

Unlike the 16-fold increase in Arg activity induced by IL-4 in RAW 264.7 
cells, Arg activity in human alveolar macrophages (AMs) from healthy 
volunteers was not increased by IL-4 alone [54]; this finding again 
emphasized that murine models of macrophages do not recapitulate the 
biology of human LMs. Furthermore, the use of a combination of for
skolin and IBMX (a nonspecific PDE inhibitor) to produce a maximal 
increase in intracellular cAMP levels was associated with a weak (less 
than 2-fold elevation) in Arg activity [54] - suggesting that in AMs, 
cAMP regulates this M2 marker to a modest extent only. 

To further assess the effect of roflumilast on the production of M2a 
chemokines, we performed experiments with PGE2. At a clinically 
relevant concentration and at a concentration that fully inhibited PDE4, 
roflumilast did not enhance the effect of a combination of IL-13 and 
PGE2 on the production of the M2a chemokines. Our use of the selective 
PDE4 inhibitor roflumilast (rather than a non-specific PDE inhibitor like 
IBMX) is unlikely to explain the absence of an enhancing effect on the 
production of M2a chemokines in response to PGE2 and IL-13. Indeed, 
we have shown previously that the PDE isoenzyme pattern in human 
LMs [26] is similar to that seen in human MDMs [56] and AMs [57]. 
These macrophages show PDE4 activity along with PDE3 and PDE1 
activities. In experiments with MDMs, a PDE3-selective inhibitor 
showed little or no potentiation of chemokine expression when com
bined with forskolin or PGE2 (suggesting that PDE3 is not greatly 
involved in controlling chemokine expression), whereas a PDE4- 
selective inhibitor increased the PGE2- and the forskolin-induced pro
duction of chemokines. Therefore, PDE4 appears to be the main regu
lator of the cAMP-dependent pathways that increase chemokine 
expression in human MDMs [45]. Although human LMs have various 
distinctive features, 10 nM PGE2 might have caused an optimal, cAMP- 
dependent enhancement of the IL-13-induced production of M2a che
mokines (as suggested by the similar increases observed with NECA and 
forskolin); this would have left no room for further enhancement by 
another modulator of the adenylyl cyclase-cAMP system. 

Roflumilast has been approved by the regulatory authorities as a 
once-daily oral tablet for the maintenance treatment of severe COPD. In 
asthma, roflumilast has been shown to (i) inhibit allergen- and exercise- 
induced bronchoconstriction [58,59], (ii) confer clinical benefits on 
patients with mild-to-moderate asthma [60,61] and (iii) be efficacious 
as an add-on treatment in patients with moderate-to-severe asthma 
inadequately controlled by combination therapy with an inhaled corti
costeroid and a long-acting β2-agonist [62]. In patients with asthma, 
CCL13, CCL17 and CCL22 are expressed in AMs and in the airways and 
are upregulated in uncontrolled, severe allergic asthma or after a 
bronchial allergen challenge [63–66]. In about a quarter of patients with 
exacerbations of asthma or COPD, blood and sputum levels of type 2 
mediators (including IL-13, CCL13, and CCL17) are elevated [67,68]. It 
is noteworthy that both CCL17 and CCL22 are actively involved in the 
recruitment of Th2 cells in lung and cutaneous allergic diseases that 
maintain the Th2 process [69]. Furthermore, CCL13 is known to be 
involved in the migration of eosinophils, monocytes, T cells, and 
immature dendritic cells, and can cause eosinophil degranulation and 
basophil histamine release [66]. CCL18 is highly expressed in human 
lung tissues, and levels are elevated in asthma and COPD [70–72]. This 
M2 chemokine has broad chemotactic activity towards immune and 
inflammatory cell types and is associated with pro-fibrotic activities 
[70,73]. The absence of an effect of roflumilast on the production of M2a 
chemokines suggests that PDE4 inhibition does not amplify the harmful 
effects of M2a chemokines in asthma and COPD. Therefore, the bene
ficial clinical effect of roflumilast and other PDE4 inhibitors in asthma 
and COPD are probably related to (i) anti-inflammatory effects on other 
cell types [39,74–76], (ii) the enhancement of β2-agonist-induced 
relaxation of human isolated bronchial preparations, and (iii) β2- 
agonist-induced anti-inflammatory effects on isolated human bronchial 
preparations and human lung parenchyma [77–79]. 

One of the strengths of our study is the used of human LMs. However, 
our LM preparations are obtained from patients undergoing surgical 
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resection for lung carcinoma; about 10 % of the LMs were IMs, the 
functions of which remain largely unknown. These patients were current 
smokers or ex-heavy smokers, and some were suffering from (non-se
vere) COPD. In a previous study of AMs obtained by bronchoalveolar 
lavage, the results of transcriptional profiling with M1- and M2-related 
gene probe sets suggested that smoking and the development of COPD 
were associated with the progressive deactivation of M1-gene expres
sion program and the progressive induction of a particular M2-related 
gene expression program [80]. Nevertheless, it has been reported that 
the expression levels of three M2 markers used in the present study 
(CCL17, CCL18, and CCL22) were similar in AMs from smokers, COPD 
patients, and healthy non-smoking subjects [80]. However, we cannot 
rule out an alteration of the cAMP-regulatory pathway involved in 
production of M2 chemokines by smoking and/or COPD. 

5. Conclusion 

In experiments with human LMs, exposure to NECA and PGE2 was 
associated with greater basal and IL-4/IL-13-induced production of M2a 
chemokines. Roflumilast was devoid of effects, whether alone or com
bined with NECA, PGE2, and IL-13. 
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