
HAL Id: hal-04462415
https://hal.science/hal-04462415

Preprint submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust estimation with latin hypercube sampling: a
central limit theorem for Z-estimators

Faouzi Hakimi

To cite this version:
Faouzi Hakimi. Robust estimation with latin hypercube sampling: a central limit theorem for Z-
estimators. 2024. �hal-04462415�

https://hal.science/hal-04462415
https://hal.archives-ouvertes.fr


QUA L I T Y AND R E L I A B I L I T Y ENG I N E E R I NG I N T E RNAT I ONA L
Spec i a l I s s ue : Eu ropean Netwo rk fo r Bus i ne s s and Indu s t r i a l S t a t i s t i c s ( ENB IS )

Robust estimation with latin hypercube sampling:
a central limit theorem for Z-estimators

Faouzi Hakimi1,2

1CEA, DES, IRESNE, , Cadarache F-13108
Saint-Paul-Lez-Durance, France
2Institut Mathématique de Toulouse„
31062 Toulouse, France

Correspondence
Faouzi Hakimi, Marseille, France
Email: faouzi.hakimi@protonmail.com

Funding information

Latin hypercube sampling (LHS) is a stratified sampling
method widely used in computer experiments. In this
work, we extend convergence results on the samplemean
with Latin hypercube sampling to the class of Z -estimators,
gathering all estimators that can be written as zeros of a
sample mean function. In particular, the asymptotic vari-
ance of this estimate is obtained. This asymptotic vari-
ance is shown to be lower using LHS than using classic
independent and identically distributed sampling. A Cen-
tral Limit theorem for Z -estimators under LHS is also
given.
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1 | INTRODUCTION

Latin Hypercube Sampling (LHS), proposed in [1], is an interesting alternative to independent and identically distributed
(i.i.d) random sampling to explore the behavior of complex systems through computer experiments [2, 3, 4]. To gener-
ate an LHS of size n , the idea is first to divide the range of variation of each variable into n equally probable intervals.
To obtain the design of experiments, the n sample points are then placed in order to have only one sample in each
row and each column. Figure 1 gives schematic examples of LHS of dimension d = 2 and size n = 4. The process is
similar in higher dimensions.
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Figure 1 Three schematic LHS examples of dimension d = 2 and size n = 4.

Several results have been established for the convergence of estimators under LHS. Most of them concern the em-
pirical mean of a measurable function with finite second order moment functions. Indeed, it has been shown in [5]
that the asymptotic variance of the mean statistic is lower under LHS than in classic i.i.d random sampling for this
kind of statistics. A central limit theorem has also been shown for the empirical mean of bounded functions in [6]
and generalized to finite third order moment functions in [7]. The aim of this paper is to extend the results on the
convergence of empirical mean estimators under LHS to the class of Z -estimators. This class gathers all estimators
that can be written as zeros of an empirical mean.
The subject and most results addressed here is covered in Chapter 2 of the thesis manuscript [8]. The paper is divided
in five sections. In Section 2, a formal definition and main convergence properties of Latin Hypercube Sampling are
given. Definitions and useful properties on Z − estimators are then presented in Section 3. Original results regarding
the asymptotic normality of this class of estimators under LHS are provided in Section 4. Finally, an example of
application is proposed in Section 5.
Let us now introduce some useful notations regarding this work. We first denote byX = (X1, . . . ,Xd ) the vector of d
independent random variables evolving in a measurable space X ⊂ Òd . For simplicity and without loss of generality,
we assume that the d inputs vary uniformly in [0, 1] so we have that, for j in J1, d K, Xj ∼ U [0,1] . Indeed, one can
always work under uniformity and then use the inverse transformation method [9] to place the support back on the
original scale and retrieve the original distribution, as long as the sampling distribution of interest is a product measure
(see for instance [6] p543 for details).
A size n (n ∈ Î∗) sample of X generated using a sampling method, generically denoted “MET HOD " is written as
follows:

• XMET HOD =
(
x(1) , . . . ,x(n )

)T
∈ Mn,d ( [0, 1] ) . We also recall that Mn,d ( [0, 1] ) denotes the space of matrices of

size n × d with coefficients in [0, 1].
• xMET HOD

j
=
(
x
(1)
j
, . . . , x

(n )
j

)T with j ∈ J1, d K is the j th column of XMET HOD corresponding to the effective gener-
ated sample of the input Xj .

A sample generated by classic i.i.d random sampling will be denoted XI I D and a sample generated by Latin Hypercube
sampling will be denoted XLH S . Similar notations will be used for any quantities estimated with either of these two
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sampling methods. If no sampling method is mentioned, it means that the results presented do not depend on the
sampling method.
We also define the measurable function g : X → Òq with q ∈ Î∗ such that g (X ) = Y . This function represents in
practice the studied simulation code. YMET HOD = g (XMET HOD ) = (y (1) , . . . ,y (n ) )T is the matrix of output samples
corresponding to XMET HOD .
For a = (a1, . . . , aq ) ∈ Òq with q ∈ Î∗, we denote by | |a | | the Euclidean norm of a such that | |a | |2 =

∑q
i=1

a2
i
.

Similarly, for any matrix A in Mq ,q (Ò) , we denote by | |A | | the pseudo Euclidean norm (Frobenius norm) such that
| |A | |2 =

∑
1≤i ,j ≤q A

2
i ,j
. Here, Ai ,j with i , j ∈ J1, qK are the components of thematrixA. A pseudo Euclidean norm | | . | | is

finally associated to the tensor spaceTq ,q ,q (Ò) . This norm is defined, for all T inTq ,q ,q (Ò) , by | |T | |2 =
∑

1≤i ,j ,k ≤q T
2
i ,j ,k

.
Here,Ti ,j ,k with i , j , k ∈ J1, qK are the components of the tensor T .
We denote by o (1) ("small oh-one") a deterministic sequence that converges to 0 and O (1) ("big oh-one") a determin-
istic sequence that is bounded. We denote by op (1) ("small oh-P-one") a sequence of random variables that converges
in probability to 0. The expression Op (1) ("big oh-P-one") denotes a sequence of random variables that is bounded in
probability. We recall that a sequence of random variables (Wn )n∈Î is bounded in probability if, for any scalar ϵ > 0,
there exist M and N such that, for all n > N , Ð( | |Wn | | > M ) < ϵ (note that this definition holds in the general case
where the norm | | . | | is not Euclidean).
Finally, a multivariate normal distribution of dimension q (q ∈ Î∗) with a mean equal to µ ∈ Òq and a covariance
matrix equal to Σ in Mq ,q (Ò) is denoted Nq (µ, Σ) .

2 | DEFINITION AND MAIN PROPERTIES ON LHS

As previously stated, Latin Hypercube Sampling is a statistical method used to generate a near-random sample of
parameter values from a multidimensional distribution. To define it formally, we denote, for d , n ∈ Î∗:

1. πj = (πj (1) . . . πj (n ) )T , j ∈ J1, d K as a random permutation of J1, nK, according to the uniform distribution on the
set of all possible permutations of J1, nK. The random permutations (πj )j ∈J1,dK are assumed to be independent.
2. uj = (u (1)

j
, . . . ,u

(n )
j

)T , j ∈ J1, d K as an i.i.d. sample of the uniform distribution U [0,1] . The samples (uj )j ∈J1,dK are
assumed to be independent.

The random permutations (πj )j ∈J1,dK and the samples (uj )j ∈J1,dK are also assumed to be independent. The n-sized
sampling xLH S

j
of the input Xj , j ∈ J1, d K, is then defined as follows:

xLH Sj =
(
x
(1)
j
, . . . , x

(n )
j

)T
=

(
1

n
(πj (1) − u (1)j

), . . . , 1
n
(πj (n ) − u (n )j

)
)T
. (1)

The corresponding LHS design of dimension d and size n is then XLH S = (xLH S1 , . . . ,xLH S
d

) .
The LHS method leads to a good point repartition in the sub-projections of dimension 1. Indeed, a LHS verifies these
two properties by definition:
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• [i ∈ J1, nK, min
1≤i ′≤n

( |x (i )
j

− x (i
′ )

j
| ) ≤ 2

n .

• max
1≤i ,i ′≤n

( |x (i )
j

− x (i
′ )

j
| ) ≥ n−2

n .

As a result of its stratified nature, the realizations of the LHS design are not i.i.d. However, several results have been
indeed established for the convergence of estimators under LHS. Most of them concern the sample mean (first order
U-statistics) of measurable functions. For instance, it has been shown in [1] that, for any measurable function, this
estimator is unbiased:
Proposition 1 Let g : [0, 1]d → Òq with d , q ∈ Î∗ be a measurable function such that Å

(
| |g (X) | |

)
< +∞. Denote

GLH Sn =
1

n

n∑
i=1

g (x(i ) ),

where x(i ) , i ∈ J1, nK is such that XLH S =
(
x(1) , . . . ,x(n )

)T
with XLH S being defined using Equation (1). Then,GLH Sn is an

unbiased estimator of G = Å
(
g (X )

)
.

A second interesting characteristic of mean value estimators under LHS is their variance. Indeed, Stein [5] showed
that if g is a real-valued function such that Å(g 2 (X) ) < +∞, then Öar(GLH Sn ) is always asymptotically smaller than
Öar(G I I Dn ) . This result is generalized to multidimensional functions by Loh in [7]. Property 2 summarizes the main
results regarding the covariance matrix of GLH Sn :
Proposition 2 Let g : [0, 1]d → Òq , d , q ∈ Î∗ be a measurable function with Å

(
| |g (X) | |2

)
< +∞. Let 1

n Σ
I I D
g and 1

n Σ
LH S
g

be the covariance matrices of G I I Dn and GLH Sn respectively, with ΣI I Dg = Å

( (
g (X ) − G

) (
g (X ) − G

)T ) .
We also define, for x = (x1, . . . , xd ) ∈ [0, 1]d :

• g−j (xj ) =
∫
[0,1]d−1 [g (x) − G ] ∏

1≤k ≤d ,k,j
dxk = Å

(
g (X ) − G |Xj

)
with j ∈ J1, d K.

• gr em (x) = g (x) − G − ∑d
j=1 g−j (xj ) .

Then we have, when n → +∞:

• ΣLH Sg =
∫
[0,1]d gr em (x)gr em (x)T dx + o (1) .

• ΣI I Dg =
∫
[0,1]d gr em (x)gr em (x)T dx +∑d

j=1

∫
[0,1] g−j (xj )g−j (xj )

T dxj .

We therefore have that ΣI I Dg − ΣLH Sg is asymptotically positive semidefinite, that is,

[ξ ∈ Òd , lim
n→+∞

ξT (ΣI I Dg − ΣLH Sg )ξ ≥ ∑d
j=1

∫
[0,1] ξ

T g−j (xj )g−j (xj )T ξdxj ≥ 0.

Since G I I Dn converges in quadratic mean to G , we can therefore conclude that GLH Sn converges in quadratic mean to
G : lim

n→+∞
Å
(
| |GLH Sn − G | |2

)
= 0. Thus, GLH Sn converges in probability to G .

In addition, Owen [6] showed a Central Limit Theorem (CLT) for this class of estimators under LHS when the model
function g is bounded. This was generalized to any function with finite third moment in [7]. Let us introduce, in the



F.Hakimi et al. 5

framework of Property 2, Rg =
∫
[0,1]d gr em (x)gr em (x)T dx. Notice that asymptotically, we have ΣLH Sg = Rg + o (1) .

The CLT can be then expressed as follows:
Theorem 1 Let g : [0, 1]d → Òq (d , q ∈ Î) be a measurable function with Å

(
| |g (X) | |3

)
< +∞. Then, assuming thatRg

is non-singular, we have
√
n (GLH Sn − G ) n→+∞−−−−→ Nq (0,Rg ) .

3 | M-ESTIMATORS AND Z-ESTIMATORS

The objective of this work being to extend the convergence results under LHS to the class of Z − estimators, it is
important to define this class and its link with the widely known class of M − estimators. M -estimators are a broad
class of estimators, generally obtained by optimizing an empirical mean. The definition ofM -estimators wasmotivated
by robust statistics. We refer to [10] for a more general discussion on the subject. The Z -estimator class is directly
related to theM -estimator class. The brief overview given here is mainly inspired by the fifth chapter of [11].
Let X = (x(1) , . . . ,x(n ) )T be the vector of n realizations of a random vectorX evolving in a measurable space X ⊂ Òd ,
with d ∈ Î∗. Its law is parameterized by a vector θ ∈ Θ ⊂ Òq , q ∈ Î∗. The statistic θ̂n = θ̂n (x(1) , . . . ,x(n ) ) is a M -
estimator of θ if it maximizes a function of the type

θ → Mn (θ) =
1

n

n∑
i=1

mθ (x(i ) ) . (2)

Here,mθ is a known real-valued function on X. Themaximum value of a function is often found by setting a derivative
(or a set of derivative) to 0. In this case, the maximization problem can be reformulated by the following vectorial
equations, with ψθ corresponding to the vector of derivatives of mθ :

Ψn (θ) =
1

n

n∑
i=1

ψθ (x(i ) ) = 0. (3)

More generally, we may consider in Eq. (3) the function ψθ as a known measurable and vector-valued map evolving
from Òd to Òq . ψθ is not necessarily a derivative of another function in the general case. The name Z -estimator is
used for estimators θ̂n satisfying the vectorial equations (3). In this paper, we are focusing on this kind of estimator.
Thus, in the following, the notation θ̂n will always refer to an estimator defined by Equation (3). This equation may
not have an exact solution. Then it is natural to use as estimator a value that is close to zero. Estimators that are
sufficiently close to being a zero often have the same asymptotic behavior.
Many known estimators can be defined as Z -estimator. For instance, let X have a distribution function fθ with a
continuous first derivative in θ ∈ Θ. In this case, the maximum likelihood estimator of θ can be written as a Z -
estimator as defined by 3 with, for x ∈ Òd , d ∈ Î∗, ψθ (x) = ( ∂ log(fθ (x) )

∂θ1
, . . . ,

∂ log(fθ (x) )
∂θq

)T .
The first useful properties regarding Z -estimators concern the link between the consistency of Ψn (θ) and the con-
sistency of θ̂n . These properties set assumptions on the objective function Ψn (θ) that ensure convergence of the
parameter θ we aim to estimate.
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For instance, if the parameter θ is a scalar, Proposition 3 presented in [11] gives sufficient conditions for the conver-
gence of θ̂n :
Proposition 3 Let Θ be a subset of the real line. Let, for any θ in Θ, Ψn (θ ) be random functions and Ψ(θ ) a fixed function
such that Ψn (θ ) converges to Ψ(θ ) in probability. Assume also that each map θ → Ψn (θ ) is continuous and has exactly
one zero θ̂n , or is non-decreasing and converges to 0 in probability. Let θ0 be a point such that Ψ(θ0 − ϵ ) < 0 < Ψ(θ0 + ϵ )
for every ϵ > 0.

Then θ̂n is a consistent estimator of θ0, meaning that θ̂n
p

−−−−→
n→+∞

θ0.

This property has the advantage of holding under simple assumptions. However, as mentioned, it is limited to the
scalar case. In [12], one can find assumptions for which the consistency of θ̂n is ensured in the multidimensional
case:
Proposition 4 Let Θ be a compact subset of Òq with q ∈ Î∗. Let also assume that the following hypotheses are true, for
any θ ∈ Θ:

• the functions Ψn (θ) and Ψ(θ) are continuous functions of θ ∈ Θ;
• each function θ → Ψn (θ) has exactly one zero θ̂n ∈ Θ;
• Ψn (θ) converges to Ψ(θ) in probability;
• Ψ(θ) vanishes only at θ0 with θ0 ∈ Θ;
• denoting, for η ≥ 0, wn (η ) = sup{ | |Ψn (θ1 ) − Ψn (θ2 ) | |; | |θ1 − θ2 | | ≤ η,θ1,θ2 ∈ Θ}; there exists two sequences (ηk )
and (ϵk ) both decreasing to 0 such that, for all k ∈ Î, Ð(wn (ηk ) > ϵk ) −−−−→

n→+∞
0.

Then θ̂n is a consistent estimator of θ0, that is θ̂n
p

−−−−→
n→+∞

θ0.

The assumption onwn (η ) seems difficult to grasp at first glance. However, as mentioned in [12], if we find a function
φ from Ò+ to Ò such that lim

η→0+
φ (η ) = 0, this assumption onwn can be obtained through: Ð(wn (η ) ≥ 2φ (η ) ) −−−−→

n→+∞
0

for each η ≥ 0. For instance, wn (η ) −−−−→
n→+∞

φ (η ) , or lim
n→+∞

wn (η ) ≤ φ (η ) give both sufficient conditions.
In addition to these convergence properties, several central limit theorems for Z -estimators have been proved. Here
we give one of them, proposed in [11]. Theorem 2 relies on the so-called classic conditions. They were formulated
in the 1930s and 1940s to mathematically tighten the informal derivation of the asymptotic normality of maximum
likelihood proposed earlier by [13]. These conditions are stringent, but they are simple. They lead to a simple proof
of the central limit theorem. This simplicity will allow us to adapt this theorem to the LHS case.
In particular, a needed assumption for the application of this theorem concerns the existence of a first and a second
order derivatives in θ for ψθ . Let us introduce these terms, assuming they exist.
We consider that Θ is an open subset of an Euclidean space of dimension q , q ∈ Î∗. The first order partial derivative
ψθ in θ ∈ Θ is a size q × q matrix is denoted ¤ψθ . Its components are such that ¤ψθj ,k =

∂ψθj
∂θk

.
The second order partial derivative is a tensor of size q × q × q (a q-vector of q × q matrices) denoted ¥ψθ such that
¥ψθj ,k ,l =

∂2ψθj
∂θk ∂θl

.
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Theorem 2 Let Θ be an open subset of an Euclidean space of dimension q , q ∈ Î∗ and X be a measurable subspace of
Òd , d ∈ Î∗. Assume that, for all θ in Θ and for all x in X, the function θ → ψθ (x) is twice continuously differentiable in θ.

Let XI I D = (x(1) , . . . ,x(n ) )T be the vector of i.i.d realizations of a random variableX = (X1, . . .Xd ) evolving in X.

Suppose also that the following assumptions are fulfilled:

1. ΨI I Dn (θ̂I I Dn ) = 1
n

∑n
i=1 ψθ̂I I Dn

(x(i ) ) = 0, [n ∈ Î;
2. there exists a unique θ0 in Θ such that Å(ψθ0 (X ) ) = Ψ(θ0 ) = 0 with θ0 in Θ;
3. Å( | |ψθ0 (X ) | |2 ) < +∞;
4. Å( ¤ψθ0 (X ) ) exists and is non-singular;
5. the function θ → ¥ψθ (x) is dominated in norm by a fixed integrable function ¥ψ (x) for every θ in the neighborhood of
θ0.

Then, if θ̂I I Dn is a consistent estimator of θ0 , we have:

(θ̂I I Dn − θ0 ) = −[Å( ¤ψθ0 (X ) ) ]−1 1
n

n∑
i=1

ψθ0 (x
(i ) ) + 1

√
n
op (1) . (4)

Moreover, we have that the sequence
√
n (θ̂I I Dn − θ0 ) is asymptotically normal with mean zero and a covariance matrix

equal to [Å( ¤ψθ0 (X ) ) ]−1Å
(
ψθ0 (X )ψθ0 (X )T

)
[Å( ¤ψθ0 (X ) ) ]−T .

For the following, it is important to note that we have Å(ψθ0 (X )ψθ0 (X )T
)
= ΣI I Dψθ0

such that 1
n Σ

I I D
ψθ0

is the covariance
matrix of ΨI I Dn (θ0 ) . It is also important to remark that among the results presented in this section, only Theorem 2 re-
quires the specific use of an i.i.d sample, since its proof relies on the classical Central Limit Theorem (CLT) [14].

4 | Z-ESTIMATORS UNDER LHS

In this section, we extend the convergence properties of Z -estimators to LHS designs. The idea is to combine all
the above properties. Indeed, one can first notice that the Z -function Ψn (θ) is the empirical mean of ψθ . Now, as
mentioned in Section 2, the convergence of this kind of statistic under LHS holds. We use that here to show a central
limit theorem for Z -estimators under LHS.
As in Section 2, let 1

n Σ
I I D
ψθ0

and 1
n Σ

LH S
ψθ0

be the covariance matrices of ΨI I Dn (θ) and ΨLH Sn (θ) respectively. Let us now
give some noteworthy convergence properties on ΨLH Sn (θ) .
Proposition 5 Let Θ be an open bounded subset of Òq and X = [0, 1]d (q , d in Î∗). Let XLH S = (x(1) , . . . ,x(n ) )T be the
vector of LHS realizations of a random variableX = (X1, . . .Xd ) evolving in X such thatX ∼ U [0,1]d . Assume also that, for
allθ ∈ Θ,ψθ is ameasurable function from X toÒq . We then have the following properties onΨLH Sn (θ) = 1

n

∑n
i=1 ψθ (x(i ) ) :

1. If, for all θ ∈ Θ, Å( | |ψθ (X ) ) | | ) < +∞, ΨLH Sn (θ) is an unbiased estimator of Ψ(θ) = Å(ψθ (X ) ) .
2. If, for all θ ∈ Θ, Å( | |ψθ (X ) ) | |2 ) < +∞, we also have, when n → +∞:
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ΣLH Sψθ
=
∫
[0,1]d ψθr em (x)ψθr em (x)T dx + o (1) , with ψθr em being defined as in Property 2.

Moreover, we have that ΣI I Dψθ
− ΣLH Sψθ

is asymptotically positive semi-definite and that ΨLH Sn (θ) converges in quadratic
mean to Ψ(θ) . In other words, we have lim

n→+∞
Å
(
| |ΨLH Sn (θ) − Ψ(θ) | |2

)
= 0.

3. If, for all θ ∈ Θ, Å( | |ψθ (X ) ) | |3 ) < +∞ and if Rψθ =
∫
[0,1]d ψθr em (x)ψθr em (x)T dx is non-singular, we have that

√
n (ΨLH Sn − Ψ(θ) ) n→+∞−−−−→ Nq (0,Rψθ ) .

Proof. Let us show these properties one by one:

1. Since, for all θ ∈ Θ, the function x → ψθ (x) with x ∈ X is measurable and Å( | |ψθ (X ) ) | | ) < +∞, ΨLH Sn (θ) is an
unbiased estimator of Ψ(θ) by Property 1.
2. This is a direct consequence of Property 2.
3. This is a direct consequence of Theorem 1. ■

All these properties on ΨLH Sn (θ) allow to show that θ̂LH Sn is a consistent estimator of θ0. Indeed, the assertion 2 of
Property 5 ensures the convergence in probability of ΨLH Sn (θ) to Ψ(θ) . As mentioned before, Properties 3 and 4 do
not impose any other conditions on the sampling scheme. We therefore have, under the conditions of application of
at least one of these properties, that θ̂LH Sn converges to θ0 in probability. Let us now establish a Central Limit Theorem
for Z -estimators under LHS.
Theorem 3 Let Θ be an open subset of an Euclidean space of dimension q with q ∈ Î∗ and X = [0, 1]d with d ∈ Î∗.
Assume that, for all θ ∈ Θ and for all x ∈ X, the function θ → ψθ (x) is twice continuously differentiable in θ. The first
order derivative is a size q × q matrix denoted ¤ψθ and the second order partial derivative is a size q × q × q tensor denoted
¥ψθ . Let XLH S = (x(1) , . . . ,x(n ) )T be the vector of LHS realizations of a random variableX = (X1, . . .Xd ) evolving in X
such thatX ∼ U [0,1]d .

Suppose also that the following hypotheses are fulfilled:

1. [n ∈ Î,Ψn (θ̂LH Sn ) = 1
n

∑n
i=1 ψθ̂LH Sn

(x(i ) ) = 0;
2. there is θ0 ∈ Θ such that Å(ψθ0 (X ) ) = Ψ(θ0 ) = 0;
3. Å( | |ψθ0 (X ) | |2 ) < +∞;
4. Å( ¤ψθ0 (X ) ) is non-singular and such that Å( | | ¤ψθ0 (X ) | |2 ) < +∞;
5. the function θ → ¥ψθ (x) is dominated in norm by a fixed integrable function ¥ψ (x) for every θ in the neighborhood of
θ0.

Then, if θ̂LH Sn is a consistent estimator of θ0, we have:

(θ̂LH Sn − θ0 ) = −[Å( ¤ψθ0 (X ) ) ]−1 1
n

n∑
i=1

ψθ0 (x
(i ) ) + 1

√
n
op (1) . (5)

In particular, letting 1
n Σ

LH S
θ0

be the covariance matrix of θ̂LH Sn , we have
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ΣLH Sθ0
= [Å( ¤ψθ0 (X ) ) ]−1ΣLH Sψθ0

[Å( ¤ψθ0 (X ) ) ]−T + o (1) , with ΣLH Sψθ0
=
∫
[0,1]d ψθ0r em

(x)ψθ0r em
(x)T dx + o (1) asymptot-

ically. Moreover, we have that ΣI I Dθ0
− ΣLH Sθ0

is asymptotically positive semi-definite.

In addition, if the function ψθ0 is such that Å( | |ψθ0 (X ) | |3 ) < +∞ and if Rψθ0
=

∫
[0,1]d ψθ0r em

(x)ψθ0r em
(x)T dx is

non-singular, we have that the sequence
√
n (θ̂LH S − θ0 ) is asymptotically normal with mean zero and a covariance matrix

equal to [Å( ¤ψθ0 (X ) ) ]−1Rψθ0
[Å( ¤ψθ0 (X ) ) ]−T .

Proof. The reasoning of this proof is adapted from the one given in [11] to demonstrate Theorem 2.
By Taylor’s theorem, as Ψn (θ) is continuous and twice differentiable, \ θ̃LH Sn between θ0 and θ̂LH Sn such that:

ΨLH Sn (θ̂LH Sn ) = 0 = ΨLH Sn (θ0 ) + ¤ΨLH Sn (θ0 ) (θ̂LH Sn − θ0 ) +
1

2
(θ̂LH Sn − θ0 )T ¥ΨLH Sn (θ̃LH Sn ) (θ̂LH Sn − θ0 ) .

We have, since Å( | |ψθ0 (X ) | |2 ) < +∞ that ΨLH Sn (θ0 ) = 1
n

∑n
i=1 ψθ0 (x

(i ) ) converges in probability to Å(ψθ0 (X ) ) = 0,
thanks to Property 5: ΨLH Sn (θ0 )

p
−−−−→
n→+∞

Å(ψθ0 (X ) ) = 0.
Similarly, since ¤ΨLH Sn (θ) is the empirical mean of the matrix ¤ψθ over XLH S = (x(1) . . .x(n ) )T , then ¤ΨLH Sn

p
−−−−→
n→+∞

Å( ¤ψθ0 (X ) ) (with Å( | | ¤ψθ0 (X ) | |2 ) < +∞). In addition, thanks to assumption 4, we also have that Å( ¤ψθ0 (X ) ) is non-
singular.
The term ¥ΨLH Sn (θ) corresponds to the empirical mean of the q × q × q tensor ¥ψθ over XLH S = (x(1) . . .x(n ) )T . By
assumption 5, there is a ball B around θ0 such that ¥ψθ is dominated in norm by | | ¥ψ | |. Since we have θ̂LH Sn

p
−−−−→
n→+∞

θ0,
we also have Ð(θ̃LH Sn ∈ B) −−−−→

n→+∞
1. Moreover, if θ̃LH Sn ∈ B, we have:

| | ¥ΨLH Sn (θ̃LH Sn ) | | = | | 1n
∑n
i=1 ¥ψ

θ̃LH Sn
(x(i ) ) | | ≤ 1

n

∑n
i=1 | | ¥ψ (x(i ) ) | | .

Since | | ¥ψ | | is integrable and the right term is an empirical mean, it converges to a finite value thanks to Property 2.
Hence, it is the case for the left term.
So that, we can rewrite the Taylor’s expansion as follows:

−ΨLH Sn (θ0 ) =
(
Å( ¤ψθ0 (X ) ) + op (1) +

1

2
(θ̂LH Sn − θ0 )TOp (1)

)
(θ̂LH Sn − θ0 ) .

Since θ̂n converges in probability to θ0, we have that (θ̂n − θ0 )Op (1) converges to 0 and thus:

−ΨLH Sn (θ0 ) =
(
Å( ¤ψθ0 (X ) ) + op (1)

)
(θ̂LH Sn − θ0 ) .

This leads to the equation given in 3, considering that Å( ¤ψθ0 ) is non-singular and that we have asymptotically
ΨLH Sn (θ0 ) = 1√

n
Op (1) :
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(θ̂LH Sn − θ0 ) = −[Å( ¤ψθ0 (X ) ) ]−1 1
n

n∑
i=1

ψθ0 (x
(i ) ) + 1

√
n
op (1) . (6)

Using this result, we directly have ΣLH Sθ0
= [Å( ¤ψθ0 (X ) ) ]−1ΣLH Sψθ0

[Å( ¤ψθ0 (X ) ) ]−T + o (1) . Moreover, we have that
ΣI I Dψθ0

− ΣLH Sψθ0
is asymptotically positive semi-definite thanks to Property 5. Thus, this is also the case for ΣI I Dθ0

−
ΣLH Sθ0

.
Finally, if we suppose that Å( | |ψθ0 (X ) | |3 ) < +∞ and that Rψθ0

is non-singular, we have thanks to the assertion
3 of Property 5 that √

n (θ̂LH Sn − θ0 ) is asymptotically normal with mean zero and a covariance matrix equal to
[Å( ¤ψθ0 (X ) ) ]−1Rψθ0

[Å( ¤ψθ0 (X ) ) ]−1. ■
These results give an asymptotic convergence for θ̂LH Sn with, in the univariate case, a lower asymptotic variance of
estimation than θ̂I I Dn (corresponding to n (Σ

θ̂I I Dn
−Σ

θ̂LH Sn
) being asymptotically positive semi-definite in the multivari-

ate case). Moreover, it gives a central limit theorem for Z -estimators under LHS. While strong regularity conditions
on ψθ are needed for these results to be valid, it remains very useful in many practical cases (eg. for estimation by
maximum likelihood). In the next section, we give an example of application.

5 | APPLICATION: PARAMETERS ESTIMATION OF GENERALIZED LINEAR
MODELS (GLM)

In the context of the statistical analysis of a computational code, it is common that one wants to approximate its
outputs with a regression model. If the estimation of the modeling parameters can be expressed as a Z -estimator
and the other conditions of use are satisfied, Theorem 3 ensures that the estimation variance of these parameters is
asymptotically lower under LHS than under IID sampling. It also provides a central limit theorem under LHS.
Consider for instance the case of Generalized Linear Models (GLM), proposed in [15]. They were formulated as a
way of unifying various statistical models, including linear regression, logistic regression and Poisson regression. To
estimate the parameters of a GLM, one generally uses a Maximum Likelihood Estimator (MLE). It is therefore a special
case of Z -estimation supposing that the likelihood can be differentiated. Thus, the results presented above can be
applied to parameters estimation of a GLM.

5.1 | Definitions and main properties on GLM

Before entering in more details, let us first define GLM more formally. For simplicity and without loss of generality,
we focus here on the canonical case. A generalized linear model aims to explain a random variable Z defined in a
measurable space Z ⊂ Ò with a vector of covariables X = (X1, . . . ,Xd ), d ∈ Î∗ evolving in a measurable space
X ⊂ Òd . GLM are characterized by three components: a probability distribution that models Z , a linear predictor and
a link function.

1. The probability distribution is the random component of the model. In the GLM framework, the probability distri-
bution associated with Z belongs to the exponential family. This density function is therefore expressed, for z ∈ Z,
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α ∈ Ò and φ > 0 , as follow (canonical form):

f (z , α ,φ ) = a (α )b (z ) exp (z α
φ
) . (7)

Here,
• φ is the dispersion parameter (assumed to be known);
• a (α ) = exp (

− −v (α )
φ

) , with and v being a known twice continuously differentiable function;
• b (z ) = exp(w (z ,φ ) ) with w being a known function of z and φ.
2. The linear predictor is the quantity which incorporates the information about the covariablesX into themodel. Let
θ = (θ1, . . . , θd )T ∈ Θ be the modeling parameter, with Θ being an open-bounded subset of Òd . The linear predictor
of the GLM η is thus defined as follow, for x = (x1, . . . , xd ) ∈ X:

η =
d∑
j=1

xj θj = xθ. (8)

3. Finally, the link function expresses the functional relationship between the random component and the linear
predictor. Let h be a function that is monotone and differentiable on H ⊂ Ò. Note that this hypothesis on h implies
the existence of the inverse function h−1 so that, for any a ∈ H, h−1 ◦h (a ) = a . Let us also denotes by µ the expected
value of Z such that µ = Å(Z ) . The canonical link function is then defined by the following equation:

h (µ ) = α = η. (9)
In addition to this definition, GLMs are characterized by properties concerning their first and second-order moments.
Indeed, we have the following equalities:
• Å(Z ) = µ = ¤v (α ) ;
• Öar(Z ) = ¥v (α )φ.
Here, ¤v and ¥v are respectively the first and the second order derivatives of v in α .

Let X =
(
x(1) , . . . ,x(n )

)T be the n realizations of X and Z =
(
z (1) , . . . , z (n )

)T be the n realizations modeled by a
GLM. We also denote by α =

(
α (1) , . . . , α (n )

)T the vector linked to θ and the observations X by Equation 9: for all
i ∈ J1, nK, α (i ) = h−1 (x(i )θ) .
Suppose that one wants to estimate the optimal value θ0 = (θ0,1, . . . , θ0,d )T of the parameter θ regarding the observa-
tions of x and Z. The likelihood l of an observation z (i ) , α (i ) with i ∈ J1, nK is given by the following equation:

l (z (i ) ,x(i ) ,θ,φ ) = log(f (z (i ) , α (i ) ,φ ) ) = 1

φ
[z (i )α (i ) − v (α (i ) ) ] +w (z (i ) ,φ) . (10)

If the n realizations are independent, the global likelihood of the observations corresponds to
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L (Z,X,θ,φ ) = ∏n
i=1 l (z

(i ) ,x(i ) ,θ,φ ) . Themaximum likelihood estimator corresponds then to θ̂n = argmax
θ∈Θ

(L (Z,X,θ,φ ) ) .
Since the log function is strictly increasing on ]0, +∞[, we also have that argmax

θ∈Θ

(
(log [

L (Z,X,θ,φ )
] ) with

log [
L (Z,X,θ,φ )

]
=
∑n
i=1 log [

l (z (i ) ,x(i ) ,θ,φ )
] .

Since log[l (z (i ) ,x(i ) ,θ,φ) ] is differentiable in θ, the maximum likelihood estimator θ̂n is a solution of the vectorial
equation:

n∑
i=1

+ log[l (z (i ) ,x(i ) ,θ,φ ) ] = 0, (11)

with + log[l (z (i ) ,x(i ) ,θ,φ ) ] = ( ∂ log[l (z (i ) ,x(i ) ,θ,φ) ]
∂θ1

, . . . ,
∂ log[l (z (i ) ,x(i ) ,θ,φ) ) ]

∂θd
)T .

The quantity θ̂n is therefore a Z -estimator of θ0 as defined in Equation (3), with
ψθ (x(i ) ) = (ψθ1 (x

(i ) ), . . . ,ψθd (x
(i ) ) )T = + log[l (z (i ) ,x(i ) ,θ,φ ) ] .

Moreover,in the canonical case, we have for j ∈ J1, d K and x = (x1, . . . , xd ) ∈ X:

ψθj (x) =
∂ log[l (z ,x,θ,φ ) ]

∂θj
=
z − h−1 (xθ)

φ
xj . (12)

We can see that the estimation of the parameters of a GLM by maximum likelihood fits into the framework of Z -
estimation. Thus, let us suppose that the observations of X are obtained by a LHS. We consider the Z -estimator
defined by the equation 11, even though in this case, the realization are not i.i.d anymore. Let us discuss the conver-
gence of this estimator under LHS.

5.2 | Z -estimation of GLM parameters under LHS

Let XLH S = (x(i ) , . . .x(n ) )T be the realizations ofX generated by a LHS. As before, we suppose for simplicity that we
have X = [0, 1]d and X ∼ U [0,1]d . We also assume that Θ is an open bounded subset of Òd . Moreover, we suppose
that h is defined, and is twice continuously derivable on H. We also suppose that h and its first derivative ¤h have no
zero on H. Since h is monotone by construction, note that h−1 is also defined and twice continuously derivable for
any θ ∈ Θ and x ∈ X thanks to the inverse function theorem (see for instance [16] for more details).
Since we suppose that X and θ are bounded, we have that ΨLH Sn =

∑n
i=1 ψθ (x(i ) ) converges in probability to

Å(ψθ (X ) ) = Ψ(θ) . As we have seen, the other conditions concerning the convergence of θ̂n to θ0 are not spe-
cific to the sampling scheme. The conditions of application of Property 4 (resp 3) are verified both in the case of an
IID or a LHS design. We can thus conclude, thanks to Property 4 that θ̂n converges in probability in θ0.
Let us now verify that the conditions of application of Theorem 3 are fulfilled. First, we see that Ψn is continuous and
infinitely differentiable in θ. Plus, Å(ψθ0 ) = 0 by construction.
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We also have, for j , k ∈ J1, d K and x = (x1, . . . , xd )T ∈ X:
∂ψθj (x)
∂θk

=
−1

φ ¤h (h−1 (xθ) )
xj xk . (13)

Thus, we have that the matrix of partial derivatives ¤ψθ0 is such that Å( ¤ψθ0 (X ) ) is defined and non-singular since
h has no zero on H. Since the values of X and θ are bounded in norm, the function ψθ0 is bounded and thus
Å( | |ψθ0 (X ) | |3 ) < +∞.
Finally, we have that the elements of the tensor ¥ψθ (x) are, for j , k , l ∈ J1, d K and x = (x1, . . . , xd )T ∈ X, as fol-
lows:

∂2ψθj (x)
∂θk ∂θl

=
¥h (h−1 (xθ) )

φ ( ¤h (h−1 (xθ) ) )3
xj xk x l . (14)

Thus, | | ¥ψθ (x) | | can be bounded by an integrable function sincewe assume that the values ofθ andX are bounded.
All of these allows us to apply Theorem 3. We therefore have that the covariance matrix of estimation of θ̂LH Sn is
equal to 1

n Σ
LH S
θ0

= 1
n [Å( ¤ψθ0 (X ) ) ]−1ΣLH Sψθ0

[Å( ¤ψθ0 (X ) ) ]−T + 1
n o (1) and that ΣI I Dθ0

− ΣLH Sθ0
is asymptotically positive

semidefinite. Note that we have, with the previously introduced notations, ΣLH Sψθ0
=
∫
[0,1]d ψθ0r em

(x)ψθ0r em
(x)T dx+

o (1) asymptotically.
Finally, if we suppose that Å( | |ψθ0 (X ) | |3 ) < +∞, we have that √n (θ̂LH Sn − θ0 ) is asymptotically normal with mean
zero and a covariance matrix equal to [Å( ¤ψθ0 (X ) ) ]−1Rψθ0

[Å( ¤ψθ0 (X ) ) ]−1, assuming that
Rψθ0

=
∫
[0,1]d ψθ0r em

(x)ψθ0r em
(x)T dx is non-singular.

5.3 | Numerical example: a Poisson regression under LHS

To illustrate this result, let us consider a numerical example with a count random variable Z and a vector of covariables
X = (X1, . . . ,X9 )T (X ∼ U [0,1]9 ). In an industrial context, Z could represent for instance the number of operating
problems evaluated by a simulation code of an industrial facility. In this example, we define Z by the following Poisson
density function, for z ∈ Î∗:

f (z , λ0 ) = exp(−λ0 ) 1
z ! exp (z log(λ0 ) ), (15)

with log(λ0 ) = xθ0,x ∈ [0, 1]9 and θ0 = (θ0,1, . . . θ0,9 )T = (10, −
√
2, 1/2, −1/3,

√
5, −10,

√
2, −1/2, −

√
5)T .

One can notice Z fits in the framework of Equations 7, 8 and 9.
Let us compare numerically the performances of the maximum likelihood estimation of θ0 regarding the sampling
method (IID or LHS) in this example. To do so, we compare the variance of estimation of each parameters (θ1, . . . θ10 )T
regarding the sampling scheme and size. We also verify that there is no significant differences concerning the square
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bias of estimation [
Å(θ̂j ) − θ0,j

]2
, j ∈ J1, 9K. For each sampling method, the average value of these two metrics is

computed over L = 1000 independent LHS and IID designs with sample sizes n being from 40 to 100 (by steps of
10).

Figure 2 and 3 show respectively the evolution of the variance and the square bias of estimation of the nine estimated
parameters (θ0,1, . . . θ0,9 )T . As expected, we observe that for the nine estimated parameters, the average variance of
estimation is overall lower for the classic LHS design compared to IID. No significant differences between LHS and IID
designs are observed in terms of the square bias of estimation. As shown previously, classic LHS designs allow better
estimation performances than IID ones, regardless of the theoretical value of the estimated parameters.

Figure 2 Average estimation variances of (θ0,1, . . . θ0,9 )T according to the sampling size n for IID and LHS designs
(decimal logarithmic scale).
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Figure 3 Average estimation square bias of (θ0,1, . . . θ0,9 )T according to the sampling size n for IID and LHS designs
(decimal logarithmic scale).

6 | CONCLUSION AND PROSPECTS

The work presented here is a continuation of what was previously done on the asymptotic convergence of estimators
under Latin Hypercube Sampling (LHS). Convergence results proposed in [5], [6] and [7] concerning the estimation
of the empirical mean have been extended to the class of Z-estimators. In particular, a central limit theorem for
this class of estimators under LHS with a lower asymptotic variance than in the simple independent and identically
distributed (i.i.d) random sampling has been proposed. An example of application of these results for the estimation
of GLM parameters has also been presented. Nevertheless, some restrictive regularity conditions have been imposed
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on these estimators to establish this convergence. A possible perspective on this work could therefore be to lift some
of these restrictions, such as the existence of the Z −function second derivative for instance. Indeed, versions of the
central limit theorem for Z-estimators that are not assuming the existence of a second derivative of the Z-function are
proposed (in [11] for example). This could be used to obtain more general results than what is proposed here.
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