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System architecture optimization can support the design of novel architectures by formulating
the architecting process as an optimization problem. The exploration of novel architectures
requires physics-based simulation due to a lack of prior experience to start from, which introduces
two specific challenges for optimization algorithms: evaluations become more expensive (in time)
and evaluations might fail. The former challenge is addressed by Surrogate-Based Optimization
(SBO) algorithms, in particular Bayesian Optimization (BO) using Gaussian Process (GP)
models (Kriging). An overview is provided of how BO can deal with challenges specific to
architecture optimization, such as design variable hierarchy and multiple objectives: specific
measures include ensemble infills, a multi-step infill optimization, and hierarchical sampling
and correction algorithms. Evaluations might fail due to non-convergence of underlying solvers
or infeasible geometry in certain areas of the design space. Such failed evaluations, also known
as hidden constraints, pose a particular challenge to SBO/BO, as the surrogate model cannot
be trained on empty results. This work investigates various strategies for satisfying hidden
constraints in BO algorithms. Three high-level strategies are identified: rejection of failed points
from the training set, replacing failed points based on non-failed points, and predicting the failed
region. Through investigations on a set of test problems including a jet engine architecture
optimization problem, it is shown that best performance is achieved with a mixed-discrete GP
to predict the Probability of Viability (PoV), and by ensuring selected infill points satisfy some
minimum PoV threshold. The jet engine architecture problem features a 50% failure rate and
could not previously be solved by a BO algorithm. The developed BO algorithm and used test
problems are available in the open-source Python library SBArchOpt.

I. Nomenclature

𝑐ℎ = Hidden constraint
𝑐𝑣,𝑙 = Value constraint 𝑙
𝐹𝑅 = Failure rate
𝑓𝑚 = Objective function 𝑚

𝑔𝑘 = Inequality constraint 𝑘
𝐻𝑉 = Hypervolume
𝐼𝑅 = Imputation ratio (𝑑 subscript: discrete 𝐼𝑅; 𝑐 subscript: continuous 𝐼𝑅)
𝑘𝑑𝑜𝑒 = DoE multiplier
𝑀𝑅𝐷 = Maximum rate diversity
𝑛𝑐𝑣 = Number of value constraints
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𝑛 𝑓 = Number of objectives
𝑛𝑔 = Number of inequality constraints
𝑛𝑏𝑎𝑡𝑐ℎ = Batch size for infill points
𝑛𝑑𝑜𝑒 = Design of Experiments size
𝑛𝑖𝑛 𝑓 𝑖𝑙𝑙 = Total number of infill points generated
𝑛𝑘𝑝𝑙𝑠 = PLS components for KPLS
𝑛𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = Maximum number of parallel evaluations
𝑛𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟 = Number of valid discrete design vectors in an optimization problem
𝑛𝑥 = Number of design variables
𝑛𝑥𝑐 = Number of continuous design variables
𝑛𝑥𝑑 = Number of discrete design variables
𝑁 𝑓 𝑒 = Number of function evaluations
𝑁 𝑗 = Number of options for discrete variable 𝑗

𝑠 = Uncertainty estimate by a surrogate model
𝒙 = Design vector
𝑥𝑐,𝑖 = Continuous design variable 𝑖
𝑥𝑑, 𝑗 = Discrete design variable 𝑗

�̂� = Function value estimate by a surrogate model
𝛿𝑖 = Activeness function for design variable 𝑖

II. Introduction

System architecture optimization is an emerging field with the goal of partial automation of designing system
architectures by formulating the architecting process as a numerical optimization problem [1]. This way, a larger

design space can be explored than is possible nowadays [2], and bias towards conventional solutions can be reduced [3].
This work deals with the aspect of developing efficient optimization algorithms for solving architecture optimization
problems. For more background on architecture optimization, including how to model architecture design spaces and
how to setup evaluation code, the interested reader is referred to [4, 5].

System architecture optimization problems are subject to various aspects that make them challenging to solve: the
presence of mixed-discrete design variables stemming from architectural decisions, multiple objectives to optimize for
stemming from conflicting stakeholder needs [6], and the fact that the evaluation functions have to be treated as black-box
functions [7]. Another salient feature of architecture optimization is design variable hierarchy [8]: the phenomenon that
some design variables might decide whether other design variables are active or not, and might restrict the available
options of other design variables. Consider for example a launch vehicle design problem where both the number of
rocket stages and the fuel type of each stage are design variables [9]: it follows that the selection of the number of
stages determines whether some of the fuel-type selection variables are active or not. Evolutionary algorithms such
as NSGA-II are well-suited for solving such optimization algorithms and are currently available for use [1, 10–12].
When searching for novel system architectures to solve for example sustainability challenges, design expertise based on
historical regression analysis may be not available, however. In general when designing new architectures, physics-based
simulation is needed to accurately predict the performance of architectural candidates. This trend has two major
consequences for optimization algorithms [12]:

1) Evaluating a design candidate is expensive, and therefore the optimizer should aim to find the optimum (or Pareto
front) is as little function evaluations as possible;

2) Evaluation of a design candidate can fail, for example because of unstable underlying equations, infeasible
physics, or infeasible geometry.

To deal with the challenges of expensive evaluation, Surrogate Based Optimization (SBO) algorithms have been
developed. These algorithms train a regression or interpolation surrogate model of the objective 𝑓 (x) and constraint
𝑔(x) functions with respect to the design variables x. These models are then used to generate infill points for exploring
the design space and search for the optimum or Pareto front. The principle of SBO is visualized in Figure 1. An
especially powerful type of SBO is Bayesian Optimization (BO), where Gaussian Process (GP) models are used to
provide not only an estimate of the function value �̂�(x) but also an estimate of the associated uncertainty 𝑠(x). BO is
more effective at solving optimization problems than SBO algorithms with other surrogate models [13], and has been
extended to work for constrained [14, 15], mixed-discrete [13, 16], hierarchical [9, 17, 18] and multi-objective [19, 20]
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problems. The combination of all aspects has been demonstrated for architecture optimization [12, 21, 22].

Fig. 1 Principle of Surrogate-Based Optimization (SBO), reproduced from [12].

Evaluation failures manifest themselves as so-called hidden constraints [23], which are also known as unknown,
unspecified, forgotten, virtual, and crash constraints [23, 24]. When a hidden constraint is violated (i.e. an evaluation has
failed), the objective 𝑓 and constraint 𝑔 functions are assigned NaN (Not-a-Number). In the taxonomy of Le Digabel &
Wild [24] hidden constraints are classified as NUSH constraints: Non-quantifiable (the degree of constraint violation is
not available, only whether it is violated or not), Unrelaxable (violating the constraint yields no meaningful information
about the design space), Simulation (a simulation must be run in order to find out the status), and Hidden (the existence
of the constraint is not known before solving the problem). Hidden constraints are assumed to be deterministic, mainly
meaning that we do not consider evaluation failures due to temporary problems such as software license availability or
network problems. Finding out whether the hidden constraint is violated may take as long, if not longer, than a normal
evaluation [23]. The design space can be separated in regions with satisfied and violated hidden constraints, denoted as
viable and failed regions, respectively. Depending on the design problem, the failed region can take up a significant
part of the design space: Krengel & Hepperle report up to 60% for a wing design problem [25], and for an airfoil
design problem Forrester et al. up to 82% failed points [26]. Hidden constraints pose a particular challenge to SBO
algorithms however: evaluation failures assign NaN (not-a-number) values to objective and constraints, and it is not
possible to train a surrogate model on NaN’s [10].

A review of dealing with hierarchical optimization challenges for BO will be given in Section III, which is extended
to hidden constraints in Section IV. The paper finishes with a demonstration of a jet engine optimization problem in
Section V and the conclusions in Section VI.

III. Bayesian Optimization in Hierarchical Design Spaces
Before diving into strategies for dealing with hidden constraints, this section reviews strategies for dealing with the

other challenges of architecture optimization using Bayesian Optimization (BO) algorithms as originally published
in [12], and introduces the BO algorithm how it will be used in the rest of this work. The algorithm is implemented as
ArchSBO in the open-source SBArchOpt∗ Python library [27].

∗https://sbarchopt.readthedocs.io/
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Gaussian Process Model Selection For non-hierarchical problems, the mixed-discrete Gaussian Process (GP) models
(also known as Kriging models) implemented in the Surrogate Model Toolbox (SMT)† are used. These models support
continuous, integer and categorical variables through kernels developed by Saves et al. [18, 28]. GP models that
support hierarchical variables have been developed in [18] and extended to also support categorical hierarchical variables
in [12]. Investigations have shown that these hierarchical GP models outperform non-hierarchical GP models for
problems with non-linear or non-smooth objective or constraint functions.

A big disadvantage of GP models is that it becomes computationally expensive to train these models for high-
dimensional spaces [29]. One way of dealing with this is to define a feature space of lower dimension to train the GP, and
provide a conversion between input and feature spaces [30]. One specific method is Kriging with Partial Least Squares
(KPLS) [31], which has recently been extended to work with discrete variables [32, 33] and is implemented in SMT [18].
Investigations show that using Kriging with Partial Least Squares (KPLS) [31] works well for architecture optimization
problems and significantly reduces training time, at a moderate cost of optimizer performance. As a rule-of-thumb, we
apply KPLS for problems with more than 10 design variables, and set the number of KPLS components 𝑛𝑘𝑝𝑙𝑠 to 10 in
that case.

Selecting Infill Points Infill points are selected by optimizing infill criteria (also known as acquisition functions), and
selecting the best one for a wide range of optimization problems influences BO performance significantly. It was shown
that using an ensemble of infills performs best. The size of the infill batch should be set to the maximum number of
parallel equations: 𝑛𝑏𝑎𝑡𝑐ℎ = 𝑛𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 . An infill ensemble combines multiple underlying infills into a multi-objective
infill problem and thereby provides two main advantages [34]:

1) The selected infill points are a compromise of the underlying infills, thereby mitigating problems with different
infill criteria suggesting to explore wildly different parts of the design space [35];

2) Since the infill problem itself results in a Pareto front, it is easy to select multiple infill points for batch evaluation
without needing to retrain surrogate models [36].

The infill ensemble is built-up of the following underlying infills:
• For single-objective optimization: Lower Confidence Bound (LCB) [37], Expected Improvement (EI) [7], and

Probability of Improvement (PoI) [38];
• For multi-objective optimization: Minimum PoI (MPoI) [39] and Minimum Euclidean PoI (MEPoI) [21].

Selecting the best infill points is an optimization problem itself, and with the same design space as the architecture
optimization problem. To successfully deal with mixed-discrete hierarchical variables, the following sequential
optimization procedure is applied:

1) Apply NSGA-II to search the mixed-discrete, hierarchical design space, solving the multi-objective infill problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 (𝒙)
𝑤.𝑟.𝑡. 𝒙𝑑 , 𝒙𝑐

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 �̂�𝑘 (𝒙) ≤ 0

where 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 represents infill criteria 𝑚, 𝒙𝑑 and 𝒙𝑐 represent the discrete and continuous design variables, and
�̂�𝑘 represents the predicted mean of constraint function 𝑘 . Infill objectives 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 are normalized and inverted
such that they become minimization objectives.

2) Select 𝑛𝑏𝑎𝑡𝑐ℎ points 𝒙𝑠𝑒𝑙 from the resulting Pareto front according to:
• If 𝑛𝑏𝑎𝑡𝑐ℎ = 1, select a random point;
• If 𝑛𝑏𝑎𝑡𝑐ℎ > 1, select the points with the lowest crowding distance as used in NSGA-II [40].

3) For each selected point 𝒙𝑠𝑒𝑙,𝑖 , improve the active continuous variables by solving following single-objective
problem using SLSQP:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖𝑚𝑝𝑟 (𝒙)
𝑤.𝑟.𝑡. 𝒙𝑐 ∩ 𝛿

(
𝒙𝑠𝑒𝑙,𝑖

)
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 �̂�𝑘 (𝒙) ≤ 0

†https://smt.readthedocs.io/
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where 𝒙𝑐 ∩ 𝛿
(
𝒙𝑠𝑒𝑙,𝑖

)
represents the active continuous design variables at point 𝒙𝑠𝑒𝑙,𝑖 , and 𝑓𝑖𝑚𝑝𝑟 the scalar

improvement objective:

Δ 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 (𝒙) = 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 (𝒙) − 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 (𝒙𝑠𝑒𝑙,𝑖)
𝑓𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝒙) = 100

(
maxΔ 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙 (𝒙) − minΔ 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙 (𝒙)

)2
𝑓𝑖𝑚𝑝𝑟 (𝒙) =

∑ (
Δ 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚 (𝒙)

)
+ 𝑓𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝒙)

This objective promotes improvement in direction of the negative unit vector, so that all underlying infill objectives
are improved simultaneously while not deviating too much from the original 𝑥𝑠𝑒𝑙,𝑖 to maintain batch diversity.

Sampling Hierarchical Design Spaces When sampling hierarchical design space for creating the initial Design of
Experiment (DoE), care must be taken that all sections of the design space are sufficiently represented because of
a possible large discrepancy between how often individual discrete design variable values appear [6]. For example,
the discrete design vectors representing pure jet engines (vs turbofan engines) in the jet engine design problem of
Bussemaker et al. [10] only make up 0.02% of the design space. This discrepancy can be measured for each discrete
design variable by the rate diversity 𝑅𝐷 𝑗 metric, or at the problem level by the max rate diversity 𝑀𝑅𝐷, defined as:

𝑅𝑎𝑡𝑒𝑠 𝑗 =
{
𝑅𝑎𝑡𝑒( 𝑗 , 𝛿 𝑗 = 0), 𝑅𝑎𝑡𝑒( 𝑗 , 0), .., 𝑅𝑎𝑡𝑒( 𝑗 , 𝑁 𝑗 − 1)

}
(1)

𝑅𝐷 𝑗 = max 𝑅𝑎𝑡𝑒𝑠 𝑗 − min 𝑅𝑎𝑡𝑒𝑠 𝑗 (2)
𝑀𝑅𝐷 = max

𝑗∈1,..,𝑛𝑥𝑑

𝑅𝐷 𝑗 (3)

with 𝑗 the discrete design variable index, 𝛿 𝑗 = 0 denoting the case where design variable 𝑗 is inactive, 𝑁 𝑗 the number
of possible options for discrete design variable 𝑗 , and 𝑅𝑎𝑡𝑒( 𝑗 , 𝑣𝑎𝑙𝑢𝑒) the relative occurrence rate of that value in all
valid discrete design vectors. To ensure sufficient representation of design vectors subject to high rate diversities, a
hierarchical sampling method is applied that works as follows:

1) Generate all possible valid discrete design vectors 𝑥𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟 and obtain associated activeness information 𝛿;
2) Group design vectors by active variables 𝑥𝑎𝑐𝑡 ;
3) Weight each group by the number of active variables 𝑛𝑎𝑐𝑡 ;
4) Sample discrete design vectors according to the weights of each group;
5) Assign values to active continuous variables using Sobol’ [41] sampling.

Investigations showed that this sampling method performs well for non-hierarchical problems, and performs better
than random or LHS sampling for hierarchical problems. This was confirmed for the situations where the optimum
either lies in the largest design vector group or the smallest, showing that groups of all sizes are represented sufficiently.

Optimizing in Hierarchical Design Spaces Finally, it was demonstrated that more integration of hierarchical
information into the optimization problem yields better results. This mainly translates to the usage of the hierarchical
sampling method described above, for which 𝑥𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟 and activeness information 𝛿 is needed, and the application of
correction and imputation as a repair operator. Correction and imputation ensure that all evaluated design vectors are
valid, meaning that they satisfy value constraints and that all inactive design variables have canonical values. Value
constraints occur when selecting a value for one design variable restricts the available values for another. For example, in
the Apollo mission design problem [42], selecting a total crew size of 2 limits the number of crew members in the lunar
module to 1 or 2, whereas a total crew size of 3 means there can be 1, 2, or 3 members assigned to the lunar module.
Canonical values as applied to inactive design variables by imputation are 0 for discrete variables and center-domain for
continuous variables. The principles of correction and imputation are visualized in Figure 2, showing how the declared
design space (consisting of the Cartesian product of all discrete design variable values) is transformed to the valid
design space (consisting of unique corrected and imputed design vectors).
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Fig. 2 Illustration of correction and imputation in hierarchical design spaces, showing how the different sets of
design vectors relate to each other, reproduced from [12].

Correction and imputation are made available as a standalone repair operator so that it can be used during sampling.
This is important, because there might be a large difference between the declared design space as defined by the
Cartesian product of all design variable values, and the valid design space containing only canonical design vectors.
This difference is measured by the imputation ratio 𝐼𝑅, defined as:

𝐼𝑅𝑑 =

∏𝑛𝑥𝑑

𝑗=1 𝑁 𝑗

𝑛𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟
(4)

𝐼𝑅𝑐 =
𝑛𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟 · 𝑛𝑥𝑐∑𝑛𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟

𝑙=1
∑𝑛𝑥𝑐

𝑖=1 𝛿𝑖 (𝒙𝑑,𝑙)
(5)

𝐼𝑅 = 𝐼𝑅𝑑 · 𝐼𝑅𝑐 (6)

with 𝑛𝑥𝑑 and 𝑛𝑥𝑐 the number of discrete and continuous design variables, respectively, 𝑛𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟 the number of valid
discrete design vectors, 𝛿𝑖 the activeness function for design variable 𝑖, and 𝐼𝑅𝑑 and 𝐼𝑅𝑐 the discrete and continuous
imputation ratio, respectively. An imputation ratio of 1 indicates no hierarchy. Higher values represent the ratio between
the declared and valid design spaces sizes and thereby design space hierarchy. Imputation ratio can also be interpreted as
the amount of random vectors that need to be generated in order to find one valid canonical design vector. For example
for the suborbital vehicle design problem in [43] there are 123𝑒3 possible architectures, however the Cartesian product
of design variables yields 2.8𝑒6 design vectors: therefore, the imputation ratio 𝐼𝑅 = 2.8𝑒6/123𝑒3 = 22.8. This means
that on average for every 22.8 randomly generated design vectors, there will be only one that represents a valid design.
Without correction and imputation it will be difficult for an optimization algorithm to generate new valid design vectors
due to this effect. This applies to BO as well as to evolutionary optimization algorithms. A problem-agnostic correction
algorithm is used that corrects invalid discrete design vectors to the closest valid discrete design vector, as measured by
the Euclidean distance. This correction algorithm, however, depends on the availability of 𝑥𝑣𝑎𝑙𝑖𝑑,𝑑𝑖𝑠𝑐𝑟 : if this is not
available then problem-specific correction should be used.

6



To conclude, the BO algorithm described in this section and implemented as ArchSBO in SBArchOpt‡ [27]
features:

• Hierarchical mixed-discrete Gaussian Process models;
• Use of Kriging with Partial Least Squares (KPLS) to reduce training times for high-dimensional problems;
• Ensemble infill criteria for batch infill generation for single- and multi-objective optimization problems;
• Sequential-optimization for selecting infill points;
• Hierarchical sampling algorithm that groups and weights valid discrete design vectors to deal with rate diversity

effects;
• Problem-agnostic similarity-based correction algorithm and the availability of correction and imputation as a

repair operator to deal with imputation ratio effects.

IV. Hidden Constraint Strategies in Bayesian Optimization
This section identifies and investigates various strategies for dealing with hidden constraints in Bayesian Optimization

(BO) algorithms. Although we only discuss the integration with BO, the following discussions apply to any Surrogate-
Based Optimization (SBO) algorithm in principle.

A. Literature Review and Strategy Classification
Hidden constraints are encountered in many engineering problems, Müller & Day [23] provide several examples.

They also provide an overview of strategies tried in the past, including for non-BO algorithms. For example, for
algorithms that depend on some ranking-based selection procedure rather than surrogate model building, such as
evolutionary algorithms, it suffices to apply the extreme barrier approach: replace NaN by +∞ to prevent these points
being selected as parents for creating offspring for the next generation of design points. Local optimization algorithms
can deal with hidden constraints by implementing some way to retrace part of their search path. For architecture
optimization, however, we only consider method relevant for global optimization algorithms. For surrogate-based
algorithms, they mention that one of the simplest methods is to train the surrogate models only on viable points, thereby
in effect rejecting failed points from the training set. The disadvantage to this approach is that knowledge of the design
space is ignored: the optimizer might get stuck suggesting the same infill point(s) over and over, because it cannot know
that these infill points will fail to evaluate. A more advanced approach is to replace the failed points by some values
derived from viable points, as initially suggested by Forrester et al. [26] and inspired by imputation in the sense of
replacing missing data in statistical datasets. They reason that failed points actually represent missing data and can be
replaced by values of close-by viable points. However, the replaced values should drive the optimizer towards the viable
region of the design space, which leads them to formulate a method for finding replacement values from a Gaussian
Process (GP) model trained on the viable points only:

𝑦𝑟𝑒𝑝𝑙𝑎𝑐𝑒
(
x 𝑓 𝑎𝑖𝑙𝑒𝑑

)
= �̂�

(
x 𝑓 𝑎𝑖𝑙𝑒𝑑

)
+ 𝛼 · 𝑠

(
x 𝑓 𝑎𝑖𝑙𝑒𝑑

)
(7)

where 𝑦 represents the output value to be replaced, �̂� and 𝑠 the output and uncertainty estimates of the GP trained on
viable design points, and 𝛼 some multiplier (𝛼 = 1 in [26]). They show that their approach works well for a continuous
single-objective airfoil optimization problem.

Another strategy for replacing values of failed points is by simply selecting one or more neighbor points and applying
some aggregation function to get one value to replace. For example, Huyer & Neumaier replace failed values by the
max of 𝑛𝑛𝑏 neighbor points. This concept can be expanded by considering 𝑛𝑛𝑏 = 1 to use the closest point to select the
replacement value, or 𝑛𝑛𝑏 = 𝑛𝑣𝑖𝑎𝑏𝑙𝑒 to consider all viable points for the replacement value.

The most advanced method for dealing with hidden constraints in Surrogate-Based Optimization (SBO) algorithms
is to predict where the failed region lies with the help of another surrogate model [44]. Here the idea is to assign
binary labels to all design point based on their failure status, for example 0 meaning failed and 1 meaning viable,
train a model on this data, and then use that model to predict the so-called Probability of Viability (PoV). PoV lies
between 0% and 100% and represents the probability that a newly-selected infill point will be viable (i.e. will not fail).
During infill optimization, PoV can be used in two ways: either as a penalty multiplier to the infill criterion [44], or
as a constraint to the infill algorithm that ensures that PoV of selected infill points is at or above some threshold [45].
Different types of surrogate models have been used to predict PoV, mainly selected due to their ability for modeling such
binary classification problems. Used models include Random Forest Classifiers (RFC) [44], piecewise linear Radial

‡https://sbarchopt.readthedocs.io/
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Table 1 Comparison of strategies for dealing with hidden constraints in Bayesian Optimization.

Strategy Sub-strategy Configuration Parameter(s)

Rejection

Replacement Neighborhood [51]


Closest
𝑛-nearest, mean
𝑛-nearest, max
Global, max

𝑛

𝑛

Predicted worst [26] 𝛼

Prediction



Random Forest Classifier (RFC) [44]
Gaussian Process (GP) [47]
Support Vector Machine (SVM) [46]
Piecewise linear RBF [23]
K-Nearest Neighbor (KNN) classifier [49]

as 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙 penalty
as 𝑔𝑖𝑛 𝑓 𝑖𝑙𝑙 𝑃𝑜𝑉𝑚𝑖𝑛

Basis Functions (RBF) [23], Support Vector Machines (SVM) [46], SVM’s with RBF kernel [45], Gaussian Process
models [47, 48], and K-Nearest Neighbors (KNN) classifiers [49, 50].

To summarize the preceding discussion, there are three high-level strategies for dealing with hidden constraints in
BO, also summarized in Table 1:

• Rejection: ignore failed points when training surrogate models;
• Replacement: replace values of failed points based on values of viable points;
• Prediction: train an additional surrogate model to predict the Probability of Validity (PoV) when searching for

infill points.
Replacement can be further subdivided into neighborhood replacement, taking an aggregate over various amounts of
closest points, or predicted replacement, where a separate surrogate model trained on viable points is used to predict
values of the failed points. Prediction can be subdivided by two aspects: the integration in the infill problem and the
predictor model. Integration in the infill problem can either be done as penalty to the infill objective 𝑓𝑖𝑛 𝑓 𝑖𝑙𝑙 or as a
separate infill constraint 𝑔𝑖𝑛 𝑓 𝑖𝑙𝑙 that ensures that 𝑃𝑜𝑉 (x) ≥ 𝑃𝑜𝑉𝑚𝑖𝑛. The predictor model can in principle be any binary
classification model that also exposes the probability of belonging to one of the two classes in order to express PoV.

B. Implementation into Bayesian Optimization Algorithms
The rejection and replacement strategies are implemented into the BO algorithm in a preprocessing step before

training the GP models. The training set is separated into a viable and a failed set; for rejection the viable set is then
simply discarded, whereas for replacement the points in the failed set are assigned some value for each output (i.e. each
objective and constraint value) that is based on the viable points. Afterwards, the GP models are trained and the infill
selection process continuous as usual. The integration of the prediction strategy is more involved, as here the infill
process itself is modified. As for rejection and replacement, the training set is separated into the viable and failed
set. The viable set is then directly used to train the GP models for infill search. The additional surrogate model for
Probability of Viability (PoV) prediction is trained with a set containing all points and with binary labels assigned
according to the viability status of the points: 0 for failed points and 1 for viable points. The infill optimization problem
can then be modified by adding an inequality constraint that ensures that 𝑃𝑜𝑉 (x) ≥ 𝑃𝑜𝑉𝑚𝑖𝑛:

𝑔𝑃𝑜𝑉 (x) = 𝑃𝑜𝑉𝑚𝑖𝑛 − 𝑃𝑜𝑉 (x) ≤ 0 (8)

where 𝑃𝑜𝑉𝑚𝑖𝑛 represents a user-defined minimum PoV to be reached, and 𝑃𝑜𝑉 (x) represents the predicted PoV for a
given design point. PoV can also be integrated by modifying the infill objectives:

𝑓𝑚,𝑖𝑛 𝑓 𝑖𝑙𝑙,𝑚𝑜𝑑 (x) = 1 −
( (

1 − 𝑓𝑚,𝑖𝑛 𝑓 𝑖𝑙𝑙 (x)
)
· 𝑃𝑜𝑉 (x)

)
(9)

8



where 𝑓𝑚,𝑖𝑛𝑖𝑙𝑙 represents the 𝑚𝑡ℎ infill objective, and assuming infill objectives are normalized and to be minimized.
Figure 3 presents several steps of running BO on a test problem, with an RBF model as PoV predictor used as an
infill constraint at 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%. The test problem is the single-objective problem from Alimo et al. [45], modified
to have its optimum at the edge to the failed region near the top left corner of the 2D design space, implemented as
AlimoEdge in SBArchOpt§. As can be seen, all infill points suggested satisfy the 𝑔𝑃𝑜𝑉 constraint, however, in the
earlier iterations this constraint can be inaccurate. Several infills are generated that violate the hidden constraint, and
after each iteration the model gets more accurate at the edges to the failed regions for three locations in the design space
where the optimizer expects the optimum to lie. This visualization additionally demonstrates that the predictor model
should be able to handle one or more regions in the design space with closely-spaced failed and viable points.

C. Comparing Strategy Performances
To compare strategy performance, we use the test problems listed in Table 2 to run the set of hidden constraint

strategies listed in Table 3.

Table 2 Test problems for comparing hidden constraint strategies. All problems are available in the SBArchOpt
library [27]. Abbreviations and symbols: 𝐼𝑅 = imputation ratio, HC = hidden constraints, MD = mixed-discrete,
H = hierarchical, MO = multi-objective, 𝐹𝑅 = fail rate, 𝑛𝑥𝑐 and 𝑛𝑥𝑑 = number of continuous and discrete design
variables, respectively, 𝑛 𝑓 = number of objectives, 𝑛𝑔 = number of constraints.

Name SBArchOpt Class Ref. 𝑛𝑥𝑐 𝑛𝑥𝑑 𝑛 𝑓 𝑛𝑔 𝐼𝑅 𝐹𝑅

Branin Branin [52] 2 1 0%
HC Branin HCBranin [47] 2 1 33%
Alimo Alimo [45] 2 1 51%
Alimo Edge AlimoEdge 2 1 53%
HC Sphere HCSphere [46] 2 1 51%
Müller 1 Mueller01 [23] 5 1 67%
Müller 2 Mueller02 [23] 4 1 40%
HC CantBeam CantileveredBeamHC 4 1 1 83%
HC Carside Less CarsideHCLess 7 1 9 39%
HC Carside CarsideHC 7 3 8 66%
MD/HC CantBeam MDCantileveredBeamHC 2 2 1 1 81%
MD/HC Carside MDCarsideHC 3 4 3 8 66%
H Alimo HierAlimo 2 5 1 5.4 51%
H Alimo Edge HierAlimoEdge 2 5 1 5.4 53%
H Müller 2 HierMueller02 4 4 1 5.4 37%
H/HC Rosenbrock HierarchicalRosenbrockHC [53] 8 5 1 1 1.5 21%
MO/H/HC Rosenbrock MOHierarchicalRosenbrockHC [53] 8 5 2 1 1.5 60%

§https://sbarchopt.readthedocs.io/
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Fig. 3 Several optimization steps between iteration 1 and 20 of BO executed on a test problem with its optimum
lying at the edge to the failed region, as shown in the bottom row. The main GP is shown on the left (darker means
a lower, more optimal value), and the RBF model for predicting PoV is shown on the right. The RBF model
is used as an infill constraint with 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%, showing green and red contours for satisfied and violated
constraint values, respectively. Green, red, and magenta points represent viable, failed, and selected infill points,
respectively.
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Compared to the previously identified predictor models, we additionally test a Variational GP and the mixed-discrete
GP developed in [54]. A Variational GP does not assume a Gaussian distribution and therefore might be able to more
accurately model discontinuous functions as seen in classification problems [55]. We use the implementation provided
in Trieste¶ [56]. Through a quick pre-study, we additionally discard Support Vector Machine (SVM) and piecewise
linear RBF classifiers due to their bad performance in higher-dimensional and mixed-discrete test problems.

Table 3 Tested Bayesian Optimization hidden constraint strategies. Abbreviations: GP = Gaussian Process.

Strategy Sub-strategy Configuration Model Implementation

Rejection
Replacement Neighborhood Global, max

Local
5-nearest, max
5-nearest, mean

Predicted worst 𝛼 = 1 SMT∗

𝛼 = 2 SMT∗

Prediction Random Forest Classifier 𝑃𝑜𝑉𝑚𝑖𝑛 = 50% scikit-learn†

K-Nearest Neighbors 𝑃𝑜𝑉𝑚𝑖𝑛 = 50% scikit-learn†

Radial Basis Function (RBF) 𝑃𝑜𝑉𝑚𝑖𝑛 = 50% Scipy‡

Gaussian Process Classifier 𝑃𝑜𝑉𝑚𝑖𝑛 = 50% scikit-learn†

Variational GP 𝑃𝑜𝑉𝑚𝑖𝑛 = 50% Trieste§

Mixed-discrete GP 𝑃𝑜𝑉𝑚𝑖𝑛 = 50% SMT∗

To ensure there are enough viable points to train models on for the infill search, the DoE size of problems containing
hidden constraints should be increased:

𝑛𝑑𝑜𝑒 =
𝑘𝑑𝑜𝑒 · 𝑛𝑥

1 − 𝐹𝑅𝑒𝑥𝑝

(10)

where 𝑘𝑑𝑜𝑒 is the DoE multiplier, 𝑛𝑥 the number of design variables, and 𝐹𝑅𝑒𝑥𝑝 the expected fail rate. We assume an
expected fail rate of 60% and use 𝑘𝑑𝑜𝑒 = 2 for following tests. Each optimization is executed with 𝑛𝑖𝑛 𝑓 𝑖𝑙𝑙 = 50 and is
repeated 8 times. Optimization performance is compared using Δ𝐻𝑉 regret, a measure that represents the distance to
the known optimum or Pareto-front (Δ𝐻𝑉) cumulatively over the course of an optimization (regret). Lower Δ𝐻𝑉 regret
is better, as it shows that the optimum was approached more closely and/or reached sooner. Strategies are then ranked
by the ranking procedure outlined in [12].

Table 4 presents optimization performance results. It can be seen that prediction with a Random Forest Classifier
(RFC) performs best (rank 1) or good (rank ≤ 2) more compared to other strategies, with mixed-discrete (MD) GP
prediction and predicted worst replacement (𝛼 = 1) closely following. Table 5 presents some performance measures
averaged over all test problems, relative to the rejection strategy. A reduction in Δ𝐻𝑉 regret is usually combined with a
reduction in failure rate: this makes sense, as a lower failure rate indicates a better capability of avoiding the failed
region and therefore more resources spent on exploring the viable region. Also shown is the change in training and infill
times. Replacement strategies approximately double the training and infill cycle time, due to the fact that the trained GP
models (one for each 𝑓 and 𝑔) contain the complete set of design points as training values, whereas for rejection and
prediction only the viable points are used. Prediction strategies train an extra model to predict the PoV, which leads
to a moderate increase in training and infill time. Predicted worst replacement, prediction with RFC, and prediction
with MD GP are selected as most promising candidates. These three strategies are further investigated to find out the
influence of their parameter settings: 𝛼 for predicted worst replacement, and 𝑃𝑜𝑉𝑚𝑖𝑛 for the prediction strategies. In
addition, the prediction strategies are tested with integration as 𝑓 -infill penalty (Eq. (9)). Tests are run with the same
settings as the previous experiment.

¶https://secondmind-labs.github.io/trieste/
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Table 5 Performance of hidden constraint strategies relative to the rejection strategy, averaged over all test
problems at the end of the optimization runs. Darker color is better for Δ𝐻𝑉 regret and Fail rate; worse for time
columns. Abbreviations: HV = hypervolume, RFC = Random Forest Classifier, KNN = K-Nearest Neighbors,
RBF = Radial Basis Functions, GP = Gaussian Process.

Strategy Sub-strategy Δ𝐻𝑉 regret Fail rate Training time Infill time Training + infill time

Rejection +0% +0% +0% +0% +0%
Replacement Global max -20% -63% +176% +87% +107%
Replacement Local -1% -14% +174% +99% +109%
Replacement 5-nearest, max -34% -46% +171% +89% +102%
Replacement 5-nearest, mean -32% -26% +174% +92% +103%
Replacement Predicted worst -42% -47% +171% +78% +99%
Replacement Pred. worst (𝛼 = 2) -37% -53% +167% +72% +96%
Prediction RFC -41% -61% +81% +118% +102%
Prediction KNN -29% -39% +39% +55% +43%
Prediction RBF -38% -62% +73% +58% +54%
Prediction GP Classifier -36% -58% +77% +86% +70%
Prediction Variational GP -38% -61% +60% +259% +187%
Prediction MD GP -37% -63% +85% +67% +68%

(a) Predictor strategies (b) Predicted worst replacement strategy

Fig. 4 Comparison of hidden constraint strategy settings relative to the rejection strategy, averaged over all test
problems at the end of the optimization runs. Abbreviations: HV = hypervolume, MD = mixed-discrete, GP =
Gaussian Process, RFC = Random Forest Classifier.
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Table 6 presents ranking of algorithm performance and Figure 4 shows the relative improvement over the rejection
strategy for the tested strategy configurations. Fail rate is reduced significantly for higher values of 𝑃𝑜𝑉𝑚𝑖𝑛 and 𝛼, which
is expected as higher values result in a more conservative approach and therefore less exploration of the failed region. A
reduction in failure rate, however, decreases optimizer performance (seen by an increase in Δ𝐻𝑉 regret), showing that a
certain amount of failed evaluations is needed to sufficiently explore the design space. The best performing strategies
are the prediction strategies at low 𝑃𝑜𝑉𝑚𝑖𝑛 values. It also shows that 𝑓 -infill penalty behaves similar as low 𝑃𝑜𝑉𝑚𝑖𝑛

values. Prediction with MD GP or RFC are behaving similarly-well, although MD GP for a little wider range of 𝑃𝑜𝑉𝑚𝑖𝑛

than RFC. From these results, we recommend that either MD GP or RFC prediction should be used to deal with hidden
constraints in Bayesian Optimization. PoV should be integrated as a constraint, because it allows more control over
exploration vs exploitation compared to integration as 𝑓 -infill penalty. 𝑃𝑜𝑉𝑚𝑖𝑛 should be kept relatively low to promote
sufficient exploration: a value of 𝑃𝑜𝑉𝑚𝑖𝑛 = 25% will be used subsequently.

V. Application: Jet Engine Architecture Optimization
To demonstrate the application of the hidden constraint optimization strategies presented in this work, the open-source

jet engine optimization problem presented in [10] is solved using the BO algorithm. The problem features several
architectural choices, such as whether to include a fan and bypass flow, the number of stages, the addition of a
gearbox, and where to apply bleed and power offtakes. Each possible architecture is evaluated using a pyCycle [57]
OpenMDAO [58] problem. The Multidisciplinary Design Optimization (MDO) problem is automatically constructed
from a class-based definition, easing the integration with architecture generation platforms. Next to thermodynamic cycle
analysis disciplines, additional disciplines include weight estimation, length and diameter calculation, and noise and NOx
estimations. We solve the bi-objective realistic jet engine problem, featuring 11 discrete and 30 continuous variables
(𝑛𝑥 = 41), 2 objectives (Thrust-Specific Fuel Consumption and weight minimization), and 15 design constraints. The
imputation ratio 𝐼𝑅 is 9.1 and there are a little over 142 thousand valid discrete design vectors. Approximately 65% of
evaluations fail in a DoE, showing the clear need for a hidden constraint optimization strategy. All code is available
open source, for more information the reader is referred to [10].

The BO algorithm (as ArchSBO) and test problem (as RealisticTurbofanArch) have been implemented in the
SBArchOpt‖ library [27]: an open-source Python library for solving system architecture optimization problems. The
library features a problem definition interface, hierarchical sampling and correction algorithms, bindings to optimization
algorithms, and a test problem database. The BO algorithm is executed 10 times with 𝑛𝑑𝑜𝑒 = 510, 𝑛𝑖𝑛 𝑓 𝑖𝑙𝑙 = 400
(total budget is 910 points), and 𝑛𝑏𝑎𝑡𝑐ℎ = 4. KPLS is applied with 𝑛𝑘𝑝𝑙𝑠 = 10. Both hidden constraint strategies use
𝑃𝑜𝑉𝑚𝑖𝑛 = 25%.

Figure 5 presents the results of the jet engine optimization. The MD GP predictor clearly outperforms the RFC
predictor: it progresses quicker towards the known optimum and finds a better optimum value after the 400 infill
points. The optimum has been found in 77% less function evaluations compared to NSGA-II, where a budget of 4000
evaluations was used in [10].

VI. Conclusions and Outlook
System architecture optimization problems are challenging to solve due to their mixed-discrete and hierarchical

design spaces combined with constrained, multi-objective, black-box, and expensive-to-evaluate solution spaces
that potentially are subject to hidden constraints. Bayesian Optimization (BO) algorithms are gradient-free, global
optimization algorithms that are specifically developed to optimize with a small evaluation budget. A BO algorithm is
presented that has been developed for optimization in hierarchical design spaces, featuring:

• Hierarchical mixed-discrete Gaussian Process models;
• Use of Kriging with Partial Least Squares (KPLS) to reduce training times for high-dimensional problems;
• Ensemble infill criteria for batch infill generation for single- and multi-objective optimization problems;
• Sequential optimization for selecting infill points;
• Hierarchical sampling algorithm that groups and weights valid discrete design vectors to deal with rate diversity

effects;
• Problem-agnostic similarity-based correction algorithm and the availability of correction and imputation as a

repair operator to deal with imputation ratio effects.
‖https://sbarchopt.readthedocs.io/
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Fig. 5 Optimization progression of the BO algorithm with the prediction hidden constraint strategy with two
different predictors for the jet engine optimization problem. Abbreviations: MD = mixed-discrete, GP = Gaussian
Process, RFC = Random Forest Classifier.

The presented algorithm is extended to deal with hidden constraints. First, three high-level strategies are identified:
rejection (ignore failed points), replacement (replace output values of failed points by some value derived from viable
points), and prediction (predict the Probability of Viability). Replacement strategies are subdivided into replacement
from neighboring points and replacement by prediction. Prediction strategies are subdivided based on the used
classification models. It is demonstrated how prediction strategies can be implemented in BO, either as a penalty to the
infill objectives or as additional inequality constraints to the infill problem parameterized by a lower threshold 𝑃𝑜𝑉𝑚𝑖𝑛.
Then, multiple hidden constraint strategies are tested on a database of test problems. It is shown that predicted worst
replacement, prediction with a Random Forest Classifier (RFC), and prediction with a mixed-discrete Gaussian Process
(GP) perform best. Compared to rejection, training and infill times are increased due to the increase in training points
for replacement strategies and training of the PoV prediction model for prediction strategies. These three strategies
are further tested with different values of 𝑃𝑜𝑉𝑚𝑖𝑛 (for prediction) and 𝛼 for predicted worst replacement. It is shown
that prediction with MD GP and RFC perform best, and with lower 𝑃𝑜𝑉𝑚𝑖𝑛 values. A default value of 𝑃𝑜𝑉𝑚𝑖𝑛 = 25%
is recommended. Finally, a jet engine architecture optimization problem is solved with the two predictor strategies,
showing that prediction with MD GP performs best. The extended BO algorithm and all used test problems are available
in the open-source SBArchOpt library.

This work has shown that hidden constraints can be effectively dealt with by BO algorithms in the context of system
architecture optimization. To validate its applicability, BO should be applied to more aerospace and non-aerospace
architecture optimization problems. In future work the use of BO for architecture optimization should be expanded,
specifically to larger design space sizes with tens to hundreds of design variables [59], for example using dimension
reduction techniques such as EGORSE [29], and multi-fidelity BO should be considered as a way to make BO more
effective and further reduce required computational resources.

To support users in applying the developed algorithms for architecture optimization, it should be made easy to
select, configure, and execute optimizations directly from system architecting tools. For example, architecture problems
formulated using ADORE [5] could be translated to an SBArchOpt problem definition without additional user effort.
From there, any algorithm implemented in SBArchOpt could be selected and executed to solve the defined optimization
problem.
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