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System Architecture Optimization (SAO) can support the design of novel architectures by
formulating the architecting process as an optimization problem. The exploration of novel
architectures requires physics-based simulation due to a lack of prior experience to start from,
which introduces two specific challenges for optimization algorithms: evaluations become
more expensive (in time) and evaluations might fail. The former challenge is addressed by
Surrogate-Based Optimization (SBO) algorithms, in particular Bayesian Optimization (BO)
using Gaussian Process (GP) models. An overview is provided of how BO can deal with
challenges specific to architecture optimization, such as design variable hierarchy and multiple
objectives: specific measures include ensemble infills and a hierarchical sampling algorithm.
Evaluations might fail due to non-convergence of underlying solvers or infeasible geometry in
certain areas of the design space. Such failed evaluations, also known as hidden constraints, pose
a particular challenge to SBO/BO, as the surrogate model cannot be trained on empty results.
This work investigates various strategies for satisfying hidden constraints in BO algorithms.
Three high-level strategies are identified: rejection of failed points from the training set, replacing
failed points based on viable (non-failed) points, and predicting the failure region. Through
investigations on a set of test problems including a jet engine architecture optimization problem,
it is shown that best performance is achieved with a mixed-discrete GP to predict the Probability
of Viability (PoV), and by ensuring selected infill points satisfy some minimum PoV threshold.
This strategy is demonstrated by solving a jet engine architecture problem that features at 50%
failure rate and could not previously be solved by a BO algorithm. The developed BO algorithm
and used test problems are available in the open-source Python library SBArchOpt.

Nomenclature

BO = Bayesian Optimization
𝑐ℎ = Hidden constraint
𝑐𝑣,𝑙 = Value constraint 𝑙
DoE = Design of Experiments
FR = Failure rate
𝑓𝑚 = Objective function 𝑚

GP = Gaussian Process
𝑔𝑘 = Inequality constraint 𝑘
HV = Hypervolume
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IR = Imputation ratio (𝑑 subscript: discrete IR; 𝑐 subscript: continuous IR)
𝑘doe = DoE multiplier
MD = Mixed-Discrete
MRD = Maximum rate diversity
𝑛𝑐𝑣 = Number of value constraints
𝑛 𝑓 = Number of objectives
𝑛𝑔 = Number of inequality constraints
𝑛batch = Batch size for infill points
𝑛doe = Design of Experiments size
𝑛infill = Total number of infill points generated
𝑛parallel = Maximum number of parallel evaluations
𝑛valid,discr = Number of valid discrete design vectors in an optimization problem
𝑛𝑥 = Number of design variables
𝑛𝑥𝑐 = Number of continuous design variables
𝑛𝑥𝑑 = Number of discrete design variables
𝑁 𝑗 = Number of options for discrete variable 𝑗

RFC = Random Forest Classifier
SAO = System Architecture Optimization
SBO = Surrogate-Based Optimization
𝑠 = Uncertainty estimate by a surrogate model
𝒙 = Design vector
𝑥𝑐,𝑖 = Continuous design variable 𝑖
𝑥𝑑, 𝑗 = Discrete design variable 𝑗

𝑦̂ = Function value estimate by a surrogate model
𝛿𝑖 = Activeness function for design variable 𝑖

I. Introduction

System Architecture Optimization (SAO) is an emerging field with the goal of partial automation of designing system
architectures by formulating the architecting process as a numerical optimization problem [1]. This way, a larger

design space can be explored than is possible nowadays [2], and bias towards conventional solutions can be reduced [3].
This work deals with the aspect of developing efficient optimization algorithms for solving architecture optimization
problems. For more background on architecture optimization, including how to model architecture design spaces and
how to connect to evaluation code, the interested reader is referred to [4, 5].

SAO problems are subject to various aspects that make them challenging to solve: the presence of mixed-discrete
design variables stemming from architectural decisions, multiple objectives to optimize for stemming from conflicting
stakeholder needs [6], and the fact that the evaluation functions have to be treated as black-box functions [7]. Another
salient feature of SAO is design variable hierarchy [8]: the phenomenon that some design variables might decide
whether other design variables are active or not, and might restrict the available options of other design variables.
Consider for example a launch vehicle design problem where both the number of rocket stages and the fuel type of each
stage are design variables [9]: it follows that the selection of the number of stages determines whether some of the
fuel-type selection variables are active or not. Evolutionary algorithms such as NSGA-II are well-suited for solving such
optimization algorithms and are currently available for use [1, 10–12]. When searching for novel system architectures to
solve for example sustainability challenges, design expertise based on historical regression analysis may be not available,
however. In general when designing new architectures, physics-based simulation is needed to accurately predict the
performance of architectural candidates. This trend has two major consequences for optimization algorithms [12]:

1) Evaluating a design candidate is expensive, and therefore the optimizer should aim to find the optimum (or Pareto
front) is as little function evaluations as possible;

2) Evaluation of a design candidate can fail, for example because of unstable underlying equations, infeasible
physics, or infeasible geometry.

To deal with the challenges of expensive evaluation, Surrogate Based Optimization (SBO) algorithms have been
developed. These algorithms train a regression or interpolation surrogate model of the objective 𝑓 (x) and constraint
𝑔(x) functions with respect to the design variables x. These models are then used to generate infill points for exploring
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the design space and search for the optimum or Pareto front. The principle of SBO is visualized in Figure 1. An
especially powerful type of SBO is Bayesian Optimization (BO), where Gaussian Process (GP) models are used to
provide not only an estimate of the function value 𝑦̂(x) but also an estimate of the associated uncertainty 𝑠(x). BO is
more effective at solving optimization problems than SBO algorithms with other surrogate models [13], and has been
extended to work for constrained [14, 15], mixed-discrete [13, 16], hierarchical [17–19] and multi-objective [20, 21]
problems. The combination of all aspects has been demonstrated for SAO [12, 22, 23].

Fig. 1 Principle of Surrogate-Based Optimization (SBO), reproduced from [12].

Evaluation failures manifest themselves as so-called hidden constraints [24], which are also known as unknown,
unspecified, forgotten, virtual, and crash constraints [24, 25]. When a hidden constraint is violated (i.e. an evaluation has
failed), the objective 𝑓 and constraint 𝑔 functions are assigned NaN (Not-a-Number). In the taxonomy of Le Digabel &
Wild [25] hidden constraints are classified as NUSH constraints: Non-quantifiable (the degree of constraint violation is
not available, only whether it is violated or not), Unrelaxable (violating the constraint yields no meaningful information
about the design space), Simulation (a simulation must be run in order to find out the status), and Hidden (the existence
of the constraint is not known before solving the problem). Hidden constraints are assumed to be deterministic, mainly
meaning that we do not consider evaluation failures due to temporary problems such as software license availability
or network problems. Finding out whether the hidden constraint is violated may take as long, if not longer, than a
non-failed evaluation [24]. The design space can be separated in regions with satisfied and violated hidden constraints,
denoted as viable and failed regions, respectively. Depending on the design problem, the failed region can take up a
significant part of the design space: Krengel & Hepperle report up to 60% for a wing design problem [26], and for an
airfoil design problem Forrester et al. up to 82% failed points [27]. Hidden constraints pose a particular challenge
to SBO algorithms: evaluation failures assign NaN (not-a-number) values to objective and constraints, and it is not
possible to train a surrogate model on NaN’s [10].

A review of dealing with hierarchical optimization challenges for BO will be given in Section II, which is
extended to hidden constraints in Section III. The paper finishes with a demonstration of a jet engine optimization
problem in Section IV and the conclusions in Section V. All test problems used in this work are available in the
open-source SBArchOpt∗ library [28]. Code used to run the experiments is available open-source as well, at
github.com/jbussemaker/ArchitectureOptimizationExperiments (hidden-constraints branch).

∗https://sbarchopt.readthedocs.io/
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II. Bayesian Optimization in Hierarchical Design Spaces
Before diving into strategies for dealing with hidden constraints, this section reviews strategies for dealing with the

other challenges of SAO using Bayesian Optimization (BO) algorithms as originally published in [12], and introduces the
BO algorithm used in the rest of this work. The algorithm is implemented and available as ArchSBO in SBArchOpt.

Gaussian Process Model Selection For non-hierarchical problems, the mixed-discrete Gaussian Process (GP) models
(also known as Kriging models) implemented in the Surrogate Model Toolbox (SMT)† are used. These models support
continuous, integer and categorical variables through kernels developed by Saves et al. [19, 29]. GP models that
support hierarchical variables have been developed in [19] and extended to also support categorical hierarchical variables
in [12].

A disadvantage of GP models is that it becomes computationally expensive to train these models for high-dimensional
spaces [30]. One way of dealing with this is to define a feature space of lower dimension to train the GP, and provide
a conversion between input and feature spaces [31]. One specific method is Kriging with Partial Least Squares
(KPLS) [32], which has recently been extended to work with discrete variables [33? , 34] and is implemented in
SMT [19].

Selecting Infill Points Infill points are selected by optimizing infill criteria (also known as acquisition functions), and
selecting the best one for a wide range of optimization problems influences BO performance significantly. The BO
algorithm uses an enable of infills, with the size of the infill batch set to the maximum number of parallel equations:
𝑛batch = 𝑛parallel. An infill ensemble combines multiple underlying infills into a multi-objective infill problem and thereby
provides two main advantages [35]:

1) The selected infill points are a compromise of the underlying infills, thereby mitigating problems with different
infill criteria suggesting to explore wildly different parts of the design space [36];

2) Since the infill problem itself results in a Pareto front, it is easy to select multiple infill points for batch evaluation
without needing to retrain surrogate models [37].

The infill ensemble is built-up of the following underlying infills:
• For single-objective optimization: Lower Confidence Bound (LCB) [38], Expected Improvement (EI) [7], and

Probability of Improvement (PoI) [39];
• For multi-objective optimization: Minimum PoI (MPoI) [40] and Minimum Euclidean PoI (MEPoI) [22].

Selecting the best infill points is an optimization problem itself, and with the same design space as the SAO problem. To
successfully deal with mixed-discrete hierarchical variables, the following sequential optimization procedure is applied:

1) Apply NSGA-II to search the mixed-discrete, hierarchical design space, solving the multi-objective infill problem:

minimize 𝑓infill,m (𝒙𝑑 , 𝒙𝑐)
w.r.t. 𝒙𝑑 , 𝒙𝑐

subject to 𝑔̂𝑘 (𝒙) ≤ 0

where 𝑓infill,m represents infill criterion 𝑚, 𝒙𝑑 and 𝒙𝑐 represent the discrete and continuous design variables, and
𝑔̂𝑘 represents the predicted mean of constraint function 𝑘 . Infill objectives 𝑓infill,m are normalized and inverted
such that they become minimization objectives.

2) Select 𝑛batch points 𝒙sel from the resulting Pareto front according to:
• If 𝑛batch = 1, select a random point;
• If 𝑛batch > 1, select the points with the lowest crowding distance as used in NSGA-II [41].

3) For each selected point 𝒙𝑠𝑒𝑙,𝑖 , improve the active continuous variables by solving following single-objective
problem using SLSQP:

minimize 𝑓impr (𝒙)
w.r.t. 𝒙𝑐 ∩ 𝛿

(
𝒙sel,i

)
subject to 𝑔̂𝑘 (𝒙) ≤ 0

†https://smt.readthedocs.io/
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where 𝒙𝑐 ∩ 𝛿
(
𝒙sel,i

)
represents the active continuous design variables at point 𝒙sel,i, and 𝑓impr the scalar

improvement objective:

Δ 𝑓infill,m (𝒙) = 𝑓infill,m (𝒙) − 𝑓infill,m (𝒙𝑠𝑒𝑙,𝑖)

𝑓deviation (𝒙) = 100
(
max

m
Δ 𝑓infill,m (𝒙) − min

m
Δ 𝑓infill,m (𝒙)

)2

𝑓impr (𝒙) =
∑
m

(
Δ 𝑓infill,m (𝒙)

)
+ 𝑓deviation (𝒙)

This objective promotes improvement in direction of the negative unit vector, so that all underlying infill objectives
are improved simultaneously while not deviating too much from the original 𝑥sel,i to maintain batch diversity.

Sampling Hierarchical Design Spaces When sampling hierarchical design space for creating the initial Design of
Experiments (DoE), care must be taken that all sections of the design space are sufficiently represented because of
a possible large discrepancy between how often individual discrete design variable values appear [6]. For example,
the discrete design vectors representing pure jet engines (vs turbofan engines) in the jet engine design problem of
Bussemaker et al. [10] only make up 0.02% of the design space. This discrepancy can be measured for each discrete
design variable by the rate diversity RD 𝑗 metric, or at the problem level by the max rate diversity MRD, defined as:

Rates 𝑗 =
{
Rate( 𝑗 , 𝛿 𝑗 = 0),Rate( 𝑗 , 0), ..,Rate( 𝑗 , 𝑁 𝑗 − 1)

}
(1)

RD 𝑗 = max Rates 𝑗 − min Rates 𝑗 (2)
MRD = max

𝑗∈1,..,𝑛𝑥𝑑

RD 𝑗 (3)

with 𝑗 the discrete design variable index, 𝛿 𝑗 = 0 denoting the case where design variable 𝑗 is inactive, 𝑁 𝑗 the number
of possible options for discrete design variable 𝑗 , and Rate( 𝑗 , value) the relative occurrence rate of that value in all
valid discrete design vectors. To ensure sufficient representation of design vectors subject to high rate diversities, a
hierarchical sampling method is applied that works as follows:

1) Generate all possible valid discrete design vectors 𝑥valid,discr and obtain associated activeness information 𝛿;
2) Group design vectors by active variables 𝑥act;
3) Uniformly sample discrete design vectors from each group;
4) Assign values to active continuous variables using Sobol’ [42] sampling.

Investigations showed that this sampling method performs well for non-hierarchical problems, and performs better than
random sampling for hierarchical problems. Refer to [12] for more details.

Optimizing in Hierarchical Design Spaces Finally, it was demonstrated that more integration of hierarchical
information into the optimization problem yields better results. This mainly translates to the usage of the hierarchical
sampling method described above, for which 𝑥valid,discr and activeness information 𝛿 is needed, and the application of
correction and imputation as a repair operator. Correction and imputation ensure that all evaluated design vectors are
valid, meaning that they satisfy value constraints and that all inactive design variables have canonical values. Value
constraints occur when selecting a value for one design variable restricts the available values for another. For example, in
the Apollo mission design problem [43], selecting a total crew size of 2 limits the number of crew members in the lunar
module to 1 or 2, whereas a total crew size of 3 means there can be 1, 2, or 3 members assigned to the lunar module.
Canonical values as applied to inactive design variables by imputation are 0 for discrete variables and center-domain for
continuous variables. The principles of correction and imputation are visualized in Figure 2, showing how the declared
design space (consisting of the Cartesian product of all discrete design variable values) is transformed to the valid
design space (consisting of unique corrected and imputed design vectors).
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Fig. 2 Illustration of correction and imputation in hierarchical design spaces, showing how the different sets of
design vectors relate to each other, reproduced from [12].

Correction and imputation are made available as a standalone repair operator so that it can be used during sampling.
This is important, because there might be a large difference between the declared design space as defined by the Cartesian
product of all design variable values, and the valid design space containing only valid design vectors. This difference is
measured by the imputation ratio IR, defined as:

IR𝑑 =

∏𝑛𝑥𝑑

𝑗=1 𝑁 𝑗

𝑛valid,discr
(4)

IR𝑐 =
𝑛valid,discr · 𝑛𝑥𝑐∑𝑛valid,discr

𝑙=1
∑𝑛𝑥𝑐

𝑖=1 𝛿𝑖 (𝒙𝑑,𝑙)
(5)

IR = IR𝑑 · IR𝑐 (6)

with 𝑛𝑥𝑑 and 𝑛𝑥𝑐 the number of discrete and continuous design variables, respectively, 𝑛valid,discr the number of valid
discrete design vectors, 𝛿𝑖 the activeness function for design variable 𝑖, and IR𝑑 and IR𝑐 the discrete and continuous
imputation ratio, respectively. An imputation ratio of 1 indicates no hierarchy. Higher values represent the ratio between
the declared and valid design spaces sizes and thereby design space hierarchy. Imputation ratio can also be interpreted
as the amount of random vectors that need to be generated in order to find one valid design vector. For example for
the suborbital vehicle design problem in [44] there are 123𝑒3 possible architectures, however the Cartesian product of
design variables yields 2.8𝑒6 design vectors: therefore, the imputation ratio IR = 2.8𝑒6/123𝑒3 = 22.8. This means
that on average for every 22.8 randomly generated design vectors, there will be only one that represents a valid design.
Without correction and imputation it will be difficult for an optimization algorithm to generate new valid design vectors
due to this effect. This applies to BO as well as to evolutionary optimization algorithms.
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To conclude, the BO algorithm described in this section and implemented as ArchSBO in SBArchOpt features [12]:
• Hierarchical mixed-discrete Gaussian Process models, optionally using Kriging with Partial Least Squares (KPLS)

to reduce training times for high-dimensional problems;
• Ensemble infill criteria with a sequential-optimization procedure for batch infill generation for single- and

multi-objective optimization problems;
• Hierarchical sampling algorithm that groups valid discrete design vectors by active design variables 𝑥act to deal

with rate diversity effects;
• Availability of correction and imputation as a repair operator to deal with imputation ratio effects.

III. Hidden Constraint Strategies in Bayesian Optimization
This section identifies and investigates various strategies for dealing with hidden constraints in Bayesian Optimization

(BO) algorithms. Although we only discuss the integration with BO, the following discussions apply to any Surrogate-
Based Optimization (SBO) algorithm in principle.

A. Literature Review and Strategy Classification
Hidden constraints are encountered in many engineering problems, Müller & Day [24] provide several examples.

They also provide an overview of strategies tried in the past, including for non-BO algorithms. For example, for
algorithms that depend on some ranking-based selection procedure rather than surrogate model building, such as
evolutionary algorithms, it suffices to apply the extreme barrier approach: replace NaN by +∞ to prevent these points
being selected as parents for creating offspring for the next generation of design points. Local optimization algorithms
can deal with hidden constraints by implementing some way to retrace part of their search path. For SAO, however,
we only consider methods relevant for global optimization algorithms. For surrogate-based algorithms, one of the
simplest methods is to train the surrogate models only on viable points, thereby in effect rejecting failed points from
the training set. The disadvantage to this approach is that knowledge of the design space is ignored: the optimizer
might get stuck suggesting the same infill point(s) over and over, because it cannot know that these infill points will
fail to evaluate. A more advanced approach is to replace the failed points by some values derived from viable points,
as initially suggested by Forrester et al. [27] and inspired by imputation in the sense of replacing missing data in
statistical datasets. They reason that failed points actually represent missing data and can be replaced by values of
close-by viable points. However, the replaced values should drive the optimizer towards the viable region of the design
space, which leads them to formulate a method for finding replacement values from a Gaussian Process (GP) model
trained on the viable points only:

𝑦replace (xfailed) = 𝑦̂ (xfailed) + 𝛼 · 𝑠 (xfailed) (7)

where 𝑦 represents the output value to be replaced, 𝑦̂ and 𝑠 the output and uncertainty estimates of the GP trained on
viable design points, and 𝛼 some multiplier (𝛼 = 1 in [27]). They show that their approach works well for a continuous
single-objective airfoil optimization problem. Another strategy for replacing values of failed points is by simply
selecting one or more neighbor points and applying some aggregation function to a scalar value to replace. For example,
Huyer & Neumaier [45] replace failed values by the max of 𝑛nb neighbor points. This concept can be expanded by
considering 𝑛nb = 1 to use the closest point to select the replacement value, or 𝑛nb = 𝑛viable to consider all viable points
for the replacement value.

The most advanced method for dealing with hidden constraints in SBO algorithms is to predict where the failed
region lies with the help of another surrogate model [46]. Here the idea is to assign binary labels to all design point
based on their failure status, for example 0 meaning failed and 1 meaning viable, train a model on this data, and then use
that model to predict the so-called Probability of Viability (PoV). PoV lies between 0% and 100% and represents the
probability that a newly-selected infill point will be viable (i.e. will not fail). During infill optimization, PoV can be used
in two ways: either as a penalty multiplier to the infill criterion [46], or as a constraint to the infill algorithm that ensures
that PoV of selected infill points is at or above some threshold [47]. Different types of surrogate models have been used
to predict PoV, mainly selected due to their ability for modeling such binary classification problems. Used models
include Random Forest Classifiers (RFC) [46], piecewise linear Radial Basis Functions (RBF) [24], Support Vector
Machines (SVM) [48], SVM’s with RBF kernel [47], Gaussian Process models [49, 50], and K-Nearest Neighbors
(KNN) classifiers [51, 52].
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Table 1 Comparison of strategies for dealing with hidden constraints in Bayesian Optimization.

Strategy Sub-strategy Configuration Parameter(s)

Rejection

Replacement Neighborhood [45]


Closest
𝑛-nearest, mean
𝑛-nearest, max
Global, max

𝑛

𝑛

Predicted worst [27] 𝛼

Prediction



Random Forest Classifier (RFC) [46]
Gaussian Process (GP) [49]
Support Vector Machine (SVM) [48]
Piecewise linear RBF [24]
K-Nearest Neighbor (KNN) classifier [51]

as 𝑓infill penalty
as 𝑔infill PoVmin

To summarize the preceding discussion, there are three high-level strategies for dealing with hidden constraints in BO,
also summarized in Table 1:

• Rejection: ignore failed points when training surrogate models;
• Replacement: replace values of failed points based on values of viable points, either from neighboring points or

by predicted replacement;
• Prediction: train an additional surrogate model to predict the Probability of Validity (PoV), and using this either

as infill constraint or as a penalty to the infill objectives when searching for infill points.

B. Implementation into Bayesian Optimization Algorithms
The rejection and replacement strategies are implemented into the BO algorithm in a preprocessing step before

training the GP models. The training set is separated into a viable and a failed set; for rejection the viable set is then
simply discarded, whereas for replacement the points in the failed set are assigned some value for each output (i.e. each
objective and constraint value) that is based on the viable points. Afterwards, the GP models are trained and the infill
selection process continues as usual. For the prediction strategy, the viable set is used to train the GP models for infill
search. The additional surrogate model for Probability of Viability (PoV) prediction is trained with a set containing
all points and with binary labels assigned according to the viability status of the points: 0 for failed points and 1 for
viable points. The infill optimization problem can then be modified by adding an inequality constraint that ensures that
PoV(x) ≥ PoVmin:

𝑔PoV (x) = PoVmin − PoV(x) ≤ 0 (8)

where PoVmin represents a user-defined minimum PoV to be reached, and PoV(x) represents the predicted PoV for a
given design point. PoV can also be integrated by modifying the infill objectives:

𝑓m,infill,mod (x) = 1 −
( (

1 − 𝑓m,infill (x)
)
· PoV(x)

)
(9)

where 𝑓m,infill represents the 𝑚th infill objective, and assuming infill objectives are normalized and to be minimized.
Figure 3 presents several steps of running BO on a test problem, with an RBF model as PoV predictor used as an infill
constraint at PoVmin = 50%. The test problem is the single-objective problem from Alimo et al. [47], modified to have
its optimum at the edge to the failed region near the top left corner of the 2D design space, implemented as AlimoEdge
in SBArchOpt. As can be seen, all infill points suggested satisfy the 𝑔PoV constraint, however, in the earlier iterations
this constraint can be inaccurate. Several infills are generated that violate the hidden constraint, and after each iteration
the model gets more accurate at the edges to the failed regions for three locations in the design space where the optimizer
expects the optimum to lie. This visualization additionally demonstrates that the predictor model should be able to
handle one or more regions in the design space with closely-spaced failed and viable points.
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Fig. 3 Several optimization steps between iteration 1 and 20 of BO executed on a test problem with its optimum
lying at the edge to the failed region, as shown in the bottom row by the magenta cross. The main GP is shown on
the left (darker means a lower, more optimal value), and the RBF model for predicting PoV is shown on the right.
The RBF model is used as an infill constraint with PoVmin = 50%, showing green and red contours for satisfied
and violated constraint values, respectively. Green, red, and magenta points represent viable, failed, and selected
infill points, respectively.
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Table 2 Test problems for comparing hidden constraint strategies. All problems are available in the SBArchOpt
library [28]. Abbreviations and symbols: IR = imputation ratio, HC = hidden constraints, MD = mixed-discrete,
H = hierarchical, MO = multi-objective, FR = fail rate, 𝑛𝑥𝑐 and 𝑛𝑥𝑑 = number of continuous and discrete design
variables, respectively, 𝑛 𝑓 = number of objectives, 𝑛𝑔 = number of constraints.

Name SBArchOpt Class Ref. 𝑛𝑥𝑐 𝑛𝑥𝑑 𝑛 𝑓 𝑛𝑔 IR FR

Branin Branin [53] 2 1 0%
HC Branin HCBranin [49] 2 1 33%
Alimo Alimo [47] 2 1 51%
Alimo Edge AlimoEdge 2 1 53%
HC Sphere HCSphere [48] 2 1 51%
Müller 1 Mueller01 [24] 5 1 67%
Müller 2 Mueller02 [24] 4 1 40%
HC CantBeam CantileveredBeamHC 4 1 1 83%
HC Carside Less CarsideHCLess 7 1 9 39%
HC Carside CarsideHC 7 3 8 66%
MD/HC CantBeam MDCantileveredBeamHC 2 2 1 1 81%
MD/HC Carside MDCarsideHC 3 4 3 8 66%
H Alimo HierAlimo 2 5 1 5.4 51%
H Alimo Edge HierAlimoEdge 2 5 1 5.4 53%
H Müller 2 HierMueller02 4 4 1 5.4 37%
H/HC Rosenbrock HierarchicalRosenbrockHC [54] 8 5 1 1 1.5 21%
MO/H/HC Rosenbrock MOHierarchicalRosenbrockHC [54] 8 5 2 1 1.5 60%
Jet SM SimpleTurbofanArchModel [10] 9 6 1 5 3.9 50%

C. Comparing Strategy Performances
To compare strategy performance, we use the test problems listed in Table 2 to run the set of hidden constraint

strategies listed in Table 3. Compared to the previously identified predictor models, we additionally test a Variational GP
and the mixed-discrete GP developed in [55]. A Variational GP does not assume a Gaussian distribution and therefore
might be able to more accurately model discontinuous functions as seen in classification problems [56]. We use the
implementation provided in Trieste‡ [57]. Through a quick pre-study, we additionally discard Support Vector Machine
(SVM) and piecewise linear RBF classifiers due to their bad performance in higher-dimensional and mixed-discrete test
problems. To ensure there are enough viable points to train models on for the infill search, the DoE size of problems
containing hidden constraints is increased:

𝑛doe =
𝑘doe · 𝑛𝑥

1 − FRexp
(10)

where 𝑘doe is the DoE multiplier, 𝑛𝑥 the number of design variables, and FRexp the expected fail rate. We assume an
expected fail rate of 60% and use 𝑘doe = 2 for following tests. Each optimization is executed with 𝑛infill = 50 and is
repeated 16 times. Optimization performance is compared using ΔHV regret, a measure that represents the distance to
the known optimum or Pareto-front (ΔHV) cumulatively over the course of an optimization (regret). Lower ΔHV regret
is better, as it shows that the optimum was approached more closely and/or reached sooner. Strategies are then ranked
by the ranking procedure outlined in [12].

‡https://secondmind-labs.github.io/trieste/
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Table 3 Tested Bayesian Optimization hidden constraint strategies. Abbreviations: GP = Gaussian Process.

Strategy Sub-strategy Configuration Model Implementation

Rejection
Replacement Neighborhood Global, max

Local
5-nearest, max
5-nearest, mean

Predicted worst 𝛼 = 1 SMT
𝛼 = 2 SMT

Prediction Random Forest Classifier PoVmin = 50% scikit-learn
K-Nearest Neighbors PoVmin = 50% scikit-learn
Radial Basis Function PoVmin = 50% Scipy
GP Classifier PoVmin = 50% scikit-learn
Variational GP PoVmin = 50% Trieste
Mixed-Discrete GP PoVmin = 50% SMT

Tables 4 and 5 presents optimization performance results. It can be seen that prediction with a Random Forest
Classifier (RFC) performs best (rank 1) or good (rank ≤ 2) more compared to other strategies, with mixed-discrete
(MD) GP prediction and predicted worst replacement (𝛼 = 1) closely following. A reduction in ΔHV regret is usually
combined with a reduction in failure rate: this makes sense, as a lower failure rate indicates a better capability of
avoiding the failed region and therefore more resources spent on exploring the viable region. Also shown is the change
in training and infill times. Replacement strategies approximately double the training and infill cycle time, due to the
fact that the trained GP models (one for each 𝑓 and 𝑔) contain the complete set of design points as training values,
whereas for rejection and prediction only the viable points are used. Prediction strategies train an extra model to predict
the PoV, which leads to a moderate increase in training and infill time.

Table 4 Performance of hidden constraint strategies relative to the rejection strategy, averaged over all test
problems at the end of the optimization runs. Darker color is better for ΔHV regret and Fail rate; worse for time
columns. Abbreviations: HV = hypervolume, RFC = Random Forest Classifier, KNN = K-Nearest Neighbors,
RBF = Radial Basis Functions, GP = Gaussian Process.

Strategy Sub-strategy Δ𝐻𝑉 regret Fail rate Training time Infill time Training + infill time

Rejection +0% +0% +0% +0% +0%
Replacement Global max -9% -61% +199% +74% +74%
Replacement Local -13% -15% +202% +76% +79%
Replacement 5-nearest, max -30% -43% +207% +78% +84%
Replacement 5-nearest, mean -35% -23% +193% +78% +77%
Replacement Predicted worst -33% -48% +192% +67% +73%
Replacement Pred. worst (𝛼 = 2) -30% -53% +199% +75% +78%
Prediction RFC -44% -61% +86% +94% +83%
Prediction KNN -27% -39% +48% +59% +49%
Prediction RBF -35% -61% +126% +87% +80%
Prediction GP Classifier -37% -58% +106% +156% +114%
Prediction Variational GP -32% -60% +68% +243% +189%
Prediction MD GP -38% -62% +116% +95% +91%
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Predicted worst replacement, prediction with RFC, and prediction with MD GP are selected as most promising
candidates. These three strategies are further investigated to find out the influence of their parameter settings: 𝛼 for
predicted worst replacement, and PoVmin for the prediction strategies. In addition, the prediction strategies are tested
with integration as 𝑓 -infill penalty (Eq. (9)). Tests are run with the same settings as the previous experiment.

Figure 4 shows the relative improvement over the rejection strategy and Table 6 presents ranking of algorithm
performance for the tested strategy configurations. Fail rate is reduced significantly for higher values of PoVmin and
𝛼, which is expected as higher values result in a more conservative approach and therefore less exploration of the
failed region. A reduction in failure rate, however, decreases optimizer performance (seen by an increase in ΔHV
regret), showing that a certain amount of failed evaluations is needed to sufficiently explore the design space. The best
performing strategies are the prediction strategies at low PoVmin values. It also shows that 𝑓 -infill penalty behaves
similar as low PoVmin values. Prediction with MD GP or RFC are behaving similarly-well, although MD GP for a little
wider range of PoVmin than RFC. From these results, we recommend that either MD GP or RFC prediction should be
used to deal with hidden constraints in Bayesian Optimization. PoV should be integrated as a constraint, because it
allows more control over exploration vs exploitation compared to integration as 𝑓 -infill penalty. PoVmin should be kept
relatively low to promote sufficient exploration: a value of PoVmin = 25% will be used subsequently.

(a) Predictor strategies (b) Predicted worst replacement strategy

Fig. 4 Comparison of hidden constraint strategy settings relative to the rejection strategy, averaged over all test
problems at the end of the optimization runs. Abbreviations: HV = hypervolume, MD = mixed-discrete, GP =
Gaussian Process, RFC = Random Forest Classifier.
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IV. Application: Jet Engine Architecture Optimization
To demonstrate the hidden constraint optimization strategies presented in this work, the open-source jet engine

optimization problem presented in [10] is used. The problem contains several architectural choices, such as whether to
include a fan and bypass flow, the number of stages, the addition of a gearbox, and where to apply bleed and power offtakes.
Each generated engine architecture is evaluated using a pyCycle [58] OpenMDAO [59] problem. The Multidisciplinary
Design Optimization (MDO) problem is automatically constructed from a class-based engine architecture definition.
Next to thermodynamic cycle analysis disciplines, additional disciplines include weight estimation, length and diameter
calculation, and noise and NOx estimations.

We solve the simple version of the problem, which is a single-objective minimization of Thrust-Specific Fuel
Consumption (TSFC) with following architectural choices: fan inclusion, number of compressor stages, gearbox
inclusion, mixed nozzle selection, and power offtake locations. There are 70 valid discrete design vectors. However,
the Cartesian product of discrete variables leads to 216 combinations: the discrete imputation ratio therefore is
IR𝑑 = 216/70 = 3.1 (see Eq. (4)). The continuous imputation ratio IR𝑐 = 1.26 (see Eq. (5)), meaning that there are
on average 9/1.26 = 7.14 continuous variables active (as seen over all valid discrete design vectors). The overall
imputation ratio is IR = 3.89 (see Eq. (6)). Additionally, the underlying thermodynamic cycle analysis and sizing code
does not always converge, leading to a hidden constraint being violated in approximately 50% of design points generated
in a random DoE. This version of the problem is implemented in SBArchOpt as SimpleTurbofanArch.

The BO algorithm is executed 24 times with 𝑛doe = 113, 𝑛infill = 187 (a budget of 300 evaluations), and 𝑛batch = 4.
Both hidden constraint strategies use PoVmin = 25%. Figure 5 presents the results of the jet engine optimization. It
shows that the RFC and MD GP predictors perform similarly, with the MD GP predictor slightly outperforming, and
both being able to find the known optimum within the 300 evaluations. The known optimum was found with NSGA-II
and an evaluation budget of 3250 [12]; BO therefore can be considered to be able to find the same result in 92% less
function evaluations.

Fig. 5 Optimization progression of the BO algorithm with the prediction hidden constraint strategy with two
different predictors for the jet engine optimization problem. ΔHV represents the distance to the known Pareto
front. The bands around the lines represent the 50 percentile range around the median, obtained from 24
repeated runs. Abbreviations: MD = mixed-discrete, GP = Gaussian Process, RFC = Random Forest Classifier.
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V. Conclusions and Outlook
System Architecture Optimization (SAO) problems are challenging to solve due to their mixed-discrete and

hierarchical design spaces combined with constrained, multi-objective, black-box, and expensive-to-evaluate solution
spaces that potentially are subject to hidden constraints. Bayesian Optimization (BO) algorithms are gradient-free,
global optimization algorithms that are specifically developed to optimize with a small evaluation budget. A BO
algorithm is presented that has been developed for optimization in hierarchical design spaces, featuring:

• Hierarchical mixed-discrete Gaussian Process models, optionally using Kriging with Partial Least Squares (KPLS)
to reduce training times for high-dimensional problems;

• Ensemble infill criteria with a sequential-optimization procedure for batch infill generation for single- and
multi-objective optimization problems;

• Hierarchical sampling algorithm that groups valid discrete design vectors by active design variables 𝑥act to deal
with rate diversity effects;

• Availability of correction and imputation as a repair operator to deal with imputation ratio effects.

The presented algorithm is extended to deal with hidden constraints. First, three high-level strategies are identified:
rejection (ignore failed points), replacement (replace output values of failed points by some value derived from viable
points), and prediction (predict the Probability of Viability). Replacement strategies are subdivided into replacement
from neighboring points and replacement by prediction. Prediction strategies are subdivided based on the used
classification models. It is demonstrated how prediction strategies can be implemented in BO, either as a penalty to the
infill objectives or as additional inequality constraints to the infill problem parameterized by a lower threshold PoVmin.

Then, multiple hidden constraint strategies are tested on a database of test problems. It is shown that predicted worst
replacement, prediction with a Random Forest Classifier (RFC), and prediction with a mixed-discrete Gaussian Process
(GP) perform best. Compared to rejection, training and infill times are increased due to the increase in training points
for replacement strategies and training of the PoV prediction model for prediction strategies. These three strategies
are further tested with different values of PoVmin (for prediction) and 𝛼 for predicted worst replacement. It is shown
that prediction with MD GP or RFC performs best, and with lower PoVmin values. A default value of PoVmin = 25%
is recommended. Finally, a jet engine architecture optimization problem is solved with the two predictor strategies,
showing that prediction with MD GP performs best although it only slightly outperforms the RFC predictor. The
extended BO algorithm and all used test problems are available in the open-source SBArchOpt library.

This work has shown that hidden constraints can be effectively dealt with by BO algorithms in the context of SAO. To
validate its applicability, BO should be applied to more aerospace and non-aerospace architecture optimization problems.
In future work the use of BO for SAO should be expanded, specifically to larger design space sizes with tens to hundreds
of design variables, for example using dimension reduction techniques such as EGORSE [30], and multi-fidelity BO
should be considered as a way to make BO more effective and further reduce required computational resources.
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