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Abstract

Uncovering unknown or missing links in social networks is a dif-
ficult task because of their sparsity and because links may represent
different types of relationships, characterized by different structural
patterns. In this paper, we define a simple yet efficient supervised
learning-to-rank framework, called RankMerging, which aims at com-
bining information provided by various unsupervised rankings. We
illustrate our method on three different kinds of social networks and
show that it substantially improves the performances of unsupervised
methods of ranking as well as standard supervised combination strate-
gies. We also describe various properties of RankMerging, such as its
computational complexity, its robustness to feature selection and pa-
rameter estimation and discuss its area of relevance: the prediction of
an adjustable number of links on large networks.
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1 Introduction
Link prediction is a key field of research for the mining and analysis of large-
scale social networks because of its many practical applications: going from
recommendation strategies for commercial websites (Huang et al., 2005) to
recovering missing links in incomplete data (Zhou et al., 2009). Link pre-
diction also has significant implications from a fundamental point of view,
as it allows for the identification of the elementary mechanisms behind the
creation and decay of links in time-evolving networks (Leskovec et al., 2008).
For example, triadic closure, at the core of standard methods of link pre-
diction is considered as one of the driving forces for the creation of links in
social networks (Kossinets and Watts, 2006).

In general, link prediction consists in inferring the existence of a set of
links from the observed structure of a network. The edges predicted may
correspond to links that are bound to appear in the future, as in the seminal
formulation by Liben-Nowell and Kleinberg (2007). They may also be exist-
ing links that have not been detected during the data collection process, in
which case it is sometimes referred to as the missing link problem. In both
cases, it can be described as a binary classification issue, where it is decided
if a pair of nodes is connected or not. The features used are often based
on the structural properties of the network of known interactions, either at
a local scale (e.g. the number of common neighbors) or at a global scale
(e.g. random walk or hitting time). See for example Lü and Zhou (2011)
or Al Hasan and Zaki (2011) for surveys. Other sources of information are
available to predict links, in particular node attributes such as age, gender or
other profile information (Backstrom and Leskovec, 2011; Bliss et al., 2013),
geographic location (Scellato et al., 2011), as well as interaction attributes:
frequencies (Tylenda et al., 2009) or the time elapsed since the last interac-
tion (Raeder et al., 2011).

We consider this problem in the context of large social networks. In this
case, the classification issue has specific characteristics: for a typical 106

nodes network, there are around 1012 candidate pairs of nodes that can be
connected, most of them being completely irrelevant. The problem is unman-
ageable without restraining ourselves to subsets of pairs. One way of doing
so is to limit the prediction to pairs of nodes which are close enough, as there
is indeed a higher probability that an edge appears between nodes located
at short distance. Even with this restriction we have to handle typically
rankings with 105 to 107 items, as we shall see it implies solving challenges in

2



terms of computational efficiency. Notice also that among these items, only a
very small fraction are actually connected pairs, meaning that the two classes
have very different sizes. This problem is known as class imbalance and has
an important impact on the link prediction – see for example Lichtenwalter
et al. (2010). We also discuss this question later in this paper.

The features used for classification are known to be domain-specific. As
links play various roles in social networks, they are expected to be surrounded
by different types of environments and thus, to be best identified by different
features. For these reasons, schemes based on a single metric are prone
to misclassification. Machine learning methods have been widely used to
combine the available information for the purpose of classification. In recent
works, classification trees, support vector machines, matrix factorization or
neural networks are implemented to predict links in biological networks or
scientific collaboration networks (Pavlov and Ichise, 2007; Kashima et al.,
2009; Benchettara et al., 2010; Lichtenwalter et al., 2010; Menon and Elkan,
2011; Davis et al., 2013). However, these classification methods are not
designed to easily set the number of predictions, while this property is highly
desirable in the context of link prediction in social networks. Indeed, in many
practical cases, we would like to set the number of predictions to a given
value; for example if link prediction is used for recommendation purposes, a
user might want to make a few high-precision predictions or on the contrary
make a large number of predictions in order to reach all potential targets,
depending on his or her strategy. On the other hand, it means that the
user has to set the number of predictions, which is not necessary with a
classification method. In this work, we follow an approach which allows to
easily set the number of predictions.

Another way to address the issue consists in establishing a ranking of
likely links according to a scalar metric, correlated with the existence of in-
teractions between nodes. Therefore, we can use the same ranking features as
those raised previously for the classification task, that is to say based on the
structure or on node and link attributes. Then, the user may set the number
of links predicted by selecting the θ top-ranked items. Using this approach,
the information brought by the various ranking features can be combined
using learning-to-rank frameworks. The general idea is to aggregate these
rankings in such a way that it creates a new, better, output ranking. Un-
supervised solutions are available, such as Borda’s method or Markov chain
ordering (Dwork et al., 2001; Sculley, 2007). These methods stem from so-
cial choice theory, where there is in general no ground truth available. As a
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consequence, the merged ranking is built in order to yield the best consensus
among the input rankings, defining a notion of distance of the output to the
inputs. In the situation of link prediction, it is possible to define a ground
truth and therefore, to formulate the learning-to-rank task in a supervised
way.

Supervised learning-to-rank techniques have been mostly designed in the
context of information retrieval tasks, such as document filtering, spam web-
page detection, recommendation or text summarization, see for example Fre-
und et al. (2003); Liu et al. (2007); Burges et al. (2011); Comar et al. (2011).
In this field, the ground truth is the relevance evaluation of experts. In Liu
(2009), the author distinguishes between three kinds of approaches. Firstly,
pointwise approaches which are the most straightforward, using the score or
rank associated to a feature to fit, for example, a regression model. One un-
desirable effect is that low-ranked items tend to have an over-important role
in the learning process, which is particularly critical in the case of link pre-
diction as rankings are very large. Secondly, pairwise approaches (Herbrich
et al., 1999) consist in transforming the ranking problem into a classification
one, by considering couple of items and learning which one should be ranked
above. This transform allows the use of supervised classification methods, as
the issue now consists in predicting if a couple of items (a, b) should be put
in class a over b or in class b over a. Unfortunately even the cheapest im-
plementations of this approach (Chapelle and Keerthi, 2010) cannot be used
to predict links on large networks, as the number of items to rank here is
larger than 105. Thirdly, listwise approaches (Cao et al., 2007) use a ranking
of items as ground truth. This method is not relevant to our case because
when predicting θ links, the quality of two rankings is strictly equivalent if
they provide the same amount of true prediction in their top-θ items. More
generally, information retrieval techniques primarily aim at high precision
on the top-ranked items, and stress the relative ranking of two items. As
stated in Chapelle et al. (2011), most of the research on the topic has there-
fore focused on improving the prediction accuracy rather than making the
algorithms scalable, which is crucial in the case of link prediction.

Learning-to-rank in the context of link prediction in large graphs calls
for specific methods, suited for large rankings. In this spirit, Subbian and
Melville (2011) designed supervised ranking aggregation methods based on
the adaptation of unsupervised methods. However, they were created for
another kind of prediction task, namely influence prediction. Closer to our
work, Pujari and Kanawati (2012) adapted these methods to predict links in
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social networks using supervised approaches. One method that they consider
is based on giving weights to the Borda method according to the performances
of the unsupervised rankings, in the following we refer to this aggregation
method as Weighted Borda. Another, Kemeny aggregation, is also inspired
by methods trying to provide a consensus from the unsupervised rankings,
by minimizing the number of pairwises disagreements between rankers. This
allowed efficient predictions on 104 to 105 items rankings.

In this work, we propose a simple yet efficient learning-to-rank supervised
framework specifically designed to uncover links in large and sparse networks,
such as social networks. We improve the prediction by combining rankings
obtained from different sources of information. The article is organized as
follows. Section 2 is dedicated to the description of the features and metrics
that we use to evaluate the performances of the link prediction. We then
present in Section 3 how classic unsupervised learning methods can be applied
to the problem under consideration. In Section 4, we present our supervised
machine learning framework, called RankMerging, which improves the quality
of predictions by aggregating the information from the unsupervised metrics.
Finally, we implement this method on three large social network datasets,
during two series of experiments in Section 5, and compare our results to
those of other methods. We also explore aspects such as the feature selection
problem, the impact of parameters values etc, and show that RankMerging
is suited to social networks where information is partial and noisy, and the
number of links to predict is large.

2 Aggregation task and performance evalua-
tion

2.1 Description of the aggregation task

In this work, link prediction is formulated as a learning-to-rank problem. We
describe here the rank aggregation task in general. Suppose we have a set of
items I = {item1, item2, . . . , itemmax}. We also have α lists, called rankings,
which contain the whole set or a subset of I in a definite order, for example
ri = [ri[1], ri[2], . . . , ri[sizei]]. A ranking is full if it contains all the elements
of I and partial if it does not. The aggregation task consists in building
an output (or aggregated) ranking ro containing once all items of I. In the
context of link prediction, an item ranked is a pair of nodes and we build the
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output ranking in the purpose of discovering connected pairs at the top of
ro.

2.2 Performance evaluation for link prediction

The definition of a good aggregation and thus of an adequate quality esti-
mator depends on the purpose of the ranking problem. For example in the
context of social choice theory, a ranking represents the order of preferences
of a voter, so that the aggregation process aims at providing the best possible
compromise of the different input rankings. In this case, there is no ground
truth and the quality of an aggregated ranking is often evaluated using a
distance to the input rankings. A usual choice is the Kendall tau distance
between the input rankings ri and the output ranking ro, which is defined as
the number of couples of items which are ranked in different orders in ri and
ro. Notice that it is also true in the field of information retrieval, where the
notion of goodness of a ranking is usually seen as a consensus among experts.

However considering link prediction, it is possible to define a ground truth
on a learning set, where a link either exists or not. It allows to use more
appropriate performance metrics. Considering a fixed number of predictions
θ, the link is predicted or not depending on whether its rank falls above
or below θ. The quality of a prediction is therefore assessed by measuring
the numbers of true and false positive (resp. #tp and #fp), true and false
negative (#tn and #fn) predictions in the top θ pairs, and usual related
quantities: precision Pr = #tp

#tp+#fp
, recall Rc = #tp

#tp+#fn
and F1-score F =

2.Pr.Rc
Pr+Rc

.
Previous works have emphasized the dramatic effect of class imbalance

(or skewness) on link prediction problems in social networks (Lichtenwalter
et al., 2010; Comar et al., 2011). The fact that the network is sparse and
that there are many more pairs of nodes than links makes the prediction
and its evaluation tricky. The typical order of magnitude of the classes
ratio for a social network made of N nodes is indeed 1/N . It means that
the number of predicted links is much lower than the number of candidate
pairs, consequently the fall-out #fp

#fp+#tn
is usually very small, making the

ROC curve a potentially deceptive way of visualizing the performances, as
discussed in Yang et al. (2015). For this reason and because we aim at
improving both precision and recall over a large range, in the following we
visualize the performances in the precision-recall space.
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3 Unsupervised rankings

3.1 Ranking metrics

In this work, we focus on structural features that assign to each pair of nodes
a score based on topological information, then pairs are ranked according to
this score. Note that the metrics used may produce ties, in such case the
relative order of tied items is decided randomly. There is a large number
of available metrics, which are designed to be correlated to the probability
of existence of a link, see for example Zhou et al. (2009); Lü and Zhou
(2011); Al Hasan and Zaki (2011). Moreover, we consider graphs which links
may be weighted – for example, weights may correspond to the number of
interactions between two nodes. When available, we draw benefit from the
weight information to refine the prediction. Nevertheless, the goal of this
paper is neither to propose elaborate classifiers nor to delve deeply into the
feature selection process, but to present a method that takes advantage of
how complementary they are. We have, therefore, chosen classic metrics and
generalized them to the case of weighted networks – other generalizations
exist in the literature, e.g. Murata and Moriyasu (2007).

3.1.1 Local features

In the following, N (i) denotes the set of neighbors of node i, its degree is
δ(i) = |N (i)|, w(i, j) is the weight of a link (i, j) and W (i) is the activity
of a node i, that is the sum of the weights of its links. Some metrics are
local (also called neighborhood rankers) as they only rank links among nodes
which are at most at distance 2. The common principle to their definition
is that two nodes that have many neighbours in common are likely to be
connected to each other.

• Common Neighbors index (CN), based on the number of common neigh-
bors shared by nodes i and j, the corresponding unweigthed and weighted
scores are

sCN(i, j) = |N (i)∩N (j)| and sCNw(i, j) =
∑

k∈N (i)∩N (j)

w(i, k)·w(j, k)

• Adamic-Adar index (AA), which relies on the same principle as CN
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and also promotes pairs which share low-degree neighbours,

sAA(i, j) =
∑

k∈N (i)∩N (j)

1

log(δ(k))
and sAAw(i, j) =

∑
k∈N (i)∩N (j)

1

log(W (k))

• Resource Allocation index (RA) is based on the same logic as AA index,
but gives a different weight to the degree of shared neighbours,

sRA(i, j) =
∑

k∈N (i)∩N (j)

1

δ(k)
and sRAw(i, j) =

∑
k∈N (i)∩N (j)

1

W (k)

• Sørensen index (SR), which promotes pairs that have a large fraction
of their neighbourhood in common,

sSR(i, j) =
2 · |N (i) ∩N (j)|

δ(i) + δ(j)
and sSRw(i, j) =

∑
k∈N (i)∩N (j)

w(i, k) + w(j, k)

W (i) +W (j)

3.1.2 Distance-based features

Other features are distance-based, since they are calculated using the large-
scale structure of the network, and allow for the ranking of distant pairs of
nodes:

• Katz index (Katz), computed from the number of paths from node i to
node j of length l, i.e. νij(l), according to the following expression

sKatz(i, j) =
∞∑
l=1

γlνij(l)

Here, γ is an attenuation parameter. It must be lower than 1 and small
values favour short paths over long ones. The relevance of Katz index
stems from the fact that two nodes which are connected by many paths
are more likely to be linked. Note that in the weighted case, the num-
ber of paths is computed as if links were multilinks.

• Random Walk with Restart index (RWR), derived from the PageR-
ank algorithm, sRWRw(i, j) is defined as the probability that a random
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walker starting on node i, going from a node k to a node k′ with prob-
ability p.w(k, k′)/W (k) and returning to i with probability 1 − p, is
on j in the steady state of the process. The fact that a random walk
starting on i has a high probability to go through j indicates that both
nodes are tightly related in the network, and may therefore be linked.

• Preferential Attachment index (PA), based on the observation that ac-
tive nodes tend to connect preferentially in social networks.

sPAw(i, j) = W (i).W (j)

3.1.3 Intermediary features

In practice, the exact computation of distance-based metrics is expensive on
large networks, that is why approximations are often favoured to compute
these scores. Both Katz and RWR are computed using infinite sums, from
now on it is approximated by keeping only the first four dominating terms to
reduce the computational cost1, which is a usual practice for computing large-
scale centrality estimators (Lü and Zhou, 2011). This approximation means
that we can only predict links between pairs of nodes at a maximum distance
of 4. Notice that it is a way to reduce the class-imbalance problem: as distant
pairs are less likely to be connected, we dismiss them in order to increase the
(true positive / candidate pairs) ratio. As the class imbalance problem is
known to hinder dramatically the performance of PA, we have restricted the
ranking in this case to pairs of nodes at a maximum distance of 3. Notice
that with larger maximum distances, we can increase the maximum recall
that can be reached, but at the cost of a drop of precision.

When even distance 4 approximation is too expensive, we use the Local
Path index, especially designed to capture the structure at an intermediary
scale

sLP(i, j) = νij(2) + γ · νij(3)

With the same notations as Katz index and γ is the corresponding attenua-
tion parameter.

1The limiting factor in the experiments presented in the following is the loading in
memory of the adjacency matrix and its powers, which sizes are limited to around 1GB
in our implementations.
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3.2 Borda’s method

The main purpose of this work is to develop a framework to exploit a set
of α rankings for link prediction. Here, we present an unsupervised way of
merging rankings stemming from social choice theory: Borda’s method is a
rank-then-combine method originally proposed to obtain a consensus from a
voting system (de Borda, 1781). Each pair is given a score corresponding to
the sum of the number of pairs ranked below, that is to say:

sB(i, j) =
α∑
k=1

|rk| − rk(i, j)

where |rk| denotes the number of elements ranked in rk, and rk(i, j) the
ranking of pair (i, j) in ranking rk.

This scoring system may be biased in the sense that it would favour some
predictors - in our case distance-based scores - by the fact that they feature
more elements. In other words, this definition does not cover well the partial
ranking situation. To alleviate this problem, we use the same method as
the one cited in Dwork et al. (2001): “by apportioning all the excess scores
equally among all unranked candidates”. Another way of phrasing it is that
all unranked pairs in ranking rk are considered as ranked on an equal footing
and below all ranked pairs. Borda’s method is computationally cheap, which
is a highly desirable property in the case under consideration, where many
items are ranked.

4 RankMerging framework
The ranking methods presented in the previous section use structural in-
formation in complementary ways. In social networks, communication pat-
terns are different among different groups, e.g. family, friends, coworkers etc.
Consequently, one expects that a link detected as likely by using a specific
ranking method may not be discovered using another one. In this section,
we describe the supervised machine learning framework that we created to
aggregate information from various ranking techniques for link prediction in
social networks. In a nutshell, it does not demand for a pair to be highly
ranked according to all criteria (as in a consensus rule), but to be highly
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ranked in at least one. The whole procedure is referred to as RankMerging2.

4.1 Optimization task

The learning phase of RankMerging aggregation is based on a greedy opti-
mization algorithm. We first define the optimization task that we want to
achieve during this phase.

In the learning set, the items ranked are pairs of nodes which are labeled
either with 1 if they are connected and 0 otherwise. For a fixed number of
predictions θ, Sθ is the sum of the values of the labels in the output ranking
ro, that is to say the number of true positive predictions among the top θ
pairs in ro. Sθ is a function of Φ = [rn1(k1), . . . , rnθ(kθ)], that is the ordered
list of length θ which contains the sequence of pairs selected: rn1(k1) means
that the first element selected is the kth1 pair of ranking rn1 , etc. As an item
can be present in several rankings but put only once in the output ranking,
the items appended to the output are no longer available, in other words, all
elements of the list Φ have to be distinct. If φi denotes the number of items
selected from ranking ri, note that {φ1, . . . , φα} can be trivially derived from
Φ and that we have φ1 + . . . + φα = θ. In the most general case, we are
looking for the sequence Φ that yields the maximal value of Sθ(Φ).

Now, we precise a few choices in the design of our method, which simplify
the optimization task described above. The aggregation process is iterative,
starting from an empty output ranking. At each iteration, we select one
of the input rankings and append its highest ranked item available to the
output ranking. Thus in our case, an element rni(ki) can feature Φ only if all
elements above in rni are already in Φ. In short, the aggregation is realized as
a sequence of selections of input rankings. In this context, the function Sθ to
optimize can be reformulated as a function Sθ(Φ̂), where Φ̂ = [rn1 , . . . , rnθ ] is
the ordered sequence of rankings selected during the process. We are looking
for a sequence which yields the maximum number of pairs labeled 1 among
the θ pairs in ro. There is no obvious way to solve this problem exactly,
therefore, we use a heuristic method to solve it by local search.

2An implementation and user guide are available on http://lioneltabourier.fr/
program.html.
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4.2 Introductive example

While the principle of our method is quite intuitive, its technical details may
be dry. That is why we describe in this section the process qualitatively,
and develop it on an example to help the reader understanding the following
sections. To avoid confusion, we denote from now on the structures relative
to the learning phase with index L and the ones relative to the test phase
with index T .

4.2.1 Learning phase

During the learning phase, we have a learning graph which is used to build
the prediction model. The pairs of nodes which are not edges of this graph
constitute the set of labeled pairs: some are not connected and others are
edges of the calibration set, denoted Ecal in the following. In practice, the
prediction model is built to guess these links during the learning phase.

Let us remind that the inputs of the learning algorithm are the unsuper-
vised rankings, which are obtained using various kinds of scores (or rankers)
on the learning graph. Note that a ranker may give the same score to several
pairs of nodes, in this case the order of the pairs is decided randomly. The
number of predictions is set to θL. The outputs of the learning phase are
the merged ranking ro,L containing θL pairs and the values of the coefficients
{φ1, . . . , φα} defined in Section 4.1. These coefficients can be understood as
the weights of the input rankings in ro,L.

To approximate the optimization task defined above, we proceed in the
following way. At each step, a ranking among the input rankings is selected
and its highest available pair is appended to the output ranking ro,L. The
selection process is based on an estimate of the probability that the highest
available pair is actually connected. To do so, for each input ranking we
build a sliding window Wi,L which contains the next g available pairs. The
window size g is the only parameter of the method that the user has to set.
We denote χi the quantity of true positive (or tp) in window Wi,L. Then,
the average probability that any pair is connected in Wi,L is the ratio χi/g.
We select the ranking which has the highest probability value, that is to say
the highest χi value. Ties are broken randomly, which makes the method
non-deterministic.

Let us put into practice this process on an example. In Table 1, we
consider the learning process on two input rankings r1,L and r2,L. The window
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size g is fixed to 5 and the number of predictions θL = 4. Initially, there are
4 tp in W1,L and 3 tp in W2,L, consequently the first link selected is the top-
ranked pair available inW1,L, which is (1, 2). This pair is therefore appended
to the output ranking ro,L and excluded from the ranking r2,L. At step 2,
we have 4 tp in both windows, the ranking is then selected randomly. Let
us suppose that r2,L has been selected, therefore, the next link added to ro,L
is (5, 18). At step 3, χ1 = 4 and χ3 = 3 then the pair selected to join ro,L is
(1, 4) from r1,L. At step 4, χ1 = 4 and χ2 = 3 and the pair selected is (5, 6)
from r1,L. At this point, φ1 = 3 and φ2 = 1.

4.2.2 Test phase

The test phase of RankMerging consists in using the coefficients {φ1, . . . , φα}
computed at each step during the learning phase in order to select the ranking
on the test set.

The inputs of the test phase are the unsupervised ranking defined on the
test graph, denoted {r1,T , . . . , rα,T}, and the {φ1, . . . , φα} learned during the
learning process. Its output is the merged ranking of items ro,T , which is
initially empty. For the sake of simplicity, let us first suppose that there are
the same number of items to rank in the learning phase and in the test phase.
In this case, we make the assumption that the optimal aggregated ranking
in the test phase should be obtained by the same mixing as the aggregated
ranking of the learning set. For example, if the item ranked at position k
in ro,L has been selected from ranking ri,L during the learning process, we
should rank at position k in ro,T a pair from ranking ri,T .

In Table 2, we give an example of test using the φi learnt on the example
of Table 1. At the first step of the learning algorithm, φ1 = 1 and φ2 = 0,
so the top ranked item of r1,T , which is (2, 8), is selected at the first step of
the testing process and appended to ro,T . We iterate this process: at step 2,
φ1 = 1 and φ2 = 1, we therefore append the highest available item of r2,T to
ro,T , which is (1, 8), etc.

It is possible that the number of items ranked using the learning graph
and the number of items ranked using the test graph differ. In this case,
we define and compute a scaling factor f , which is the ratio between the
number of items ranked on the test set over the number of items ranked on
the learning set. Then, when predicting item in position kT in the test output
ranking, it should correspond to the item ranked in position kL = bkT/fc.
This idea can be intuitively understood using Figure 1, the mixing should
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r1,L tp r2,L tp
(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)
(2,9) (3,7)

→

r1,L tp r2,L tp
(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)
(2,9) (3,7)

→

r1,L tp r2,L tp
(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)
(2,9) (3,7)

→

r1,L tp r2,L tp
(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)
(2,9) (3,7)

→

r1,L tp r2,L tp
(1,2) (5,18) x
(1,4) x (1,2)
(5,6) x (8,9)
(6,12) x (5,6) x
(5,18) x (7,11) x
(3,4) (6,9) x
(4,9) x (1,14)
(7,11) x (2,9)
(2,9) (3,7)

Table 1: Four steps illustrating the learning algorithm with rankings r1,L and
r2,L (g = 5, θL = 4). Pairs predicted (i.e. ∈ ro,L) have green backgrounds.
Pairs with gray backgrounds are in the windows W1 and W2. Barred pairs
with red backgrounds have already been predicted and are no longer avail-
able.

be proportional to the size of the ranking considered. For example, if there
are twice more pairs ranked in the testing set than in the learning set, the
ranking ri,T selected for kT = 1 and kT = 2 corresponds to the ranking ri,L
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learning step φ1 φ2
1 1 0
2 1 1
3 2 1
4 3 1

r1,T r2,T
(2,8) (1,8)
(1,8) (9,11)
(5,11) (4,5)
(3,6) (5,11)

−→

r1,T r2,T
(2,8) (1,8)
(1,8) (9,11)
(5,11) (4,5)
(3,6) (5,11)

−→

r1,T r2,T
(2,8) (1,8)
(1,8) (9,11)
(5,11) (4,5)
(3,6) (5,11)

−→

r1,T r2,T
(2,8) (1,8)
(1,8) (9,11)
(5,11) (4,5)
(3,6) (5,11)

Table 2: Illustration of the test algorithm. Top: φi learnt during the learning
phase. Bottom: pairs in ro,T at each step of the aggregation (green back-
ground), barred pairs with red backgrounds have already been predicted and
cannot be selected anymore.

selected for kL = 1.

4.3 Algorithms

In this section, we describe the algorithms of RankMerging aggregation pro-
cess with more precise technical details.

4.3.1 Learning phase

The learning set in the context of link prediction is composed of a learning
graph GL = {VL, EL}, where VL is the set of vertices and EL is the set of
edges. Edges of EL are not ranked in the process and cannot be predicted.
For this purpose we also have an additional set of links Ecal among nodes of
VL. During the learning phase, we aim at predicting these additional edges,
which are the pairs labeled as true positive as already mentioned.

We have α different rankings {r1,L, ..., rα,L} obtained with unsupervised
ranking methods on GL. Any ranking ri,L contains exclusively pairs of (VL×
VL) \ EL. This set of rankings is described as a two dimensional table RL,
so that RL[i] = ri,L and RL[i][k] denotes the pair ranked in position k of
ranking ri,L.

We previously explained that each ranking is equipped with a sliding
window Wi, that we denote W [i] from now on, as it is practically stored as
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Figure 1: Schematic representation of the scaling factor f , ratio of the number
of pairs ranked in the test set over the number of pairs ranked in the training
set. On this example, the number of items ranked in the test set is supposed
to be twice as large as the number of items ranked in the learning set, so
that f = 2.

a table of sets. Each window contains exactly g items, which are the highest
ranked pairs in this ranking, still available for selection. A window can be
located using a start index ρ which is the rank of the highest available pair
and an end index σ which is the rank of the highest pair out the window.
Storing these indices in tables, ρ[i] and σ[i] are respectively the start and
end index of W [i]. Notice that initially σ[i]− ρ[i] = g, however it is not true
during the whole process.

We also need to store the output ranking ro,L in a table of length θL (the
number of predictions, which set by the user). Most importantly, we need to
register the values of {φ1, . . . , φα}. We store them in a two dimensional table
Φ, so that Φ[i][k] is the value of φi at the kth step of the aggregation process,
that is the selection of item ro,L[k]. Note also that the values of {φ1, . . . , φα}
at the kth step of the aggregation are the values corresponding to θL = k.
So, when the number of predictions is θL, we can actually make a prediction
for any value k ≤ θL.

Now that all the useful structures are defined, we describe in a few words
the aggregation process. At any step k, we evaluate for each window the
number of links that it contains, which is χi = |W [i] ∩ Ecal|. The ranking
selected is the one for which this quantity is maximum, ties being broken
randomly. The highest ranked pair of the selected ranking is appended in
position k of the output ranking ro,L. We register which ranking RL[j] has
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been selected by incrementing the value of Φ[j], that is to say Φ[j][k] =
Φ[j][k − 1] + 1, while for the other rankings (i 6= j), Φ[i][k] = Φ[i][k − 1].
Then, the windows W [i] are updated so that each window contains exactly
the g highest ranked available pairs in RL[i]. The process is iterated until
ro,L contains θL items.

The algorithm corresponding to this process is described in Algo. 1. In
the description of the algorithm, we dropped the index L for the sake of
readability.
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Algorithm 1: RankMerging method: learning algorithm.
inputs : table of rankings R; real edge set Ecal;

maximum number of predictions θ; window size g;
outputs: table Φ; merged ranking ro;
// initialization, ∀i ∈ {1, . . . , α}:
begin
W [i]← g first links in R[i]; // pairs in window Wi

χ[i]← |W [i] ∩ Ecal|; // number of actual links in window Wi

ρ[i]← 1; // start index of window Wi

σ[i]← g + 1; // end index of window Wi

k ← 1; // counter of the number of items ranked in ro

while k ≤ θ do
imax ← index corresponding to maximum χ[i];
ro[k]← R[imax][ρ[imax]];
ρ[imax]← ρ[imax] + 1;
k ← k + 1;
Φ[imax][k]← Φ[imax][k − 1] + 1; // record φimax at step k
∀i ∈ {1, . . . , α} and i 6= imax, Φ[i][k]← Φ[i][k − 1]; // record
other φi
∀i ∈ {1, . . . , α}, update(W [i], χ[i], ρ[i], σ[i], ro[k]); // update
windows Wi

Procedure: update(W [i], χ[i], ρ[i], σ[i], ro[k]):
begin

// take away the selected pair from Wi:
if ro[k] ∈ W [i] then
W [i]←W [i] \ {ro[k]}

// increase ρi until reaching an available pair in ri:
while R[i][ρ[i]] ∈ ro do

ρ[i]← ρ[i] + 1;
// increase σi until having g pairs in Wi:
while |W [i]| ≤ g do

l← R[i][σ[i]];
σ[i]← σ[i] + 1;
if l /∈ ro then
W [i]←W [i] ∪ {l};

χ[i]← |W [i] ∩ Ecal|; // update number of links in window Wi
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4.3.2 Test phase

The test set is composed of a test graph GT = {VT , ET}, where VT is the set of
vertices and ET is the set of edges. Edges of ET are not ranked in the process
and cannot be predicted. We aim at predicting edges of an additional set
Eperf , which is used to measure the performances of the method.

We have α different rankings {r1,T , ..., rα,T} obtained with unsupervised
ranking methods on GT . The feature used to obtain ri,T on the test graph
is the same as the feature used to obtain ri,L on the learning graph. Any
ranking ri,T contains exclusively pairs of (VT ×VT ) \ ET . Here again, this set
of rankings is described as a two dimensional table RT , so that RT [i] = ri,T
and RT [i][k] denotes the pair ranked in position k of ranking ri,T .

The test phase consists in aggregating rankings of RT according to the
{φ1, ..., φα} learnt on the training network GL. This process yields an aggre-
gated ranking ro,T , which is the final output of the method. The number of
pairs selected from any ranking RT [i] is stored in a table Λ, such that Λ[i] is
the number of pairs selected from RT [i]. At step k′ of the testing phase, the
ranking selected for the aggregation process should be the ranking selected
at step k of the learning phase so that k = bk′/fc. Let us recall that f is
the ratio of the number of items ranked in the test set over the number of
items ranked in the learning set. Practically speaking, it means that for all
i ∈ {1, . . . , α}, we append available items from ranking RT [i] to ro,T until
we have Λ[i] = Φ[i][k] with k = bk′/fc. Notice also that the size θT of ro,T
cannot exceed f times the size of ro,L, that is f · θL.

Finally, the pairs appended to the output ranking are the highest ranked
available pairs of RT [i]. For this purpose, we define a table C, in which we
store the location of the top-ranked available pair in C[i]. The corresponding
process is described in Algorithm 2. We dropped the index T in the algorithm
for the sake of readability.

4.3.3 Complexity

A substantial benefit of the learning algorithm is that we need to go through
each learning ranking only once. Moreover, by using appropriate data struc-
tures to store the windows Wi – e.g., associative arrays of sets – it is easy
to manage each update in O(1). So if we have α rankings and θL predic-
tions, it implies a O(α · θL) temporal complexity. Similarly, the test phase
demands to go through the test rankings once, yielding a O(α · θT ) com-
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Algorithm 2: RankMerging method: testing algorithm.
inputs : table of rankings R; Φ table;

maximum number of predictions θ; scaling factor f ;
outputs: aggregated ranking ro;
// initialization, ∀i ∈ {1, . . . , α}:
begin
C[i]← 1; // location of the highest ranked available
item in ri
Λ[i]← 0; // number of items selected from ri
k ← 1; // index of the learning tables φi
k′ ← 1; // number of items ranked in ro

while k′ ≤ θ do
for i ∈ {1, . . . , α} do

while Λ[i] < Φ[i][k] do
if R[i][C[i]] /∈ ro then

ro[k
′]← R[i][C[i]];

Λ[i]← Λ[i] + 1;
k′ ← k′ + 1;
k ← bk′/fc;

C[i]← C[i] + 1;

plexity. Moreover, most of the memory used is due to the storage of the
rankings, which is also O(α · θL) or O(α · θT ). These time and space con-
sumptions are in general insignificant with regard to the complexities of the
preliminary unsupervised classification methods, as is confirmed by the ex-
perimental computation times (see Section 5.6).

4.4 Properties related to social choice theory

In the context of social choice theory, ranking aggregation methods are often
built in order to satisfy a set of properties that guarantee their goodness (Ar-
row, 2012). Two of the properties which are often considered as desirable are
a) satisfying the Condorcet criterion (in its extended version), and b) being
Kemeny optimal. The former means that if a majority of rankings prefers
an item i to an item j then it should be the case of the aggregated ranking.
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The later means that the Kendall tau distance from the output ranking to
the inputs is minimal. Our method does not satisfy these two properties3.

However, it is important to underline that RankMerging is not built for
the purpose of social choice. These characteristics are relevant in an unsu-
pervised context, where there is no ground truth to evaluate the result. The
underlying assumption is that each ranking should have the same weight and
the distance to the input is the criterion to evaluate the quality of an aggre-
gation. As argued in Subbian and Melville (2011) too, there is a ground truth
available in the context of supervised ranking aggregation tasks, that is the
number of true positive predictions on the learning set. As a consequence,
satisfying these properties is not a priority for our purpose and we naturally
favoured the number of true predictions for the design of RankMerging.

4.5 Design justification

Let us recall that the aggregation process aims at finding the maximum value
of a function Sθ(Φ̂), which is the sum of the labels of the output rankings of
the learning phase. The labels are either 1 (if the link exists) or 0 (if it does
not) – see Sec. 4.1. In this section, we explain why the design that we have
chosen for the algorithm should be efficient to achieve this task, and what is
the influence of parameter g in the process.

During the learning phase of the algorithm, we select elements of the
input rankings according to these rankings order. This choice is efficient
provided that input rankers are made so that highest ranked pairs have a
higher probability of being true positive predictions – which is expected from
a good classifier. Moreover, we choose a ranking depending on a quality
evaluator, that is χi/g. Considering that χi is the number of elements with
label 1 in the sliding window of ranking ri,L, χi/g can be understood as the
probability that a random element in the window is a true positive.

To investigate how efficient the aggregation process on the learning graph
should be, we measure if the quality evaluator is indeed decreasing through-
out the process. We show on Figure 2 a typical example of the evolution of
χi/g for a given ranker (Common Neighbors) in a given experiment (on the
PSP dataset, see 5.1.1) and different g values.

3It can also be shown that RankMerging does not verify independence of irrelevant al-
ternatives, weak monotonicity and continuity. On the other hand, it satisfies the properties
of consistency, unanimity, non-dictatoriality, neutrality, anonymity and non-constancy.
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during a learning process on the PSP dataset.

We can observe that the decreasing condition is nearly fulfilled during the
process if g is large enough. However, it does not mean that the best solution
for the merging problem is to take g as large as possible, as the larger g gets,
the lesser χi/g is an accurate estimation of the probability that the next pair
selected is an element with label 1. Therefore, we have to manage a trade-off
by tuning parameter g in order to obtain the best possible performance of
RankMerging.

5 Experiments

5.1 Datasets

5.1.1 PSP phonecall network

We investigate a call detail record of approximately 14 · 106 phonecalls of
anonymized subscribers of a European phone service provider (PSP) during
a one month period. Users are modeled as nodes, and a link represents
the existence of a communication relationship between two users. A call
between two users is a directed interaction, and we filter out calls which are
not indicative of a lasting relationship (e.g., commercial calls) by considering
only calls on bidirectional links, i.e. links that have been activated in both
directions. After this filtering has been applied, interactions between users
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are considered as undirected. The total number of phone calls between nodes
i and j is the weight of this link. The resulting network is composed of
1,131,049 nodes, 795,865 links and 10,934,277 calls.

5.1.2 DBLP coauthorship network

The second dataset under study is the collection of computer science pub-
lications DBLP4, which roughly contains 19 · 106 papers. We study the
collaboration network, where nodes of the network are authors and links
connect authors who published together and links are weighted according to
their number of collaborations. The network features 10,724,828 links and
1,314,050 nodes.

5.1.3 Pokec social network

Pokec is a popular online social network in Slovakia5. We consider the net-
work of friendship links between accounts. In its original version there are
around 31·106 friendship links, but friendship is directed in Pokec, so we only
kept reciprocated friendships in the spirit of the preprocessing of the PSP
dataset. The final network contains 8,320,600 links and 1,632,804 nodes.

5.1.4 Facebook social network

We also study a subpart of Facebook network, which has been described
in Viswanath et al. (2009)6. This dataset is considered in a link predic-
tion setting (rather than missing link recovery). It registers communication
among users via their Facebook wall from approximately 2005 to 2008. We
restricted ourselves to 700 days of data from January 1st 2007 to November
30th 2008, as the activity over the first two years is low. Temporal labels are
rounded to have a daily granularity. The final temporal network contains
45,612 nodes, 175,651 links and 532,318 interactions (wall posts), links are
considered undirected.

4Available at http://konect.uni-koblenz.de/networks/dblp_coauthor.
5Available at http://snap.stanford.edu/data/soc-pokec.html.
6Available at http://konect.uni-koblenz.de/networks/facebook-wosn-wall.
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5.2 Benchmarks for comparison

In order to assess the efficiency of RankMerging, we compare its performances
to existing techniques.

• We first compare to the various unsupervised rankings described in
Section 3.

• We also compare to classic supervised techniques for classification tasks.
As stated in Al Hasan et al. (2006), there are a lot of such methods
available, which performances are usually comparable. Because of the
number of items to be classified, we restricted ourselves to several com-
putationally efficient methods, namely k nearest neighbors (NN ), deci-
sion trees (also known as classification trees CT ) and AdaBoost (AB)7.
The learning features used for the classification task are the unsuper-
vised ranks of the pairs. We have used implementations from Python
scikit learn toolkit8. Note that these techniques are not specifically de-
signed for link prediction tasks. As a consequence, there is no obvious
way of controlling the number of predictions. We obtain several points
in the precision-recall space by varying the algorithms parameters, re-
spectively the number of neighbors k with NN, the minimum size of a
leaf with CT, and the number of pruned trees with AB.

• Finally, we compare our results to a supervised learning-to-rank tech-
nique. We underline that most of the classic techniques are not avail-
able here, as the rankings considered have so many items that it not
conceivable to use a method which complexity is worse than linear or
linearithmic. For example, methods based on the pairwise comparison
of rankings, are not available here. We use the weighted Borda method
proposed in Pujari and Kanawati (2012), which follows the same prin-
ciple as the unsupervised Borda method, except for the fact that the
input rankings are weighted according to their level of performance on
a training set. Several weighting schemes are proposed in that article,
and we use the maximization of precision, in which weights are propor-
tional to the precision of the predictions related to the input rankings.

7We used a version of AdaBoost which combines the results of several pruned classifi-
cation trees.

8http://scikit-learn.org/ , for more details, see Pedregosa et al. (2011).
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We do not use the local Kemeny and supervised Kemeny methods ei-
ther (Subbian and Melville, 2011), because even if the merging process
is presented as a linearithmic function of the size of the rankings, the
whole procedure is actually quadratic as there is a preliminary pairwise
score computation.

5.3 Series 1

The first series of experiments aims above all to describe how the method
works on a practical example. We focus on the PSP dataset and explore the
impact of the parameter g value and the question of the feature selection.

A possible motivation for recovering missing links in the context of a
phone service provider is that PSPs only have access to records involving their
own clients, so that they have an incomplete view of the social network as
a whole. In several practical applications, however, this missing information
is crucial. An important example is churn prediction, that is the detection
of clients at risk of leaving to another PSP. This risk is known to depend on
the local structure of the social network (Dasgupta et al., 2008; Ngonmang
et al., 2012). Therefore, the knowledge of connections between subscribers
of other providers is important for the design of efficient customer retention
campaigns. This series of experiments has been designed for this application,
that is to say the prediction of links among the users of a PSP competitor.

5.3.1 Protocol

A Phone Service Provider is usually confronted to the following situation: it
has full access to the details of phone calls between its subscribers, as well
as between one of its subscriber and a subscriber of another PSP. However,
connections between subscribers of other PSPs are hidden. In order to sim-
ulate this situation from our dataset, we divide the set of nodes V into three
disjoint sets: V1, V2 and V3. V1 ∪ V2 would be subscribers to the PSP, V3
would be subscribers to competitors. V1, V2 and V3 form a partition of V
and a partition of the set of links E ensues. During the learning phase, links
V1–V1 and V1–V2 are known, defining the set of links EL of the graph GL, and
we calibrate the model by guessing links V2–V2, defining the set Ecal. During
the test phase, all the links are known except for links V3–V3, and we aim at
guessing these links to evaluate the performances, we denote this set of links

25



Eperf . Users have been assigned randomly to V1, V2 and V3 according to the
proportions 50, 25, 25%. With these notations, we have:

• GL = (VL = V1 ∪ V2 , EL), it contains 848,911 nodes and 597,538 links
and we aim at predicting the 49,731 links in Ecal.

• GT = (VT = V , ET = E\Eperf ), it contains 1,131,049 nodes and 746,202
links and we aim at predicting the 49,663 links in Eperf .

5.3.2 Unsupervised learning process

We plot the results obtained on GL to predict Ecal links for the above clas-
sifiers. For the sake of readability, we only represent a selection of them in
Figure 3. The evolution of the F1-score significantly varies from one classifier
to another. For example, it increases sharply for CN, and then more slowly
until reaching its maximum, while RWRw rises smoothly before slowly de-
clining. Borda’s aggregation improves the performance of the classification,
especially considering the precision on the top-ranked pairs. RankMerging
method aims at exploiting the differences between these profiles. Given the
difficulty of the task, precision is low on average. For instance, when recall
is greater than 0.06, precision is lower than 0.3 for all rankers. We only used
structural features here, making it impossible to predict links between nodes
which are too distant from each other (further than four steps in our case).
On the one hand we are thus limited to small recall values. But on the other
hand, limiting predictions to pairs of nodes which are close is a way of re-
ducing the class imbalance effect aforementioned. Indeed, we dramatically
reduce the set of candidate pairs, while the set of connected pairs is reduced
by a much smaller factor as closer nodes have a higher probability of being
connected (Lichtenwalter et al., 2010). Finally, note that the process con-
sidered here is a partial aggregation process, as different rankings feature a
different number of pairs (e.g., AAw and RWRw), but this does not affect its
functioning.

5.3.3 Supervised merging process

According to the description in 4.3, φi are computed on GL to discover Ecal
links, and then used to merge rankings on GT to discover Eperf links. Note
that we apply the scaling factor f ' 1.5, according to its definition in 4.2.2, to
adapt the φi learnt to the test rankings. Considering the value of g, it is fixed
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Figure 3: Results obtained on the learning set for various structural clas-
sifiers. Left: F1-score as a function of the number of predictions. Right:
precision versus recall curves.

in order to obtain the best possible performance on the learning set. Our
numerical experiments show that the performance of the algorithm is robust
over a large range of values of g (see Table 3). It is of course a desirable
property, because if the results were varying a lot under small variations
of g, it would make the parameter g difficult to tune. Concerning feature
selection, we argue in the following that the user may aggregate as many
rankings as possible. In fact, the information provided by different rankings
may be redundant, but the merging process is such that the addition of a
supplementary ranking is computationally cheap. Moreover, if a ranking
does not bring additional information, it should simply be ignored during
the learning process.

5.3.4 Results

We plot in Figure 4 the evolution of the F1-score and the precision-recall
curve obtained with RankMerging, for g = 200, aggregating the rankings
of the following classifiers: AAw, CN w, CN , SRw, Katzw (γ = 0.1), PAw,
RWRw (p = 0.8) and Borda’s method applied to these seven classifiers. We
observe that RankMerging performs better than Borda, and consequently
better than all the unsupervised methods explored, especially for interme-
diary recall values. It was expected, as RankMerging incorporates the in-
formation of Borda’s aggregation here. We measure the area under the
precision-recall curves to quantify the performances with a scalar quantity.
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RankMerging increases the area by 8.3% compared to Borda. Note also that
this improvement is not significantly affected by the fact that the method is
not deterministic. Let us recall that there are two sources of non-determinism
in the protocol: pairs of the input rankings with similar scores are ranked
randomly, and ties between rankers which have similar χ during the aggre-
gation process are also broken randomly. Here, the fluctuations between two
realizations of a same experiment are marginal.

Concerning the supervised classification benchmarks, we observe that
they perform well, but only for a low number of predictions (it is comparable
to Borda for approximately 1000 to 2000 predictions). Unsurprisingly, Ad-
aBoost is an ensemble method and outperforms Decision Trees and k Nearest
Neighbors for an optimal parameter choice, but the performances are of the
same order of magnitude, in line with the observations in Al Hasan et al.
(2006). As formerly stated, these methods are not designed to cover a wide
range of the precision-recall space, and therefore perform very poorly out of
their optimal region of use.

On the minus side,Weighted Borda method slightly outperforms RankMerg-
ing on this dataset. Indeed, we measure that Weighted Borda improves by
4.0% the area under the precision-recall curve compared to RankMerging. We
discuss in the next series of experiments, where our method is more accurate,
what can be the reasons for this observation. Another negative point that
should be noticed is that RankMerging has been designed for problems with
large rankings. The window size g implies an averaging effect which causes
the method to lack efficiency on the top-ranked items. As a consequence, it
is not suited to problems with low number of predictions – as would be the
case for information retrieval tasks for example.

Feature selection. We evaluate the influence of the structural metrics in
Table 3. A comprehensive study of the matter would be long and repetitive
considering all possible combinations of rankings, and we restrict ourselves
to a few examples. An important result to notice here is that the addition
of a ranking does not decrease the quality of the merging process – except
for small fluctuations. So ideally, a user may add any ranking to his own
implementation of the method, whatever the source of information is, it
should improve – or at least not worsen – the prediction. This statement
in consistent with the experimental observations that we have made on all
the datasets presented here. Note that the design of the method is supposed
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Figure 4: Results obtained with RankMerging on the test set (learning with
g = 200), compared to various benchmarks. Left: F1-score as a function of
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to favour this behaviour: if a ranking brings too little information to the
aggregation process, then it should be ignored during the learning process.
The issue of feature selection is critical for the link prediction problem, for
instance consensus methods performances drop dramatically with a poor
feature choice, so these experimental observations are encouraging for future
usages of RankMerging.

AAw CNw CN SRw Katzw PAw RWRw Borda imp.(%)

x x x x x x x x 8.3

x x x x x x x 3.2

x x x x x x -0.7

x x x x x -1.0

x x x x -2.0

x x x x x x x 8.2

x x x x x x 8.1

x x x x x 3.7

x x x x 3.8

Table 3: Improvement (in %) to Borda’s method of the area under the curve
in the precision-recall space, for the aggregation of different rankings.
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Parameter g. The dependency on g value is shown in Table 4. Results
indicate that the performances are close to the maximum in the interval
[100; 300] on the learning set. Windows of width g are defined during the
learning process, as seen in 4.3. However, it is interesting to define an equiva-
lent gT of g on the test set, that is to say to count the number of links present
in the next gT available pairs of the rankings, and see which would be the cor-
responding improvement. It allows, indeed, to validate the assumption that
the weights computed on the learning set may be extrapolated to the test set.
As confirmed by the results in Table 4, the performances are as well close
to the maximum in the interval [100; 300] on the test set. It confirms that
choosing g according to the best aggregation on the learning set ensures that
the final performance of RankMerging should be good. It is interesting to
note that the performance is maximum for these intermediate values, around
g = 200. This is the right balance between small g which fluctuate too much
to provide a good local optimum, and large g, for which the windows are
too large to properly evaluate which ranking is the best ranker available, as
discussed in Section 4.5.

g 10 100 200 300 400 500 1000 2000
imp. -0.8 5.5 5.4 5.2 5.0 4.7 4.0 2.7

gT 10 100 200 300 400 500 1000 2000
imp. 2.7 8.2 8.3 7.9 7.4 7.2 6.4 5.6

Table 4: Improvement to Borda’s method of the area under the curve in the
precision-recall space, for different values of g. Top: learning set, bottom:
test set.

5.4 Series 2

In the second series of experiments, we focus on DBLP and Pokec datasets.
Here, we investigate in more details the impact of the sizes of the learning
and test sets.

5.4.1 Protocol

A few points differ from the protocol of the first series, in order to easily
change the sizes of the learning and test sets. All the nodes belong to both
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GL and GT , the partition is made on the set of links E . We use the same
denomination, that is to say:

• EL are the links of GL,

• Ecal are the links to guess during the learning phase, to calibrate our
model,

• Eperf are the links to guess during the testing phase, to evaluate the
performance of the method.

During the learning phase, EL links are used to guess Ecal links. During the
test phase, the links of GT , that is to say ET = EL ∪ Ecal are used to guess
Eperf . We generate several samples such that |Ecal| = |Eperf |, but with various
values for |Ecal|, the missing information increases as this set grows larger.
The samples are defined by the missing links ratio |Ecal|/|E|.

Another noteworthy difference is that these networks have a much higher
average degree than the PSP network, making the computation of the large-
scale rankers expensive in both memory and time. Therefore, we limited
ourselves to the less costly local and intermediary metrics, more precisely:
AAw, CN w, SRw, RAw, LPw (γ = 0.1) and Borda’s aggregation.

For the same reasons, the number of pairs is very large when only consid-
ering nodes at distance 2 (larger than 108). Since it would not make much
sense to predict that many links in a social network, we choose to reduce
the rankings length by focusing on the intersection of rankings: we kept only
106 pairs, which feature the intersection of the tops of all rankings. Borda’s
method is then applied on the intersected rankings. In this setting of exper-
iments, the rankings in the learning set and in the test set have the same
sizes so that the scaling factor f = 1 during the whole series.

5.4.2 Results

We plot in Figure 5 the results obtained on the test sets of both DBLP and
Pokec datasets, for samples where the missing links ratio |Ecal|/|E| = 0.077.
In both cases, RankMerging outperforms the unsupervised methods, but the
improvement is much more visible for DBLP than for Pokec. In this series of
experiments too, performances are not significantly affected by the fact that
the method is not deterministic.

In the case of DBLP, a closer examination shows that at the beginning of
the process, we closely follow Sørensen index curve, which is the most efficient
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Figure 5: Results obtained with RankMerging on the test set. Top: DBLP
(learning with g = 4000). Bottom: Pokec (learning with g = 2000).

unsupervised ranking for low number of predictions. Then its performance
drops, and other rankings are chosen during the aggregation process (mostly
Local Path ranking). In the case of Pokec, pairs aggregated initially mainly
come from Adamic-Adar ranking, then this index soon gets less efficient than
Resource Allocation index, which takes over until the end of the merging
process. Pokec gives a good indication of what happens when the rankings
are not complementary enough, and that one of them is more efficient than
the others: the aggregation nearly always choose the pairs from this ranking
and do not improve significantly the performance. Notice that in both cases,
Borda’s method is not the most efficient unsupervised method: as some
rankings perform very poorly, they dramatically hinder the performance of
Borda’s method.

The comparison to supervised classification methods is interesting here9:
9Notice that AdaBoost does not provide exploitable results on both networks as it
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Classification Trees as well as k Nearest Neighbors perform poorly on Pokec,
however the results on DBLP show that NN and above all CT perform
better than RankMerging on a limited range. This observation highlights
a limit of our learning-to-rank aggregation method for the purpose of link
prediction: the prediction performance cannot be widely better than the
performances of the rankings that have been used as features for the learning,
while classification methods can. There is however a compensation, as the
number of predictions is not constrained, as in the case of classification.

We also compare to theWeighted Borda method, which is the only learning-
to-rank supervised method considered here, given the very large sizes of the
rankings (c.f. 5.2). To implement this method, we need to learn a new set of
coefficients for every ranking size, that is to say for every measurement point
in the precision-recall space. We observe that the Weighted Borda method is
efficient for a relatively low number of predictions. It outperforms RankMerg-
ing on a short range: on [0; 2000] on DBLP and on [0; 5000] on Pokec. But
as in the case of supervised classification methods, its performance drops for
larger number of predictions and RankMerging is more efficient when consid-
ering the area under the precision-recall curve, as can be seen in Figure 6.
This result contrasts with the observation in the first series of experiments
where Weighted Borda is more efficient. We think that it stems from the
fact that in the second series of experiments, the unsupervised rankings are
more redundant, in the sense that different rankers rank the same items
high. While RankMerging takes into account this property to compute the
contribution of a ranking during the learning phase, Weighted Borda does
not.

Learning set size. We now explore the impact of the learning set size on
the performance of the method. We generated five different samples with
missing links ratios: 0.05, 0.10, 0.15, 0.20 and 0.25. In Figure 6, we plot
the area under the precision-recall curves for the samples generated, and
compare them to the most efficient unsupervised methods tested. We ob-
serve that RankMerging outperforms both the unsupervised and supervised
learning-to-rank methods in nearly all cases. However, the differences vanish
when the size of the learning set decrease, that is to say when the missing
information grows. It seems that this observation stems from the fact that a
ranker dominates the others when information is missing, so that the merging

predicts too few links.
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method tends to stick to the most performing ranker.
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Figure 6: Area under the precision-recall curve for different missing links
ratios. Top: DBLP dataset, bottom: Pokec dataset.
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5.5 Series 3

In the third series of experiments, we focus on the Facebook dataset, which
is considered in a predictive context.

5.5.1 Protocol

In the case of this series, we aim at predicting links, which implies that the
protocol is adapted to such a task.

• The graph GL contains the 46,953 nodes which appear at least once dur-
ing the whole period of collection (from January 1st 2007 to November
30th 2008), that is the set V . Its links EL are the 304,306 links which
appear in the dataset during the first 600 days period.

• Links used for calibration Ecal are the links appearing for the first time
between day 601 and day 650, that is 16,411 links.

• And the links to be guessed during the test phase Eperf are the links
appearing for the first time between day 651 and day 700, that is 22,509
links.

As usual, GL = (V , EL) is used to label pairs during the learning phase in
order to guess links in Ecal. Then the graph GT = (V , EL ∪ Ecal) is used to
label pairs during the test phase to guess links in Eperf .

The ranking metrics used to produce the unsupervised input rankings
are CNw, AAw, RAw, SRw, LP (with γ = 0.1) and the unsupervised Borda
aggregation of these rankings. We compare the results obtained to the super-
vised Borda method (with weights computed from the precision of the input
rankings). Note also that we have dropped classification techniques for com-
parison purposes to the other methods, as it has been discussed previously
that the prediction yielded have very different properties compared to the
other techniques.

5.5.2 Results

The results obtained are gathered in Figure 7. We can see that the overall
aspect of the results are qualitatively similar to what we have observed in the
other series of experiments. When computing the area under the precision-
recall curve, RankMerging outperforms by 6.6% the unsupervised version of
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Borda aggregation, which is the second most efficient method here, and by
8.1% supervised Borda, which is the third most efficient. A closer look at
the learning process indicates that RankMerging first selects pairs essentially
from the Borda ranking, then jumps from Borda to the Adamic-Adar ranking
regularly. It starts selecting pairs from other rankings (Resource Allocation)
only after the first 100,000 predictions. These experiments thus show that
the method is also efficient in a prediction context when compared to other
methods. However, it should be noticed that precisions in a prediction con-
text are low for all methods which comes from the fact that this task is even
more challenging than link recovery.
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Figure 7: Results obtained on the link prediction problem on Facebook data.
Left: F1-score as a function of the number of predictions. Right: precision
versus recall curves.

5.6 Experimental running times.

To give the reader a better grasp of the practical running times, we indicate
in Table 5 the order of magnitude of the running times of the two first
series of experiments. We used standard implementations on a workstation
with 16·3 GHz CPU throughout the experiments and specify the order of
magnitude of the computation times. In all cases, we report the total time
to obtain the results presented in the series of experiments, meaning that we
sum the running times of the experiments of the learning and test phases
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for the supervised processes10. Running times are measured in seconds and
given with one or two significant digits. The results reported here correspond
to:

• Unsupervised rankings: we report the execution times of a typical lo-
cal feature (Adamic-Adar)11, an intermediary feature (Local Path) and
Borda method.

• Supervised classification: we report the execution times for the three
classification methods used (Classification Trees, k Nearest Neighbours,
AdaBoost). As each measurement point needs a calibration of the
model, the results reported correspond to a 10 points measurement.

• Supervised learning-to-rank: we report the execution times of theWeighted
Borda method and RankMerging. Note that the computation time of
the Weighted Borda method depends on the number of measurement
points as a new point demands a new aggregation with different weights.
Similarly, one has to adjust the parameter g of RankMerging using its
best perfomance on the learning set, therefore we need to run the learn-
ing phase of the method with several g values. In both cases, we use
24 measurements to evaluate the running times.

Unsupervised Sup. Classification Weighted Rank
Local Inter Borda CT NN AB Borda Merging

PSP < 10 30 < 10 210 4 · 104 500 200 200
DBLP 6 · 104 7 · 104 40 400 800 1100 1200 1200
Pokec 5 · 104 1 · 105 30 300 400 1000 1000 1000

Table 5: Running times of the different prediction models, given in seconds.

Several points may be noticed regarding these measures. First, RankMerg-
ing and Weighted Borda have comparable running times in all cases, which
was expected as RankMerging, like Weighted Borda, go through each ranking
exactly once. They are both suited to supervised learning-to-rank on large
rankings.

10We do not include in the computation times of the supervised methods the time
necessary to produce the unsupervised rankings inputs.

11The running times are of the same magnitude for the other local metrics.
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Considering the whole learning-to-rank process, the bottleneck is the com-
putation of the unsupervised rankings. Concerning PSP, it can be observed
that the running times of local unsupervised methods is only a few dozens of
seconds while it is several hours on the Pokec and DBLP datasets. It stems
from the fact that PSP is much sparser than DBLP and Pokec, and the typ-
ical sizes of the rankings are shorter for PSP: as mentioned previously, PSP
rankings are of the order of 105 items, while DBLP and Pokec rankings are
larger than 108 items. Note also that the computation times of global metrics
(not reported here) is much larger than local metrics as they generally rely
on the computation of matrix products. For example, RWR typically takes
a few hours to run on PSP, while it is untractable on Pokec and DBLP.

6 Conclusion
In this work, we have presented RankMerging, a supervised method which
aggregate rankings from unsupervised rankers to improve the performance of
link prediction. This learning-to-rank method is straightforward and compu-
tationally cheap – its complexity is O(α·θ), where α is the number of rankings
aggregated and θ the number of predictions. It is suited to prediction in large
networks, as θ can be tuned according to the application needs. Its design
implies that the precision on top-ranked items cannot be significantly im-
proved, making RankMerging more appropriate for relatively large number
of predictions. We implemented it on three different large social networks,
and showed that in each case, it competes with the methods available at this
scale, such as the Weighted Borda method. It is especially efficient when
the unsupervised input rankers are complementary, but its performances are
robust to the addition of redundant information.

So far, we have exclusively focused on structural information in order to
predict unknown links. However, the framework is general and any feature
providing a ranking for likely pairs of nodes can be incorporated. Additional
structural classifiers are an option, but other types of attributes can also be
considered, such as the profile of the users (age, hometown, etc), or timings
of their interactions. In the latter case, for instance, if i and j are both in-
teracting with k within a short span of time, it is probably an indication of
a connection between i and j. From a theoretical perspective, RankMerging
provides a way to uncover the mechanisms of link creation, by identifying
which sources of information play a dominant role in the quality of a predic-
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tion. The method could be applied to various types of networks, especially
when links are difficult to detect. Applications include network security –
for example by detecting the existence of connections between machines of
a botnet – and biomedical engineering – for screening combinations of ac-
tive compounds and experimental environments in the purpose of medicine
discovery.

Acknowledgements
The authors would like to thank Emmanuel Viennet and Maximilien Danisch
for useful bibliographic indications. This paper presents research results of
the Belgian Network DYSCO (Dynamical Systems, Control, and Optimiza-
tion), funded by the Interuniversity Attraction Poles Programme, initiated
by the Belgian State, Science Policy Office. The scientific responsibility rests
with its authors. This work is also funded in part by the ANR (French Na-
tional Agency of Research) under grants ANR-15-CE38-0001 (AlgoDiv) and
ANR-13-CORD-0017-01 (CODDDE), by the French program "PIA - Usages,
services et contenus innovants" under grant O18062-44430 (REQUEST), and
by the Ile-de-France FUI21 program under grant 16010629 (iTRAC). We also
acknowledge support from FNRS.

References
M. Al Hasan and M. Zaki. A survey of link prediction in social networks. In

Social network data analytics, pages 243–275. Springer, 2011.

M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using super-
vised learning. In SDM’06: Workshop on Link Analysis, Counter-terrorism
and Security, 2006.

K.J. Arrow. Social choice and individual values, volume 12. Yale university
press, 2012.

L. Backstrom and J. Leskovec. Supervised random walks: predicting and
recommending links in social networks. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 635–644.
ACM, 2011.

39



N. Benchettara, R. Kanawati, and C. Rouveirol. Supervised machine
learning applied to link prediction in bipartite social networks. In
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 326–330. IEEE, 2010.

C.A. Bliss, M.R. Frank, C.M. Danforth, and P.S. Dodds. An evolution-
ary algorithm approach to link prediction in dynamic social networks.
arXiv:1304.6257, 2013.

C.J.C. Burges, K.M. Svore, P.N. Bennett, A. Pastusiak, and Q. Wu. Learning
to rank using an ensemble of lambda-gradient models. Journal of Machine
Learning Research-Proceedings Track, 14:25–35, 2011.

Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. Learning to rank:
from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning, pages 129–136. ACM, 2007.

O. Chapelle and S.S. Keerthi. Efficient algorithms for ranking with svms.
Information Retrieval, 13(3):201–215, 2010.

O. Chapelle, Y. Chang, and T.Y. Liu. Future directions in learning to rank.
In Yahoo! Learning to Rank Challenge, pages 91–100, 2011.

P.M. Comar, P.N. Tan, and A.K. Jain. Linkboost: A novel cost-sensitive
boosting framework for community-level network link prediction. In 11th
International Conference on Data Mining (ICDM), pages 131–140. IEEE,
2011.

K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea, A.A.
Nanavati, and A. Joshi. Social ties and their relevance to churn in mobile
telecom networks. In Proceedings of the 11th International Conference on
Extending Database Technology, pages 668–677. ACM, 2008.

D. Davis, R. Lichtenwalter, and N.V. Chawla. Supervised methods for multi-
relational link prediction. Social Network Analysis and Mining, 3(2):127–
141, 2013.

J.C. de Borda. Mémoire sur les élections au scrutin. 1781.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation meth-
ods for the web. In Proceedings of the 10th international conference on
World Wide Web, pages 613–622. ACM, 2001.

40



Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. The Journal of machine learning
research, 4:933–969, 2003.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries
for ordinal regression. Advances in neural information processing systems,
pages 115–132, 1999.

Z. Huang, X. Li, and H. Chen. Link prediction approach to collaborative
filtering. In Proceedings of the 5th ACM/IEEE-CS joint conference on
Digital libraries, pages 141–142. ACM, 2005.

H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda. Link
propagation: A fast semi-supervised learning algorithm for link prediction.
In SDM, volume 9, pages 1099–1110. SIAM, 2009.

G. Kossinets and D.J. Watts. Empirical analysis of an evolving social net-
work. Science, 311(5757):88–90, 2006.

J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution
of social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 462–470. ACM,
2008.

D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social
networks. Journal of the American society for information science and
technology, 58(7):1019–1031, 2007.

R.N. Lichtenwalter, J.T. Lussier, and N.V. Chawla. New perspectives and
methods in link prediction. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
243–252. ACM, 2010.

T.Y. Liu. Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval, 3(3):225–331, 2009.

Y.T. Liu, T.Y. Liu, T. Qin, Z.M. Ma, and H. Li. Supervised rank aggregation.
In Proceedings of the 16th international conference on World Wide Web,
pages 481–490. ACM, 2007.

41



L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica
A: Statistical Mechanics and its Applications, 390(6):1150–1170, 2011.

A.K. Menon and C. Elkan. Link prediction via matrix factorization. In
Machine Learning and Knowledge Discovery in Databases, pages 437–452.
Springer, 2011.

T. Murata and S. Moriyasu. Link prediction of social networks based
on weighted proximity measures. In International Conference on Web
Intelligence, pages 85–88. IEEE, 2007.

B. Ngonmang, E. Viennet, and M. Tchuente. Churn prediction in a real online
social network using local community analysis. In Proceedings of the 2012
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2012), pages 282–288. IEEE Computer Society, 2012.

M. Pavlov and R. Ichise. Finding experts by link prediction in co-authorship
networks. FEWS, 290:42–55, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

M. Pujari and R. Kanawati. Supervised rank aggregation approach for link
prediction in complex networks. In Proceedings of the 21st international
conference companion on World Wide Web, pages 1189–1196. ACM, 2012.

T. Raeder, O. Lizardo, D. Hachen, and N.V. Chawla. Predictors of short-
term decay of cell phone contacts in a large scale communication network.
Social Networks, 33(4):245–257, 2011.

S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features in link
prediction on location-based social networks. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1046–1054. ACM, 2011.

D. Sculley. Rank aggregation for similar items. In SDM, pages 587–592.
SIAM, 2007.

42



K. Subbian and P. Melville. Supervised rank aggregation for predicting influ-
encers in twitter. In Privacy, Security, Risk and Trust (PASSAT) and 2011
IEEE Third Inernational Conference on Social Computing (SocialCom),
2011 IEEE Third International Conference on, pages 661–665. IEEE, 2011.

T. Tylenda, R. Angelova, and S. Bedathur. Towards time-aware link predic-
tion in evolving social networks. In Proceedings of the 3rd Workshop on
Social Network Mining and Analysis, page 9. ACM, 2009.

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi.
On the evolution of user interaction in facebook. In Proceedings of the
2nd ACM SIGCOMM Workshop on Social Networks (WOSN’09), August
2009.

Y. Yang, R.N. Lichtenwalter, and N.V. Chawla. Evaluating link prediction
methods. Knowledge and Information Systems, 45(3):751–782, 2015.

T. Zhou, L. Lü, and Y.C. Zhang. Predicting missing links via local informa-
tion. The European Physical Journal B, 71(4):623–630, 2009.

43


