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ABSTRACT This paper introduces SIMPLY+, an advanced Spin-Transfer Torque Magnetic Random-
AccessMemory (STT-MRAM)-based Logic-in-Memory (LIM) architecture that evolves from the previously
proposed smart material implication (SIMPLY) logic scheme. More specifically, the latter is enhanced by
incorporating additional circuitry to enhance the reliability of preliminary read operations. In this study,
the proposed architecture is benchmarked against its conventional counterpart. Obtained results show a
significant improvement in terms of reliability, i.e., the nominal read margin (RM) by a factor of ∼3-4× and
accordingly the bit error rate (BER) by more than four orders of magnitude. These improvements come at
minimal cost in terms of circuit area and complexity compared to the conventional SIMPLY design. Overall,
this research establishes SIMPLY+ as a promising solution for the design of reliable and energy-efficient
in-memory computing architectures.

INDEX TERMS Material Implication, SIMPLY, MTJ, STT-MRAM, in-memory computing.

I. INTRODUCTION
Material implication (IMPLY) logic shows great potential as
a prospective solution for defining Logic-in-Memory (LIM)
architectures designed to execute fast and energy-efficient
computations directly within memory units. This approach
effectively mitigates the von-Neumann bottleneck of con-
ventional computing platforms, specifically the need to
read/write data to/from off-chip memories [1], [2], [3], [4],

The associate editor coordinating the review of this manuscript and

approving it for publication was Jagadheswaran Rajendran .

[5], [6], [7], [8], [9]. However, the conventional IMPLY logic
scheme faces significant challenges, including the degrada-
tion of the logic states and the limited design flexibility
associated with operating voltages [10]. To overcome these
drawbacks, an alternative smart IMPLY (SIMPLY) LIM
scheme was recently proposed [10], [11], [12], [13]. The
SIMPLY solution integrates an output comparator into the
classical IMPLY scheme. This comparator is exploited to
execute a preliminary 2-bit read operation, which is then used
to execute the SET operation selectively, based on the specific
need (i.e., only when both inputs are at low logic level [10]).
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Such an approach effectively alleviates the issue of logic
state degradation, while also reducing energy consumption
with minimal impact on circuit area and complexity when
compared to the conventional IMPLY scheme [10].

Although the SIMPLY logic was originally proposed
and validated for Resistive Random Access Memory
(RRAM) devices [10], [11], [12], [13], recent investi-
gations have extended its applicability to Spin-transfer
Torque Magnetic Random-Access Memory (STT-MRAM)
devices [14], [15]. The latter represents an appealing
option for LIM applications owing to faster read/write
operations, low standby power consumption, and high
endurance [16], [17], [18], [19], [20], [21], [22], [23]. Spin-
orbit torque (SOT) MRAM technology has also been
considered as a potential alternative for the development of
Compute-in-Memory (CIM) architectures [24], [25], [26].
However, despite their potential for offering higher write
speed, the switching control of SOT devices can lead to
increased power and adds circuit complexity [27].
According to findings in [14], the STT-MRAM-based

SIMPLY scheme exhibits the advantages of improved
energy-efficiency and reliability as compared to its IMPLY
counterpart. However, as highlighted in [15], the reliability of
STT-MRAM-based SIMPLY logic is significantly impacted
by the preliminary read operation. This influence is primarily
due to the relatively narrow read window inherent in
STT-MRAM devices, constrained by their tunnel magne-
toresistance (TMR) ratio [28], [29], [30]. Consequently, this
limitation results in suboptimal read margins, which lead to a
higher level of design complexity in the sensing circuitry [15].
In response to the above issue, this work introduces

SIMPLY+, i.e., an advanced STT-MRAM-based SIMPLY
logic scheme that allows enhanced read operation reliability
compared to its conventional counterpart. This is achieved by
using a common source (CS) stage with a diode-connected
active load, with the aim of enlarging the read margins
and thereby ensuring lower error rates. The SIMPLY+

scheme was exhaustively evaluated by means of extensive
Monte Carlo (MC) simulations and benchmarked against
the conventional SIMPLY logic. In addition, we propose a
further improved design of the SIMPLY+ cell, where the
sense amplifier-based output comparator is replaced by a
simpler two-stage inverter. The latter is properly designed to
handle both 1-bit and 2-bit read operations within the same
scheme and hence executing the sFALSE operation, which
forms along with the SIMPLY operation a computationally
complete logic basis [11].
The main contributions of this work can be summarized as

follows:

• We propose SIMPLY+, a novel STT-MRAM-based
LIM architecture that evolves from the previously
proposed SIMPLY logic scheme.

• SIMPLY+ features a dedicated low-complexity cir-
cuitry designed to improve the reliability of read
operations in terms of read margin, bit error rate,

TABLE 1. STT-MTJ parameters (300 K).

and read disturbance rate. Obtained results show a
substantial enhancement in reliability, presenting a 3×
to 4× increase of read margin, and a corresponding
reduction in the bit error rate of more than four orders
of magnitude. This occurs at the expense of increased
read energy.

• We suggest an improved SIMPLY+ logic scheme by
replacing the standard sense amplifier-based output
comparator with a lower complexity two-stage buffer to
considerably reduce the read energy
penalty.

The rest of the paper is organized as follows. Section II
details the scheme and operation of the SIMPLY+ logic,
while also reporting and discussing simulation results as com-
pared to its conventional counterpart. Section III describes
the improved design of the SIMPLY+ cell along with the
corresponding simulation results. Section IV compares the
different SIMPLY-based solutions in terms of the main
figures-of-merit. Finally, the main conclusions of the work
are drawn in Section V.

II. LOGIC-IN-MEMORY ARCHITECTURES:
SIMPLY VS SIMPLY+

Fig. 1 shows the simplified top-level diagram of the
referenced STT-MRAM SIMPLY-based architecture [12].
A control logic, equipped with analog tri-state buffers (TSBs)
delivers the appropriate voltages to the STT-MRAM devices
while the sensing circuit involves the topology needed to per-
form the SIMPLY operation. The architecture also employs
transistors to enable specific array columns. In the following,
we focus on the design and operation considerations of the
STT-MRAM-based SIMPLY and SIMPLY+ schemes which
essentially differ in the sensing scheme implementation,
while also reporting and discussing comparative simulation
results.

In our work, the electrical behavior of the STT-MTJ
devices is taken into account by an analytical macrospin-
based Verilog-A compact model [31], whose main physical
parameters for the considered 30 nm STT-MTJ device are
summarized in Table 1 referring to room temperature
(300K) [32], [33], [34]. Note that, the physical and
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FIGURE 1. Top-level STT-MRAM SIMPLY architecture.

electrical characteristics reported in Table 1 are consistent
with the state-of-the-art parameters for nano-scaled MTJs
[35], [36].

A. SIMPLY AND SIMPLY+ LOGIC SCHEMES
Fig. 2(a) sketches the conventional SIMPLY scheme [12],
which was introduced to overcome the shortcoming of the
traditional IMPLY design [10], [11], [12], [13]. Indeed,
both IMPLY and FALSE operations are performed more
efficiently within this architecture as SIMPLY and sFALSE
operations, respectively [11]. The IMPLY or SIMPLY
operation involves two inputs and one output, according to the
truth table reported in Fig. 2(b). The inputs are represented
by the initially stored states of the two MTJs P and Q in
Fig. 2(a), while the output is given by the final state of the
MTJ Q after the execution. On the other hand, the FALSE
or sFALSE operation is a one-input one-output operation
that always results in a logic ‘0’ stored in the considered
MTJ. Accordingly, as shown in Fig. 2(a), the core of the
conventional SIMPLY logic scheme consists of two MTJs
(P and Q) and an NMOS tail transistor (Mn) driven by
the Vbias voltage, here used to implement the load resistor
RG [15]. Moreover, the SIMPLE scheme presents an output
comparator and a control logic block including analog TSBs,
shown at the top of Fig. 2(a), to apply the appropriate
voltages to the MTJs and to manage the execution of the
operations.

Within this scheme, ensuring the proper execution of the P
IMPLY Q operation involves maintaining the state of MTJ
P, regardless of the input combination. At the same time,
the MTJ Q should only switch from ‘0’ to ‘1’ when P =

Q = ‘0’. A preliminary read operation is performed with

the aim of distinguishing the input combination P = Q =

‘0’ from all other possibilities. To accomplish this, a proper
voltage pulse with an amplitude VREAD and width tREAD is
applied to the top electrode of both MTJ devices through the
control logic block. Then the voltage VG across the transistor
Mn is compared to an appropriate reference voltage VREF
using the output comparator. In this way, the P = Q = ‘0’
input combination is effectively detected, thus allowing the
subsequent SET operation on MTJ Q to take place only in
this specific case. This is achieved by applying an appropriate
voltage pulse with amplitude VSET and width tSET on Q,
while keeping the P driver in a high impedance (HI-Z) state,
as shown in Fig. 2(b). On the contrary, for the other input
combinations the control logic forces both MTJ drivers into
a HI-Z state, thus enabling significant energy savings [10],
[12], [15].

Similarly to the SIMPLY operation, the sFALSE operation
also requires a preliminary read operation, but on a single
device. Thereby, the subsequent RESET operation requiring
a negative voltage pulse is performed only when the detected
MTJ state is ‘1’ [11].
Fig. 2(c) shows the SIMPLY+ scheme proposed in this

work and purposely designed to enhance the reliability of
the preliminary read operation. This latter is the most critical
operation for the STT-MRAM-based SIMPLY framework,
owing to the relatively narrow read memory window offered
by MTJ devices [15]. Our approach involves the use of a CS
amplifier stage with a diode-connected load (M1-M2). The
CS input is represented by the voltageVG at the drain terminal
of the transistorMn, while the output drives the gate terminal
of the same transistor. This allows for significantly enlarging
the read margins in terms of VG voltages developed for the
P = Q = ‘0’ input combination and the others, thus enabling
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FIGURE 2. (a) Conventional STT-MRAM-based SIMPLY basic cell with a tail transistor (instead of a resistor) and the output comparator. Detail of the
tri-state buffer (TSB) topology at the top. (b) IMPLY truth table and time diagram of applied voltage pulses within the SIMPLY scheme when the sensing
circuitry detects the input condition P=Q=‘0’ and in all other cases [15]. (c) STT-MRAM-based SIMPLY+ scheme, including the tail transistor, a common
source stage with diode-connected load, and the output comparator.

more reliable operation, as demonstrated in the subsequent
subsection.

B. SIMULATION RESULTS AND DISCUSSION
In the following, we will present and discuss the simulation
results referred to the preliminary two-device read operation
in the SIMPLY+ scheme, while also benchmarking it against
the conventional SIMPLY counterpart. All the reported data
is based on electrical simulations performed at room temper-
ature (300K) by using the Cadence Virtuoso environment.
Transistors’ modeling refers to a commercial 65 nm, 1.2V
CMOS process, while our Verilog-A compact model [31] is
used for the 30 nm STT-MTJ devices.

Fig. 3 shows the timing diagram for key signals involved in
the preliminary read operation when using both the conven-
tional SIMPLY and the enhanced SIMPLY+ approaches. The
data refers to a nominal simulation with the transistorMn size
of Wn/Ln = 1 um/3 um and VREAD = 0.5V in both schemes.
In the SIMPLY scheme, Vbias is set to 1V. From Fig. 3,
when the EN and SN signals are switched ON in the TSBs,

the VREAD is set to 0.5V. This results in a corresponding
VG voltage across transistor Mn, dependent on the input
combinations, specifically the states of the MTJs P and Q.
For the conventional SIMPLY architecture, the VG voltages
obtained for the scenarios where P = Q = ‘0’ and P ̸= Q
yield a nominal RM of just 55mV. On the other hand, due
to the additional CS stage, the SIMPLY+ scheme exhibits a
nominal RM of 209mV at 10 ns and 183mV at 20 ns. This
leads to an improvement of 3.8× and 3.3×, respectively,
when compared to its conventional counterpart.

The reliability of the preliminary read operation in
both schemes was also investigated while considering the
effect of process variations on transistor and MTJ devices.
This analysis was performed by means of extensive MC
simulations. Transistor process variations were included
using statistical models provided by the commercial PDK.
For the MTJs, we assumed Gaussian distributed variations
in the adopted Verilog-A compact model by setting the
variability (defined as the ratio of the standard variation
(σ ) to the mean value (µ)) of 1% and 5% for the oxide
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FIGURE 3. Timing diagram of the signals involved in the SIMPLY and
SIMPLY+ schemes during the preliminary read operation as obtained
from nominal simulations at 300 K considering VREAD Wn/Ln=1µm/3µm
size for the transistor Mn, VREAD = 0.5V and Vbias = 1V.

thickness (tOX) and the cross-section area, respectively
[14], [15], [31].

Fig. 4(a)-(d) and Fig. 5(a)-(b) show the MC simulation
results obtained for the SIMPLY and SIMPLY+ architec-
tures. More specifically, these figures report the statistical
distributions of the voltage VG for the different input com-
binations, while highlighting the corresponding estimated
values for the RM, bit error rate (BER), and VREF. The RM
is evaluated both at the nominal corner (as given by the
difference between the mean VG values associated with the
P = Q = ‘0’ and P ̸= Q cases) and at the 3σ corner (RM3σ ),
with σ being the standard deviation of VG distributions. The
BER refers to the failure probability in distinguishing the
input combination P = Q = ‘0’ from the other combinations
during the preliminary read operation [15] and it is estimated
by properly setting the VREF used as input of the output
comparator.

In particular, the appropriate VREF is determined by the
voltage value that results in the same BER for the cases P =

Q = ‘0’ and P ̸= Q [37]. It is worth pointing out that in
our analysis, the BER was evaluated by assuming an ideally
stable VREF and an ideal comparator with zero offset.
Fig. 4(a)-(c) show the MC simulation results achieved

within the conventional SIMPLY scheme for tREAD =10 ns.
From Fig. 4(a), the obtained nominal RM is equal to 55mV,
whereas the corresponding RM3σ is about 15mV. From
Fig. 4(c), the VREF to be used in the SIMPLY scheme is about

TABLE 2. Comparative results SIMPLY vs SIMPLY+ for the preliminary
read operation under process variations.

250mV, which leads to a BER of 1.68×10−5 for the P=Q=

‘0’ and P̸=Q input combinations, i.e., the worst-case BER.
Fig. 4(b)-(d) report the statistical results of the SIMPLY+

scheme for tREAD =10 ns. The nominal RM and RM3σ
values are respectively 202.5mV and 103.4mV, i.e., 3.7×
and 6.8× larger than the conventional SIMPLY scheme.
The appropriate VREF is 362.9mV, which corresponds to a
worst-case BER of 4.37×10−10, i.e., more than four orders of
magnitude better as compared to its conventional counterpart.

The reliability of the preliminary read operation in the
SIMPLY+ scheme can be further improved by enlarging
the read voltage pulse duration. This can be observed
in Fig. 5(a)-(b), which shows the statistical results of the
SIMPLY+ scheme for tREAD =20 ns. Indeed, despite a
reduction of the nominal RM down to 181.1mV compared
to the 202.5mV obtained at tREAD = 10 ns, increasing
the tREAD up to tREAD =20 ns leads to a RM3σ of about
121.6mV, i.e., 8× and 1.2× larger than the conventional
SIMPLY scheme and the SIMPLY+ scheme at tREAD =

10 ns, respectively, owing to the reduced standard deviation
values of VG distributions. This results into a worst-case BER
of 3.32 × 10−20 at VREF = 423.7mV, which corresponds
to an improvement by more than fourteen and ten orders of
magnitude as compared to the conventional SIMPLY scheme
and the SIMPLY+ scheme for tREAD =10 ns, respectively.
Obviously, such an improvement comes at the cost of higher
energy consumption. This can be observed in Table 2, which
summarizes the comparative results obtained within the
SIMPLY and SIMPLY+ schemes for the preliminary read
operation under process variations.

Our analysis was also extended with the aim of evaluating
the effect of the tail transistor (Mn) sizing (each 1µm)
on SIMPLY+ performance during the preliminary read
operation. In this regard, Fig. 6(a)-(f) show the color maps
of the nominal RM, the RM at the 3σ corner, the worst-case
read disturbance rate (RDR), i.e., referred to the case P=Q=

‘0’ [15], the VREF, the worst-case BER, and the worst-case
overall read error rate (RER), both referred again to the case
P = Q = ‘0’ [15]. All this data was obtained from statistical
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FIGURE 4. Simulation results of the conventional SIMPLY and SIMPLY+ scheme for the preliminary read operation under process variations at 300 K
considering Wn/Ln=1µm/3µm size for the tail transistor Mn, VREAD = 0.5V, Vbias = 1V and tREAD = 10ns. (a-b) VG statistical distributions for the
different input combinations and (c-d) estimation of the bit error rate (BER) and reference voltage (VREF).

FIGURE 5. Simulation results of the SIMPLY+ scheme for the preliminary
read operation under process variations at 300 K considering
Wn/Ln=1µm/3µm size for the tail transistor Mn, VREAD = 0.5V and
tREAD = 20ns. (a) VG statistical distributions for the different input
combinations and (b) estimation of the bit error rate (BER) and reference
voltage (VREF).

simulations at 300K, VREAD = 0.5V and tREAD =10 ns
while varying the size (Ln and Wn) of Mn, i.e., its strength.

In particular, the RDR is an important metric to assess
the reliability of the read operation performed within the
SIMPLY/SIMPLY+ framework, as it refers to the probability
of unintentionally switching the stored data during this
operation [15], [17]. Accordingly, for a given Mn size, the
overall RER is given by the combination of the RDR and
BER. From Fig. 6(a)-(b), we can observe that the Mn sizing
strongly affects the RM. More specifically, we can identify
a relatively small design space for size around Wn/Ln =

1 µm/3 µm leading to nominal RM and RM3σ values in the
neighborhood of 200mV and 100mV, respectively. More
precisely, we obtain a nominal RM of 202.5mV and a RM3σ
of 103.4mV according to Fig. 4(a). From Fig. 6(c), the
worst-case RDR increases when increasing the strength of the
transistor Mn, i.e., for larger (smaller) Wn (Ln), as given by
the corresponding increase in the current flowing through the
MTJ devices. In particular, forWn/Ln= 1 µm/3 µmwe obtain
a worst-case RDR equal to 1.05×10−9. An opposite trend as
compared to that of the RDR can be seen for the VREF in
Fig. 6(d), where its value tends to increase when decreasing
the transistor strength. From Fig. 6(e), the worst-case BER
expectedly shows a similar trend to the RM, hence with an
optimal design space forMn size aroundWn/Ln= 1 µm/3 µm
leading to BER values in the order of 10−10 as in Fig. 4(d).
The discussed trends of the RDR and BER thus result in the
map of the RER shown in Fig. 6(f), where its optimal value
of 1.05×10−9 is achieved at Wn/Ln = 1 µm/3 µm size, i.e.,
that used in the above analysis.
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FIGURE 6. Simulation results of the SIMPLY+ scheme for the preliminary read operation under process variations at 300 K, VREAD = 0.5V and tREAD =

10 ns while varying the size (Ln and Wn) of the tail transistor Mn: (a) nominal read margin (RM), (b) RM at the 3σ corner, (c) worst-case read disturbance
rate (RDR) referred to the case P = Q = ‘0’, (d) reference voltage (VREF), (e) worst-case bit error rate (BER) referred to the case P = Q = ‘0’, and
(f) worst-case overall read error rate (RER) again referred to the case P = Q = ‘0’.

III. IMPROVED SIMPLY+ DESIGN
In addition to the introduction of the CS stage as discussed
in the previous section, we propose a further modification
of the conventional SIMPLY scheme, which consists of
replacing the conventional sense amplifier-based output
comparator [11], [14], [15] with a lower complexity two-
stage buffer, thus resulting in an enhanced SIMPLY+

scheme, as depicted in Fig. 7(a). The two-stage inverter-based
output block acts as a sense amplifier to discriminate the
VG values associated with the different input combinations,
using the logic threshold as the reference voltage. To this aim,
skewed inverters are employed to strengthen the output data
(VOUT) and to improve the capability to discriminate the input
combinations.

The transistors highlighted in red in Fig. 7 are used
to enable both 1-bit and 2-bit read operations within the
same circuit block, needed to execute sFALSE and SIM-
PLY operations, respectively. This is achieved by properly
setting the SREAD signal, which allows adjusting the logic
threshold of the first inverter in the output block on the
basis of the operation to be performed. More specifically,
as reported in Fig. 7, SREAD = ‘0’ (‘1’) enables the 1-bit
(2-bit) read operation for the sFALSE (SIMPLY) execution.
Fig. 8(a) shows the SIMPLY+ scheme during the sFALSE
operation, i.e., when SREAD = ‘0’, which involves only one
MTJ. Fig. 8(b) shows the truth table and time diagram
of the voltage pulse applied to Q (VQ) to execute the
‘‘sFALSE Q’’.

144090 VOLUME 11, 2023



T. Moposita et al.: SIMPLY+: A Reliable STT-MRAM-Based Smart Material Implication Architecture

FIGURE 7. Improved SIMPLY+ scheme, including a common source (CS)
stage with diode-connected load and a two-stage inverter as output
block.

FIGURE 8. (a) SIMPLY+ scheme during sFALSE operation. (b) sFALSE truth
table and time diagram of the voltage pulse applied to Q (VQ) to execute
the ‘‘sFALSE Q’’ operation in SIMPLY architecture when the comparator
detects the Q = 1 case (red dash-line) and Q = 0 case (blue).

The proposed approach is demonstrated in Fig. 9, which
shows the timing diagram of the VREAD, VG and VOUT

FIGURE 9. Timing diagram of VREAD, VG and VOUT signals involved in the
preliminary 1-bit and 2-bit read operations to be performed respectively
for sFALSE and SIMPLY operations within the improved SIMPLY+ scheme
of Fig. 7, as obtained from nominal simulations at 300 K and VREAD =

0.5V.

TABLE 3. Comparison of STT-MRAM-based SIMPLY logic schemes.

signals when performing the 2-bit and 1-bit read operations
within the scheme of Fig. 7. Here, data refers to nominal
simulations at 300K and VREAD = 0.5V. From this figure,
we can observe that the proper tuning of the logic threshold
through the SREAD signal allows distinguishing the input
combination P = Q = ‘0’ (i.e., VOUT = ‘0’) from the others
(i.e., VOUT = ‘1’) in the 2-bit read operation, as well as
the case Q = ‘0’ (i.e., VOUT = ‘0’) from the case Q = ‘1’
(i.e., VOUT = ‘1’) in the 1-bit read operation. The improved
SIMPLY+ presents an average energy consumption of
about 2.07 pJ at tREAD =10 ns. This is ∼ 20% less as
compared to the SIMPLY+ scheme of Fig. 2(c), thus
demonstrating the effectiveness of replacing the conven-
tional sense-amplifier-based comparator with the two-stage
buffer.
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IV. COMPARISON RESULTS
Table 3 compares the different STT-MRAM SIMPLY-based
architectures analyzed in this work. All SIMPLY schemes
were evaluated under the same simulation conditions, i.e.,
VDD of 1.2V, VREAD of 0.5V, tREAD of 10 ns, 65 nm
process, 1000 Monte Carlo samples. The designs present
two types of sensing circuitry. The conventional SIMPLY
and SIMPLY+ use the 10-transistor sense amplifier-based
output comparator reported in [11], and need reference
voltages (whose energy overhead is not considered here),
which lead to an increase in terms of overall area and
design complexity. For the improved SIMPLY+ alternative,
the self-referenced CS stage allows the use of a lower-
complexity 7-transistors two-stage output buffer. This saves
precious read energy and avoids the need for additional
biasing circuits which potentially increase energy and
may represent a source of variability for the overall
system [37].
In terms of RM and BER, the proposed SIMPLY+

solutions are by far the best choice for a reliable design (refer
to Section III). Such benefit is obtained at the expense of
about 20% (improved SIMPLY+ vs SIMPLY) increase in
terms of read energy consumption.

V. CONCLUSION
In this work, we proposed SIMPLY+, a reliability enhanced
STT-MTJ-based LIM logic scheme. Our design exploits a
commercial 65 nm CMOS PDK, as well as a macrospin-
based Verilog-A compact model to describe the behavior of
the adopted 30 nm diameter perpendicular STT-MTJ device.
We evaluated SIMPLY+ circuit performance by means of
exhaustive Monte Carlo simulations. As a main result of
our study, the SIMPLY+ nominal read margin is about
3 − 4× compared to its conventional SIMPLY counterpart.
In addition, the improved SIMPLY+ also exhibits better
performance in terms of BER with an improvement by more
than four orders of magnitude. These reliability advantages
are obtained at the expense of a penalty of about 20% in terms
of read energy.

Our results prove that the SIMPLY+ scheme is a
very promising solution for designing reliable in-memory
computing architectures.
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